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Abstract

In recent years, new mobility services have flourished, offering more user-centric trans-

portation products. With the emergence of these services, the transport systems are ex-

periencing significant changes. How to design these emerging systems from a long-term

perspective becomes a challenging issue. This thesis focuses on strategic planning for two

specific types of emerging mobility services: bus transit systems operating with human-

driven and autonomous buses and one-way station-based carsharing systems. By using

mathematical formulations and approaches, various strategic decisions are determined in

the two respective systems.

For designing the emerging bus transit systems, a mixed integer nonlinear program-

ming (MINLP) model (Model I) and its linear approximation are proposed to decide bus

depot locations, fleet size, bus routes, and frequency and bus type of each route under the

restriction of bus drivers. Considering the complexity of linearized Model I, we develop a

simplified path-based model (Model II) and its linear approximation to solve the joint de-

sign problem. For the approximately linear models, we conduct the experiments on two test

networks. Based on different weights, we first handle the linearized Model I and obtain the

efficient frontiers for the networks. The results reveal the importance of autonomous buses

in constructing user-centric service systems when the driver is limited. On both networks,

the linearized Model II can be solved faster than the linearized Model I due to the smaller

model size. To evaluate the solutions of the linearized Model II, we compare the objective

values of original Model I and new Model I that includes constraints on the solutions of

model II. It turns out that the linearized Model II can obtain satisfactory solutions for both

networks within a few seconds.

For the one-way station-based carsharing systems, this thesis focuses on strategic de-
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cisions, including the location and capacity of stations and the fleet size. Under demand

uncertainty, we introduce a two-stage risk-averse stochastic model to maximize the mean

return and minimize the risk, where conditional value-at-risk (CVaR) is specified as the risk

measure. To solve the problem efficiently, we develop a branch-and-cut algorithm and a

scenario decomposition algorithm. We generate the scenario demand data with the Poisson

distribution based on limited historical use data to conduct computational experiments. In

the experimental part, the efficient frontiers are obtained firstly so that the system operator

can make a trade-off between return and risk. We then utilize an evaluation method to

analyze the necessity of introducing risk. Finally, the efficiency of the proposed algorithms

is elaborated through comparative experiments. Both the branch-and-cut algorithm and

the scenario decomposition algorithm can tackle the small- and medium-scale problems

well. For large-scale problems that cannot be solved by using an optimization solver or

the branch-and-cut algorithm, the scenario decomposition method can provide favorable

solutions within a reasonable time.

Keywords: Strategic planning, Mathematical formulation, Autonomous buses, Path-

based, Carsharing, Risk, Demand uncertainty, Branch-and-cut, Scenario decomposition
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Chapter 1

Introduction

1.1 Background

Along with urbanization and economic growth, the continuous increase in private ve-

hicles has had severe negative impacts, such as traffic congestion, environmental pollution,

time wastage, and shortage of parking spaces. On the other hand, these negative impacts

become the critical factors promoting the wave of innovation in transportation [21, 85].

Transportation agencies have to reasonably design and operate the transport systems by

employing emerging technologies to offer more efficient, flexible, and sustainable services.

In recent years, the concept of mobility has gained growing popularity and restructured

traditional transportation gradually. The mobility services aim to provide more user-

centric transportation products with a high degree of flexibility to respond to travelers’

needs, habits, and preferences. [85] introduced some notable types of emerging mobility ser-

vices (e.g., carsharing, ridesharing, shared autonomous vehicles, and mobility-as-a-service

(MaaS)). Figure 1.1 [85] presents the ideal travel range and the use flexibility of different

mobility services. Each service is suitable for a particular travel situation, and users can

choose the appropriate mode for the trips. Compared with traditional transportation, the

states of emerging mobility are now mainly transforming in two aspects: from human-driven

to autonomous and from private to shared [23]. This thesis studies two related emerging

mobility services, bus transit with mixed human-driven and autonomous buses and one-way

station-based carsharing, for these two types of transformations.

In the past decade, autonomous vehicles have rapidly advanced thanks to the devel-
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Figure 1.1: Ideal use cases for different mobility services [85]

opment of sensors, wireless connectivity, and artificial intelligence. According to the J3016

standard for automated driving systems by the Society of Automotive Engineers (SAE), ve-

hicle autonomy can be classified into six levels, ranging from no driving automation (Level

0) to full driving automation (Level 5) [81]. Litman [60] predicted that, in the 2050s, about

half of vehicles would be autonomous if Level 5 vehicles were commercially available in the

2030s. Due to the vast market, many traditional car companies (such as Toyota, Honda,

and General Motors) have researched and developed autonomous vehicle prototypes, even

some technological giants (Apple, Google, and Tesla). The developed autonomous vehicles

are expected to be used for different purposes like mobility, logistics, and product sales.

Among various vehicle types, buses and trucks may be automated the fastest because of

high labor costs and lack of drivers [60, 96]. Transit buses, a kind of mass transit, play a

crucial role in modern cities and bring many benefits, such as alleviating congestion and

reducing the dependency on private vehicles [32]. However, the shortage of professional

bus drivers results in bus operators canceling certain specific routes or reducing departure

frequency. The introduction of autonomous buses seems to relieve this condition. At the

end of 2020 and the beginning of 2021, some countries (e.g., Japan [71], Singapore [98],

America [8], and China [88]) have successively launched the fixed-route autonomous bus

trials. As some countries seek to conduct pilot tests on autonomous buses, designing ef-
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ficient bus systems operating with a mixed human-driven and autonomous fleet becomes

essential.

Carsharing is another emerging mobility service to promote sustainable transport be-

sides the change in public transit systems. Traditional multimodal public transportation

can satisfy most travel demands, but many people prefer private vehicles due to their greater

convenience, especially those who reside far away from public transportation stations. In

Figure 1.1, it is observed that private cars are more suitable for long-distance travel and

can provide higher flexibility than other mobility services. However, the cost of owning a

car and parking difficulties bring their own challenges. Recently, carsharing has become

alternative transportation mean and can offer the advantages of both private vehicles and

public transportation [20,53]. Although carsharing is a new mobility service for many cities

and is usually considered innovative, the first carsharing project can date back to 1948 in

Zurich, Switzerland [68,99]. The early shared car systems were not successful for economic

reasons, and real prosperity appeared in the 2000s because of the more common integration

of information collection systems and mobile services [35]. By now, many carsharing organi-

zations have boomed around the world [92]. The existing carsharing systems can be mainly

classified into one-way and two-way (round-trip) types [82]. In one-way systems, users can

pick up and return cars at different sites, while in two-way systems, users should return

rented cars to the site where they were picked up. Compared with two-way systems, one-

way systems are more convenient for users, considering that one-way trips usually occupy a

large percentage of the total trips [5, 26]. Furthermore, station-based and free-floating sys-

tems can be distinguished in view of parking-spot restrictions [82]. The former type forces

people to park vehicles at stations with limited parking spaces, whereas the latter allows

the users to park cars anywhere in an operation area. In recent years, one-way station-

based carsharing has been witnessing soaring popularity worldwide. However, the system

operators are still facing significant challenges in planning and operating their systems.
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1.2 Research scope

With the emergence of heterogeneous fleet bus transit systems and one-way station-

based carsharing systems, it becomes important to plan them properly. However, designing

and managing such systems tend to be difficult and raise many decision-making problems,

including mainly three dimensions: strategic (long-term), tactic (medium-term), and op-

erational (short-term) [47, 50]. Sometimes, even real-time controls are needed because of

undesired situation [47]. The strategic decisions provide an overall structure for the sys-

tems, which significantly influence the performance of subsequent decisions at other levels.

In this thesis, we make strategic plans for both systems by using mathematical programming

approaches.

Although the two systems involve different strategic decisions, facility location and fleet

size are issues that both systems need to solve. Facility location problems are widespread

in the strategic planning procedure. In such problems, facilities are located at candidate

sites to minimize the cost of satisfying the demands under some constraints. As revealed

in [30], locating facilities is a long-term investment that extensively influences subsequent

decisions. This study solves the bus depot (also called garage, center) location problem

(BDLP) and carsharing station location problem for bus transit and carsharing systems,

respectively.

It is also important to determine the fleet size in each system. Diverse vehicles are

necessary for pick-up and delivery purposes. In many distribution-routing problems, a

natural question arises as to how many and what types of vehicles are required to satisfy

the demand [39]. Zakaria [99] argued that a good choice of fleet size could affect the

quality of service (QoS) significantly. Therefore, in our models, we determine the number

of buses (human-driven & autonomous) in the bus transit network and the number of shared

mobilities in the carsharing system.

In addition to the issues above, the bus transit network design entails three other

problems: setting the bus routes and their corresponding frequencies and bus types. The

set of routes over the underlying network constitute the transit network. Our objective is

to choose a subset of routes from a predefined set of routes. The frequency setting problem
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is an essential portion of transit network design. The frequencies have a considerable effect

on the passenger waiting times and the service quality [32], so they should be properly

evaluated. With limited driver resources, we shall consider assigning human-driven and

autonomous buses to appropriate routes to minimize costs. These three problems (routes,

frequencies, and bus types) are collectively referred to as a transit network design problem

(TNDP) in the thesis, though different studies have various definitions.

1.3 Thesis structure

This thesis is organized into five chapters. The remaining chapters are as follows. In

Chapter 2, we review the research regarding bus transit systems and carsharing systems,

two main focuses of this thesis, and identify current research gaps. Chapter 3 solves a

bus depot location and transit network design problem (BDL&TNDP) in the context of

mixed human-driven and autonomous buses. A mixed integer nonlinear programming model

(MINLP) and its linear approximation are proposed to determine the bus depot locations,

fleet size, bus routes, and frequency and bus type of each route. In addition, a simplified

path-based model is given to solve the design problem in a heuristic way. Chapter 4 presents

a risk-averse two-stochastic MINLP model to optimize the strategic decisions including on

locations and capacities of stations and fleet size considering uncertain demand for one-

way station-based carsharing. In order to obtain more robust solutions, we consider risk

management and apply conditional value-at-risk (CVaR) to measure risk. Two algorithms

are developed from different perspectives to solve the problem. Finally, Chapter 5 concludes

this thesis and provides some future research directions.
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Chapter 2

Literature review

This chapter demonstrates a detailed review of the related studies on bus transit and

carsharing systems, especially the papers on applying optimization methods to design them

strategically. At the end of this chapter, we summarize the research gaps and clarify the

contributions of this thesis.

2.1 Bus transit systems

Planning problems in bus transit systems have been widely studied, spanning from

strategic decisions (e.g., infrastructure development) to real-time control policies (e.g., stop-

skipping strategies). Figure 2.1 summarizes the planning problems at different levels [18,

47, 78]. The complete planning problem of the system is intractable if approached as a

whole. Therefore, it is usually divided into a number of manageable subproblems that

are treated sequentially during the planning process. Interested readers can refer to [29]

and [47] for more comprehensive reviews of different dimensions. Note that there is no

unique definition of each problem [32]. Models with the same names may solve different

problems and vice versa, depending on the papers’ definitions. In this study, we handle

the problem BDL&TNDP for the emerging bus transit systems to determine bus depot

locations, bus routes, service frequencies, and bus type of each route.

Regrading the mixed BDL&TNDP, there have been very few studies so far. Sawicki and

Fierek [77] handled a BDL&TNDP without frequency setting based on a macro-simulation

framework. In the framework, the passenger assignment was simulated by a four-stage
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Figure 2.1: Common transit planning problems

procedure, while line construction and depot location were determined in an optimization

model. Their methodology was validated on a medium-sized transport network in Poland.

Liu et al. [61] simultaneously optimized the transit routes, service frequency, and location

of charging depots for an electric bus transit network by formulating a multi-objective op-

timization model that takes into account constraints on bus route, charging depot, vehicle

operation, and charging schedule. Passenger assignment was based on an assignment pro-

cedure in [100] without well-defined mathematical constraints. The problem was solved by

Pareto artificial fish swarm algorithm.

Although scarce literature paid attention to BDL&TNDP, many studies were con-

ducted on BDLP or TNDP. Next, we also review studies about BDLP and TNDP, consid-

ering that BDL&TNDP integrates the two problems.

2.1.1 Bus depot location problem (BDLP)

BDLP is a typical location-allocation problem, which usually determines the optimal

location of bus depots and assigns the buses to different routes. In such a location problem,

minimizing the total cost of the transit system is a common objective function, and the

dead mileage cost accounts for a significant share in total cost [19]. Dead mileage (or
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dead running, deadheading) means the empty travel distance between the starting/ending

bus stops and the depots without serving any passengers. With urban development, bus

depots can generally be set up in undeveloped areas far away from the city center due to

limited land space [43], which may result in a significant increase in dead mileage cost.

However, it can be reduced by reasonably locating the depots and allocating the buses,

thereby decreasing the total costs.

Back in the 1980s, Maze et al. [65, 66] studied BDLP to locate and size the bus

depots with the traditional discrete location model. The objective function comprised

dead mileage, depot operating, and depot construction costs. In [66], an efficient solution

method was proposed and applied to a Detroit metropolitan area case study. Uyeno and

Willoughby [90] formulated a cost-minimizing mixed integer linear programming (MILP)

model to determine the optimal number, location, and size of transit centers based on ex-

isting bus routes and transit centers. Some existing centers may be shut down in the model,

and some new centers may be opened. Following the study, Willoughby and Uyeno [94]

solved a similar problem and developed a two-step heuristic procedure. The heuristic pro-

cedure first assigned all buses on a route to the same center and then considered capacity

limitations to reallocate. Willoughby [93] applied the location model for a regional transit

system in Vancouver, Canada. They also analyzed the model in different transit plan-

ning scenarios, such as no candidate facilities, forced Oakridge allocation, and Greenfields

approach. Extending the formulation in [93], Ali and Hassan [1] recently integrated the

maintenance center availability to the bus depot location problem. The developed model

took into account the construction cost of new depots, the residual value of existing depots,

the cost of maintenance centers located at depots, and the dead mileage cost. Chen et

al. [19] suggested a queuing-location-allocation model to design bus depot systems. Their

study treated the bus depot as a congested facility and developed an M/M/S queuing

problem [67]. A Lagrangian relaxation algorithm was proposed to solve the problem.

