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Abstract

Distributed file systems (DFSs) play a crucial role in modern society that relies
heavily on data. They leverage computer networks to organize multiple storage
nodes into a storage cluster, which is expandable by adding more storage hardware
or storage nodes. These systems can also work in tandem with data reduction
schemes such as deduplication and compression to improve their storage efficiency
at the cost of higher data access latency. To minimize these costs, some aspects
of data reduction schemes in DFSs that can be improved, are the data reduction
scheme, the integration of the schemes in the DFSs, and the metadata system that
supports the data reduction schemes and the DF'Ss.

This study explores the three important aspects of data reduction schemes ap-
plications in DFS environments. In each aspect, it discusses the challenges and
proposes a solution to the presented challenges. The solutions proposed in this
study can improve the performance, ease of use, and compatibility of the solution
with modern storage mediums.

Data reduction schemes may vary among each other in terms of the tradeoff
between processing time and data reduction performance. In data deduplication,
the main component that directly impacts these metrics is the chunking algorithm.
Among the existing chunking algorithm categories, content-dependent chunking
(CDC) algorithms are the more effective algorithms for detecting similarities among
files with different versions. However, these algorithms commonly have a long pro-
cessing time, which is unsuitable for some use cases. The proposed method extends
the existing chunking algorithm and reduces its number of comparisons by improv-
ing its conditional structure, improving the chunking throughput by up to 49% and
efficiency in reducing redundancies by up to 40% depending on the dataset.

The selection of data reduction schemes in the DFSs is crucial to minimize the
redundancy in the data because the schemes may vary in performance depending on
the dataset. However, the existing solutions proposed by studies and projects such
as Hadoop suffer from the difficulty of integrating and enabling the schemes to the
DFSs. For example, adding a new scheme, which may have a better performance
than the schemes in the existing selection, can be tedious and sometimes might



even be impossible without the help of the maintainers of the DF'Ss. The proposed
DF'S design uses a dynamic library approach to allow users to compile the schemes
separately from the DFS and use them in the DFS without any change in the DFS
or the application code. The experimental results show that the proposed DFS
design can enable data reduction schemes in the DFS with around 1% of overhead
in data transfer performance through the platform-provided tools and around 5% of
overhead in data processing applications.

Key-value stores (KVSs) are crucial for metadata systems to store and serve
blocks and chunks of information in the DFSs and deduplication. Many KVSs utilize
a data structure called log-structured merge-tree (LSM-tree) to store the data be-
cause of its scalability, performance in range query workloads, and compatibility with
existing storage mediums because writes and updates are sequential in LSM-tree.
However, the use of non-volatile memory (NVM) in the LSM-tree might be detri-
mental to the performance of the KVS because of its unique characteristic, where
write throughput may degrade when too many threads submit write operations in
parallel. The proposed KVS solves the performance degradation from parallel writes
in NVM by using asynchronous multithreading to decouple the client threads from
the NVM, increasing the consistency of write operations and the throughput of the
tested KVSs by over double.

Through the discussion on the challenges in these three aspects and the presented
solutions, this study provides an insight into the existing and future DFS designs
in terms of data reduction schemes usage in DFS environments. Additionally, each
presented solution can work together to improve the existing DFSs or independently
in the existing systems that utilize deduplication, DFS, or KVS.
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Chapter 1

Introduction

The reliance on data in modern societies drives the requirement for storage systems
to handle large amounts of data, which are useful for data-intensive applications to
provide a good insight into the environment and society. For example, data mining
on users’ comments in blogs or social media can provide information on the direction
of the society [1,2]. Additionally, medical data such as logs from electrocardiogram
machines (ECG) can help medical researchers to better understand human health
[3,4,5]. Applications ranging from commercial to research store and use data to
achieve their goals, promoting the exponential growth of data [6,7].

Distributed file systems (DFS), storage systems that have multiple storage nodes
unified through software that connect these nodes through a network, are the ob-
vious choices to sustain the data growth because of their scalability. Most DFSs
can expand their storage capacity by adding storage devices to storage nodes and
increasing the number of storage nodes. However, simply storing the data in the
DF'S and adding more storage hardware or nodes to the DFS can be wasteful. These
data might have suboptimal structures where redundancies may exist within them,
reducing the efficiency of the storage system and leaving potential free space unus-
able.

Data reduction schemes such as lossless compression and deduplication operate
through data restructuring processes that decrease the amount of redundancy within
the data. For example, deduplication reduces the storage footprint by replacing the
redundant parts of the data with pointers to the existing stored data. These schemes
are reversible and can be transparent to the users. Through these schemes, storage
systems such as DFS can transparently optimize their storage space utilization at
the cost of computation time, which can be negligible depending on their complexity.

Data reduction schemes have different characteristics and trade-offs between pro-
cessing time and space reduction and may vary in performance depending on the
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data type; some schemes perform faster than others but reduce less space; some
schemes work better at specific data types. For example, Logzip [8], a compression
scheme for log files, is slower than Gzip, a general-purpose compression scheme, but
can reduce more redundancy in log data. From this point of view, the users should
select the most suitable schemes for their data type and their requirements. How-
ever, the selection of schemes in the existing applications or DFSs is often limited
and challenging to extend.

The use of data reduction schemes in the DFS proposed by many studies [9, 10]
and projects such as Hadoop [11] has several limitations in the aspect of schemes
selection and ease of use. For example, extending the scheme selections can be
challenging and the schemes are only available in some Hadoop applications. Addi-
tionally, the data reduction schemes may have a big impact on the performance of
the DF'S.

Some data reduction schemes and DFSs rely on a metadata system to manage
information on the stored data. For example, MAD2 deduplication scheme [12]
utilizes a metadata system to identify redundant data, and Hadoop DFS (HDFS) [11]
uses a metadata system in the storage node and the name node to manage the data in
the DFS. This system is crucial to the schemes and the DFSs and can directly affect
their throughput and latency. However, it may suffer from performance degradation
when the data grows.

We believe that a data reduction enabled DFS should have minimal overhead,
provide users the ease of access for data reduction schemes, and scale well with
data sizes. Users should be able to choose the schemes that have a good balance
of processing time and storage space reduction and use the DFS with growing data
size without any concern on performance degradation from the metadata server. To
achieve this goal, an improvement in the data reduction scheme, in the design of
DF'S software, and in the metadata system of the DFS can improve the usability of
data reduction schemes in DF'S.

1.1 A balance between processing time and re-

duced size

Deduplication is a data reduction scheme that removes redundancies within a set
of files. In this sense, it is a good solution for storage systems that manage large
data like DF'S because it is more effective with more files or larger data, which
have a higher probability of finding duplicates in the larger data pool. However,
deduplication has an issue in the trade-off between processing time and reduced
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space, which stems from the chunking algorithm.

In deduplication, the chunking algorithms, which split the input data into chunks
and determine their sizes, are the most important component. They affect the du-
plicate elimination performance of the deduplication system directly. The simplest
chunking algorithm is fixed-sized chunking, which produces equal-sized chunks. It
can detect byte changes among similar files, but not byte shifting, which occurs
when a byte is inserted into the data. Content-dependent chunking (CDC) algo-
rithms solve this by determining the cut-point of the chunks based on the content
of the data, which produces variable-length chunks. However, CDC algorithms are

compute-intensive and might significantly impact the performance of the DFS.

1.2 Data reduction schemes in the DFS

Like any other F'Ss, DF'S is software that manages data access between the storage
nodes and the application. The storage nodes commonly employ other F'Ss to man-
age the storage hardware. For example, users can use Hadoop DFS (HDFS) on top
of ext4, NTFS, and ZFS FSs. Based on these facts, we can create a high-level view
of data reduction scheme activation in the DFS, as shown in 1.1a. At the applica-
tion layer, users can generate data by using applications, apply the data reduction
schemes by adding data reduction code to the application or through another ap-
plication, and store it to the DFS as shown by Zhang et al in their study on using
deduplication through MapReduce [10]. At the FS layer, users can enable the data
reduction through the FS and its configuration. For example, some FSs such as ZFS
accept configuration to enable compression or deduplication [9]. At the DFS layer,
currently, there is no implementation of data reduction schemes directly in the DFS
software. These schemes only run at the application or the underlying F'S.

Challenges of adding and enabling data reduction schemes in the DF'S.
The main benefit of using data reduction schemes in the F'S layer is the transparency
of the process. It requires no change in the application code to enable the schemes,
minimizing the users’ effort in reducing storage footprint. However, adding new
schemes, which is important because data might come in different types and struc-
tures, is challenging because these FS are more complex than the application code.
Finding the correct location to add the new scheme’s code can be time-consuming
and might break the FS.

Hadoop solves this by using programming techniques such as the dynamic li-
brary, which is loaded during the application’s execution. Hadoop uses Compres-
sionCodecs, which can be compiled separately from the application code. The user

can simply enable the reduction schemes in the application through the application
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configuration file or command line. However, this approach is only possible when
the application supports CompressionCodecs. Additionally, users must add the sup-
port for CompressionCodecs to all applications to benefit from the reduced storage
footprint. Data reduction at the DFS layer or software can theoretically offer both
transparency and ease of adding new schemes. However, such DFS software does
not exist yet.

Reduction in network traffic. Although the data spend most of their time
in the storage drives, the data must also travel through the network to reach the
storage nodes and the processing nodes. Network traffic growth is also solvable by
using data reduction schemes. However, not all data reductions in the DFS have
equal benefits to the network traffic. Users who opted for data reduction through
the F'S layer because of its transparency will have to deal with the larger network
traffic because the network operation occurs in the DFS layer and the reduction
occurs in the separate lower layer. On the other hand, application layer-side data
reduction can produce less network traffic at the DFS layer because the reduced
data applies to the lower layers. Before this work, as far as our knowledge, there are
no solutions that provide the ease of adding and enabling the scheme and reduction
in network traffic.

1.3 A high-performance metadata system

In addition to these challenges, DFSs and some of the data reduction schemes rely on
a metadata system. In the DFS, this metadata system manages the location of the
data in the storage nodes, such that the client can query the server and access the
data in the storage nodes. In deduplication schemes, the metadata system manages
the location of the unique parts of the data, such that the users can recover data
from a pointer by querying the metadata system. In both use cases, this system can
directly affect the performance of the application.

An engine of most metadata systems is a key-value store (KVS), which provides
the value when given the key. Log-structured merge-tree (LSM-tree) is one of the
solutions for metadata systems [13]. It is scalable and can offer good performance
for write-intensive workloads. However, once the data grows, LSM-trees may suffer
from performance degradation and high write amplification, which can shorten the
lifetime of the storage device.
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1.4 Thesis statement and approach

The central thesis of this dissertation is data reduction schemes and the DF'S design
that supports them. This thesis explores the key building blocks of these schemes
in the DFS, which are: the reduction scheme, the DFS software, and the metadata
system. We discuss and review the building blocks, answer the following questions,

and reviews the answers in separate Sections.

« Isit possible to get a better trade-off between processing time and storage space
reduction for deduplication when using CDC algorithms? In Section 2, we
studied CDC chunking algorithms and proposed a new chunking algorithm to
obtain a better trade-off between processing time and storage space reduction.

o Are ease of adding and enabling data reduction schemes achievable in the DFS
environment? How big is the overhead compared to the existing approaches?
How feasible is the proposed design at minimizing the network traffic? In
Section 3, we discussed the challenges of using these schemes in DF'Ss, proposed
and implemented a DFS software design that can perform these schemes, and
evaluated the design by comparing it to the existing approaches.

« Can non-volatile memory (NVM) improve the performance of log-structured
merge-tree (LSM-tree) based key-value store (KVS)? In the section, we de-
tailed the challenges of LSM-tree as a write-intensive KVS and engineered a
solution that uses NVM to address the challenges.
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Chapter 2

A high-throughput hash-less
content-dependent chunking
(CDC) algorithm

2.1 Introduction

Chunking algorithms are one of the most crucial components of deduplication schemes.
They directly affect the scheme’s performance at finding duplicates in the data and
the scheme’s throughput depending on their complexity [14]. These algorithms split
the input data into smaller blocks of data called chunks to detect the redundant
part of the data. Assuming there are similar files with some changes within them,
the chunking algorithms split the files into chunks that may share some content,
which is identified by using fingerprinting the chunks through a mathematical hash
function such as SHA-1.

In similar files or files that differ by version, changes may occur from byte change
and byte insertion. The chunking algorithm can localize the byte change by splitting
the files into chunks. In this approach, the chunk size can be fix-sized, which requires
minimal computation, and the size of affected data is minimized into a few affected
chunks. A single instance of each chunk is stored by deduplication, thus minimizing
the footprint of the data. However, fix-sized chunks may miss duplicate chunks with
byte insertion because it shifts the file.