2.1.2 Transit network design problem (TNDP)

TNDP is a complex variant of the network design problem and can be formulated

as a mathematical model. However, it is often challenging to model various aspects of the
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problem [16] and obtain the optimal solution for large-scale instances [64]. Therefore, many

studies tackled the problem through heuristics or metaheuristics without explicit mathe-

matical programming formulations [2–4, 33, 69]. Recently, Iliopoulou et al. [49] provided a

critical review of numerous papers applying metaheuristics to handle TNDP and presented

an exhaustive performance comparison among them. Although heuristics and metaheuris-

tics may be the only practical way to solve large-scale problems, mathematical programming

models allow for precise analysis of the relationships between different system components,

which provides insight into the problem structure and possible solution methods. [16].

The early TNDP models were broadly classified into cost-oriented and passenger-

oriented approaches [78, 79]. The former approaches attempted to find a set of bus routes

serving all passengers and minimizing the operators’ costs (e.g., [40, 91]), while the latter

ones sought the maximal number of direct travelers (e.g., [14]). It can be found that the

early models ignored the passengers’ behavior (passenger assignment) that can be formu-

lated by the optimization model. Schöbel and Scholl [79] are the pioneers who consid-

ered the passengers’ transfer behavior of users by constructing a change&go network. The

model’s objective is to minimize the travel time of all passengers and the number of trans-

fers needed. In 2012, Schöbel [78] summarized the basic line-planning models and some

approaches integrating line planning and passenger assignment. Szeto and Jiang [86] pro-

posed a bi-level MINLP model in which the bus routes and corresponding frequencies are

determined at the upper level. The passengers’ behavior, including waiting for the buses,

is modeled by using an optimal strategies assignment model [84] at the lower level. Given

the difficulty of solving the bi-level model, a hybrid artificial bee colony algorithm was im-

plemented to settle two real-world transit networks. Later, Cancela et al. [16] linearized

the optimal strategies assignment model approximately to tackle TNDP and incorporated

a budget constraint representing the operators’ interest into the linearized model. They

also discussed a bi-level formulation by analyzing transfer behavior and street and bus ca-

pacity constraints. Recently, Duran et al. [31] illustrated a pollution-transit network design

problem (P-TNDP) and its three different cases to plan a multimodal transit system con-

sidering the network congestion and CO2 emissions. For a particular case: the unimodal

transit system, a bi-objective MILP model was proposed, which was an extension of the

9



model in [16]. De-Los-Santos et al. [28] elaborated two exact formulations for bus stop

location and line planning problems on the underlying bus-pedestrian network to minimize

social welfare. Besides waiting and transfer costs, their models also took the walking time

into account to represent the entire travel process of users. The models were tested on a

real metropolitan network with Seville city in Spain and nine surrounding towns.

With the piloting of fixed-route autonomous bus projects in several countries, a few

researchers began investigating the TNDP operating such new mobilities. Bergqvist and

Åstrand [6] studied the effects of automated minibusses on existing transit systems in terms

of operating costs and environmental impact. The best combination of traditional buses

and autonomous minibuses was derived to minimize the total operating costs. Tian et

al. [89] integrated autonomous vehicles into transit systems and formulated a two-stage

stochastic MINLP model to optimize the service frequencies of the conventional buses and

autonomous buses on the pre-determined routes, thus obtaining the fleet size of each type of

bus. Considering the nonconvex nature of their problem, they reformulated it as a mixed-

integer quadratic program, which can be solved by the approach of quadratic transform

with a linear alternating algorithm. In [42], the authors established a framework composed

of a multi-objective optimization problem and a multi-objective artificial bee algorithm to

explore potential changes in network design and frequency settings when autonomous buses

were introduced to fixed-route bus networks.

2.2 Carsharing systems

Similar to bus transit systems, design and management of a carsharing system also raise

several decision-making problems, ranging from strategic issues (e.g., carsharing mode, sta-

tion location) to operational policies (e.g., vehicle relocation, staff scheduling) [9], [50], as

shown in Figure 2.2. Generally, the overall structure of a carsharing system is determined

at the strategic and tactical levels, which have a significant impact on system performance.

Operational problems are usually handled to improve system management. Regarding op-

timization problems at different levels, interested readers can refer to [11] and [37] for a

comprehensive review. More recently, Illgen and Höck [50] presented a systematic review
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Figure 2.2: Common carsharing planning problems [50]

centered around a key operational issue: the vehicle relocation problem (VReP) in one-way

carsharing systems and introduced dependent-decision problems at other levels associated

with VReP. Over the past decade, VReP has become the most commonly considered prob-

lem [10,13,34,45,52,70,95,102] . For example, Boyaci et al. [10] developed an optimization-

simulation framework for both vehicle and personnel relocations in the electric carsharing

systems with reservations. Three mathematical models were included in the framework:

station clustering, operations optimization, and personnel flow.

Compared with the VReP, only a little literature has concentrated on strategic decisions

involving location problems, as revealed by Çalık and Fortz [15]. The classic facility location

problems (e.g., covering, median, center problems) have been researched for more than

half a century, and there are a large number of related studies. Daskin [24] provided a

thorough review in terms of models, algorithms, and applications. Within the context of

carsharing, de Almeida Correia and Antunes [25] are pioneers who first solved the station

location problem in one-way systems. In their study, three MILP models were proposed

and compared to determine the optimal number, location, and size of stations with the

same objective that maximizes the profit. By modifying the constraints, they incorporated

different schemes (i.e., serve some selected requests, serve all requests, and reject some
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requests conditionally) into the models. The practicality of the models was illustrated with

a case study on Lisbon, Portugal. Following this study, Jorge et al. [51] developed an

agent-based simulation model considering demand variability and vehicle relocation policy.

Experiments were conducted on the Lisbon data to test the validity of the solution from the

MILP model proposed by [25] . Similarly, de Almeida Correia et al. [26] evolved the MILP

formulation in [25] to allow users to pick up the sharing vehicles at an alternate station other

than the closest one. Later, Boyacı et al. [9] formulated a multi-objective MILP model for

planning one-way electric carsharing systems considering vehicle relocation and EV charging

requirements. The objectives of the model are to maximize the profit of the operator and

the profit of the users. Because of the large number of relocation variables, the problem

becomes intractable in real-world cases. The relocation variables were therefore reduced by

grouping the demand and clustering the stations to form an aggregate model. The proposed

approach was validated with data from Nice, France. Huang et al. [46] showed an MINLP

model to fathom the station location and capacity problem with a nonlinear demand rate

represented by the logit model. To solve the MINLP model, a customized gradient algorithm

was developed. The model and algorithm were applied to Suzhou Industrial Park, Suzhou,

China.

Additionally, some recent studies began to take the demand uncertainty into account

when making strategic decisions, whereas most of the earlier carsharing research, including

demand uncertainty, focused on dealing with VReP. Brandstätter et al. [12] identified the

optimal locations and the number of required EVs for one-way station-based carsharing

systems by introducing a stochastic optimization model whose objective is to maximize the

expected profit. In that model, the uncertain demand is represented by several scenarios.

Due to the complexity of the problem, they proposed a heuristic algorithm to obtain an

approximate solution or to provide an initial heuristic solution. Lu et al. [62] introduced

a stochastic model to optimize the profitability and QoS considering uncertain one-way

and two-way rental demand for a hybrid reservation-based and free-floating system. The

desired QoS level was maintained by minimizing the expected penalty of unserved customers

in a risk-neutral model. To solve the stochastic model, they developed a branch-and-cut

algorithm with mixed-integer rounding-enhanced Benders cuts. They also briefly remarked
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on a risk-averse model by penalizing the CVaR of unserved demand, but did not give

corresponding detailed experimental results. Çalık and Fortz [15] modeled the location

problem as a two-stage stochastic MILP model and developed a Benders decomposition

algorithm to solve it. As in Brandstätter et al. [12], the objective function maximized the

expected profit. On the basis of a demand prediction model, many demand scenarios were

generated from Manhattan taxi trip data and numerical experiments were conducted. The

results illustrated that the proposed algorithm could help reduce computing time and obtain

favorable solutions. Zhang et al. [101] presented a risk-averse MINLP to determine station

locations, station capacities, and fleet size considering the uncertain demand. A branch-

and-cut algorithm and a scenario decomposition algorithm were used to deal with the model.

Moreover, they compared their solution methods with the Benders decomposition algorithm

in [62] and demonstrated the superiority of their methods.

2.3 Research gaps and our contributions

As for emerging bus transit systems, the BDL&TNDP has not been extensively re-

searched. Although some studies (e.g., [42]) investigated the TNDP for autonomous bus

systems, none of them considered BDLP to locate the bus depots and allocate human-

driven and autonomous buses to the routes with limited driver resources when designing

the network. Existing studies such as [61] and [77] noted BDL&TNDP, but did not take

into account the mixed fleet and the explicit mathematical programming formulations on

passenger assignment to analyze the users’ cost. Besides, most papers directly used meta-

heuristics to deal with TNDP or BDL&TNDP after providing a mathematical formulation.

None paid attention to the model structure to simplify the model to obtain a solution.

Therefore, to fill the research gaps, we contribute to the literature in the following aspects:

• proposing a hybrid model (Model I) that puts together different modeling sides: op-

erators’ and users’ costs, bus allocation, passenger assignment, a mixed fleet with

different travel costs, and driver restriction to solve the BDL&TNDP;

• introducing a simplified path-based formulation (Model II) to approximate the users’

costs by assigning passengers to predefined paths freely and guessing the waiting
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time heuristically, thus obtaining approximate solutions in a short time. Unlike the

general path-based model in [7] without considering waiting time, our model, which

is simplified from Model I, estimates waiting time in an approximate way.

Regarding one-way station-based carsharing systems, we can see that there has been

little research on determining the location and capacity of stations and the fleet size simul-

taneously while considering stochastic demand. Some studies like [9, 12, 15] merely took

part of them into account and ignored the potential risk. [62] is the only work that involves

the risk in carsharing studies to the best of our knowledge. Lu et al. [62] briefly introduced

a model that applied CVaR to reduce the unserved demand, but they did not conduct the

corresponding experiments. Rare carsharing studies have considered the risk to avoid heavy

losses. Compared with the previous research, our main contributions are threefold:

• formulating a new risk-averse stochastic MINLP model to solve the joint design prob-

lem, where CVaR is specified as the risk measure to identify tail losses;

• developing two different algorithms: a branch-and-cut algorithm and a scenario de-

composition algorithm, to handle the proposed model by converting the original model

into two equivalent forms;

• analyzing the model with risk term by using a training and testing method and com-

paring the computational performance among our solution methods and the improved

Benders decomposition algorithm illustrated in [62].
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Chapter 3

Joint optimization of bus depot
location and transit network design
considering a heterogeneous fleet

3.1 Introductory remarks

Bus transit systems have been indispensable in modern cities, helping enhance the

mobility of passengers in a sustainable and affordable manner. The development of bus

transit is considered a promising solution to mitigate traffic congestion and air pollution

caused by the dramatic increase in private vehicles. However, many countries with mature

public transit systems have recently faced a shortage of professional bus drivers, leading

bus operators to cancel certain specific routes or reduce the departure frequency. Hence,

the introduction of autonomous vehicles in transit services seems to be an alternative to

compensate for the driver shortage in the era of autonomous driving. Compared to human-

driven buses, the operating costs of autonomous buses can reduce by about 50% for no

hiring and training costs [42, 59].

This chapter focuses on a BDL&TNDP for the emerging bus transit systems with the

operation of human-driven and autonomous buses to determine bus depot locations, fleet

size, a set of routes, and the frequency and bus type of each route considering a limited

number of drivers. To solve the problem, we formulate an MINLP model (Model I) with the

objective of minimizing the weighted sum of operators’ and users’ costs. In the model, the

optimal strategies passenger assignment is taken into account to estimate the users’ costs,
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including in-vehicle travel time and waiting time. To handle the MINLP model, we linearize

the model approximately with the method in [16]. It is still challenging to solve the problem

despite the linear approximation. The model is formulated over a trajectory network and

computes flow volume and waiting time at each node (node-based), which dramatically

increases the complexity. Hence, we develop a new simplified path-based model (Model II)

and its approximately linear model. The models assign passengers to predefined travel paths

directly rather than the arcs and assume an expected waiting time for each route rather

than each node. In order to evaluate Model II, we compare the efficiency of solving the two

models and analyze the performance of the solutions of Model II by substituting them into

Model I. Two networks in previous studies are used to verify the models. Because nonlinear

models are complicated, all our experiments and comparisons are based on linearized Models

I and II.

The chapter is organized as follows. Section 3.2 describes the problem setting and

detailed formulations of Model I. The formulations of Model II are shown in Section 3.3.

Section 3.4 reports the experiments and results. Finally, the chapter ends in Section3.5.

3.2 Modle I

3.2.1 Problem setting and assumptions

In order to minimize both operators’ and users’ costs, the proposed model determines

the proper depot location sites, fleet size, bus routes, and the frequency and bus type of each

route in transit systems operating with human-driven and autonomous buses. Operators’

costs are composed of capital and operating costs in the model, while the total travel time

is adopted to represent users’ costs.

To formulate the model, we first consider a physical road graph GR = (V,E), where

each vertex v ∈ V represents a possible bus stop, and each edge e ∈ E represents a

bidirectional street connecting two different nodes. For vertex j ∈ J ⊆ V , the bus depot

can be located to store and maintain the bus fleet. We intend to find an optimal set of

depot location J∗ ⊆ J to reduce the operating cost wasted on dead mileage without serving

any passengers. Besides, the optimal route set R∗ ⊆ R and the optimal corresponding
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frequency f∗ ∈ R+ and bus type h∗ ∈ H for each route r ∈ R∗ are determined as well,

where R and H represent the sets of bus routes and bus types, respectively. Given bus

type h ∈ H, the travel time on edge e ∈ E is ceh. We denote the set of edges forming the

route r ∈ R by Er. Based on the physical road network, the passengers (users) can travel

from their origins to their destinations by utilizing the bus routes R∗. The demand for

origin-destination (OD) pair i ∈ I is δi whose origin is Oi ∈ V and destination is Di ∈ V .