Byte insertion is more challenging because a content shift in the file may result
in totally different chunks’ fingerprints. For example, a string with the content of
"an apple pie" is split into 4 equal-sized chunks: "an ", "app", "le ", and "pie". With
a byte insertion at the beginning of the string, the chunks may produce different

fingerprints, which are unidentifiable by the deduplication scheme. For example,
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n n n

'xan apple pie" string produces 5 equal-sized chunks with padding: "xan', " ap"',

n L n

ple", " pi", and "e ". Therefore, deduplication schemes with a naive approach of
chunking such as fix-sized chunking may consume more space when processing files
with byte shifting.

CDC algorithms solve byte shifting by defining the cut-point based on the con-
tent of the data. The most traditional approach is through a lightweight hashing
algorithm such as Rabin-rolling hash or gear hash [15], which uses a fix-sized slid-
ing window. It defines a cut-point by matching the hash of the window with a
pre-defined pattern. This process is computation-intensive even when Rabin-rolling
has reuses the value of the previous windows to calculate the value of the current
window.

Hash-less CDC algorithms solve this by using byte-values and conditions to define
the cut-point [14, 16]. The first to propose this method is Bjgrner et al. by using
two fix-sized sliding windows that clamp a byte in the between in an algorithm
called local maximum chunking (LMC). The condition defines a cut-point when the
byte in the middle of the windows is larger than any bytes in the windows. The
main drawback of this conditional algorithm is the number of comparisons can be
as high as the total number of bytes in the two windows, which in practice and
experiment [14,17], can be as slow as hash-based chunking algorithm.

Zhang et al. [14] took the idea of using byte values and conditions and improved
it by changing the sliding window structure and the condition. In their work, they
proposed a hash-less CDC algorithm called Asymmetric Extremum (AE), which
used a single fix-sized sliding window. the condition defines a cut-point when the
byte behind the window is an extreme value byte, which is either smaller or larger
than the byte in the window as shown in Algorithm 1. This algorithm claims to
produce up to 3-times of LMC throughput. However, there are still some possible
improvements in the condition’s structure to further improve the throughput.

In this work, we proposed an algorithm called Rapid Asymmetric Extremum
(RAM) based on AE. RAM further optimizes the window structure and conditions
of AE, improving the throughput with a negligible decrease in duplicate finding
performance. Our experimental results indicate that RAM can produce 5-times
the throughput of LMC or 1.4 times of AE at the cost of 2% to 18% lower found
duplicate data depending on the dataset type.

2.2 Background and motivation

This section discusses the background and motivation of CDC algorithms, related

work, their limitations, and motivation of our work.
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Algorithm 1: The pseudo-code for AE for maximum byte value
Data: input string Str, length L
Result: cut-point ¢
Predefined values Window size w;
14 1;
mazx.value < 0;
max.position < 0;
while 7 <L do

// Outer condition

if Str[i] <= max.value then

// Inner condition

if i=(max.position + w) then
‘ return z;

end

else
max.value = Strli].value;
max.position = t;

end
1=1+1;
end

2.2.1 Background

Chunking is used in many data compression applications. For example, it is used in
data deduplication and remote differential compression. Data deduplication works
by eliminating duplicate data within the files and between files. In data deduplica-
tion, a chunking algorithm is one of the vital parts to achieve high duplicate elimi-
nation. By choosing the correct chunking method, we can save time and space [18].
Data deduplication can be applied on cloud storage [19], virtual disk images [20],
memory [21,22], and network traffic [23].

Chunking algorithms can be categorized into two categories: (i) whole file chunk-
ing and (ii) block chunking. Whole file chunking means the whole file is treated
as one chunk, while block chunking means the file is split into multiple chunks.
When chunking a file into blocks or chunks, the chunk size can be fixed-sized or
variable-sized. Fixed-sized chunking is fast and not resistant to byte insertion or
shifting. When the file is shifted by a byte insertion or deletion, the chunks will be-
come completely different chunks and undetectable by the chunk duplicate search.
Content Defined Chunking (CDC) solves this problem by chunking the file into
variable-sized chunks. CDC algorithms find the cut-point by using internal features
of the file. Therefore, when the file is shifted, only several chunks are affected. CDC



2.2. BACKGROUND AND MOTIVATION

has a higher probability of eliminating duplicates within the files and between files
compared to fixed-sized chunking.

One of the oldest CDC algorithms is Rabin [24] based CDC algorithm. It finds
the cut-point by using Rabin rolling hash. Rabin rolling hash uses a sliding window
and every time the window is moving, a hash value is calculated. When the hash
value matches a predefined value, it uses the window position for the hash value
as a cut-point. Since the checksum is calculated based on polynomials over a finite
field, the old checksum can be used to calculate the new checksum when the window
slides.

Another CDC algorithm proposed by Bjorner et al. [16] is Local Maximum
Chunking method (LMC). LMC finds the maximum valued byte or local maxi-
mum byte by using a sliding window. The sliding window has three components: (i)
the local maximum byte, (ii) the left window, and (iii) the right window. The local
maximum byte is located in between the two fixed-sized windows as illustrated in
Figure 1(a). LMC defines a byte as the cut-point when the local maximum byte is
larger than all of the bytes in the fixed windows. When this condition is fulfilled,
a cut-point is found. The left fixed window will be included in the chunk and the
minimum chunk size is the size of the window.

To address the slow chunking performance of LMC, Zhang et al. [14] proposed
Asymmetric Extremum (AE) algorithm. The algorithm is similar to LMC in terms
of treating a byte as digits. As illustrated in Figure 1(b), AE uses two windows, a
variable-sized window on the left and a fix-sized window on the right. The extreme-
valued byte is located in the middle of the two windows. A cut-point is found
when the extreme-valued byte is bigger or smaller compared to all the values in
the two windows. The minimum chunk size is the size of the window. Zhang et
al. [14] explain the performance difference between maximum and minimum for
the extreme-valued byte is negligible. Therefore, we used only maximum for the
extreme-valued byte in our analysis and performance evaluation.

2.2.2 Challenges and motivation

CDC algorithms offer more benefits than fix-sized chunking. However, their pro-
cesses are slightly more time-consuming which limits their use in latency-critical
applications and on devices with limited processing capability such as mobile de-
vices and Internet of Things (IoT) devices. In our previous work [18], we used a
Rabin-based chunking algorithm for the deduplication system to eliminate duplicate
data. We found out that the main drawback of using CDC algorithms in mobile
applications is its large processing time.

10
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In this work, we conform to the following criteria that Zhang et al. in [14] use to
compare CDC algorithms:

o Content dependent. The algorithm should define the cut-point based on
the internal features of the file, which makes it resistant against byte shifting

and allows the algorithm to find duplicate chunks between two or more files.

e Low chunk sizes variance. The chunks produced by the algorithm should
have low chunk variance because it might affect the deduplication efficiency
[25]. To limit the chunk variance, we can add a limit on the maximum or
minimum size of the chunks. However, this will affect the content-dependent
properties of the algorithm and make the algorithm vulnerable to byte shifting.

o Ability to eliminate low entropy strings. Low entropy strings are strings
that consist of repetitive bytes or patterns. When it encounters strings with
low entropy or low variance, the algorithm should be able to eliminate the
redundancy within the string.

o High throughput and duplicate detection. The algorithm should have a
good balance between deduplication performance and computational overhead.

Rabin-based CDC algorithms use polynomial over a finite field and a sliding
window to calculate the hash [24]. Calculating the hash is fast because it only
needs to consider the new byte and the most left byte in the window. Rabin-based
CDC algorithms have a few disadvantages due to the use of the hash. It is time-
consuming because of the hash calculation, and changing a byte in the chunk has a
high probability of changing the cut-point as it might create a different hash value.
It also has a large chunk variance because of the higher probability of having a long
chunk [14,16]. In order to limit the chunk variances, we can use a limit on the chunk
size. However, this will reduce the resistance of the algorithm against byte shifting.

Local Maximum Chunking (LMC) [16] is a CDC algorithm that compares bytes
with bytes as a number to find the cut-point. LMC has resistance against byte
changing and byte shifting. When there is a change in the chunk and the change has
a value less than the maximum, it will only affect that chunk. The main drawback
of this method is the requirement of rechecking all the bytes within the window
when the window slides. This drawback makes Rabin-based CDC algorithms faster
than LMC method because when the sliding window of Rabin slides, it only needs
to subtract the most left byte and add the new byte into the hash. However, LMC
needs all of the bytes in the window every time it slides the window.

AE is similar to the local maximum method because it treats a byte as a num-
ber. Treating the chunk as the windows allows AE to have a lower computational

11
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Figure 2.1: The window structure in 2.1a Rabin based CDC algorithms, 2.1b LMC,
2.1c AE, and 2.1d RAM.

overhead than the LMC method. However, unlike the LMC method, AE puts the
extreme-valued byte in the middle of the chunk. This makes AE less resistant to
byte shifting. When there is a byte inserted at the fixed window, it will affect
the chunk and the next chunk and might affect subsequent chunks. If we put the
extreme-valued byte at the boundary of the chunk, inserting a byte will not affect
the next chunk. Thus, it minimizes the number of affected bytes. AE is capable of
eliminating low entropy strings because AE has maximum chunk size. AE reaches its
maximum chunk size when it processes a long increasing sequence. The maximum
chunk size is the length of the fixed window. The pseudo-code for AE chunking is
illustrated in Figure 2.1c.

In this work, we proposed a new algorithm called Rapid Asymmetric Maximum
(RAM) which improves the chunking throughput of AE by putting the extreme
value at the boundary of the chunk. It has a low computational overhead which
makes the algorithm faster than existing CDC algorithms. The low computation
overhead of RAM reduces the cost of the chunking process which makes chunking
more attractive over AE for low-performance devices such as mobile devices and
IoT. Based on the ideal CDC algorithm criteria, we compared the existing CDC
algorithms and our proposed algorithm in Table 1.

12
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Algorithm 2: The pseudo-code for RAM
Data: input string Str, length L
Result: cut-point ¢
Predefined values Window size w;
14 1;
mazx.value < 0;
max.position < 0;
while 7 >L do

// Outer condition

if Str[i] >= max.value then

//Inner condition

if i >=w then
‘ return z;

end

max.value = Str(i|.value;

mazx.position = i;

end
1=1+1;
end

2.3 Rapid Asymmetric Maximum (RAM)

RAM is an algorithm based on AE. It uses the same single sliding window structure
with a slight tweak in the conditions. However, unlike AE, which supports maximum
and minimum byte value configurations, RAM only works with maximum byte value
configuration like LMC. As a CDC algorithm, RAM improves over AE in the number
of average comparisons at the cost of higher probability of long chunks for low
entropy strings, which are strings with a long repetition of 0 or 1, increasing the
throughput at the cost of lower duplicate data found for some datasets.

The algorithm works by searching a byte with the maximum value in the fixed-
sized window. If the byte next to the fixed-sized window has a larger value than the
one in the fixed-sized window, the byte is used as the maximum-valued byte and
the cut-point is found. Otherwise, the algorithm moves to the next byte until it
finds the larger byte as illustrated in the pseudo-code of RAM in Algorithm 2. Thus
the algorithm’s minimum chunk size is w 4 1, where w is the size of the fixed-sized
window.

In the first condition for AE, AE compares the current byte with the maximum
value and proceeds with the next comparison when the current byte is lower than
the maximum value as shown in Algorithm 1. Assuming that all bytes have equal
chances of having a value from 0 to 255, the probability that the currently observed

13
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byte is smaller than the current maximum value is high. In such cases, the proba-
bility of performing comparison for the inner condition is high and the number of
comparisons would be closer to 3L + 1.

As shown in Algorithm 2, RAM reduces the number of comparisons by entering
the outer condition and performing the inner condition only if the current byte
is larger than the maximum value. Assuming that each byte value has an equal
probability and the current maximum is large, the probability of performing the
inner condition would be low and closer to 2L + 1. Additionally, RAM only assigns
variables when entering the outer condition, which can reduce the computation time.

As a drawback, this change in the condition affects the characteristics of RAM in
producing long chunks. In RAM, the new condition results in an inability of limiting
the maximum chunk size because once the maximum value is set to a high value
such as 255, the currently observed byte value must be 255 for a cut-point, which
is less likely to occur assuming equal probability all byte values (0 255) to appear.
This issue is even worse for low-entropy strings which have long repetition bits such
as a repetition of 0 after a 255-valued byte. We solve this by adding an extra
condition in the second if for the chunk’s maximum length, increasing the number
of comparisons to 4L + 1 for the worst-case scenario. However, because RAM rarely
performs comparison in the branched conditions and compiler optimizations, the
average number of comparisons is similar to 3L + 1 in AE but with fewer variable

assignments.