When the users’ costs are took into account in the formulation, it becomes vital to

model the behavior of passengers so as to identify which route or routes will be rode.

The route choices can usually be demonstrated by a transit assignment model of optimal

strategies [84]. Such a model is built on a trajectory network defined by the road graph

and the given bus routes, see Appendix A. In this study, we apply an extended trajectory

graph that considers different bus types. The extended trajectory graph is denoted as

GT = (N,A), which is directed. The nodes in the set N consists of two parts: route nodes

(dummy nodes) NR and physical nodes V , that is, N = NR ∪ V . The set NR includes

the generated nodes nhrv for each route r ∈ R through the vertex v ∈ V using the bus type

h ∈ H. Moreover, the arcs that connect different nodes are classified into three disjoint

categories: waiting arcsAW , in-vehicle arcsAI , and destination arcsAD. A = AW∪AI∪AD.

In detail, for each node v ∈ V , each route r ∈ R and each bus type h ∈ H, the waiting

arc connects the physical node v and the generated route node nhrv, and the destination

arc connects the generated route node nhrv and the physical node v. Hence, we have AW =⋃
v∈V,r∈R,h∈H

{
(v, nhrv)

}
and AD =

⋃
v∈V,r∈R,h∈H

{
(nhrv, v)

}
. For OD pair i ∈ I, the waiting

arcs including node Oi have zero cost; otherwise, there are penalty costs of other waiting

arcs due to the transfer behavior of passengers. The costs of destination arcs are always zero.

For route r and bus type h, the edge e = (v1, v2) ∈ Er can generate a forward arc (nhrv1 , n
h
rv2)

and a backward arc (nhrv2 , n
h
rv1) so that AI =

⋃
r∈R,(v1,v2)∈Er,h∈H

{
(nhrv1 , n

h
rv2), (nhrv2 , n

h
rv1)
}
.

With respect to the costs of in-vehicle arcs, we have c(nhrv1 ,n
h
rv2

) = c(nhrv2 ,n
h
rv1

) = ceh, where

e = (v1, v2). The trajectory graph is directed where the node order of an arc represents

the travel direction. To illustrate more clearly, Figure 3.1 gives an example of the extended

trajectory graph for a physical road network with three bus routes. Note that we generate

in-vehicle arcs for each type of bus, as the in-vehicle travel time varies for different types of
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buses.

(a)

(b)

Figure 3.1: Example of the relation between (a) Physical road graph and (b) Extended
trajectory graph

To facilitate the model formulation, the following assumptions are given.

• The bus route pool R is determined in advance. To satisfy all demand and reduce

transfers, we ensure at least one direct route passing each OD pair when generating

the possible bus routes. The passengers may transfer between different routes when

the direct route takes much more time.

• For any route, buses depart in both directions at the same time and only one type of

bus is selected.

• Buses travel as follows: starting from the depot to the route’s first stop, going through
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multiple round trips, and finally returning to the depot from the first stop where

service begins. The number of round trips depends on the total service time of each

bus and the round-trip travel time.

• Different types of buses have diverse speeds on the same arc; that is, when passing

through the same arc, their travel costs are distinct.

• The vehicle range is ignored in our model, regardless of the energy source used by

the bus. Thus, our model may be more applicable to small and medium-sized cities

without long-distance bus routes.

• The demand in the model is fixed.

• For simplicity, the bus capacity is not considered. The optimal strategies assignment

model is not suitable for the congested transit system. Such an assignment provides

the expected waiting time for the first bus arriving at the bus stop. If the capacity

is considered, the passengers may fail to board the first full bus, which increases

the waiting time. For capacity-constrained transit assignment, readers can refer to

[22,27,57].

3.2.2 Notation

Sets and indices

• h ∈ H: bus types, H = {0 : human-driven, 1 : autonomous}

• r ∈ R: potential routes

• i ∈ I: OD pairs

• j ∈ J ⊆ V : potential bus depot location sites

• e ∈ E: edges of physical network

• e ∈ Er: edges of route r

• n ∈ N : nodes of trajectory network

• a ∈ A = AW ∪AI ∪AD: arcs of trajectory network including waiting arcs, in-vehicle
travel arcs, and destination arcs; each arc a corresponds to a specific route and bus
type, denoted by r(a) and h(a).
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• a ∈ A+
n (A−n ): outgoing (incoming) arcs from (to) node n

• a ∈ AW+
n : outgoing waiting arcs from node n

Parameters

• FCj : cost of a bus depot at site j

• SC: cost of each bus stop

• V Ch: cost of each h-type bus

• UCh: unit operating cost of each h-type bus

• OCjrh: travel time spent on dead mileage between depot j and one endpoint of route
r for each h-type bus

• DCjrh: travel time spent on dead mileage between depot j and the other endpoint of
route r for each h-type bus

• RCrh: travel time spent on route r for each h-type bus, equal to the product of single
round trip travel time and the number of round trips

• ca: travel cost on arc a

• κjh: depot capacity for h-type buses at site j

• D: number of drivers available

• M : a large number

• λ: weight

• δi: demand of OD pair i

• bni: net flow of OD pair i at node n; for OD pair i, if n = Oi, bni = δi, if n = Di,
bni = −δi, otherwise bni = 0.

• Fmax, Fmin: upper and lower bounds of the frequency

Variables

• xj ∈ {0, 1}: binary variable, if the bus depot is located at site j, the value is 1;
otherwise 0

• yr ∈ {0, 1}: binary variable, if the bus route r is selected, the value is 1; otherwise 0

• zrh ∈ {0, 1}: binary variable, if h-type buses are used on route r, the value is 1;
otherwise 0
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Figure 3.2: Illustration of each part of operating time

• fr ∈ R+: frequency of route r

• sjrh ∈ R+: number of h-type buses allocated to one endpoint of route r from depot j

• tjrh ∈ R+: number of h-type buses allocated to the other endpoint of route r from
depot j

• pjrh ∈ R+: number of h-type buses allocated to route r from depot j, and pjrh =

sjrh + tjrh

• vai ∈ R+: passenger volume on arc a for OD pair i

• wni ∈ R+: expected waiting time multiplied by the demand at node n for OD pair i

3.2.3 Model

As explained in Subsection 3.2.1, we aim to minimize the costs of operators and users.

The operators’ costs have two components: the capital cost C1 and the operating cost C2.

In Equation (3.1), the three terms are respectively the costs of bus depots, bus stops, and

all buses.

C1 =
∑
j∈J

FCjxj + SC
∑
r∈R

NSryr +
∑
h∈H

V Ch
∑
r∈R

∑
j∈J

pjrh (3.1)

The operating cost is the product of unit operating cost and operating time, see Equation

(3.2). The operating time for each bus includes the travel time spent on route to provide the

service and the travel time wasted on dead mileage. Figure 3.2 illustrates the parameters
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related to the operating time.

C2 =
∑
h∈H

UCh
∑
r∈R

∑
j∈J

(RCrhpjrh +OCjrhsjrh +DCjrhtjrh) (3.2)

The users’ costs C3 is the total travel time of passengers, containing in-vehicle travel

time and waiting time.

C3 =
∑
i∈I

∑
a∈A

cavai +
∑
i∈I

∑
n∈N

wni (3.3)

The detailed formulation of Model I is as below.

minλ(C1 + C2) + (1− λ)C3 (3.4a)

subject to:

∑
j∈J

sjrh ≥ frzrh
∑
e∈Er

ceh, ∀r ∈ R, h ∈ H (3.4b)

∑
j∈J

tjrh ≥ frzrh
∑
e∈Er

ceh, ∀r ∈ R, h ∈ H (3.4c)

pjrh = sjrh + tjrh, ∀j ∈ J, r ∈ R, h ∈ H (3.4d)∑
r∈R

pjrh ≤ κjhxj , ∀j ∈ J, h ∈ H (3.4e)

∑
j∈J

pjrh ≤Mzrh, ∀r ∈ R, h ∈ H (3.4f)

∑
r∈R

∑
j∈J

pjr0 ≤ D (3.4g)

∑
h∈H

zrh = yr, ∀r ∈ R (3.4h)

∑
a∈A+

n

vai −
∑
a∈A−n

vai = bni, ∀n ∈ N, i ∈ I (3.4i)

vai ≤ fr(a)wni, ∀a ∈ AW+
n , n ∈ N, i ∈ I (3.4j)

vai ≤ δizr(a)h(a), ∀a ∈ AW , i ∈ I (3.4k)

Fminyr ≤ fr ≤ Fmaxyr, ∀r ∈ R (3.4l)

pjrh ∈ R+, ∀j ∈ J, r ∈ R, h ∈ H (3.4m)
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sjrh ∈ R+, ∀j ∈ J, r ∈ R, h ∈ H (3.4n)

tjrh ∈ R+, ∀j ∈ J, r ∈ R, h ∈ H (3.4o)

vai ∈ R+, ∀a ∈ A, i ∈ I (3.4p)

wni ∈ R+, ∀n ∈ N, i ∈ I (3.4q)

fr ∈ R+, ∀r ∈ R (3.4r)

xj ∈ {0, 1}, ∀j ∈ J (3.4s)

yr ∈ {0, 1}, ∀r ∈ R (3.4t)

zrh ∈ {0, 1}, ∀r ∈ R, h ∈ H (3.4u)

The objective (3.4a) is to minimize the weighted sum of operators’ costs and users’ costs.

Constraints (3.4b) and (3.4c) ensure that there are enough buses in both directions of each

route. The term on the right-hand side is the number of h-type buses required in one

direction of route r. Equations (3.4d) mean h-type buses allocated to route r from depot

j are used in two directions of route r, as shown in Figure 3.2. In constraints (3.4e), the

number of h-type buses allocated to all routes from each depot is restricted by the capacity

of that depot. Constraints (3.4f) state that h-type buses for route r are unnecessary unless

the route is chosen and determined to deploy h-type buses. Constraint (3.4g) represents

that the fleet size of human-driven buses cannot exceed the number of drivers available.

Constraints (3.4h) guarantee that each route used corresponds to only one type of vehicle.

Constraints (3.4i) and (3.4j) assign the passenger flows. Appendix A provides a more

detailed explanation. Constraints (3.4k) state users can only use the routes and bus types

that are part of the solution; r(a) and h(a) respectively refer to the route and bus type

corresponding to arc a. Constraints (3.4l) limit the value range of the frequencies. The

remaining constraints (3.4m)–(3.4u) are the variable restrictions.

3.2.4 Linear approximation with the method by Cancela et al. [16]

Due to the constraints (3.4b), (3.4c), and (3.4j), the proposed model (3.4) is obvi-

ously nonconvex and nonlinear, making the problem difficult to solve. Therefore, we take

advantage of the approach developed by Cancela et al. [16] to linearize and approximate
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Figure 3.3: Enumerate all possible frequencies and bus types in the trajectory graph

our model. As with [16], a new discrete set Θ is utilized to represent possible values of

frequencies and Θ = {θf , f ∈ F} where f is the index. Then, variable zrh is substituted by

zrfh that takes value 1 if route r has frequency θf and uses bus type h, 0 otherwise. With

parameter θf and variable zrfh, the linearized model is written by problem (3.5). Note that

θf(a) is constant, where f(a) means the frequency index in set Θ corresponding to the wait

arc a ∈ AW . To be more specific, we need to modify the extended trajectory graph by

creating wait arcs for all possible frequencies in Θ. An instance for |F | = 3 and |H| = 2 is

depicted in Figure 3.3. In fact, only one waiting arc in this graph will be enabled due to

constraints (3.5e) and (3.5g).

minλ(C1 + C2) + (1− λ)C3 (3.5a)

subject to:

∑
j∈J

sjrh ≥
∑
f∈F

θfzrfh
∑
e∈Er

ceh, ∀r ∈ R, h ∈ H (3.5b)
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∑
j∈J

tjrh ≥
∑
f∈F

θfzrfh
∑
e∈Er

ceh, ∀r ∈ R, h ∈ H (3.5c)

∑
j∈J

pjrh ≤M
∑
f∈F

zrfh, ∀r ∈ R, h ∈ H (3.5d)

∑
h∈H

∑
f∈F

zrfh = yr, ∀r ∈ R (3.5e)

vai ≤ θf(a)wni, ∀a ∈ AW+
n , n ∈ N, i ∈ I (3.5f)

vai ≤ δizr(a)f(a)h(a), ∀a ∈ AW , i ∈ I (3.5g)

zrfh ∈ {0, 1}, ∀r ∈ R, f ∈ F, h ∈ H (3.5h)

(3.4d), (3.4e), (3.4g), (3.4i), (3.4m)–(3.4q), (3.4s), and (3.4t)

3.3 Path-based model (Model II)

Although the BDL&TNDP becomes linear and can provide the optimal solution, it

is still burdensome to compute the global optimum when the size of the road graph is

large [16]. A slight increase in the road network size leads to a tremendous expansion of

the pool of candidate routes, thus enlarging the size of the trajectory network significantly.

Therefore, we propose a new simplified path-based model (Model II) that assigns passengers

heuristically without using the trajectory network. We use the model to obtain strategic

decisions and assess the their performance in Model I.

3.3.1 Problem setting and assumptions

The main complexity of BDL&TNDP lies in the TNDP, which includes a node-based

passenger assignment to model the passengers’ behaviors. Although the transfers are al-

lowed in Model I, the penalty cost of transfer tends to prevent transferring between different

routes. Therefore, most users are direct travelers who take one bus route to reach the des-

tination. Unless the direct distance is too long, some may prefer transfers. Motivated by

this situation, we only consider the costs of direct travelers (in-vehicle time and waiting

time) in the part of users’ costs of Model II. In such a model, we predefine each OD pair’s

candidate direct travel paths for passenger assignment and assume an equivalent expected
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waiting time of users who take the same route. Instead of exactly assigning the passenger

flows according to route frequencies and computing the total waiting time at each node in

Model I, the passenger assignment in the simplified model is based on the default paths and

independent of the route frequencies, which is a heuristic approximation. However, there

is no need to construct the trajectory graph in such a model, so the resulting number of

variables and constraints can become much fewer.

Besides the assumptions in Subsection 3.2.1, two new assumptions are introduced here

to formulate the model.

• The candidate direct travel paths of passengers are generated by the k-shortest path

algorithm [97].

• The expected wait time for a line is the same for all passengers on that line and is

proportional to the headway of that line (the inverse of the frequency).

3.3.2 Additional notation

Sets and indices

• q ∈ Qi: travel paths of OD pair i, including k-shortest paths

Parameters

• lqh: travel time on path q using h-type bus

• ∆qr: constant value, if path q is a part of route r, the value is 1; 0 otherwise

• α: coefficient for estimating waiting time

Variables

• uqrhi ∈ R+: number of direct travelers for OD pair i who choose path q along route
r using h-type buses

• φr ∈ R+: total number of passengers who board route r
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3.3.3 Formulation

Due to the change in assigning passengers, a new function expressing users’ costs

is displayed in Equation (3.6). The first term represents the total travel time of direct

travelers; the second term is the total waiting time. In this formula, set Qi and coefficient

α can be adjusted to obtain different solutions. Set Qi is given by k-shortest path method,

so we can choose different k to change it. More intuitively, C ′3 is an approximation of C3,

and we use different k and different α to investigate approximation performance.

C ′3 =
∑
i∈I

∑
q∈Qi

∑
r∈R

∑
h∈H

lqhuqrhi + α
∑
r∈R

φr
fr

(3.6)

With the simplified assignment method, we can rewrite Model I into the following

problem.

minλ(C1 + C2) + (1− λ)C ′3 (3.7a)

subject to:

uqrhi ≤ ∆qrδizrh, ∀i ∈ I, q ∈ Qi, r ∈ R, h ∈ H (3.7b)

φr =
∑
i∈I

∑
q∈Qi

∑
h∈H

uqrhi, ∀r ∈ R (3.7c)

∑
q∈Qi

∑
r∈R

∑
h∈H

uqrhi = δi, ∀i ∈ I (3.7d)

uqrhi ∈ R+, ∀i ∈ I, q ∈ Qi, r ∈ R, h ∈ H (3.7e)

φr ∈ R+, ∀r ∈ R (3.7f)

(3.4b)–(3.4h), (3.4l)–(3.4o), and (3.4r)–(3.4u)

The objective function (3.7a) is to minimize the weighted sum of operators’ costs and

approximate users’ costs. Constraints (3.7b) restrict the number of passengers of OD pair

i who select direct path q by using route r and h-type bus. Constraints (3.7c) compute the

total passenger flow volume boarding each route. Constraints (3.7d) ensure the number of

assigned passengers for each OD pair is always equal to that OD demand.
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3.3.4 Linear approximation

Similar to Model I, Model II has a nonlinear term φr/fr. To handle it, we introduce an

additional variable πr ∈ R+ such that πrfr = φr, meanwhile, approximate the continuous

variable fr with the discrete set Θ = {θf , f ∈ F} where f is the index of set and the binary

variable zrfh like Subsection 3.2.4. Finally, the following model (3.8) can be obtained.

minλ(C1 + C2) + (1− λ)C ′′3 (3.8a)

where

C ′′3 =
∑
i∈I

∑
q∈Qi

∑
r∈R

∑
h∈H

lqhuqrhi + α
∑
r∈R

πr

subject to:

πr
∑
f∈F

∑
h∈H

θfzrfh = φr ∀r ∈ R (3.8b)

uqrhi ≤ ∆qrδi
∑
f∈F

zrfh, ∀i ∈ I, q ∈ Qi, r ∈ R, h ∈ H (3.8c)

(3.4d), (3.4e), (3.4g), (3.4m)–(3.4o), (3.4s), (3.4t),

(3.5b)–(3.5e), (3.5h), and (3.7c)–(3.7f)

As shown in constraints (3.8b), the real variable fr is replaced by
∑

f∈F θfzrfh so that the

left term includes the products of continuous and binary variables. This unique structure

can be linearized easily. The resulting equivalent linear constraints of (3.8b) are given as

follows.

∑
f∈F

∑
h∈H

θfΠrfh = φr, ∀r ∈ R

Πrfh ≤Mzrfh, ∀r ∈ R, f ∈ F, h ∈ H

Πrfh ≤ πr, ∀r ∈ R, f ∈ F, h ∈ H

Πrfh ≥ πr −M(1− zrfh), ∀r ∈ R, f ∈ F, h ∈ H

Πrfh ≥ 0, ∀r ∈ R, f ∈ F, h ∈ H
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where Πrfh ∈ R+ is the auxiliary variable.

3.4 Experiments and results

3.4.1 Parameter settings

In order to evaluate the performance of the two models (linearized Models I and II),

we implemented two networks from [16] and [91] to conduct the experiments, as depicted in

Figure 3.4. These two networks were also applied in [16,31]. The numbers next to the edges

are the in-vehicle travel times of human-driven buses, expressed in minutes. We assumed

that the in-vehicle travel time on an edge for autonomous buses is a multiple of that for

human-driven buses, denoted by m, such that ce1 = mce0. Detailed OD demand data can

be found in the papers listed above. Different unit of demand quantity (e.g., trips per

hour [91]) was converted to trips per minute. Some basic information about the networks

is provided in Table 3.1.

(a)

(b)

Figure 3.4: Networks: (a) Network 1 [16]; (b) Network 2 [91]
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Table 3.1: Basic information of the networks used

Network # of vertices # of edges # of OD pairs total demand quantity (trips/min)

1 8 10 4 4.00

2 10 19 9 61.67

Because the sizes of the networks and their demands are different, we set parameters

for them separately. However, some parameters used the same value or were set in the same

way. The parameters with the same value are presented in Table 3.2. The set of depot

location candidates (J) for each network includes all nodes in it. As for the operating cost,

the total service time (RCrh) and the dead mileage (Ojrh and Djrh) were determined by

using the equations in Figure 3.2. RCrh can be expressed by

RCrh =
Wr

Trh +Bh
× Trh,∀h ∈ H

where Wr is the operating time of route r; Trh is the round-trip time of route r with h-type

buses, Tr1 = mTr0; Bh is the drivers’ break time, we set B0 = Tr0/6 and B1 = 0.

Table 3.2: Parameters with the same value in the networks

Parameters (Unit) Value

Bus type set H {0: Human-driven 1: Autonomous}

Cost of bus stop SC (¥/min) 0.03

Cost of bus V Ch (¥/min) V C0 = V C1 = 6.08

Unit operating cost UCh (¥/min) UC0 = 20 ; UC1 = 10

Multiple m 1.5

Next, we explain the parameters depending on the network. One important part is

the candidate route pool R. Similar to [16], the following ways were applied to generate

the route pools. For network 1, we generated all possible routes by a modified depth-first

search in [80] and removed the routes whose at least one endpoint that is neither origin

nor destination of any OD pair. The resulting R contains 79 routes. For Network 2, it is

difficult to list all possible routes. We applied the k-shortest path method to compute k-

shortest paths for each OD pair. Then, we set k = 5 and obtained 45 bus routes. In Model
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II, the possible paths of passengers Qi for OD pair i were also determined by k-shortest

path algorithm. In contrast to the one-time determination of the candidate route pool, we

considered different k to determine multiple path sets Qi in Model II and evaluated the

corresponding performance. For both networks, k ∈ {1, 2, 3, 4, 5}. Besides, other constant

parameters are summarized in Table 3.3. It is assumed that the capacity and cost of the bus

depot are the same for each location j ∈ J . Note that the demand in the data is expressed

in terms of trips per minute. Thus, we used yen per minute to expresse the users’ costs and

the operators’ costs. The cost of a bus depot was assumed to be 50 million yen for Network

1 and 100 million yen for Network 2. If the service life of the bus depot is 15 years, the cost

can be converted to a cost per minute as shown in the Table 3.3.

The models were implemented using Gurobi Optimizer 9.0.1 in the Python environment

on an Intel i7-8700 CPU with 12 cores and 16GB of RAM. The modified depth-first search

and k-shortest path methods were realized by using the NetworkX package [41] in Python.

Table 3.3: Parameters setting different values for the networks

Networks Parameters Value

1

Capacity of bus depot κjh κj0=10, κj1=5

Cost of bus depot FCj (¥/min) 10.32

Number of drivers D 5

Frequency set Θ (trips/min) {1/60, 1/30, 1/5}

2

Capacity of bus depot κjh κj0=20, κj1=10

Cost of bus depot FCj (¥/min) 20.64

Number of drivers D 10

Frequency set Θ (trips/min) {1/20, 3/20, 1/4, 1/3}

3.4.2 Optimization results of Model I

We solved the approximately linear Model I for both networks with the given param-

eters. By using different weights λ, we obtained the efficient frontiers of operators’ and

users’ costs in Figure 3.5. Next to each node in the figures, we also presented the detailed

results of the numbers of human-driven bus (HB) routes and autonomous bus (AB) routes,

the numbers of human-driven buses (HBs) and autonomous buses (ABs), and the number
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of bus depots. A noticeable trend for both frontiers is that the users’ costs will decrease

with the increment of operators’ costs. With the limitation on the number of drivers, users

will be inconvenient to travel without autonomous buses, even though operators can reduce

large expenditures (see first and second nodes). As operators provide enough funding to

introduce more autonomous buses, users’ travel costs will be greatly reduced. Therefore,

autonomous buses would be a good option if operators want to build a user-centric bus

transit system with limited drivers.

(a)

(b)

Figure 3.5: Efficient frontiers of operators’ and users’ costs: (a) Network 1; (b) Network 2
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Then, as shown in Tables 3.4 and 3.5, we considered the different numbers of drivers

available (i.e., D) and analyzed their effects on two networks. There are some similar

observations for these networks. Without available drivers (D = 0), both operators’ and

users’ costs are at a higher level. Increasing the number of drivers available reduces the

operators’ and users’ costs in general. When the weight λ is 0.5, the operators’ costs will

sometimes rise with the increase of D, but the users’ costs can keep reducing. Moreover,

looking at the results when λ = 0.9, we found 5 and 10 bus drivers can satisfy the demand

of Network 1 and Network 2, respectively, and that more available drivers do not affect the

results.

Table 3.4: Effect of the number of drivers available on Network 1

λ D Operators’ costs Users’ costs

0.1
0 633.8 421.5

5 548.4 387.5

10 463.6 340.0

0.5
0 243.6 532.5

5 188.2 495.0

10 258.3 415.0

0.9
0 194.1 622.5

5 188.2 495.0

10 188.2 495.0
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Table 3.5: Effect of the number of drivers available on Network 2

λ D Operators’ costs Users’ costs

0.1
0 2458.8 1931.9

10 1780.8 1841.9

20 1557.8 1557.8

0.5
0 823.5 2494.7

10 597.8 2313.8

20 819.9 1914.3

0.9
0 276.1 3950.0

10 267.1 3470.0

20 267.1 3470.0

3.4.3 Evaluating Model II

In this part, we first compared two models regarding the model size and the compu-

tational efficiency. Then, we evaluated the solutions of Model II with different Qi (i.e.,

different k) and α by substituting them into Model I to obtain the objective values. The

results were compared with the optimal values of the original Model I.

Table 3.6 exhibits the numbers of variables and constraints for the two models with

different networks. Obviously, the size of Model II is smaller than that of Model I no matter

the number of variables or the number of constraints. As the number of travel candidate

paths (k) of passengers rises, the numbers of variables and constraints of Model II increase

linearly, but they are still much fewer than those of Model I for both networks.

Table 3.6: Comparison of the size of the two models

Networks Model I
Model II

k = 1 2 3 4 5

# of Variables
1 32641 5625 6257 6889 7521 7995

2 49249 4385 5195 6005 6815 7625

# of Constraints
1 23818 4208 4840 5472 6104 6578

2 39756 3360 4170 4980 5790 6600

After analyzing the scales of Models I and II, we compared the optimization results of
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the two models in terms of the gap between the upper and lower bounds and the computing

time, as presented in Table 3.7. We conducted the comparative experiments of both net-

works and set the weights λ ∈ {0.1, 0.5, 0.9} for the two models. Moreover, different path

numbers k for generating Qi and waiting time coefficients α in Model II were used to obtain

the solution for evaluation, where k ∈ {1, 2, 3, 4, 5} and α ∈ {0, 0.3, 0.6, 0.9, 1.2, 1.5}. Con-

cerning each k in Model II, the average gap and the average computing time for different

α are shown in this table. For all experiments, the time limit is 3600s.

From Table 3.7, we see that the BDL&TNDP on Network 1 can be solved in a short

time by these two models. In contrast, Model II converges faster than Model I due to

fewer variables and constraints. On Network 2, the superiority of Model II is more obvious.

Model I runs out the prespecified time with the gaps more than 6% when λ = 0.1 and

0.5. However, Model II can get the optimal solutions within a few seconds. As the weights

increase (i.e., less attention to the user’s cost), it takes less time to solve the problem on

both networks, which indirectly suggests that TNDP is the main cause of the difficulty of

BDL&TNDP.

Table 3.7: Comparison of computational efficiency

Gap(%) Time(s)

λ Networks Model I
Model II

Model I
Model II

k = 1 2 3 4 5 k = 1 2 3 4 5

0.1
1 0 0 9.73 0.49 0.77 1.23 1.35 1.56

2 6.2 0 3600 0.81 2.60 6.09 7.17 11.82

0.5
1 0 0 0.94 0.24 0.27 0.50 0.48 0.57

2 12 0 3600 0.42 0.97 1.87 1.87 6.38

0.9
1 0 0 0.31 0.20 0.20 0.22 0.23 0.24

2 0 0 128 0.20 0.61 0.57 0.56 0.77

So far, we have only explicated the scale of Model II and the speed at which it is used

to solve BDL&TNDP. In order to evaluate the quality of solutions (binary variables: xj ,

yr, and zrfh) of Model II, we substituted them into Model I and optimized new Model

I to achieve the optimal objective values. The obtained objective values were compared

with those from the original Model I by direct optimization, and the differences between
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them were counted as percentages. The smaller the difference, the better the solution. As

mentioned above, various combinations of k and α were deployed in Model II to get the

solutions for evaluation. Figures 3.6 and 3.7 illustrate the differences between the objective

values of new Model I and original one for the selected weights λ on Networks 1 and 2,

respectively.