2.3.1 The properties of RAM

In this section, we address the properties of RAM subject to the criteria of an ideal
CDC algorithm described in Section 2.2.2.

Content dependent. RAM chunks file based on the internal feature of the
file, specifically based on the extreme values within the file. When it finds a byte
larger than all of the bytes in the windows, it uses the byte position as a cut-point.
Figure 2.2 shows an example of RAM’s byte shift-resistant. First, we assume the
change is smaller than the maximum value D. If there is a byte insertion or change
at the fixed window [Al, Bl], Chunk 1will be realigned and Chunk 2 will not be
affected by the change as long as the maximum in [A1, B1] is not out of this window
after the insertion. It also will not change the cut-point if a byte is inserted in the
variable-sized window [B1, C1] because Chunk 1 will realign, and Chunk 2 will not
be affected. Second, we assume that the change is larger than the maximum value.
If the change occurred in [A1l, B1], the position of C1 will be changed until it finds
a byte larger than the change. Thus, this may affect the following chunks. If the

14
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Table 2.1: Probability of having no cut-point in long intervals.

AE RAM LMC Rabin

M |(e—i)M|! ST % e

2 1 0.166667 | 0.041667 | 0.666667 | 0.135335
3 |1 0.008333 | 0.001389 | 0.088889 | 0.049787
4 1 0.001389 | 2.48E-05 | 0.006349 | 0.018316
5 | 2.48E-05 | 2.76E-07 | 0.000282 | 0.006738
6 | 2.76E-07 | 2.09E-09 | 8.55E-06 | 0.002479
7 | 2.51E-08 | 1.15E-11 | 1.88E-07 | 0.000912
8 | 1.61E-10 | 4.78E-14 | 3.13E-09 | 0.000335

change occurred in [B1, C1], then D1 will be realigned to the changed location and
thus may affect Chunk 2 and Chunk 3. The realignment will stop if the maximum
byte in the fixed window region of the next chunk is bigger and still in the fixed
window region. With this example, we can see the algorithm can realign the cut
position while minimizing the number of chunks affected by the change.

Low chunk sizes variance and the ability to eliminate low entropy
strings. Chunk variance can affect the duplicate finding performance as shown
by H. Khuern in their study [25] and one of the variables to the chunk variance is
the probability of a long chunk. A higher the probability of long chunks can cause
higher chunk variance. When a long chunk is modified, the amount of new data to
be stored will be increased more than when a small chunk is modified. Therefore,
we want to minimize the amount of chunk’s size variance and the probability of long

chunk. As analyzed in the article [17], the probabilility of long chunk of RAM is

1
2M1

Low entropy string is a problem for RAM. When the low entropy string starts at

where M is the multiplier for the average chunk.

the beginning of the fixed-sized window, RAM can eliminate the low entropy string
because the condition for a cut-point is that the maximum-valued byte must be
equal to or larger than the maximum in the fixed window. On the contrary, when
there is a byte larger than any value in the low entropy string is in the fixed-sized
window, the chunk size can become infinite because it cannot find a byte with larger
value. To solve this, we can add a limitation on the maximum chunk size.

15
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Figure 2.2: Byte shifting and byte change example.

High throughput. To prove that RAM has a low performance overhead, we
use the worst case of RAM, based on the number of comparisons. RAM uses while
loop which takes L + 1 comparisons and two additional conditional branches which
add 2L comparisons, where L is the length of the input data stream in bytes. Thus
in total, it uses only comparisons in the worst case scenario. Since the probability
of finding a byte larger than the max is smaller than finding a smaller byte, on the
average case it uses 2L + 1 comparisons.

2.4 Performance evaluation

To evaluate the proposed algorithm, we implemented all algorithms reviewed in this
work in C++ and compared them in a series of chunking tests with different dataset
types. We also implemented RAM with the chunk size limit and called it RAML in
the evaluation. We compared the throughput and the byte saved per second (BSPS)
metric, which is also used in the study of AE [14]. BSPS is a metric that represents
both the number of duplicates found and the throughput of the algorithms. The
throughput is calculated as:

datasetsize(bytes)

Th hput =
rougnpt time forchunking(s)

and BSPS is calculated as:

duplicate foundsize(bytes)

BSPS =

originaldatasetsize(bytes)
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Table 2.2: The datasets used in the tests.

Dataset Content Size
Arch Linux 2016.08.01 dual [27] 7.6 GB
Chromium OS (2016.08.09) [28]
Debian 8.5.0 [29]

ElementaryOS 0.3.2 [30]

Linux Mint 18 Cinnamon 64 bit [31]

Dataset 1: Operating
system installation

rnage Lubuntu 14.04.5 Desktop [32]

Solus 1.2 [33]

Ubuntul6.04.1 [34]
Dataset 2: Media files | 10 x 23 min H.264 videos 5.7 GB
Dataset 3: Network | Data Capture from National Security | 9.7 GB
traffic Agency (NSA) CDX 2009 [26]

Table 2.3: The window configurations for the tested algorithms used in the tests.

Dataset | AE | RAM | RAML | LMC | Rabin

Dataset 1 | 770 | 764 764 198 (through pattern length)
Dataset 2 | 770 | 770 770 203 (through pattern length)
Dataset 3 | 770 | 770 770 197 (through pattern length)

We ran all algorithms on the same test system with Intel i7 6700, 16-GB of DDR4
memory at 2133 MHz, and 120-GB SSD.

The performance comparison consists of three datasets. The datasets used in
the tests are chosen to represent the use cases of the chunking algorithm. The
first dataset is the compilation of multiple Linux distributions which have a lot
of duplicate data in different locations in each file. The second dataset consists
of 10 H.264 encoded videos of length 23 min each to simulate deduplication of
media files in cloud storage. Lastly, the third dataset contains TCP dump files from
NSA [26] to represent deduplication network traffic. The dumps contain 15 GB of
data. However, we only used 9 GB of the data because of the limitation of our test
system. The chunks’ metadata consumes a lot of memory and causes the program
to stop working when the total number of chunks went over 10 million chunks. We
did not optimize the chunks management because our focus in this performance
evaluation is chunking performance. Table 2.2 summarizes the content of the three
datasets.

To make a fair comparison between the chunking algorithms, we configure each
chunking algorithm with the same average chunk size. The average chunk size has
a direct relation to the chunking performance. For example for network traffic, we

need to make the average chunk size similar to the size of the average TCP packet
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because if the chunk size is too large, the algorithm might miss duplicate data. On
the other hand, if the chunk size is too small, the metadata of the chunks will be
bigger than the size of the duplicate data.

We used SHA1, a bloom filter, and a hash table for hashing and comparing
chunks. A SHAT1 hash value will be calculated for each chunk. The bloom filter
and the hash table are used for the duplicate finding process. Each hash value will
be checked by using the bloom filter. Because of the nature of the bloom filter,
false positives are a possibility. Therefore, when the bloom filter says that the hash
existed, the hash is also checked in the hash table. If the hash is not in the hash
table, it means the chunk corresponding to the hash is not a duplicate chunk and
the hash is added to the hash table. If the bloom filter or hash table says the hash
is new or not available in memory, then the hash will be added to the bloom filter
and the hash table. By using the bloom filter, we can speed up the lookup process
by not checking the hash table when the bloom filter says the hash is new because
the bloom filter’s lookup time is shorter than a hash table lookup. In this paper, we
focused on the chunking algorithm performance. Thus, this paper does not include
the chunk management and storage processes. The data deduplication process in
the performance evaluation is only done until the duplicate finding process.

For AE, RAM, and LMC, we configured the windows’ size to get the same average
chunk size. Since it is harder for Rabin-based chunking to adjust the average chunk
size, we ran Rabin chunking algorithm first to get the average chunk size. Then,
we adjust the other three algorithms to match the average chunk size. From our
experiment, changing the datasets does affect the average chunk size. This is due
to the fact that some datasets may contain low entropy strings. Table 2.3 shows
our configuration for the algorithms in our test. Additionally, we set the maximum
chunk size limitation for RAML to 4 times the window size. As for Rabin, there is
no limitation to the minimum and maximum chunk sizes.

2.4.1 Chunks properties

In this section, we compare the chunking algorithms based on the chunk prop-
erties. The chunks produced by each chunking algorithm are analyzed based on
the chunk size distribution and the chunk variance. The chunk size distribution
will be displayed in a histogram while the chunk variance is calculated using o2 =
+ 3 (z; — 7). As discussed in Section 2.2.2, we want the chunk variance to be as
low as possible.
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Dataset 1: Linux distribution

Dataset 1 contains Linux distribution operating system installation images which
have a lot of similar contents and low entropy strings. This dataset is used to show
the performance of a chunking algorithm in finding duplicates between files that
have similar contents. The results for this dataset are compiled in Table 2.4 Figure
2.3.

There are three interesting things that we can observe: chunk variance, chunk
size distribution, and the duplicates found by the algorithms. The chunk variance
data shows that AE has the lowest chunk variance compared to others because of
the ability of AE to eliminate low entropy strings. As for RAM, the chunk variance
is worse than other algorithms. This is caused by the lack of the maximum chunk
size of RAM which can affect the low entropy string elimination performance. The
limit on RAML reduces RAM chunk variance and improves its low entropy string
elimination. This can be seen in the 1.8% improvement in duplicates found for
RAML over RAM. LMC and Rabin have high chunk variance because of high counts
of long chunks.

The chunk size distribution of RAM is similar to RAML and AE. The chunks are
mostly narrowly distributed near the mean as illustrated in Figure 2.3. We can also
see that the chunk sizes for RAM and RAML are more concentrated at below the
mean because of the higher probability of finding the cut points, while the chunk
size distributions for LMC and Rabin are wider than others.

The duplicates found by the algorithms for dataset 1 are not much different. We
observed a difference of only 2.1% between the maximum and minimum. All of
the tested algorithms were able to find 17%-18% duplicate between files. The low
entropy string elimination capability of AE and RAML does help to increase the
duplicate detection.
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Table 2.4: Chunks properties for each algorithm for dataset 1.

# of chunks in range

Range AE RAM | RAML LMC Rabin
[0, 1000] 4,278,622 | 4,643,773 | 4,595,328 | 4,865,576 | 4,606,661
(1000, 2000] 3,101,223 | 2,660,591 | 2,718,236 | 1,645,625 | 1,733,733
[2000, 3000] 13,790 85,032 89,629 550,893 655,020
[3000, 4000] 121 7203 16,046 198,763 246,085
[4000, 5000] 19 2008 0 77,425 93,209
[5000, 6000] 2 829 0 33,040 35,183
(6000, 7000] 1 396 0 16,094 13,376
[7000, 8000] 0 235 0 8188 5141
[8000, 9000] 0 130 0 5000 2170
[9000, 10000] 0 115 0 2979 823
(10000, 11000] 0 0 0 4 1
Total number of | 7,393,778 | 7,400,312 | 7,419,239 | 7,403,587 | 7,391,402
chunks

Mean (bytes) 1030 1030 1020 1025 1030
Variance 48,700 | 15,400,000 88,300 | 12,200,000 | 10,800,000
Duplicates 1,024 1,006 1,025 1,004 1,011
found (MB)
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Figure 2.3: Histogram of chunk size distribution properties for dataset 1.
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Dataset 2: media files

With the compressed H.264 video files in dataset 2, we saw different results. Dataset
2 contents are compressed video files encoded in H.264. Therefore, the number of
low entropy strings is lower in this dataset compared to the other two datasets.
The results are compiled in Table 2.5 and chunk size distribution is illustrated in a
histogram in Figure 2.4.

In this dataset, RAM has a lower variance compared to dataset 1 because the
dataset contains fewer low entropy strings. Another interesting point in this dataset
is RAML’s result. The limit on RAML affects the content-defined property of RAM
and reduces the number of duplicates found in this dataset. Thus, adding the limit
to RAM is only encouraged for a dataset with a high amount of low entropy strings.

Similar to the previous dataset, the value of chunk size variances for LMC and
Rabin are larger than AE, and RAML. On the contrary, we find that LMC which has
the high chunk variance detected more duplicates compared to the other algorithms
despite the larger chunk size variance. As we can see in Figure 2.4, the chunk size
distribution of LMC peaked at 300 bytes, which is not close to the minimum chunk
size of LMC which is 203 bytes. Although the chunk distribution of LMC is not
better than AE, RAM, and RAML, LMC eliminated more duplicates than the other
algorithms and netted 12.8% more duplicates found compared to Rabin.
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Table 2.5: Chunks properties for each algorithm for dataset 2.