As seen in Figure 3.6, the differences are sensitive to both k and α when λ is smaller.

Increasing the number of candidate paths of passengers and the estimated waiting time can

efficiently reduce the differences. Nevertheless, the differences barely changes and stay at

a low level (≤ 0.4%) when k is greater than 3, and α is greater than 0.6. As λ grows, the

adjustments of α have nothing to do with the differences, but more candidate paths can

help receive the solutions with zero differences. Three candidate paths seem to be enough

for Model II to obtain excellent solutions.

From the computing time in Table 3.7, it is suggested that the problem for Network

2 is more complex than that for Network 1. However, Model II still performs well and

provides satisfactory solutions for Network 2, as shown in Figure 3.7. Turning now to

Figure 3.7, we can make some similar observations. When λ = 0.1, the best difference

around 2% can be found at the points where k ≥ 3 and α = 0.9. In Figure 3.7b with

λ = 0.5, changing the number of candidate paths k has no impact on the differences. For

each α, the differences remain the same value even though k is increased. Most parameter

combinations can provide a good solution whose differences are within 4%. By contrast,

the difference can be decreased if more k is considered when λ = 0.9. In addition, we note

that the differences become worse as λ rises on Network 2. For λ = 0.9, the differences

are between 20% and 25%. However, it only takes less than 1s for Model II to provide the

feasible solutions, while Model I cannot obtain any solution in such a short time. Further,

it is satisfactory that the performance of the solution is better if more attention is paid to

the users’ costs in the objective function since the path-based model is used to simplify the

passenger assignment corresponding to the users’ costs in BDL&TNDP.
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(a)

(b)

(c)

Figure 3.6: Resulting differences on Network 1: (a) λ = 0.1; (b) λ = 0.5; (c) λ = 0.9
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(a)

(b)

(c)

Figure 3.7: Resulting differences on Network 2: (a) λ = 0.1; (b) λ = 0.5; (c) λ = 0.9
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3.5 Summary

This chapter proposes an MINLP model (Model I) for the BDL&TNDP in the emerging

bus transit systems operating with human-driven and autonomous buses considering the

limited drivers. To solve the problem, we linearized the model approximately by using the

method in [16]. Even so, handling the linearized problem is still time-consuming because

of the complexity of passenger assignments. Therefore, we developed a path-based model

(Model II) without the consideration of exactly assigning the passenger and computing the

waiting time at each node. By contrast, the passengers are assigned to a set of predefined

paths, and the waiting time of each route is estimated. In this way, we can reduce many

variables and constraints and save computing time. For evaluating the proposed path-based

Model II, we substituted the solutions from linearized Model II with different parameters

into linearized Model I to obtain the objective values. The resulting values were compared

with those of the direct optimization of Model I and the differences between them were

calculated.

The experiments were conducted with two networks from previous studies. We ob-

tained the efficient frontiers of operators’ and users’ costs for the networks with the ap-

proximately linear Model I and the given parameters. The results show that the users’

costs are high without autonomous buses and under the restriction of drivers. However,

if more autonomous buses were introduced, the users could save considerable travel times,

revealing the importance of autonomous buses in the emerging bus transit systems. We

also compared the linearized Models I and II with regard to the model size and computa-

tional efficiency. On both networks, we found that Model II can be solved optimally in a

few seconds, which is much faster than Model I. Furthermore, the solutions from Model II

have good performance in Model I. For Network 1, the solutions from Model II can offer

zero-difference objective values. For Network 2, although the zero-difference objective value

is difficult to receive, Model II presents reasonable solutions with more minor differences

when more attention is paid to users’ costs.
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Chapter 4

Optimizing the strategic decisions for
one-way station-based carsharing
systems

4.1 Introductory remarks

In this chapter, we focus on the strategic design of one-way station-based carsharing

systems from the vantage point of the system operator. The most related research (e.g.,

[9, 12, 15]) copes with strategic problems based on the traditional risk-neutral two-stage

stochastic programming by considering the expectation value as the preference criterion.

However, the resulting decisions may be poor under certain realizations of random data.

For non-repetitive decision-making problems, such as location planning and network design,

a risk-averse approach would provide more robust solutions [72]. Therefore, we analyze the

downside risk, which refers to the financial risk of the actual return being below the expected

return, in this study. With the objective of maximizing the return and minimizing the risk,

we propose a two-stage risk-averse stochastic MINLP model, where the conditional value-

at-risk (CVaR) is specified as the risk measure, to optimize strategic decisions involving

station locations, station capacities, and fleet sizes for one-way station-based carsharing

systems. With a training and testing method, we also show the advantage of the risk-

averse model under stochastic demand. In order to solve the two-stage stochastic MINLP

model, two customized methods are developed: a branch-and-cut algorithm and a scenario

decomposition algorithm. The model and algorithms are verified on scenario demand data
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generated from historical data of Ha:mo RIDE Toyota in Japan.

The remainder of the chapter is as follows. Section 4.2 provides an elaborate model

formulation for making strategic decisions. Section 4.3 is devoted to the two algorithms

for solving the problem. Subsequently, we report computational results in Section 4.4 and

conclude this study in Section 4.5. It is noted that this chapter has been published in Zhang

et al. [101].

4.2 Mathematic formulation

4.2.1 Assumptions

In this study, we determine the station locations, station capacities, and fleet sizes to

design one-way station-based carsharing system with a risk-averse model. To formulate the

model, some underlying assumptions are as follows.

• The trip demand data are available or predictable in advance, including for different

scenarios. Each scenario represents one possible day with a set of estimated trips.

The probability is the same for each scenario. Each trip is a tuple of four elements:

origin, destination, departure time, and arrival time. The price of each trip can be

computed on the basis of the information above.

• For the trip demand to be satisfied, there must be vehicles available at the origin and

parking spaces at the destination.

• The working time of the carsharing system is divided into equal time intervals (5

minutes), so we can gather together the trips with the same departure or arrival time

interval. In this way, the problem size can be reduced.

• All stations have at least one parking space and have individual maximal capacities

that depend on the local conditions. The station cost consists of land, construction,

and charging-pile costs. The unit land costs vary depending on the location, but the

unit construction and charging-pile costs are fixed.
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• Considering the station and vehicle costs tend to be too high to get a profitable system,

the profit return in our model only depends on the trip revenue and operating cost.

Alternatively, the station and vehicle costs are restricted by a budget constraint. Çalık

and Fortz [15] addressed a similar issue by introducing a cost factor to forcibly reduce

the cost. This implies the operator must study the pricing policy and other income

resources comprehensively, but this issue is out of the scope of this paper.

• The state of charge (SoC) of the EV’s battery is ignored in this study. In the case

of Ha:mo RIDE Toyota, the vehicles are mostly used for short trips, and a previous

study [83] showed that no vehicle ever became unavailable in the system because of

a low SoC. Therefore, the proposed model is more suitable for short-range carsharing

systems to counter the last-mile problem.

• The system operator does not take into account operational activities (e.g., relocation,

staff allocation, or staff scheduling) when making strategic decisions.

4.2.2 Notation

Before providing the detailed model formulation, we should explain the notation used

in the model.

Sets and indices

• s ∈ S: scenarios

• i ∈ Is: trips in scenario s

• t ∈ T : time intervals

• j ∈ J : potential location sites

Parameters

• starti, endi ∈ T : start- and end-intervals of trip i

• origini, desti ∈ J : origin and destination of trip i

• P si : charging price for trip i in scenario s

• C1: operating cost per parking space per scenario
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• C2: operating cost per vehicle per scenario

• Hj : cost for setting a parking space at site j, including land, construction, and
charging-pile costs

• F : cost of purchasing a vehicle

• B: available budget

• Mj : maximum number of parking spaces that can be set at site j

• λ: weight value, ranging from 0 to 1

• β: confidence level

Variables

• α ∈ R: auxiliary variable for obtaining minimum β-CVaR

• pj ∈ Z+: number of parking spaces at site j

• v ∈ Z+: number of vehicles in the system

• nsj,t ∈ Z+: number of vehicles at site j at the beginning of time interval t in scenario
s

• zsi ∈ {0, 1}: binary variable, if trip i in scenario s is served, the value is 1; otherwise 0

4.2.3 Model

In this part, we present the two-stage risk-averse stochastic MINLP model in the de-

terministic equivalent form. The first-stage constraints (4.1b) and (4.1c) are given by using

variables α, v and pj , that is, first-stage decision variables. The second-stage decision vari-

ables zsi and nsj,t, associated with scenario s, are restricted by the second-stage constraints

(4.1d)–(4.1g).

min
λ

|S|
∑
s∈S

−∑
i∈Is

P si z
s
i + C1

∑
j∈J

pj + C2v


+ (1− λ)

α+
1

(1− β)|S|
∑
s∈S

−∑
i∈Is

P si z
s
i + C1

∑
j∈J

pj + C2v − α


+

 (4.1a)
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subject to:

∑
j∈J

Hjpj + Fv ≤ B (4.1b)

pj ≤Mj , ∀j ∈ J (4.1c)

nsj,t+1 = nsj,t −
∑

i:origini=j
starti=t

zsi +
∑

i:desti=j
endi=t

zsi , ∀s ∈ S, j ∈ J, t ∈ T\ {tlast} (4.1d)

nsj,t ≥
∑

i:orgini=j
starti=t

zsi , ∀s ∈ S, j ∈ J, t ∈ T (4.1e)

pj − nsj,t ≥
∑

i:desti=j
endi=t

zsi , ∀s ∈ S, j ∈ J, t ∈ T (4.1f)

∑
j∈J

nsj,1 = v, ∀s ∈ S (4.1g)

α ∈ R (4.1h)

pj ∈ Z+, ∀j ∈ J (4.1i)

v ∈ Z+ (4.1j)

zsi ∈ {0, 1}, ∀s ∈ S, i ∈ Is (4.1k)

nsj,t ∈ Z+, ∀s ∈ S, j ∈ J, t ∈ T (4.1l)

The objective function (4.1a) minimizes the weighted sum of the measures of profitabil-

ity (expected loss, i.e., the opposite of the expected return) and risk (CVaR). Note that

[x]+ = max{x, 0}, for x ∈ R. The loss function in each scenario is equal to the operating

costs of the built parking spaces and purchased vehicles (C1
∑

j∈J pj +C2v) reduced by the

revenue of served trips (
∑

i∈Is P
s
i z

s
i ). In Appendix B, we present a detailed explanation

of the objective function. Constraint (4.1b) states the costs for setting up parking spaces

and purchasing cars are within the available budget. Constraints (4.1c) show the maximal

capacity restriction at each potential location site. In addition, there are additional con-

straints depending on the scenario. Constraints (4.1d) are for vehicle flow conservation at

each station for each time interval. The departure time and arrival time of each trip are

known parameters in the model, so no additional constraints are required to represent the
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travel time. Constraints (4.1e) ensure there are enough vehicles for trips served at each

station and each time interval. Constraints (4.1f) restrict the number of vehicles arriving at

a station to the number of available parking spaces at that station during each time interval,

and at the same time, ensure there are enough parking spaces for the vehicles at site j.

Constraints (4.1g) indicate that the total number of vehicles in the system is always equal

to the number of purchased vehicles. Constraints (4.1h)–(4.1l) are variable restrictions.

4.3 Solution methods

Due to plenty of variables and constraints, the strategic decision problem becomes more

difficult when the number of scenarios increases. To deal with the problem efficiently, we

present two solution methods including the branch-and-cut algorithm and scenario decom-

position algorithm in this section. The former algorithm mainly focuses on the nonlinear

CVaR function, while the latter one pays attention to the special block-angular structure

of the stochastic problem.

4.3.1 Branch-and-cut algorithm

Takano et al. [87] proposed two cutting-plane algorithms to handle the CVaR function

in a portfolio optimization problem with a nonconvex transaction cost. Here, we present a

similar algorithm based on the same idea, that is, repeatedly solving the relaxed problems

and gradually approximating the CVaR function with a portion of cutting-plane represen-

tation.

To formulate the algorithm, we equivalently rewrite the primal problem by introducing

the auxiliary variable u.

min
λ

|S|
∑
s∈S

−∑
i∈Is

P si z
s
i + C1

∑
j∈J

pj + C2v

+ (1− λ)u (4.2a)

subject to:

u ≥ α+
1

(1− β)|S|
∑
s∈S

−∑
i∈Is

P si z
s
i + C1

∑
j∈J

pj + C2v − α


+

(4.2b)
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u ∈ R (4.2c)

(4.1b)–(4.1l)

According to the proof in [56], the CVaR constraint (4.2b) is equivalent to the following

cutting-plane representation.

u ≥ α+
1

(1− β)|S|
∑
s∈H

−∑
i∈Is

P si z
s
i + C1

∑
j∈J

pj + C2v − α

 , ∀H ⊆ S (4.3)

Representation (4.3) obviously contains a series of linear constraints, and the number

of constraints is the number of subsets of the scenario set S, i.e., 2|S|. Since many of

the constraints may be redundant, we can simply append the necessary constraints to the

relaxed problem iteratively, instead of using all of them directly. The initial relaxed problem

of formulation (4.2) is arrived at by replacing the CVaR constraint (4.2b) with constraint

(4.4),

u ≥ Umin. (4.4)

where Umin is a sufficiently small constant to prevent the problem from being unbounded.

Accordingly, the feasible region of the initial relaxed problem can be defined by

Ω := {(α, v, u,p, z,n) : (4.1b)–(4.1l), (4.2c), (4.4)} , (4.5)

where p, z, and n are the sets of variables pj , zsi , and n
s
j,t, respectively.

Different from the cutting-plane algorithms in [87], we will not pursue an optimal

solution at each iteration, because it takes too much time to execute the branch-and-

bound algorithm completely when solving the relaxed MILP problem at each iteration.

Instead, we add chosen constraints dynamically to the problem during the branch-and-

bound procedure, which is known as lazy constraint callback. This callback function is

available in optimization software (e.g., Gurobi, CPLEX) and may help to reduce the

computing time. With the function, we develop a branch-and-cut algorithm here. The

algorithm starts by using the branch-and-bound algorithm to solve the relaxed problem. If
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a better feasible solution (α̂, v̂, û, p̂, ẑ, n̂) in Ω is found, it checks whether the corresponding

MIP Gap is within tolerance. The MIP Gap is a relative gap between the upper and lower

objective bounds in the branch-and-bound algorithm, which can be obtained directly with

optimization software. As long as the MIP Gap is unqualified, the callback procedure will

be activated. When the feasible solution violates the CVaR constraint (4.2b), cutting planes

are generated to separate it from the feasible set. The cut is expressed as:

u ≥ α+
1

(1− β)|S|
∑
s∈Ĥ

−∑
i∈Is

P si z
s
i + C1

∑
j∈J

pj + C2v − α

 , (4.6)

where Ĥ := {s ∈ S : −
∑

i∈Is P
s
i ẑ

s
i + C1

∑
j∈J p̂j + C2v̂ − α > 0}. Algorithm 1 is a

description of our method.

Algorithm 1 Branch-and-cut Algorithm for Solving Problem (4.2)
Step 1: (Initialization) Let tolerance ε ≥ 0 for optimality. Define initial feasible region Ω

as (4.5)
Step 2: (Branch and bound) Start (or continue) branch-and-bound algorithm to solve the

relaxed problem:

min{ λ
|S|
∑
s∈S

(−
∑
i∈Is

P si z
s
i + C1

∑
j∈J

pj + C2v) + (1− λ)u : (α, v, u,p, z,n) ∈ Ω}.

Step 3: (Termination criterion) Once a better feasible solution (α̂, v̂, û, p̂, ẑ, n̂) in Ω is
found, return the solution and current MIP Gap. If MIP Gap ≤ ε, stop the algorithm;
otherwise go to Step 4.

Step 4: (Callback procedure) If the solution (α̂, v̂, û, p̂, ẑ, n̂) violates the CVaR constraint
(4.2b), generate the cutting plane with (4.6) to update the feasible region:

Ω← Ω ∩ {(α, v, u,p, z,n) : (4.6)},

and go to Step 2 to continue branch-and-bound algorithm.

We also prove the convergence of the branch-and-cut algorithm.

Theorem 4.3.1. For any ε ≥ 0, the branch-and-cut algorithm has the finite convergence

property.

Proof. Suppose that Algorithm 1 does not converge in a finite number of iterations. Then

MIP Gap > ε holds for any sufficiently large number of iterations k such that k > 2|S|.
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Let us suppose that MIP Gap > ε holds at iteration k > 2|S|. Since the integer variables

are bounded in our model, at Step 2 of iteration k, we can find either a feasible solution

(α̂, v̂, û, p̂, ẑ, n̂) ∈ Ω that violates the CVaR constraint (4.2b) or an optimal solution of the

current model, within a finite number of branch-and-bound iterations. Suppose that we

obtain a feasible solution (α̂, v̂, û, p̂, ẑ, n̂) ∈ Ω violating the CVaR constraint at iteration k.

Since we have assumed k > 2|S|, this solution satisfies all k−1 ≥ 2|S| inequalities generated

before iteration k. Note that the same cutting plane will never be appended twice and the

number of cutting planes that can be generated is at most 2|S|. Thus, the current feasible

solution should satisfy all possible cutting planes, which contradicts the assumption that

the solution violates the CVaR constraint. On the other hand, if we obtain an optimal

solution of the current model, optimality implies that the current MIP Gap ≤ ε at iteration

k, which is a contradiction to the assumption that MIP Gap > ε holds.

4.3.2 Scenario decomposition algorithm

In addition to the cutting-plane representation, we can also transform the nonlinear

CVaR function into a linear one based on the lifting representation [76, 87]. Again, the

primal problem is equivalently written in the lifting representation as follows.

min
λ

|S|
∑
s∈S

−∑
i∈Is

P si z
s
i + C1

∑
j∈J

pj + C2v

+ (1− λ)

(
α+

1

(1− β)|S|
∑
s∈S

ws

)
(4.7a)

subject to:

ws ≥ −
∑
i∈Is

P si z
s
i + C1

∑
j∈J

pj + C2v − α (4.7b)

ws ∈ R+ (4.7c)

(4.1b)–(4.1l)

where ws, s ∈ S are the auxiliary decision variables. Hence, our formulation becomes

a typical two-stage MILP model, which exhibits a block-angular structure and can be

exploited in a decomposition fashion. One possible way of solution is to employ the scenario
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decomposition method, which is based on the Lagrangian decomposition method [36]. Carøe

and Schultz [17] first applied scenario decomposition to stochastic integer programming so

that the primal problem can be split into more manageable scenario subproblems. The

main strategy behind this approach is to create copies of the first-stage variables.

To facilitate subsequent interpretation, we present problem (4.7) in the following com-

pact notation.

Z = min
x,y

cTx+
1

|S|
∑
s∈S

(qs)T ys (4.8a)

subject to:

Ax ≤ b (4.8b)

Tx+Wys ≤ hs, ∀s ∈ S (4.8c)

x ∈ X (4.8d)

ys ∈Ys,∀s ∈ S (4.8e)

where c, b, qs, s ∈ S, and hs, s ∈ S are the known vectors; A, T , and W are the known

matrices; x and ys, s ∈ S are the first-stage and second-stage decision variable vectors,

respectively; and y = (y1,y2, · · · ,y|S|). In our context, it is easy to transform the objective

function (4.7a) to (4.8a). The set of constraints (4.8b) is used to represent constraints (4.1b)

and (4.1c), while the set of constraints (4.8c) represents constraints (4.1d)–(4.1g) and (4.7b).

Finally, the set X represents constraints (4.1h)–(4.1j), while the set Ys denotes constraints

(4.1k), (4.1l), and (4.7c).

By replicating the first-stage variables, we can consider the following equivalent for-

mulation.

Z = min
x,y

1

|S|
∑
s∈S

(
cTxs + (qs)T ys

)
(4.9a)

subject to:

Axs ≤ b, ∀s ∈ S (4.9b)

Txs +Wys ≤ hs, ∀s ∈ S (4.9c)
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xs − x̄ = 0, ∀s ∈ S (4.9d)

xs ∈ X, ∀s ∈ S (4.9e)

ys ∈Ys, ∀s ∈ S (4.9f)

x̄ ∈ Rn (4.9g)

where x = (x1,x2, · · · ,x|S|).

Equations (4.9d) are known as the nonanticipativity constraints. These constraints

can be represented in various forms [63,73]. By dualizing the nonanticipativity constraints

(4.9d), one may obtain the Lagrangian relaxation of problem (4.10).

ZLR(µ) = min
x,y,x̄

1

|S|
∑
s∈S

(
cTxs + (qs)T ys

)
+
∑
s∈S

(µs)T (xs − x̄) (4.10)

subject to: (4.9b), (4.9c), and (4.9e)–(4.9g).

Since x̄ is unconstrained, we bound the Lagrangian with the condition
∑

s∈S µ
s = 0

and remove the term
∑

s∈S(µs)Tx̄ in the Lagrangian function, which makes problem (4.10)

separable. It is known that, for any given µ = (µ1,µ2, · · · ,µ|S|), the Lagrangian relaxation

(4.10) provides a valid lower bound on the problem (4.9) [38], i.e., ZLR(µ) ≤ Z. To achieve

such a bound, we can solve problem (4.10) by dividing it into many simpler subproblems.

Note that ZLR(µ) =
∑

s∈S Z
s
LR(µs), where ZsLR(µs) is the objective value of the following

subproblem.

ZsLR(µs) = min
x,y

1

|S|
(
cTxs + (qs)Tys

)
+ (µs)T xs (4.11)

subject to: (4.9b), (4.9c), and (4.9e)–(4.9g), for a given s in S.

To find the best lower bound, we define the Lagrangian dual problem.

ZLD = max
µ

1

|S|
∑
s∈S

ZsLR (4.12a)

subject to:

∑
s∈S

µs = 0 (4.12b)
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µs ∈ Rn, ∀s ∈ S (4.12c)

This dual problem (4.12) is a concave, nonsmooth optimization problem, which is com-

monly solved using methods based on subgradients or cutting planes [73]. In this study,

a cutting-plane method is used to handle the dual problem. Algorithm 2 is a stabilized

cutting-plane approach with a trust region [44], [54]. Hiriart-Urrut and Lemaréchal [44]

proved the convergence of this approach. In this algorithm, the master problem and

local problem, respectively, yield an upper bound (ZCP ) and lower bound (ZLR(µ) =∑
s∈S Z

s
LR(µs)) of ZLD. By iterating the upper and lower bounds in turn, the algorithm

terminates when the relative gap between them is less than a given optimality tolerance.

51



Algorithm 2 Trust-region Cutting-plane Algorithm for Solving Lagrangian Dual Problem
(4.12)
Step 1: (Initialization) Set the tolerance ε ≥ 0, iteration count k = 1, initial stability

center µ̄s = µsk = 0, s ∈ S, ascent coefficient ω ∈ (0, 1), and initial trust-region τk ≥ 0,
solve subproblem (4.11) for all s in S, and save ZsLR (µsk) and xsk.

Step 2: (Master problem) Solve the following problem

ZkCP = max
θ,µ

∑
s∈S

θs

subject to:

θs ≤ ZsLR (µsk′) + (xsk′)
T (µs − µsk′) ,∀s ∈ S, k′ ∈ {1, 2, · · · , k}

|µs − µ̄s| ≤ τk, ∀s ∈ S∑
s∈S

µs = 0

µs ∈ Rn, ∀s ∈ S
θs ∈ R,∀s ∈ S

to obtain
(
ZkCP ,µ

s
k+1

)
, and compute

δk := ZkCP −
∑
s∈S

ZsLR (µ̄s) .

Step 3: (Termination criterion) If

δk
1 +

∑
s∈S Z

s
LR (µ̄s)

≤ ε,

stop the algorithm, otherwise go to Step 4.
Step 4: (Local problem) For all s in S, solve |S| subproblems (4.11) to obtain the next

points xsk+1 and ZsLR(µsk+1).
Step 5: (Center update) If∑

s∈S
ZsLR

(
µsk+1

)
≥
∑
s∈S

ZsLR (µ̄s) + ωδk,

update stability center µ̄s = µsk+1,∀s ∈ S, otherwise leave the center unchanged.
Step 6: (Trust region update) Compute the ratio

ρ :=

∑
s∈S Z

s
LR(µsk+1)−

∑
s∈S Z

s
LR(µ̄s)

δk
.

If ρ = 1, then τk+1 = 1.5τk and if ρ < 0, then τk+1 = 0.8τk.
Step 7: (Iteration update) Set k = k + 1, go back to Step 2 .
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Algorithm 2 solves the Lagrangian dual problem (4.12) and derives the lower bound

of the primal problem (4.8). Next, we will introduce a simple heuristic to determine the

upper bound. The upper bound can be calculated by substituting the feasible first-stage

solutions xs into the primal problem (4.8). In this study, we estimated the feasible first-

stage candidates by using the average value of the scenario solution xs, s ∈ S and some

rounding heuristic to satisfy the integrality restriction (x = round(
∑

s∈S x
s/|S|)). When

the first-stage variables are known, the primal problem can also be decomposed into |S|

subproblems to compute the upper bound of the primal problem (4.8). It is worth noting

that if x is not a feasible solution, we can use its upper or lower bound to ensure its

feasibility.

Algorithm 3 shows the whole scenario decomposition method combining Algorithm

2 and the method of computing the upper bound. In detail, it only adds the upper bound

update (Algorithm 3 Step 3) and a new termination criterion (Algorithm 3 Step 4)

between Steps 1 and 2 of Algorithm 2.

Algorithm 3 Scenario Decomposition Method for Solving Primal Problem (4.8)
Step 1: (Initialization) Set the tolerance εCP ≥ 0, εDG ≥ 0 iteration count k = 1, initial

stability center µ̄s = µsk = 0, s ∈ S, an ascent coefficient ω ∈ (0, 1), and initial
trust-region τk ≥ 0. Set upper bound UB = +∞, lower bound LB = −∞

Step 2: (Lower bound update) solve subproblem (4.11) for all s in S to obtain ZsLR (µsk)
and xsk; clearly, ZLR(µk) =

∑
s∈S Z

s
LR(µs). If ZLR(µk) > LB, then LB = ZLR(µk).

Step 3: (Upper bound update) Generate the first-stage variable with x̂k = xsk/|S|. For
integer variables, x̂k = round(xsk/|S|). Then, fix x = x̂k in primal problem (4.8) to
compute the optimal Z. If Z < UB, then UB = Z.

Step 4: (Termination criterion) If UB − LB ≤ εDG, stop the algorithm; otherwise go to
Step 5.

Step 5: (Cut generation) Execute Algorithm 2 Step 2 to obtain
(
ZkCP ,µ

s
k+1, δk

)
Step 6: (Termination criterion) If

δk
1 +

∑
s∈S Z

s
LR (µ̄s)

≤ εCP ,

stop the algorithm, otherwise go to Step 7.
Step 7: (Center and trust region update) Perform Steps 1–3 again to obtain ZsLR (µsk),

xsk, LB, and UB, then update the stability center and trust region with Step 5 and 6
of Algorithm 2.