# of chunks in range

Range AE RAM | RAML LMC Rabin
[0, 1000] 3,117,878 | 3,403,698 | 3,403,746 | 3,495,518 | 3,448,464
[1000, 2000] 2,392,131 | 2,138,311 | 2,138,316 | 1,314,110 | 1,301,558
[2000, 3000] 4142 40,001 40,021 460,609 489,890
[3000, 4000] 1 951 1042 164,826 184,840
[4000, 5000] 0 73 0 99,608 69,392
(5000, 6000] 0 5 0 21,271 26,165
(6000, 7000] 0 0 0 7815 9970
(7000, 8000] 0 0 0 2759 3610
[8000, 9000] 0 11 0 1032 1416
(9000, 10000] 0 1 0 372 959
(10000, 11000] 0 0 0 0 0
Total number of | 5,514,152 | 5,583,051 | 5,583,125 | 5,527,920 | 5,535,864
chunks
Mean (bytes) 1029 1016 1016 1026 1025
Variance 43,466 62,075 61,930 921,860 | 1,049,000
Duplicates 2,128 2,030 2,021 2,259 2,002
found (kB)
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Figure 2.4: Histogram of chunk size distribution properties for dataset 2.
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Dataset 3: network dump files

The test on dataset 3 represents the performance of a chunking algorithm when
processing network traffic data. The content of dataset 3 is not compressed and
it is possible to find low entropy strings in this dataset. The size of the packet
is not defined. However, based on our knowledge, the default MTU size for most
machines with traditional Ethernet is 1500 bytes. Similar to the other two datasets,
we compiled the results in Table 2.6 for chunk size information, and Figure 2.5 for
the histogram of the chunk size distribution.

The chunk size variance for dataset 3 shows a result similar to that using dataset
2. RAM is still behind AE and ahead of LMC and Rabin in terms of chunk size
variance. Although not significant, adding a limit to RAML improves the number
of duplicates found by RAM. The main cause of the improvement due to the limit
is the existence of a low entropy string in the dataset.

In terms of duplicates found, the Rabin chunking algorithm found more duplicate
data compared to other algorithms in dataset 3, while RAM is behind AE in terms
of duplicates found. We suspect that no limit on the Rabin chunking algorithm helps
it to detect duplicates on the network traffic because of the packet size randomness.
The chunk size distribution in Figure 2.5 shows all algorithms produced similar
chunk size distributions to the previous datasets.

Overall, RAM performance is between AE, LMC, and Rabin in terms of chunk
qualities. Additionally, we found that, depending on the dataset, some chunking
algorithms are better than others. For example, LMC is better for compressed files
and Rabin is more suitable for network traffic files. This fact is similar to what has
been reported by Meister et al. [35].
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Table 2.6: Chunks properties for each algorithm for dataset 3.

# of chunks in range

Range AE RAM | RAML LMC Rabin
[0, 1000] 5,435,437 | 5,768,110 | 5,783,201 | 6,280,039 | 5,752,016
[1000, 2000] 3,961,755 | 3,438,323 | 3,467,617 | 2,145,609 | 2,170,580
[2000, 3000] 25,264 120,281 123,282 652,904 | 836,368
[3000, 4000] 177 15,750 35,747 | 238,053 327,584
[4000, 5000] 13 5479 0 99,870 127,361
[5000, 6000] 1 3155 0 42,968 50,628
(6000, 7000] 0 1795 0 23,496 20,390
[7000, 8000] 0 971 0 13,456 8399
[8000, 9000] 0 793 0 7391 3931
(9000, 10000] 0 896 0 5058 1973
(10000, 11000] 0 2 0 8 1
Total number of | 9,422,647 | 9,355,555 | 9,409,847 | 9,508,852 | 9,299,231
chunks

Mean (bytes) 1,034 1041 1036 1023 1048
Variance 52,992 306,650 104,550 | 5,386,300 | 1,185,100
Duplicates 329 277 277 257 340
found (kB)
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Figure 2.5: Histogram of chunk size distribution properties for dataset 3.
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2.4.2 Throughput

This section compares CDC algorithms based on the chunking throughput and Bytes
Saved per Second (BSPS). The purpose of this section is to find the algorithm that
has the best balance between chunking throughput and the number of duplicates
found. The chunking throughput is calculated by dividing the amount of data
processed and the amount of time consumed for chunking the files. BSPS was first
used by Yinjin et al. [36] as a performance metric for deduplication systems. The
BSPS is calculated by dividing the number of duplicates found by the number of
files processed and multiplying the result with the throughput.

datasetsize(bytes)
Th hput =
TOUIPUE = ime forchunking(s)
BSPS — duplicate foundsize(bytes)

originaldatasetsize(bytes)

The results for dataset 1, dataset 2, and dataset 3 for the tested chunking algo-
rithms considered in this paper are compiled in Table 2.7, the chunking throughput
for the tested algorithms is illustrated in Figure 2.6, and the byte saved per second
is shown in Figure 2.7. The chunking time excludes the read time from the drive
because our main focus is the chunking performance.

The results shown in Table 2.7 indicates that the throughput of the chunking
algorithms in our test system is as follows: RAM up to 561 MBps, RAML up to 448
MBps, AE up to 386 MBps, LMC up to 89 MBps, and Rabin up to 105 MBps. This
throughput result indicates that the new condition structure in RAM can improve
the throughput of AE by around 45%. As for the duplicate found, RAM detects
2% to 18% fewer duplicates than AE depending on the dataset. In Dataset 3, RAM
performed 18% less than AE because the dataset contains many low-entropy strings.
However, in terms of BSPS, RAM is around 40% to 30% better than AE.
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Figure 2.7: Byte saved per second for the tested algorithms.

Table 2.7: Duplicate found, chunking throughput, and byte saved per second results
for the tested algorithms.

AE | RAM | RAML | LMC | Rabin
Dataset 1 duplicates found (MB) | 1024 | 1006 | 1025 1004 | 1011
Dataset 2 duplicates found (MB) | 2128 | 2031 | 2021 2259 | 2003
Dataset 3 duplicates found (MB) | 329 | 277 277 257 340
Throughput dataset 1 (MBps) 385.8 | 550.8 | 417.2 81.2 | 104.6
Throughput dataset 2 (MBps) 370.4 | 551.3 | 448.1 89.2 92.2
Throughput dataset 3 (MBps) 374.2 | 560.9 | 4414 86.9 94.2

BSPS dataset 1 (MBps) 52 72.9 56.2 10.7 | 13.9
BSPS dataset 2 (MBps) 0.14 | 0.2 0.16 0.04 | 0.03
BSPS dataset 3 (MBps) 12.6 | 15.9 12.5 2.3 3.3
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2.4.3 Discussion

As a chunking algorithm, RAM performs well compared to other chunking algo-
rithms in terms of produced chunk characteristics. The chunk size distribution pro-
duced by RAM is narrower than the other tested algorithms. Although RAM has a
higher chunk size variance because of the lack of maximum chunk size, the chunks
have similar chunk distributions to the chunks produced by AE. The loss on higher
chunk size variance makes RAM perform better in terms of chunking throughputs.
Generally, RAM improved the performance of AE on bytes saved per second.

In Section 2.4.1, we found that lower chunk size variance does not mean that the
algorithms will perform worse than the algorithm with lower chunk size variance,
which is shown in Section 2.4.1 where RAML with worse chunk size variance com-
pared to AE detected more duplicates, in Section 2.4.1 where LMC outperform AE in
terms of duplicate detected, and in Section 2.4.1 where AE once again outperformed
by other algorithms with worse chunk variance. This means the content-dependent
capability of a CDC algorithm is more important than chunk size variance. This is
proven by fixed-sized chunking. Fixed-sized chunking has zero chunk size variance
but it is not content dependent which makes fixed-sized chunking performs worse
in terms of duplicate detection compared to CDC algorithms. Another proof that
chunk variance does not significantly affect the duplicate detection is our test in
Section 4 for RAML, which is another version of RAM with a limit on the maxi-
mum chunk size. For dataset 2, adding limits can reduce the chunk variance of RAM.
However, it also decreased the number of duplicates found because the limit makes it
less content-defined. Therefore, chunk variance is an appropriate metric to compare
CDC algorithms when the algorithms have similar content-defined characteristics.

The results in Section 4.3 indicate that RAM is preferable for low performance
devices such as mobile devices and IoT, or applications where computing time and
storage is important. Additionally, RAM is also useful for client side data deduplica-
tion or remote differential compression because with lower computational overhead,
RAM can reduce the stress on client hardware.

2.5 Conclusion of this chapter

In this work, we discussed the importance of content-defined chunking for multiple
applications and why it is better than fix-sized chunking. We proposed a new chunk-
ing algorithm, called Rapid Asymmetric Maximum (RAM) based on an asymmetric
chunking algorithm. We analyzed and compared RAM with other chunking algo-
rithms. Our results show that RAM offers a lower computational overhead compared
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to other CDC algorithms.

The main advantage of RAM is its low computation overhead which allows high
chunking throughput. The high chunking throughput comes at the cost of higher
chunk variance. The higher chunk variance produced by RAM is negligible com-
pared to the performance gain over other chunking schemes based on local maxi-
mum chunking. In some cases, RAM offers 26%-40% higher byte saved per second
compared to the other chunking algorithms.

In the future, we will address the high chunk variance of RAM to improve the
duplicate finding performance. We will also study how chunk size variance affects

the duplicate finding performance.
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Chapter 3

Data reduction schemes enabled
DFS design

3.1 Introduction

DFS are storage systems that utilize multiple storage nodes in a cluster to be highly
scalable. It can expand its storage capacity by adding more nodes to the cluster
or increasing the storage capacity of each node through extra hardware. A DFS
commonly has two main components, the metadata server and the DFS software
that runs on each storage node. The metadata server manages all storage nodes
that run the DF'S software, which has access to the disks in each storage node. The
DFS software usually manages the storage disks through a filesystem. Figure 1.1b
illustrates a common DFS design. To further improve space utilization, users can
use data reduction schemes such as deduplication and compression in their DFS
applications.

Data reduction schemes can improve the storage space efficiency of any storage
solutions including DFS at the cost of computation as shown in existing studies [9,
10,37]. Based on the structure of the DFS software in an application, data reduction
schemes may run in three different layers as shown in 1.1a. The existing solutions
have been using the application [10,37] or the underlying FS [9] for activating the
schemes. These approaches have their characteristics in terms of the ease of adding
or enabling the data reduction schemes.

Using the appropriate data reduction schemes is crucial for achieving the best
storage space efficiency because data may have different structures. For example,
Logzip can reduce more storage space than Gzip for log data type [8]. Additionally,
these schemes may have a different trade-off between processing time and space re-
duction. Users might want to use the best scheme for their use case. Adding new
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schemes to improve the existing selections is available through different solutions.
For the application layer, Hadoop, a big data platform, provides CompressionCodecs
for enabling schemes in the Hadoop applications, which can store the data in HDF'S.
Through this approach, users can easily add new schemes by extending the Com-
pressionCodecs class. For the FS layer, currently, no such approach exists for the
user to use. Users must modify the existing F'S code if they want to extend the
selections, which can be challenging depending on the code’s complexity.

Enabling the schemes is a different issue from adding the scheme. For example,
successfully adding new CompressionCodecs does not always translate to success
in using them in Hadoop applications. In Hadoop, when the application does not
support CompressionCodecs, the schemes won’t run on the data and HDFS will
store the data without any changes from the application. Users can add support
for the CompressionCodecs to the existing application. Adding this support to the
application code requires the availability of the application code, which is not always
accessible, and the understanding of the application code. At the F'S layer, enabling
the schemes for all applications is significantly easier assuming that the FS already
supports the schemes. Users can enable them by making some changes in the FS
configuration without any changes in the application because the process in the FS
is transparent to the application.

The DFS layer, where the DFS software runs on the storage nodes, can enable
the data reduction schemes like the FS because its process is transparent from
the applications. However, adding new schemes can be challenging because of the
complexity of the DFS software. As far as the author’s knowledge, currently there
are no DF'S that can directly perform these schemes directly in the DFS software
that runs in the storage nodes.

In this work, we proposed a new DFS design that can enable data reduction
schemes in the DFS software. The proposed design uses the same approach as Com-
pressionCodecs in the application layer for the ease of adding new schemes and has
the same process transparency as the FS. In our experiments, the implementation of
the proposed design called Hadoop Data Reduction Framework (HDRF) [38], which
operates inside HDFS, can enable data reduction schemes in applications that can-
not run CompressionCodecs without any extra effort from the application side. The
results also indicate that the overhead is negligible.

3.2 Background and related work

This section discusses the challenges of existing DFS designs for data reduction

schemes and our motivation to solve the challenges.
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3.2.1 Data reduction schemes

Data reduction schemes like compaction, compression, and deduplication can solve
the data growth, which is a challenge for most storage systems, especially those
that handle large data like cloud storage systems [39, 40,41, 42|, virtual machine
images storage systems [12,41,43,44,45], and big data platforms [37,46,47,48,49].
These schemes work by reorganizing the data more efficiently to minimize potential
redundancies at the cost of computation, and thus minimizing the storage footprint
[49]. In several cases where the disk is significantly slower than the processing unit,
the reduction in I1/O operations can improve the system performance from storing or
reading fewer data. In this work, we focus on lossless compression and deduplication.

Lossless compression is a reversible process that removes redundancy within a
file or data block. This type of scheme can be found in many applications, including
memory compression [50,51,52] and file compression (e.g. Snappy [53], Lz4, Bzip2,
and Gzip). For file compression, most lossless compression algorithms are based on
a dictionary coder algorithm.

A dictionary coder operates by finding redundancies within a file. Let file f
be a set of n blocks b, f = {by,bs,...,b,}, and each b is composed of m words w,
b= {wy,ws,...,wy,}. The dictionary coder uses a data structure called a dictionary
d, which is a subset of b, that maintains ¢ unique w, d C b. When it encounters a
redundant w, the dictionary coder replaces it with a pointer p to the corresponding
unique w in the dictionary. In summary, the dictionary coder produces a compressed
file f' with a total size of f/ = > ¥/, where V/ = d+ X"/ p, and b < b for best-case
scenarios. However, when m — i is close to 0, &’ can be larger than b because of the
overhead of d.

Deduplication is also a lossless process that maps files into smaller files called
chunks with chunking algorithms [14, 54] and stores unique chunks in containers.
Deduplication finds duplicate chunks by comparing the chunks’ fingerprints, which
are obtainable through mathematical hash functions like SHA1. Storage-saving is
achieved by replacing duplicate chunks with pointers to the existing chunks. To re-
construct the original file back, deduplication systems use the file’s recipe, which lists
the chunks that correspond to the file. In comparison to compression, deduplication
can remove redundancies on a larger scale such as those among files and storage
devices. However, deduplication is usually more memory-intensive because it needs
to compare a larger number of chunks. Deduplication works well for datasets that
share similar parts like virtual machine images [55] and large storage systems [56].

Deduplication is similar to a dictionary coder, but it works with a set of files,
{f1, f25 oo fm} and f = {b1,ba, ..., b, }, and at a more coarse granularity. It exploits
the possibility of duplicate blocks b, which are also called chunks in deduplication,
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within f and among files, f, N f, N f. = duplicate b. Because comparing blocks with
bit-by-bit comparison is slow when considering the size of b, deduplication uses a
mathematical hash function to produce a hash h;, or the fingerprint of each chunk
and uses it in the comparison process. If multiple b have a matching hash value,
then only a single instance of b and its hash h; is stored in a data structure or
database DB, DB = Y (b + hy). p. Finally, it replaces the file with a recipe r that
contains a list of hashes hy, of the chunks in the original file, f = {by,bs,...,0,} —
r = {hp,, hiy, ..., By, }. In the best-case scenario, the total size, which is sumr+ DB,
is significantly smaller than sum f. However, in a number of cases where the number
of redundant b is too small, the space overhead of the DB and r might be larger
than the total size of redundant b.

Several studies proposed the use of data deduplication in a DFS through the
application layer [10,57,58]. These approaches are more beneficial for data size
reduction because data deduplication works best with a large dataset. However,
data read processing through the DFS is a challenge because the deduplicated data
is not the same as the original data. Directly processing the deduplicated data with
a platform-provided data access method like Hadoop MapReduce and Apache Spark
may result in an inaccurate output. In such cases, the application may not be able
to leverage the distributed computing capability of the DFS and it requires extra
processing to revert the deduplication process to produce an accurate result.

3.2.2 Distributed File System (DFS)

A DFS is a cluster of storage nodes that is scalable both vertically and horizontally.
Each storage node can be expanded vertically by attaching more storage devices.
Once the limit of vertical scaling is reached, the DFS can still grow through horizon-
tal scaling or by adding more storage nodes to the cluster. This approach enables
the DFS to keep up with data growth and increase storage I/O performance through
parallelization.

Although DFSs are scalable in every direction, data growth is still a problem for
all storage devices. To resolve this problem, DFSs can be combined with data reduc-
tion techniques like compression and deduplication. Because the DFS is software or
middleware that connects the application to another FS, it can be split into three
layers on the basis of the location of the data reduction, which are the application,
DFS, and FS layers, as shown in Figure 1.1a. At the application layer [37,59,60,61],
the application must support data reduction schemes to benefit from more efficient
space utilization. At the FS layer [9,62], this is no longer an issue because the data
processing of the F'S operates separately from the applications in their layer.
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3.2.3 Hadoop and Hadoop Distributed File System

Hadoop [63] is a commonly used big data platform that uses the Hadoop DFS
(HDFS) [11] to store datasets in blocks. HDFS has two nodes: the name node,
which handles the files’ metadata and blocks’ location, and the data node, which
stores fixed-sized blocks. HDFS saves these blocks through another underlying F'S
like EXT4, NTFS, or ZFS. To ensure the blocks’ reliability and availability, it uses
a block replication scheme, which puts several copies of the same block in different
data nodes to prevent losing blocks during data node failures. This replication
process occurs when a node receives a packet from a client or another node.

HDFS, unlike other DFSs like Lustre [64], supports the MapReduce program-
ming paradigm to parallelize data processing in the cluster, thus enabling data
nodes to perform data processing or compute. The MapReduce code can also be
combined with Hadoop CompressionCodecs to optimize the storage usage in HDF'S.
The supported codecs are Gzip, Bzip2, Lz4, Snappy, and Zlib. Adding new reduc-
tion schemes as a codec is also possible. However, these codes must be included in
the application code to enable them. A simpler approach would be to use an FS like
ZF'S to enable compression or deduplication in HDFS or other DFSs, which do not
need any modification in the application code.

Another concern of using the codecs in combination with MapReduce is split-
ability, which is the possibility of independently decompressing each block. It is
crucial because MapReduce may operate parallelly on each block. However, several
codecs produce non-splittable blocks, which may require other blocks to decompress.
In such cases, the MapReduce application cannot run in parallel and the data node
may need to retrieve blocks that it does not have from other nodes. The FS-based
approach has no such issue because each HDFS block is compressed independently
from the DFS layer.

3.2.4 Related work on data reduction schemes in DFS and
HDFS

At the application layer, the users can add a scheme into the application code
or enable it through a platform-specific API. For example, client-side an achieve
a compression ratio of 1.5 in Lustre with Lz4 [65] and users of Hadoop can use
Hadoop CompressionCodecs to enable schemes in their MapReduce [66] applications
or directly add the scheme code to the application when using Hadoop [10,37,57,
58,59,60,61] or Lustre [64]. Applying the scheme at this layer also provides benefits
for a reduction in network traffic at other layers, thus speeding up the data transfer
in the lower layers through the network. Additionally, the receiving node does not
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need to recompress the data independently when replication is set to above 1-time
for HDFS as shown by Widodo et al. [38]. However, application code modification,
which may not be possible if the code is not available, is mandatory to enable the
scheme.

An important aspect of the data reduction scheme in the application layer is the
split-ability of the data reduction schemes. HDF'S splits files that are larger than the
HDEF'S block into multiple block files. These split block files may not be splittable
and processed independently when compressed with non-splittable algorithms such
as Snappy, limiting the number of mappers for MapReduce applications. A solution
is to use splittable algorithms such as Bzip2. Another solution is to use sharding in
the applications that generate the data such that the compression output is tied to
HDEFS’s block size.

Several studies [10,57, 58] have proposed data deduplication applications at the
application layer that store the data in HDFS. Ranjitha et al. [57] and Sun et
al. [58] studied deduplication applications that manage the output data in HDFS.
Zhang et al. [10] explored the possibility of deduplication through the MapReduce
programming model that passes the data to HDFS. The main drawback of these
studies is that the deduplication cannot be independently reversed by each data
node. These applications must revert the deduplicated data to the original data
and store it back in HDFS or other storage solutions before processing it to ensure
consistent results, increasing the cost of data processing for Hadoop clusters.

Another common approach to enable data reduction schemes in a DFS is through
the F'S layer [9,62]. For example, Zhou et al. [9] used ZFS as the FS for HDFS and
enabled deduplication and compression through ZFS configurations. This setup
provides a transparent data reduction to the application and DFS layers. However,
there is no reduction in network traffic because once the data leave the ZFS, the
data is back to its original structure and size.

Data reduction schemes at the DFS layer can solve these challenges when the
DFS is designed to run with the schemes. However, enabling them at the DFS layer
has yet to be done because of several possible reasons. First, it adds complexity
to the DFS, which increases the cost of development and the chance of breaking
other components in the DFS. Second, based on our experience, directly modifying
the DF'S source code to enable the schemes can be complex and time-consuming.
Because of these reasons, it is difficult to compare reduction schemes at the DFS
layer to the other approaches based on the benefits and development costs.

In this paper, we proposed and tested a new DFS design that eases the data
reduction schemes implementation and usage in a DF'S. Users can use and enable
the schemes through programming techniques like dynamic library linking or depen-
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dency injection. The DFS design is also transparent to all applications, enabling
data reduction schemes to run on all applications’ data. With this DFS design,
users can add and enable these schemes at the DFS layer without modifying the
DFS code.

3.3 Design and implementation

This section provides the details of the proposed DF'S design and the implementation
of the design in HDFS.

3.3.1 The DFS design

Implementing reduction schemes in the existing DFS design requires careful handling
in several aspects. The first is the ease of use from the user’s perspective. If the
use of the scheme is challenging, the users might not want to use it. Second, the
placement of these schemes in the DFS may affect DFS functions like the metadata
system and data integrity checker. Third, the DFS may not benefit from the network
traffic reduction because of its smaller data size.

To overcome these challenges, we proposed a DFS design that supports data
reduction schemes and extends existing DFS designs as shown in Figure 3.1. The
key features of the design are: (1) it uses existing programming techniques to link
the schemes’ libraries to the DFS; (2) it runs the scheme close to the host FS to
minimize the changes to other DFS components; (3) it can provide reduced and
original data streams to the DFS and schemes to avoid reprocessing within the
DFS.

Ease of use of data reduction schemes. Adding and enabling data reduction
schemes in the application and FS layers have their limitations. At the application
layer, they depend on the capability of each application and its availability of the
source code. For example, in Hadoop, the users can add new schemes through Com-
pressionCodecs and enable them in the code or configurations when the application
supports it. However, these can be difficult depending on the application’s source
code’s availability. At the FS layer, enabling the data reduction schemes is not a
problem because it is transparent to the applications. However, the adding part is
like the application layer because it depends on the source code’s availability. Even
when available, modifying their code is difficult because its complexity is commonly
higher than the applications’ code.

The design of our DFS solves these problems through common programming
techniques and by exploiting the nature of the DFS layer. The design uses the same
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Figure 3.1: Proposed DFS design. The data reduction scheme is placed close to the
host F'S to minimize the changes in existing DF'S designs. The grayed parts are the
new additions to the existing DFS components.

approach as Hadoop CompressionCodecs, which connects to the application through
independent Java jar files. Users can add new data reduction schemes to the DFS
by extending a template data reduction class or by adding it through Compression-
Codecs and extending the template class. The application can load these schemes
through jar libraries. As for enabling these schemes, the design benefits from the
nature of the DFS layer, which works transparently to the application layer like the
FS layer.

Schemes placement in the DFS. The implementation of the schemes in the
DFS may harm several DFS functionalities depending on the placement. For exam-
ple, running the schemes before the metadata system can generate errors because of
the metadata mismatch between the client’s and DFS’s generated metadata. The
design prevents such issues by activating the schemes before storing the data in the
underlying FS, similar to FS-based reduction schemes like ZFS. This design also
minimizes the changes over the existing DFS design because once the data leaves
the storage part, it is back to its original form.

Network traffic reduction. One of the benefits of using data reduction schemes
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at the DFS layer is that it can also reduce network traffic, speeding up DFS opera-
tions that use the network. However, when these schemes work at the storage part of
the system, there is no reduction in the network traffic because the networking part
of the DFS usually operates above the storage components. Additionally, the DFS
may also suffer from extra reprocessing during data replication. This reprocessing
cost can be expensive for older nodes with low processing capability. To solve this
design constrain, the proposed DFS design provides a selection of data streams,
which contains the reduced and original data streams. Other DFS components can
access both versions of the data outside of the storage portions of the DFS through
these streams.

3.3.2 Implementation

As a proof of concept, we implemented the proposed design in HDF'S, which is the
default DFS for Hadoop, and named it HDRF. The implementation uses Hadoop
3.1.0 as the base and requires around 1000 lines of additional code and modification.
Additionally, it works well with HDFS and MapReduce applications without any
configuration or modification to the application code.