Step 8: (Iteration update) Set k = k + 1, go back to Step 5.
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Because of the block structure, the scenario decomposition method can split up the

primal problem (4.8) into |S| scenario subproblems. In addition, these scenarios can be

grouped together into larger blocks to help reduce the gap [17] while maintaining the block

structure; thereby, we will rewrite problem (4.9) into problem (4.13).

Z = min
x,y

1

|L|
∑
l∈L

cTxl +
1

|S|
∑
l∈L

∑
s∈Sl

(qs)Tys (4.13a)

subject to:

Axl ≤ b, ∀l ∈ L (4.13b)

Txl +Wys ≤ hs, ∀l ∈ L, s ∈ Sl (4.13c)

xl − x̄ = 0, ∀l ∈ L (4.13d)

xl ∈ X, ∀l ∈ L (4.13e)

ys ∈Ys, ∀l ∈ L, s ∈ Sl (4.13f)

x̄ ∈ Rn (4.13g)

where L is the set of blocks and l ∈ L, Sl is the set of scenarios in block l. |L| is chosen

to be a suitable divisor of |S|. Similarly, we can solve problem (4.13) by the scenario

decomposition method. Instead of formulating subproblems for each scenario, we split the

scenarios into several large blocks in the order of the scenario, which leads to a better

solution.

4.4 Computational experiments

We conducted experiments based on historical data of the Ha:mo RIDE carsharing

system in Toyota city, Japan collected from April 1st, 2016 to March 31st, 2017. Ha:mo

RIDE is a station-based one-way system. Considering the accessibility of data, we utilized

the data from the existing carsharing system directly to generate scenario demand data

and assumed the sites of the current stations to be potential location sites. Note that the

formulation proposed in Section 4.2 is not affected by these treatments or by the other
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methods used to obtain the demand data and potential locations (e.g., [9, 15]). The model

was implemented using Gurobi Optimizer 9.0 in the Python environment on an Intel i7-8700

CPU with 12 cores and 16GB of RAM.

4.4.1 Parameter settings

There were 55 stations with different capacities in the Ha:mo RIDE system. As men-

tioned above, the sites of these stations were assumed to be the potential location sites

and the current station capacities were regarded as maximum numbers of parking spaces

that can be set. The operating time of the system was from 6:00 to 24:00, which in the

experiments was divided into multiple 5-minute intervals.

An important part of the parameters in the proposed model is the scenario demand

data. Instead of predicting the potential demand with forecast methods like regression

prediction, we generated the demand by using a Poisson distribution due to the limited data,

which is the same as [95]. The average OD matrices for the same hours were calculated

from the historical data for different days. The number of OD trips per hour was then

evenly distributed over the time intervals, which determines the parameter in the Poisson

distribution. In such a way, we generated a random number of possible trips departing

from each station for each time interval. Furthermore, the arrival time was determined by

adding the trip duration to the departure time. The trip duration for each OD pair varied

every hour, which was obtained from the Google Maps Distance Matrix API. We based the

trip price on the trip duration: a fare of ¥200 for up to 10 minutes and ¥20 per minute

after that. Using this procedure, we repeatedly generated different scenario demands.

The remaining parameters are mostly related to the costs. Besides the station cost,

other costs are constant ones, including the station and vehicle operating costs and the

cost of purchasing vehicles. Because the station cost involves the land cost, which varies

according to the local conditions, we collected the land cost data for Toyota City from the

National Land Price Map, Japan [75]. The constant parameters are summarized in Table

1. Note that some parameters have been modified to ensure the system can make a profit.
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Table 4.1: Values of constant parameters used in the model.

Parameters Value

Operating cost per parking space per scenario (C1) ¥100

Operating cost per vehicle per scenario(C2) ¥200

Cost for purchasing a vehicle (F ) ¥879000

Available budget (B) ¥200 million

Number of scenarios (|S|) 1000

4.4.2 Optimization results

With the given parameters, we solved the strategic decision model directly with Gurobi

and generated efficient frontiers for the 90%, 95%, and 99% confidence levels by using

different weight values, as shown in Figure 4.1. This figure also shows optimal results

including the total number of parking spaces, the number of vehicles used, and the demand

satisfaction rate for different weight values. From the efficient frontiers, it is obvious that

high returns are accompanied by high risks. To achieve higher returns, the main approach

appears to be increasing the number of parking spaces or vehicles, which improves the

satisfied demand ratio. Observing the changes of the axes in the figures, we obtained

the general trend of these frontiers where a higher confidence level quantifies more serious

risk and reduces the return to a certain degree. Furthermore, it seems sufficient to set 86

parking spaces and purchase 34 vehicles in the carsharing system, since more parking spaces

or vehicles increases risk, not return.

Figure 4.2 illustrates the optimal location and capacity of stations for different values

of λ, given β = 95%. The size of the circle represents the number of parking spaces. The

individual figures show the optimal number of stations, number of parking spaces, and

required fleet size in the system at the upper right corner. Generally, stations equipped

with more parking spaces are mainly located at the spots with high demand, such as at

Toyota factories and railway stations. However, these hot spots are easily affected by the

weight values; that is, the number of parking spaces will increase when more attention is

paid to the return. In comparison, the solutions seem more robust for some small stations.

There are 13 common small stations, marked in red circles, where the location and capacity
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of stations are the same.

(a)

(b)

(c)

Figure 4.1: Efficient frontiers of mean return and CVaR: (a) β = 90%; (b) β = 95%; (c)
β = 99%.
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(a) (b)

(c)

Figure 4.2: Optimal station locations and capacities for β = 95%: (a) λ = 0; (b) λ = 0.5;
(c) λ = 1.
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4.4.3 Out-of-sample performance of the risk-averse model

As mentioned above, most of the previous studies maximized the expectation value of

returns in the optimization model without any consideration of risk. In this subsection, we

develop an evaluation method that is similar to the training and testing method used in

the field of machine learning to verify whether introducing risk has benefits, i.e., whether

the strategic decisions from risk-averse model are better. As can be seen in Figure 4.3,

the proposed evaluation process consists of two important parts. In the first part (training

part), we set different weight values in the strategic model to optimize the corresponding

strategic decisions. In the second part (testing part), we render these decisions as additional

constraints in the strategic model and meanwhile input test demand data into the model.

After optimizing other variables according to the determined variables associated with the

strategic decisions, the mean returns in the objective function are compared to further

inspect the strategic decisions.

Figure 4.3: Scheme to evaluate the model with risk term.

To examine the impact of introducing the risk term on the strategic decisions, the

weight values (λ) used to generate the efficient frontier are divided into three categories: i)

λ = 0, i.e., only risk is considered; ii) 0 < λ < 1, i.e., both return and risk are considered;

iii) λ = 1, i.e., only return is considered. Given different confidence levels β, the strategic

decisions with respect to different λ will be evaluated by the indicator, mean return, on

diverse test demand data. We generated 10 sets of test demand data that followed a Poisson

distribution. The test results for β = 90%, 95%, and 99% are reported in Tables 4.2, 4.3,
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and 4.4, respectively.

For each set of test data, the maximal return is marked in bold. In Table 4.2, it is

interesting that, for most of the test data, the maximal returns are obtained when 0 <

λ < 1 rather than λ = 1. Similar observations apply to Tables 4.3 and 4.4. Strategic

decisions based on a single criterion are more likely to cause poor performance under demand

uncertainty, which indicates the necessity of introducing the risk term. Weighting the return

against risk, the carsharing system operator may earn higher returns in the future. In

addition, we also find that appropriate attention should be paid to risk (i.e., choosing a

suitably smaller λ) if the demand data results in lower returns. Take test data 1 and 10 in

Table 2 as examples. The maximal returns are obtained when λ = 0.1 for test data 10 and

λ = 0.999 or 1 for test data 1, and it can be seen that the return from test data 10 is lower

than the return from test data 1.

Table 4.2: Mean return on test data for different λ when β = 90%.

Test data λ = 0
0 < λ < 1

λ = 1
0.001 0.1 0.3 0.5 0.7 0.9 0.999

1 5335 9506 9830 10628 11485 11920 11990 12022 12022

2 4140 8593 8853 9511 10135 10388 10397 10340 10340

3 3980 8296 8514 9033 9566 9790 9734 9708 9708

4 3190 7956 8210 8681 9122 9217 9154 9138 9138

5 3191 7530 7759 8236 8524 8567 8490 8350 8350

6 3065 6845 7011 7331 7394 7328 7142 7019 7019

7 3139 6692 6794 7038 7155 6944 6720 6583 6583

8 3589 6396 6494 6670 6684 6476 6238 6078 6078

9 2659 5399 5460 5532 5178 4709 4403 4207 4207

10 2792 4411 4461 4359 3815 3161 2764 2459 2459

Average 3508 7162 7339 7702 7906 7850 7703 7590 7590
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Table 4.3: Mean return on test data for different λ when β = 95%.

Test data λ = 0
0 < λ < 1

λ = 1
0.001 0.1 0.3 0.5 0.7 0.9 0.999

1 3881 8762 9200 10310 11088 11920 11990 12022 12022

2 2889 7887 8336 9303 9890 10388 10397 10340 10340

3 3604 7632 8048 8795 9322 9790 9734 9708 9708

4 2655 7365 7735 8509 8938 9217 9154 9138 9138

5 2759 6871 7313 8026 8408 8567 8490 8350 8350

6 2790 6272 6646 7213 7377 7328 7142 7019 7019

7 2727 6172 6531 6971 7079 6944 6720 6583 6583

8 2805 5913 6241 6630 6660 6476 6238 6078 6078

9 2598 5071 5321 5537 5376 4709 4403 4207 4207

10 2215 4163 4375 4374 4063 3161 2764 2459 2459

Average 2892 6611 6975 7567 7820 7850 7703 7590 7590

Table 4.4: Mean return on test data for different λ when β = 99%.

Test data λ = 0
0 < λ < 1

λ = 1
0.001 0.1 0.3 0.5 0.7 0.9 0.999

1 1757 6254 7755 9391 10289 11849 11990 12022 12022

2 1937 5702 7041 8519 9206 10330 10397 10340 10340

3 2844 5569 6919 8166 8806 9766 9734 9708 9708

4 1747 5372 6656 7875 8438 9220 9154 9138 9138

5 1754 5065 6144 7476 7985 8542 8490 8350 8350

6 1033 4716 5716 6791 7218 7334 7142 7019 7019

7 388 4660 5574 6537 6962 7010 6720 6583 6583

8 1738 4441 5341 6242 6589 6474 6238 6078 6078

9 1036 3892 4547 5345 5457 4776 4403 4207 4207

10 1612 3343 3785 4384 4309 3263 2764 2459 2459

Average 1585 4901 5948 7073 7526 7856 7703 7590 7590

61



4.4.4 Comparison of proposed solution methods

To assess the efficiency of our algorithms, we conducted computational experiments

comparing the two proposed algorithms with direct usage of the Gurobi optimization solver

and Benders decomposition-based algorithm used in [62]. For each parameter set (λ, β,

and |S|), we designed three experiments by generating different trip demands in each sce-

nario, and we evaluated the average performance of these experiments. We set the weight

parameter, λ ∈ {0.1, 0.5, 0.9}, the confidence level parameter, β ∈ {90%, 95%, 99%}, and

the number of scenarios, |S| ∈ {200, 1000, 2000}. When using Gurobi directly and em-

ploying the branch-and-bound algorithm, both optimality tolerances take the default value,

ε = 10−4. In the scenario decomposition algorithm, the optimality tolerances εCP and εDG

are 10−4 and 300, respectively. For all methods, the time limits are set to be 7200s.

In Tables 4.5, 4.6, and 4.7, “Direct” means direct usage of Gurobi, “B&C” is the branch-

and-cut algorithm, “SD” represents the scenario decomposition method, and “BD” means

the Benders decomposition-based algorithm introduced in [62]. On large-scale problems,

the algorithms usually terminated because they ran out of memory. Accordingly, “OM(*)”

means that the algorithm experienced a memory shortage, where “*” is the number of

memory shortages out of three. Similarly, “OT(*)” depicts the computation was terminated

due to time limit, where “*” is the number out of three. Moreover, “Gap (%)” is the relative

optimality gap.

Tables 4.5, 4.6, and 4.7 illustrate the results of solving the problems with different

numbers of scenarios, mainly including the gaps and time. As can be seen in Tables 4.5 and

4.6, both direct method and B&C algorithm can provide optimal values with gaps being less

than 10−4. For some problems with 200 scenarios, the B&C algorithm takes a little more

time than the direct approach. However, when the number of scenarios is 1000, the B&C

algorithm shows more favorable results; its computing time was reduced by 51% on average

in comparison with Gurobi. Turning now to the SD algorithm, we see that the algorithm is

faster than both the direct approach and the B&C algorithm and the resulting optimality

gaps are mostly within 3%. Although the SD algorithm can provide tight lower bounds

with the trust-region cutting-plane method, a simple heuristic to estimate the upper bounds
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sometimes may cause weak solutions and large gaps (e.g., λ = 0.1, β = 99%), which can

be further improved. In comparison, BD performs worse than all other methods. For all

problems with 200 scenarios or 1000 scenarios, we did not obtain good solutions within the

specified time by using the BD algorithm. With the increase of the number of iterations,

the master problem in the BD algorithm becomes a larger MILP gradually and most of the

time is spent on solving the master problem. However, in the SD algorithm, we substituted

a heuristic solution (average value) into the primal problem to get the solution without

solving such an MILP. In short, both B&C algorithm and SD algorithm are effective when

solving the problem with fewer scenarios, and one can choose the B&C algorithm and SD

algorithm according to the need for a smaller gap or for higher speed .

Now, let us look at Table 4.7, which indicates the advantage and efficiency of the

SD algorithm for solving large-scale problem. The core of the B&C algorithm is replacing

the CVaR constraint with the cutting-plane representation, so a problem remains is that

the other linear constraints still depend on the number of scenarios, i.e., a much greater

number of scenarios may result in difficulty finding a good solution. The table indicates that

the direct approach and B&C algorithm could not solve the problems with 2000 scenarios

and all experiments terminated due to memory shortage. BD method could not find a

feasible solution for our model within the given time. Nevertheless, the SD algorithm can

compensate for hardware defects by consuming more (but still tolerable) computation time

and obtain favorable solutions. Even for the problems with λ = 0.1 and β = 99%, the gap

presents a downward trend compared with the values in Tables 4.5 and 4.6. These illustrate

the superiority of SD on large-scale problems.