HDRYF. As the name implies, HDRF is a framework that enables data reduction
schemes in HDFS. HDRF operates within the DFS layer and works with all appli-
cations without any modification to their code. The data reduction schemes can be
connected to HDRF through Java’s dynamic library linking. This approach is sim-
ilar to Hadoop CompressionCodecs, which works at the application layer, however,
it works transparently with all applications. It records separate metadata for each
block in Redis [67,68] to ensure block integrity is not affected by the schemes. As
shown in Figure 3.2, it requires some changes in HDFS’s source code and has several
features to minimize its processing overhead.

HDRF supports two types of streams: direct block array and processed data.
The block array stream buffers the whole block data in the memory and can provide
faster data access to the application by prefetching the block data in the memory.
The processed data stream is similar to HDFS’s file streams, which reads the data
by chunks. Unless the user’s data processing application requests the block array
stream, HDRF uses the processed data stream because it is closer to the default
code in the vanilla HDFS and minimizes the memory usage.

Local metadata system. HDRF maintains a local metadata system in each
node. This system functions as the translator for the addresses of each HDFS block
in HDRF. When HDFS checks the length of the HDFS block file, HDRF queries
this system and returns the stored length. HDRF also uses this metadata system to
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Figure 3.2: Proposed design on HDRF. The grayed parts are HDRF’s components.

get the directory of the processed block from HDFS’s blocks. The key for the HDFS
block is its ID, and the value is the its length concatenated with the location of the
processed block.

Data integrity changes in HDFS. HDRF works within the storage part of
HDFS by replacing HDFS’s storage stream with its own stream, resulting in empty
block files. Without any changes to the data integrity checker of the data node in
HDEF'S, this will cause errors because of the non-matching length between the block
file, which is zero bytes, and the metadata. HDRF prevents these errors by replacing
the length check by retrieving length information from its metadata system and
passing it to the data node length checker. There is no change to the data integrity
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Figure 3.3: Key and value for: (a) file’s metadata and (b) chunk’s metadata.

check in the data node because HDF'S performs it after HDRF produced the original
blocks’ data.

Deduplication through HDRF'. To prove that users can implement their re-
duction scheme through HDRF, we created a simple deduplication scheme that
splits the input data into small chunks, fingerprints the chunks with a hash func-
tion, matches the chunks with the hashes to find duplicates, and stores the chunks in
a drive. The chunks metadata is stored in Redis. The scheme uses external libraries
for chunking [54], hashing [69], and communicating with Redis [68]; the metadata
database. The chunking algorithm is a content-dependent chunking (CDC) algo-
rithm, which can automatically align the cut-point on the basis of the input data.
However, it is still vulnerable to byte change, which may shift the cut-point or chunk
boundary. In such cases, the affected chunk will be treated as a new chunk because
it does not match the old chunk’s hash. The deduplication scheme is connected to
HDRF through the data reduction abstract class of HDRF. This scheme groups the
chunks and store them in a large chunk called Superchunk to avoid random writes,
which can be detrimental to most storage devices.

Figure 3.3 illustrates the structure of the key and value for the file’s and chunk’s
metadata. This structure provides a maximum of 4 GB for block size, 256 MB for
Superchunk size, and 16 MB for chunk length. “# of copy” is the number of dupli-
cates for a chunk, and the maximum is 4096. With these tables, the deduplication
scheme can rebuild the file with a small amount of overhead. In our experiment,
these tables amount to less than 5% of the original data size.
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3.3.3 Features of HDRF

HDREF has several features to make it easier for the user to implement their preferred
data reduction schemes in HDFS and minimize its performance overhead.

Ease of adding new data reduction schemes. HDRF has two approaches for
adding new data reduction schemes. First, through user configuration and dynamic
linking, which is similar to Hadoop CompressionCodecs in the application layer.
Second, by extending the data reduction abstract class of the HDRF. The former
is similar to how Hadoop CompressionCodecs works in the application layer. The
latter is more challenging because it needs to be compiled together with HDFS and
HDRF. However, this solution is still easier than modifying the FS source code
because the user can simply follow the abstract class to implement their new data
reduction schemes.

Transparent data reduction. Application layer-side data reductions have sev-
eral benefits over other approaches. For example, data size reduction is more effec-
tive at the application layer with schemes like deduplication, which works better
with a large dataset. Additionally, adding new schemes is easier through a few ex-
tra lines in the code or through dynamic library linking, which is used by Hadoop
CompressionCodecs. Although the data reduction library is only compiled once, the
user must change the code for each application to enable data reduction. In this
case, DFS- and FS-side data reduction is easier for the user because it works for
all applications with the tradeoff of less effective data reduction. However, adding
a new data reduction scheme to the F'S and DFS can be challenging depending on
the availability of the source code and its complexity. In this aspect, HDRF com-
bines the benefits of the application layer- and the FS layer-side data reductions.
Adding new data reduction to HDRF is possible through dynamic library linking
and changes in the configuration like the application layer-side data reduction, and
it works transparently for all applications like the F'S layer.

Block mirroring. When the user applies data reduction schemes at the applica-
tion layer, the lower layers like the DFS and F'S layers can benefit from the reduced
data size, thus minimizing data transfer time during DFS operations that use the
network. For example, we can reduce the data transfer time in HDFS by applying
compression when replication is in use as shown in Figure 3.11. However, such ben-
efits may not exist when applying them at the lower layers because the scheme must
reconstruct the data back to its original form to make the process transparent at
the upper layers. This limitation increases the data transfer time when compared
with application layer-based schemes. A solution to this is to send the reduced data
instead of the original data, which is possible for the DF'S layer.

To minimize the network traffic, HDRF has a block mirroring feature, which
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Figure 3.4: Block mirroring in HDRF. It checks the number of nodes downstream
and sends the reduced data to the target nodes.

disables the block replication part of HDFS and sends the reduced block data to
other nodes. It uses scheme stacking to read the data from the data reduction
scheme and send it to another node through TCP communication at a latency like
that of the vanilla HDFS and CompressionCodecs. Figure 3.4 illustrates how the
block mirroring works in HDFS. During a block write, HDRF performs a check on
the downstream number. If the number is more than 0, it will start block mirroring
and contact the target nodes. Once the process is completed, the block is registered
and accessible in the other nodes.

Seamless data access. A number of data reduction schemes can only process
complete data, while others can process data block by block. To support these
various methods of processing, HDRF has two block access modes: direct block
array and direct stream access. In the block array mode, HDRF buffers the block
data into an array and passes it into the scheme. HDRF can also revert the block
array into a stream and pass it to HDFS for read-operations. However, block array
mode requires higher memory consumption to buffer the block data. In the direct
stream access mode, the HDRF directly passes HDFS’s stream data to the reduction
scheme to minimize memory consumption and possibly latency from buffering the
data. Additionally, HDRF can provide either the original or processed block data
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to the user’s scheme for scheme stacking.

Scheme stacking. Additional processing of the blocks is often crucial to pre-
pare them before or after they have been processed by the data reduction scheme.
Although preprocessing can be done in the application layer through MapReduce
code, this approach is inefficient because it must be enabled multiple times when
applied to different applications. HDRF supports such processing through scheme
stacking, which can connect a preprocessing scheme to a data reduction scheme or
vice versa. This feature is possible because HDRF enables each scheme to request
the original data or the scheme’s processed data.

Block filter. Processing MapReduce job files can be wasteful for the node’s
resources because MapReduce job files are often short-lived and discarded after job
completion. Additionally, several data types may not benefit from data reduction
schemes. For example, data reduction schemes may have a low reduction ratio when
processing encrypted data.

HDRF has a block filter that searches for user-defined keywords in the content
of the first received packet for each block. These blocks are then stored without
any additional processing, and thus minimizing the node’s resource usage. With
the block filter, users can exclude blocks through HDRF configuration files and
potentially save some performance.

Block queue. A vanilla HDFS can parallelly process multiple block requests,
which speeds up the block-read process by not waiting for other requests’ completion.
However, not all data reduction schemes can work in parallel. For example, a number
of deduplication schemes are limited to one thread to maximize their deduplication
ratio [70]. In such cases, users can use the block queue system to limit parallel block
accesses.

Failures handling. System crashes and hardware failures are common and
expected in production systems. HDFS handles this through block reporting. When
a block is corrupted or has a mismatched length, the data node will report the block
to the name node. Additionally, the name node will attempt to replace the block
with one from other available nodes. HDRF takes the same approach as HDFS with
a few changes. For the block size, a number of HDFS blocks in HDRF have 0-byte
lengths. In this case, we made changes to the HDFS block length management
system to check the length from the HDRF’s metadata.

Another possible failure point of HDRF is the metadata server, which is isolated
in each data node. When the metadata server fails, HDRF will report that the
current node is broken to the name node. The name node will attempt to recover
the data through the block replication of HDFS, which is similar to how HDFS
handles node failures. HDRF handles other types of data corruption, node failures,

42



3.4. EXPERIMENTAL RESULTS

and other unexpected events similarly to HDFS.

3.4 Experimental results

This work answers the research questions presented in the Introduction by propos-
ing and comparing HDRF to two existing setups, which are data reduction in the
application and FS layers, respectively. For data reduction in the application layer,
we used a vanilla HDFS setup where HDFS uses an ext4 FS and enables data re-
duction schemes through Hadoop CompressionCodecs in the applications. For data
reduction in the FS layer, we used a ZFS setup where HDFS runs on top of ZFS
and enables the schemes through ZFS.

We evaluated the proposed design by extending HDFS’s code, which may affect
its functionality when running various workloads. To show that the implementation
can operate without any issue, we ran various workloads and observed HDFS’s log in
each data node. We ensured no errors such as mismatch checksum, missing blocks,
or other related Java errors occurred in all setups. Additionally, for data processing
results, we checked and compared the output.

Supporting new data reduction schemes is important to maximize the efficiency
of the storage solutions. HDRF solves this through a data processing module that
can load these schemes. HDRF can load any schemes that extend HDRF’s data
reduction scheme class or Hadoop CompressionCodecs class, which is similar to
how Hadoop CompressionCodecs operates in the application layer. To demonstrate
the operation of the solution, we implemented a local data deduplication scheme
described in Section 3.3.2, which extends HDRF’s data reduction scheme. We also
tested it in a series of tests to compare it with ZFS’s deduplication scheme.

The difficulty of enabling the data reduction schemes may vary among setups.
Enabling these schemes for the vanilla HDF'S setup is the most challenging because
a number of applications do not support them. As for the ZFS setup, enabling the
schemes is as easy as changing configurations of ZFS because the data processing
in ZFS is transparent to the applications. To confirm the difficulty of enabling
these schemes for HDRF, this work used different applications on the three different
setups, discussed the difficulty of enabling these schemes on these setups based on
our experience, and observed the data processing and storage overhead.

The cost of operation is also important because if it is too big, it might deter
users from using the setups. To show this cost, we ran several applications and data
access tests to measure and compare the overhead of the setups. The goal for HDRF
is to have a negligible difference from the best approaches.

Applications. The Hadoop applications that we used for the data access tests
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Table 3.1: Specification for the test nodes.

’ Cluster A Cluster B Name node ‘
CPU Xeon E-2224 (4c4t) E3-1220L V2 i3-7100 (2c4t)
(2c4t)
Memory 32-GB DDR4 8-GB DDR3 24-GB DDR4
Storage Samsung 983 DCT Micron Sandisk

960-GB (800 MBps CT250MX500SSD1 SDSSDH32 2-
write, 2.5 GBps 250-GB (400 MBps TB (400 MBps

read) write, 500 MBps write, 500 MBps
read) read)
Network 10-Gbps 1-Gbps 10-Gbps
Number of 14 6 1
nodes
Table 3.2: The datasets used in the storage overhead tests.
Datasets Content Size

Wikipedia A compilation of Wikipedia dumps from the 380-GB
first five dumps in 2021 (20210101, 20210120,
20210201, 20210220, 20210301) [71]

PhysioNet A compilation of medical datasets provided by 96.9-GB
PhysioNet [4,5,72,73]

Cocoimages A compilation of 2017 unlabeled and train JPEG- 36.8-GB
formatted images from cocodataset [74].

are Hadoop DistCP and Hadoop Streaming, which are both MapReduce-based
and cannot and can use Hadoop’s CompressionCodecs, respectively. With Hadoop
DistCP, a user can define the number of mappers and reducers in the configuration
when running. Hadoop Streaming can read and process the input data by using
an input format before storing it in HDFS. The default input format is TextInput-
Format, which reads a file line by line. However, it is not as useful for our testing
because it adds a line number at the beginning of each line, increasing the storage
space and making it difficult for us to compare it with Hadoop DistCP. To solve
this, we made a custom input format based on TextInputFormat but without the
extra line numbering. The number of mappers and reducers for Hadoop Streaming
is defined by the split size. In the tests, we maintain the number of splits to match
the number of mappers for Hadoop DistCP to ensure the fairness of the tests.
Additionally, we included Intel’s big data benchmark called Intel HiBench, which
can test the performance of the cluster when running MapReduce and Spark work-
loads. The workload that we used is Wordcount, which loads and reads the datasets
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directly from HDFS and then stores the results back in HDFS. HiBench can generate
the dataset by using a MapReduce application with configurable size.

Cluster specifications Table 3.1 lists the specification of the clusters. We used
two clusters, A and B. Cluster A has more nodes, higher compute power, more I/O
performance, and more importantly, a higher network speed. Cluster B consists
of nodes with older hardware and a slower network speed, which is only 1-Gbps
maximum. We ran all tests on Cluster A except for the network scaling test, which
was run on both clusters to show the impact of replication scaling on older hardware.
All tests were run three times and the results provided here are the average of the
three runs.

Datasets The evaluation used three different types of datasets to measure the
storage overhead of the tested setups. The first dataset is the Wikipedia dump
dataset with a size of almost 400 GB and represents a human-readable dataset. The
second dataset is the medical dataset from PhysioNet [5] with a size of almost 100
GB and contains log data from machines like electrocardiograms (ECGs) and patient
activity records. The third dataset is an image dataset from Cocoimages with a size
of around 35 GB and contains JPEG-compressed training and unlabeled images for
machine learning applications. Table 3.2 shows the details of the datasets. We chose
these datasets to show the storage overhead of HDFS when storing various dataset
types. This test uses 3-times replication, which is the default for HDF'S.

The structure of the tests This work answers the research questions presented
at the beginning of this Section through several tests with the described applica-
tions, clusters, and datasets. Because directly answering the first (1) and second (2)
questions is difficult, we structured the tests to observe the overhead of the tested
setups and answered the questions through the data presented in the results. The
test structure is as follows. First, this work measures the throughput of the clusters
for data access within the storage nodes in Subsection 3.4.1. Second, it demonstrates
the overhead of HDRF when uploading and downloading the dataset from the clus-
ter in Subsection 3.4.2. Third, it evaluates the storage consumptions in Subsection
3.4.3. Next, it shows the performance of the tested setups in MapReduce and Spark
workloads. Finally, it discusses the network overhead when replication is enabled in
Subsection 3.4.5.

This work shows the ease of adding new data reduction schemes in Subsections
3.4.2 and 3.4.3 through the implementation of the data deduplication scheme in
HDRF. The ease of enabling the schemes can be observed in Subsection 3.4.2 where
we attempted to enable data reduction schemes in Hadoop DistCP and Hadoop
Streaming and in 3.4.4 where we attempted to use Lz4 on the tested setups for
MapReduce and Spark workloads. The overhead is shown throughout the test results
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by comparing the results from the different setups.

3.4.1 Data access overhead test

Big data platforms such as Hadoop can use the storage nodes to generate data
and store it directly in the DFS. Additionally, the storage nodes can also process
the data from its storage device directly. To show the overhead of HDRF in such
workloads, we generated and stored a 100 GB dataset in the cluster by using the
HiBench prepare tool, which uses RandomTextWriter to generate the dataset. To
evaluate the read overhead, we used Hadoop Streaming to read the data and set the
output format as NullOutputFormat to simply evaluate the read performance.

The results for the data access overhead test are depicted in Figure 3.5. For
write, the results show minimal overhead when running the same data reduction
schemes. For deduplication, HDRF performed worse than ZFS because the dedupli-
cation scheme in HDRF is more computationally intensive with the CDC algorithm
and smaller chunk size than the deduplication scheme in ZFS. Vanilla HDFS per-
formed worse when we enabled Lz4 CompressionCodec through the configuration.
For read without any reduction schemes, the results indicate around 12% perfor-
mance overhead when compared to vanilla HDFS and 17% compared to ZFS. With
the Lz4 enabled, HDRF performed around 18% to 23% slower for reading because
of the extra processing in the storage node to alter the data access path. For the
read performance with deduplication enabled, HDRF performed around 45% slower
than ZFS’s deduplication because of the more complex processes. The overhead of
HDRF might look significant in this test because these tests simply read and write
the data in the storage nodes. With other applications such as data transfer with
Hadoop Streaming or WordCount, the overhead is significantly smaller because of
the involvement of other operations that masks the overhead. Additionally, the
overhead might decrease with better integration in the DFS software.

3.4.2 Data transfer overhead test

To confirm the overhead of HDRF in data transfer, which is a basic and crucial task
for DFSs, we compared HDRF with the vanilla HDFS and ZFS in a data transfer
test. This test uses 50 GB of the Wikipedia dump dataset in the form of split
1-GB files to measure the data transfer speed for the tested setups. For the test
configuration, we chose 1-time replication to show the compute overhead without
being affected by the network during the replication. We simulated the 1-Gbps
network by using Wonder Shaper 1.4.1 [75]. The applications used in these tests are
Hadoop Streaming and DistCP.
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Figure 3.5: Cluster A’s throughput for write with RandomTextWriter and read with
Hadoop streaming. Vanilla HDFS does not have an official support for deduplication.

47



3.4. EXPERIMENTAL RESULTS

(A) Copy to cluster throughput with 10-Gbps network

500 \ : ~
© S © DN NG g 5 N <
NS w N > oy auA Ny
YD S 55 m S 25 °D
400 [ oy 257 Ie Hak) 277 N YD |
77— ] 777 — 777 —
—~ %% e 2 ©
n 777 777 777 DD
7% % 555 oo
2. © N o > 7 7 oo
M o &~ ~ ~ & 2 227 288
2 S DI ) 220 O 220 O
300 |- N N1 NN N 229 & - HaY .
[ TTNtl777 TTT1 2221TTT1 2221 MTTT
~ 5 % 2 e %
g %% % % - 27
= 7 7% % 2 252
Q ,77 vr7 7z 777 7,77
i 7% % % 7
< 7% % % % %
&0 200 |- sl % 25 % B
= 2% 7 % i %
O 2 %% % e %%
= 7 %% % e %
s 2 % % e 27
7 7 % % 2
B 2 % % 2 2
100 [ 227 777 77 777 777 —
2 % % i 2
7 7% % % %
% % % 2 2
7% % % % %
2l % < BN < <] <
< < < < <
0 Al %5 z |:: IR z Bl =

(B) Copy from cluster throughput with 10-Gbps network

400

T

931 ;
e .]
::3]]_9

541 ¢

~N
&

30,6
521,

T T
haETEE=
R RN
1
M .-
ATALATALTATATAUA NN NN NN NN NN NN NN NN NN 0
T T hhhaeoe
T E =
RN
.
1
|
R R R R R AR R ARNRRRA
T
R

N
Rnl

153{|;3'19.9
131

300 -

200 - 2

A N NINNNNNNNNNNNINNNNNNNNNNNNNNNNNANY
B N N Ny
AYTATTUNINNANNNNNNN NN VNN NNV NNNNNNNN NN

2% %
55 %
100 |- 2 .
25 % %
72 %
% %
7 % 7
25 % 559
2% % 224
7 % < g2l ||| < < <
2% % 224
’77 77 > 727 > ... > >
z z el = i z =

o
N
N
N
E

No reduction scheme Deduplication Deduplication and Lz4

Bl vanilla HDFS w/ Streaming A HDRF w/ Streaming [l ZFS w/ Streaming
EZvanilla HDFS w/ DistCP  EXJHDRF w/ DistCP  []ZFS w/ DistCP

Figure 3.6: Throughput for dataset transfer between the client and Cluster A.
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HDEFS does not officially support deduplication. Higher values are better.
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Figure 3.6 presents the throughput recorded when transferring the dataset be-
tween the cluster and the client. In this test, we used the deduplication scheme
described in Subsection 3.3.2. Adding the scheme to HDRF is fairly easy through
the provided abstract class. Throughout this test, we noticed no errors when the
HDRF and ZFS setups ran the schemes in both Hadoop DistCP and Streaming.
In contrast, for the application layer setup, the vanilla HDFS, we were unable to
enable Hadoop CompressionCodecs on Hadoop DistCP through the command-line
interface. DistCP ignored the CompressionCodec configuration in the command line
and stored the data as if no CompressionCodec was specified.

For the write throughput, the differences between the vanilla HDFS, HDRF,
and ZFS are less than 1% with the same reduction scheme, which shows that the
overhead of HDRF is insignificant. Additionally, HDRF with deduplication enabled
had close to a 50% higher throughput compared with that of the vanilla HDFS with
Hadoop Streaming. The reason is that the deduplication scheme in HDRF uses
the block array mode, which buffers the data in the memory before storing it in the
disk, and thus maximizing the client’s disk read bandwidth and network throughput.
For the read overhead, the results depicted in Figure 3.6 show that the overhead is
almost non-existent because the results for the vanilla HDFS, HDRF, and ZFS are
negligible. In the best-case scenario, HDRF can eliminate the storage footprint by
more than 50% while transferring the data at a higher throughput when compared
with the vanilla HDFS without any reduction scheme.

Another observation we made from Figure 3.6 is that DistCP is up to 25% faster
than Hadoop Streaming for write operation with most schemes because DistCP
does not have extra processing. Additionally, DistCP reads and writes the data in
chunks unlike Hadoop Streaming, which reads and writes in lines. However, with
deduplication, the difference is less significant because HDRF absorbs small writes
in memory for block array stream mode, used by the deduplication scheme. These
results suggest that HDRF can provide many options to the users to minimize the
data transfer time when applying data reduction schemes.

3.4.3 Storage overhead test

In this test, we uploaded three different datasets into Cluster A with Hadoop Stream-
ing and measured the storage space usage of the tested setups. We chose Hadoop
Streaming because it supports Hadoop CompressionCodecs Lz4, which is important
when comparing the HDRF and ZFS setups. We then evaluated the storage over-
head by comparing the space usage for the three different setups. We did not test the
vanilla HDF'S with deduplication because of the strict specification of Hadoop Com-
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pressionCodecs that requires the scheme to have stream support, which is missing
from the described deduplication scheme in Subsection 3.3.2.

Figure 3.7 shows the results for the storage used by each setup with no processing,
Lz4 compression, deduplication, and the combination of the two. From this figure,
we learned four facts. First, the overhead of HDRF is small and less than 1% of
that of the vanilla HDFS across the three datasets with Lz4. Second, even though
Hadoop CompressionCodecs and ZFS use the same Liz4 algorithm, they use different
configurations. The Lz4 CompressionCodec in the vanilla HDFS and HDRF has
a better compression ratio than that in ZFS. Third, HDRF’s deduplication can
reduce up to 15% of the dataset storage consumption, which is better than the
deduplication scheme used in ZF'S because HDRF’s scheme uses a CDC algorithm.
Fourth, neither Lz4 nor deduplication performs well across any of the datasets. Lz4
performs best with the human-readable text in the Wikipedia datasets with over
50% data reduction and reduces around 14% of the storage footprint for the log
data in the PhysioNet datasets. However, in the image dataset, neither Lz4 nor
deduplication could reduce the dataset further. Even worse, deduplication increases
the storage footprint because of the deduplication metadata. This last information
also shows the importance of the ease of adding new reduction schemes, to enable
users to use a new reduction scheme to match their dataset’s type.

3.4.4 Data processing test

This test utilizes a commonly used big data benchmark tool from Intel called Hi-
Bench. It can measure the performance of the cluster when running MapReduce
and Spark workloads. For this test, we generate a dataset with HiBench and run a
test for data processing. We chose WordCount as our data processing task and ran
it for all tested setups with 3-times replication, which is the default for HDFS. The
test has two phases: prepare, which generates 32 GB of a “huge” dataset, and pro-
cess, which uses MapReduce to perform the word count. The number of executors,
mappers, and reducers is set to 28. The prepare phase uses MapReduce to generate
random words and store them in HDFS.

With this test, we observed that HiBench’s Wordcount MapReduce workload
was unable to use Hadoop CompressionCodecs. We tried the configuration “hi-
bench.compress .profile enable” and “hibench.compress .codec.profile '1z4’ ” but it
still consumes the same storage space. However, adding compression options in the
MapReduce command line reduces the dataset from 96 to 93 GB, which is still far
larger than the other setups. In comparison, enabling L.z4 in HDRF can reduce the
dataset to 42 GB, which is over 50% reduction in storage footprint. This observa-
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tion indicates that HDRF is transparent to all applications without the hassle of
configuring each application.