63



Table 4.5: Results of solving problem with 200 scenarios.

λ β
Gap (%) Time (s)

Direct B&C SD BD Direct B&C SD BD

0.1
90%

≤ 0.01

5.33

> 100

58.0 64.7 33.2

OT(3)

95% 12.35 46.3 71.2 40.3

99% 24.62 150.0 231.0 88.7

0.5
90% 1.73 59.1 50.8 33.3

95% 2.60 68.5 50.8 29.6

99% 3.28 82.5 86.5 36.9

0.9
90% 0.35 64.8 37.1 23.4

95% 0.46 57.3 43.2 23.5

99% 0.81 47.5 50.9 21.0

Table 4.6: Results of solving problem with 1000 scenarios.

λ β
Gap (%) Time (s)

Direct B&C SD BD Direct B&C SD BD

0.1
90%

≤ 0.01

1.08

>100

3587.3 2312.3 1132.0

OT(3)

95% 2.48 4035.3 2884.4 1025.0

99% 17.16 4137.8 2966.4 1430.4

0.5
90% 0.29 5202.5 2057.7 1147.6

95% 0.97 3595.5 1597.8 1063.3

99% 2.91 3232.4 1958.3 1059.4

0.9
90% 0.06 3044.1 907.5 949.5

95% 0.06 3582.9 1003.1 878.4

99% 0.22 3299.2 1144.2 867.1
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Table 4.7: Results of solving problem with 2000 scenarios.

λ β
Gap (%) Time (s)

Direct B&C SD BD Direct B&C SD BD

0.1
90%

-

1.94

- OM(3)

1804.6

OT(3)

95% 5.57 OT(3)

99% 13.96 4216.5

0.5
90% 0.60 1924.4

95% 1.14 2243.5

99% 4.52 OT(3)

0.9
90% 0.20 3739.5

95% 0.21 2957.9

99% 0.45 6666.1

4.5 Summary

We proposed a two-stage stochastic risk-averse MINLP model to optimize the strategic

decisions in one-way station-based carsharing systems operating under demand uncertainty.

In the model, the optimal location, capacity of stations, and fleet size can be determined at

the same time. In addition to the expected return that is a common optimization objective,

the risk measure CVaR is incorporated into the model so that the operator can examine the

trade-off between return and risk. Since we aimed to solve the problem efficiently, we de-

veloped two methods, a branch-and-cut algorithm and a scenario decomposition algorithm,

by converting the primal problem into two different equivalent problems.

Using the historical demand data, we generated scenario demands that followed a Pois-

son distribution and conducted computational experiments. By solving the problems with

different weight values, we obtained efficient frontiers, which revealed a positive correla-

tion between return and CVaR. From the efficient frontiers, we found that building more

parking spaces or preparing more vehicles can improve the return and the satisfied demand

ratio, but that they cause more risk. The stations equipped with more parking spaces were

suggested to be set at the spots with high demand, such as at Toyota factories and rail-

way stations. Additionally, we evaluated the advantages of the proposed model with the
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risk term. The results show that it is better to consider both the return and risk in the

objective function so that the strategic decisions may lead to a higher return. When com-

paring the solution methods, the algorithm developed by Lu et al. [62] has unsatisfactory

performance on our model. By contrast, both branch-and-cut and scenario decomposition

algorithms are effective at solving small- and medium-scale problems. More importantly,

the scenario decomposition can deal with large-scale problems that cannot be solved by the

direct approach or by the branch-and-cut algorithm.
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Chapter 5

Conclusions and outlook

5.1 Conclusions

The thesis focused on the strategic design for two types of emerging mobility sys-

tems: bus transit systems operating with human-driven and autonomous buses and one-

way station-based carsharing systems, which correspond to two gradual transformations in

today’s mobilities. Mathematical formulations and approaches were applied to determine

the various planning decisions in each type of system.

In the emerging transit systems, we developed an MINLP (Model I)and its approx-

imately linear form to solve the BDL&TNDP with limited drivers, where the bus depot

locations, fleet size, bus routes, and frequency and bus type of each route were optimized

jointly. Given the complexity of linearized Model I, a simplified path-based model (Model

II) and its linear approximation were introduced. Compared with Model I, Model II was

more computationally efficient due to fewer variables and constraints. To assess the so-

lutions obtained from Model II, we substituted the solutions into Model I and compared

the objective values of the new Model I with those of the original Model I. By using the

networks from previous studies, two linearized models were tested with the given param-

eters. We first generated the efficient frontiers of operators’ and users’ costs by varying

the weights and analyzed the effect of the number of available drivers. From the results,

we observed that the users’ costs tend to be high if no autonomous buses are introduced

with the limitation of drivers. Introducing autonomous buses helps construct a user-centric

transit system. Then, we analyzed the model size and computational efficiency for both
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models. In comparison with Model I, Model II can reach the optimality gap quickly because

of the smaller model size. In the last part, the differences between the new Model I and the

original Model I were computed. We found that different candidate paths of passengers and

coefficient waiting time will affect the difference. Generally, more candidate travel paths of

passengers will lead to a smaller difference. Model II can obtain favorable solutions within

a few seconds on two test networks.

For one-way station-based carsharing systems, we proposed a mean-CVaR model to

optimize the strategic decisions considering demand uncertainty. In the model, the optimal

location, capacity of stations, and fleet size can be determined simultaneously. We developed

a branch-and-cut algorithm and a scenario decomposition algorithm to solve the problem

efficiently by converting the original problem into two different equivalent problems. With

the generated scenario demands, we conducted computational experiments to solve the

problems with different weight values so that the efficient frontiers were obtained, which

revealed a positive correlation between return and CVaR. The results show that building

more parking spaces or preparing more vehicles can improve the return and the satisfied

demand ratio, but they cause much risk. The stations equipped with more parking spaces

are usually set at the spots with high demand, such as at Toyota factories and railway

stations. Besides, we analyzed the proposed model with the risk term by using a training

and testing method. We found it is better to consider both the return and risk in the

objective function so that the strategic decisions may cause a higher return when demand

data is uncertain. In addition, compared with the algorithm in [62], both branch-and-cut

and scenario decomposition algorithms are effective at solving small- and medium-scale

problems. More importantly, scenario decomposition can handle large-scale problems that

other methods cannot solve.

5.2 Outlook

As for the emerging bus transit systems, we made several simplifications when solving

the BDL&TNDP. Some improvements can be taken into account in future work. We ignored

the bus capacity considering the optimal strategies assignment model is unsuitable for
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the congested area. Based on this relaxation, the proposed model can be improved by

integrating the congested transit assignment model (e.g., [18]). In this study, we applied

the autonomous buses to fix-route design. If the autonomous buses can travel on flexible

routes in light of the traffic condition, both operators’ and users’ costs may be reduced.

Concerning the carsharing systems, an interesting challenge would be to develop more

complicated variations of our model with constraints such as energy consumption, vehicle

relocations, or relays, which will relax our assumptions. In particular, given the current

scale of the proposed model, relaxation tricks might be needed to handle these constraints.

On the other hand, from a computational perspective, we can improve the heuristic method

for determining upper bounds in scenario decomposition to make the algorithm more so-

phisticated.

In addition, we designed the two emerging systems separately in the thesis. As the

concept of MaaS becomes widespread, there is a trend to integrate different modes of trans-

portation. Hence, it is also a crucial issue to design integrated multimodal transportation

from different operators’ perspectives.
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Appendix A

Optimal strategies assignment model

Passenger assignment or route assignment concerns the selection of routes between

origins and destinations in transportation networks. The demand can be assigned to the

corresponding shortest paths for the car mode, called the ‘all-or-nothing’ assignment. How-

ever, this is not a proper solution in the transit network due to waiting for the buses (waiting

cost). To capture this situation, Spiess and Florian [84] proposed an optimal strategies as-

signment model for transit networks.

Consider a transit network G = (N,A), where n ∈ N are nodes (real or dummy bus

stops) and a ∈ A are links between two nodes. Let A+
n (A−n ) denote the set of outgoing

(incoming) arcs at n ∈ N . Figure A.1 gives an example of a transit network (or called tra-

jectory network).For the transit route choice problem, a strategy to reach destination node

d is defined by a partial network Gd = (N, Ā). For node n ∈ N , Ā+
n = A+

n ∩Ā. For example,

if d = Y, in the partial network GY , N ={X,X2,Y2,Y} and Ā= {(X,X2),(X2,Y2),(Y2,Y)}

where (X,X2) is a waiting arc, (X2,Y2) is an in-vehicle arc, and (Y2,Y) is a destination arc.

Given a strategy Ā, the demand gn at node n ∈ N is assigned to the network, which

yields arc volumes va, a ∈ A. The volume Vn at a node n ∈ N can be written into the sum

of incoming volume and the demand generating at that node.

Vn =
∑
n∈A−n

va + gn (A.1)
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Figure A.1: Example of a transit network

The node volume Vn is assigned to the outgoing arcs based on their link probability.

va = Pa(Ā
+
n )Vn, a ∈ A+

n ,∀n ∈ N (A.2)

where Pa(Ā+
n ) is the probability that arc a is served first among the set Ā+

n .

If the interarrival times of the buses follow exponential distribution, then

Pa(Ā
+
n ) =

fa∑
a′∈Ā+ fa′

,∀a ∈ Ā+ (A.3)

W (Ā+
n ) =

1∑
a∈Ā+ fa

(A.4)

where fa is the mean frequency of link a ∈ Ā+
n , W (Ā+

n ) is the expected waiting time for

the first bus arriving at node n. The proof can be found in [48,58].

We aim to find the optimal strategy Ā? that minimizes the expected total travel time

including waiting time, so the assignment model can be given as follows. We use binary

variable xa, a ∈ A to represent whether arc a is in Ā?.

min
∑
a∈A

cava +
∑
n∈N

Vn∑
a∈A+

n
faxa

(A.5a)

subject to:

va =
faxa∑

a′∈A+
n
fa′xa′

Vn, ∀a ∈ A+
n , n ∈ N (A.5b)
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Vn =
∑
a∈A−n

va + gn, ∀n ∈ N (A.5c)

Vn ∈ R+, ∀n ∈ N (A.5d)

va ∈ R+, ∀a ∈ A (A.5e)

xa ∈ {0, 1}, ∀a ∈ A (A.5f)

The objective is to minimize total travel time on arcs (the first term) and total waiting time

at nodes(the second term). By summing constraints (A.5b) for all a ∈ A+
n and considering

constraints (A.5c), we can obtain the flow conservation, that is, constraints (A.7b).

Let

wn =
Vn∑

a∈A+
n
faxa

, (A.6)

then, we can reformulate the problem (A.5) and obtain the equivalent problem (A.7), see

[84].

min
∑
a∈A

cava +
∑
n∈N

wn (A.7a)

subject to:

∑
a∈A+

n

va −
∑
a∈A−n

va = gn, ∀n ∈ N (A.7b)

va ≤ fawn, ∀a ∈ A+
n , n ∈ N (A.7c)

va ∈ R+, ∀a ∈ A (A.7d)
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Appendix B

General mean-CVaR model

Conditional value-at-risk (CVaR) was first proposed by Rockafellar and Uryasev [76]

as a downside risk measure to quantify tail losses. In comparison with the traditional risk

measure value-at-risk (VaR), CVaR has more attractive mathematical properties (e.g., sub-

additivity, convexity; see [74]). More importantly, CVaR can illustrate the losses exceeding

VaR, but VaR does not control such losses.

Let L(x,y) denote the loss function with respect to a decision vector x ∈ X ⊂ Rn

and uncertain vector y ∈ Rm and p(y) denotes the probability density function associated

with y. For a fixed decision vector x, the cumulative distribution function of the loss can

be written as:

ψ(x, α) =

∫
L(x,y)≤α

p(y) dy. (B.1)

Given a confidence level β, the β-VaR associated with the decision vector x is as

follows:

VaRβ(x) = min{α ∈ R : ψ(x, α) ≥ β}. (B.2)

Three values of β are commonly considered: 90%, 95%, and 99%. The β-CVaR asso-

ciated with the decision vector x is defined as:

CVaRβ(x) =
1

1− β

∫
L(x,y)≥VaRβ(x)

L(x,y)p(y)dy, (B.3)

which is the conditional expectation of the loss that is beyond VaRβ . It is difficult to deal
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with (B.3) directly, so Rockafellar and Uryasev [76] developed a simpler auxiliary function:

Fβ(x, α) = α+
1

1− β

∫
y∈Rm

[L(x,y)− α]+p(y)dy (B.4)

where [x]+ = max {x, 0} for x ∈ R, and proved

CVaRβ(x) = min
α∈R

Fβ(x, α). (B.5)

For practical applications, we often consider the following scenario-based approxima-

tion, i.e., (B.6), with a number of scenarios in the name of ys for s in the scenario set S to

avoid numerical difficulties caused by the integration in (B.4).

Fβ(x, α) ≈ α+
1

(1− β)|S|
∑
s∈S

[L (x,ys)− α]+ (B.6)

The system operators usually try to minimize the risk while maximizing the return

(or minimizing the loss). In this case, we can consider the mean-CVaR model, taking both

return and risk into account. Krokhmal et al. [55] illustrated three equivalent formulations

of the mean-CVaR model. A typical one among them is

min
x,α
{λE[L(x,y)] + (1− λ)Fβ(x, α)} , (B.7)

where λ is the weight value, ranging from 0 to 1, and E[·] is the expectation function.

Considering discrete scenarios with the same probability, we can reformulate problem (B.7)

in an approximate form:

min
x,α

{
λ

|S|
∑
s∈S

L (x,ys) + (1− λ)

(
α+

1

(1− β)|S|
∑
s∈S

[L (x,ys)− α]+

)}
. (B.8)
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