A similar situation also occurred when running the Spark workload counterpart.
When we prepared the dataset with Hadoop CompressionCodecs, the process phase
crashed stating that the Lz4 native library could not be loaded. We debugged
the application for hours attempting to fix the issue and noticed that IOCommon
failed to load the compressed dataset. Additionally, we confirmed with the “hadoop
checknative -a” command that Lz4 is indeed installed properly in our cluster and is
available natively. HDRF and ZFS can run the MapReduce and Spark workloads
with Lz4 enabled without any issue. This experience on enabling Hadoop Compres-
sionCodecs on HiBench shows that enabling the data reduction schemes can often
be challenging and frustrating.

As for the overhead, the results shown in Figure 3.8A indicates that the overhead
for data processing applications like MapReduce is around 3% for HDRF, and it
can perform as well as the vanilla HDFS with and without compression. With the
Spark workload, HDRF is around 5% slower than the vanilla HDFS because of the
extra processing by the framework when loading the data from HDFS. The overhead
with Spark is larger because Spark is much faster than MapReduce at processing
the dataset, increasing the significance of the dataset load operation from HDFS.
With a more compute-intensive workload, this overhead may become smaller.

3.4.5 Network overhead test

One of the issues for lower-layer data reduction like HDRF and ZFS is the lack of
network traffic reduction and the need to reprocess the data at each node during
block replications, thus increasing the data transfer time. For the application layer
data reduction, these issues are not a concern because block replication occurs in the
DEFS layer and the data there is already reduced, eliminating the need to reprocess
the data at the replication’s destination nodes. To confirm this hypothesis, we scaled
the network speed and replication factor of HDFS with Clusters A and B. To show
the overhead of replication, each node has the dataset stored locally in the solid-
state drive (SSD) to eliminate the overhead of the network transfer from the client
to the data nodes. The dataset is the same as that used in the data transfer test,
which is the first 50 GB of the Wikipedia dump.

Figure 3.9 and 3.10 depicts the results for the network scaling test on Cluster A
with 6 nodes. According to the results, the impact of replication is more significant
with a slower network and fewer nodes. With slower networks, setups that reduce
the data at lower layers like HDRF and ZFS significantly consumed more time to
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(A) HiBench results for WordCount with MapReduce
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Figure 3.8: Throughput for the HiBench WordCount workload with Cluster A.
Higher values are better.
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(A) 6-nodes with 1-Gbps network
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each block. For example, R2 means 2-times replication. The result is relative to
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(D) 14-nodes 1-Gbps network
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Figure 3.10: Data upload time from the client to the cluster with replication scaling
on 14 nodes of Cluster A with 1-Gbps, 2.5-Gbps, and 10-Gbps network and Lz4
compression. The number behind R indicates the number of replication factors for
each block. For example, R2 means 2-times replication. The result is relative to
that of the vanilla HDFS. Lower values are better.
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finish because they transfer the data without any data reduction. Additionally,
they need to recompress the data at each replication’s destination nodes, which is
inefficient compared with the vanilla HDFS that reduces the data at the application
layer. With fewer nodes, the effect is more significant because the amount of data is
the same, meaning each node now must process more data. With block mirroring,
HDRF can almost match the data transfer time of the vanilla HDFS with faster
networks because it transfers the reduced data instead of the original data, thus
minimizing the data transfer time and eliminating the need to reprocessing at the
destination nodes. With the slow 1-Gbps network, there is around 13% of data
transfer overhead for HDRF with block mirroring enabled over the vanilla HDF'S,
which is significantly smaller than that without block mirroring.

As data processing also depends on the node capability of data processing, we
also compared the newer nodes in Cluster A with the older nodes in Cluster B. In
this test, we used the first 20 GB of the Wikipedia dump. As shown in Figure 3.11,
the data transfer overhead is more significant in the newer nodes at around 23%
when compared with the older nodes at around 17% overhead for ZFS and HDRF
without block mirroring. The faster disks in the newer nodes decrease the amount
of time to read and write the data to HDFS, increasing the importance of the data
processing capability for a task like data compression. With the block mirroring,
the overhead over the vanilla HDF'S is smaller because the destination nodes do not
need to reprocess the data.
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3.4.6 Discussion

With these tests, we answered the research questions presented in the Introduction,
which are:

1. Isit possible to enable the data reduction schemes in the DF'S software without
affecting most of its functionality?

2. How easy is it to add and enable the schemes in the DFS software?

3. How big is the performance overhead for the schemes in the DFS software

when compared with the existing solutions?

We answered the first question by adding the support for data reduction schemes
to an existing DFS called HDFS with around 1000 lines of codes. We also tested it
in various workloads and confirmed that there are no issues with its operation. We
answered the second question by adding a deduplication scheme to HDFS through
HDRF and enabling schemes such as Lz4 and deduplication in various applications.
During the implementation and experiments, we observed that adding new data
reduction schemes is fairly easy through the provided abstract class. Additionally,
HDRF supports Hadoop CompressionCodecs, making scheme implementation as
easy as those in the application layer. Enabling the schemes is similar to the FS
layer approach. HDREF’s data processing is transparent like that of ZFS in the
FS layer. To answer the third question, we compared HDRF with the existing
approaches in various workloads and observed the overheads. The data transfer and
storage space overhead is fairly low at around 1%. With the Spark and MapReduce
workloads, the overhead is around 5%. These results indicate that the proposed
DEFS design can combine the benefit of existing approaches at a fairly low overhead
cost.

With the test in 3.4.3, this work also demonstrates that not all data reduction
schemes are equal and some schemes work better than others for certain data types.
For example, HDRF’s deduplication schemes can reduce more redundancy than
those of ZFS. Additionally, deduplication and compression do not perform well on
datasets with log or image files. This result shows the importance of having easy
access to the DFS to add and enable the schemes to the DFS.

3.5 Conclusion of this chapter

This work explores the application of data reduction schemes in big data systems
with DFSs such as Hadoop. Existing approaches have challenges in terms of the
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ease of adding or enabling schemes in the system. These challenges might discourage
users from using these schemes to maximize their storage space efficiency. This work
proposes a new DFS design that can combine the benefits of existing approaches by
applying the data reduction schemes directly in the DFS layer. The advantages of
this approach are threefold. First, adding a new scheme can be as easy as doing so in
the application layer. Second, it can apply the data reduction scheme transparently
regardless of the application. Third, the overhead is negligible compared with that
of the other approaches.

To show the effectiveness of the proposed design, we implemented it in an open-
source DFS called HDFS and compared it with a vanilla HDFS and the data re-
duction scheme in the FS layer through ZFS. Our results and experience dealing
with the tested setups show that adding a new scheme through HDRF is as simple
as through the vanilla HDF'S or even easier; enabling the schemes is as easy as the
F'S layer approach because it does not require any changes on the application side.
Our results also indicate that HDRF has a small overhead of around 23% for data
access, around 1% for data transfer and storage space overhead, and less than 5%
for compute workload.
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Chapter 4

High-performance KVS based on
LSM-tree

4.1 Introduction

Log-structured merge-tree (LSM-tree) is a write-optimized sorted data structure
that has multiple levels with increasing size from top to bottom based on the config-
ured ratio. One of the key features of LSM-tree is its ability to saturate the through-
put of most storage devices because it only writes sequentially, which is suitable for
use in the metadata system in a distributed storage solutions [13]. When a level
reached its limit, it flushes and merges the data with the next level. The main
drawback of LSM-trees is that the merge process can be computation heavy, which
may increase the tail latency for writes occurring at the same time as the merge
operation. It also rewrites KV pairs multiple times during merge operations, which
increases the write amplification.

WiscKey [76] solves this issue by reducing both the tail latency and the write
amplification is to write KV pairs unsorted in a log file and index them in an LSM-
tree. To further improve the performance, it uses an in-memory write buffer to
absorb small writes. However, write-intensive workloads may overload the buffer
return to normal sequential write throughput of the storage device. Additionally,
it increases the risk of data loss during system crashes. WiscKey uses a garbage
collector that reads the log file from the head and checks the validity of the KV
pairs in the LSM-tree. When a KV pair is still the latest version, the garbage
collector appends the KV pair to the tail of the log. As a trade-off, it may suffer
from high write amplification because the garbage collector may rewrite the KV-
pairs back when all KV-pairs in the log are still valid and the log file is reaching its

size limit.
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Persistent memory or non-volatile memory (NVM) is a storage class for persistent
storage that is directly attached to the CPU’s IMC. It has many advantages such
as low data access latency, byte-addressable, and high endurance when compared to
other persistent storage solutions. In 2019 Intel announced an NVM product called
PMem that uses 3D XPoint technology. PMem comes with a higher capacity than
DRAM at a lower price point. It also has a higher endurance when compared to
NAND-based flash storage solutions. However, it has 3 to 5-times the latency of
DRAM. Because it is directly attached to the IMC, users can access PMem in bytes,
which can be useful for persistent data structures. One of its unique characteristics
is that PMem does not scale well with a high number of write threads because of
its limited write buffer [77]. It may decline in performance if the number of write
threads is too high.

One of the solutions to improve the tail latency and write amplification of LSM-
tree is to use PMem, which has low data access latency and high endurance to
cope with the high write amplification of log-based LSM-tree. However, directly
using the log writers from the existing approach may degrade the performance of
the PMem because too many threads can overload the write buffers of PMem. This
work explores a solution that detaches the client’s write threads from the PMem by
using asynchronous multithreading.

4.2 Basic concept

In this section, we discuss the technology behind LSM-tree and NVM in detail.

4.2.1 LSM-tree

LSM-tree is a sorted data structure for KV storage that uses multiple levels that
have increasing sizes based on the fan-out ratio. For example, if the fan-out ratio is
k and the base size is z-bytes, then the size for level-n would be k - ™. Each level
in the LSM-tree may use different data structures to maximize the performance for
different storage mediums. The first level of the LSM-tree is called the memory
table. The most common data structure for the memory table is skiplist, a sorted
data structure that provides good performance for read and write-operations. As
for the on-disk data structure, most LSM-trees store the data in sorted string tables
(SSTables). Depending on the KVS, the SSTables may have different structures of
key, value, and metadata placement. Partitioning the SSTables, like in RocksDB,
may also help to reduce the write amplification during compaction because the
LSM-tree only needs to update a few SSTables instead of the whole level.
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Figure 4.1: The write-process of an LSM tree. (1) It inserts the KV-pairs to the
WAL. (2) LO in the DRAM absorbs the KV-pairs. (3) Once the LO is full, the
LSM-tree flushes the data to the next level. (4) The same process also applies to
the lower levels.

LSM-tree is a write-optimized data structure because it has to write buffers in
the DRAM, which absorbs small writes in the memory table, stored in the DRAM.
Additionally, the writes to the disk are sequential, which works well with both
SSD and HDD. In some LSM-tree-based KVS like RocksDB, there are two ways to
perform writes to the LSM-tree: (1) through the individual insertion of the KV-pairs
and (2) through batching, which groups individual writes into a single batch. The
former has lower latency, but it stresses the LSM-tree because the LSM-tree might
perform duplicate operations for different KV-pairs. The latter has higher latency
because the first insertion will have the same completion time as the last insertion in
the batch. However, the LSM-tree can amortize the write-operations by performing
fewer operations for the batch when compared to the individual insertions.

Write-operations in the LSM-tree start from the highest level, which is the level
with the lower level number or usually also called the level-0 (LO). First, it writes
new KV-pairs into a write-ahead log (WAL) to ensure atomicity. During unwanted
events such as system crashes, the tree can replay the WAL to recover lost data.
Second, it inserts the pairs into a sorted data structure such as skiplist as a memory
table in the LO. Third, it flushes each level when it reached the capacity threshold.
This flush process will merge the current level with the next level. This whole
process is shown in Figure 4.1.

Compaction strategy. LSM-trees have multiple compaction strategies, which
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influence the structure of the trees. The original LSM-tree [20] features a leveled
design where each level only has a single run, which is a sorted table. This design is
optimal for read-operations because we only need to travel one run for each level to
get a KV-pair. However, the compaction process will require the database to rewrite
the whole run in the next level to merge sort the new data, which can be expensive
in terms of write amplification. Tiered design, which is used by Cassandra [78] and
is available as an option in RocksDB [79], has multiple runs in each level instead of
a single run in the leveled design. It only merges the runs into a single run when
the level is full and flushes it to the next level without merging it with the runs in
the next level. The tiered design is more efficient in terms of write amplification.
However, a query will consume multiple IO because it checks multiple runs in each
level.

LSM-tree based KVS. Because of the flexibility of LSM-trees, many KVSs like
LevelDB [80], RocksDB [79], and Cassandra [78] use it as the main data structure
to maintain the data. Among these KVSs, RocksDB, which is a database developed
by Facebook based on LevelDB, has many types of optimizations to maximize its
throughput for different workloads on SSDs. For example, it is configurable to use
leveled, tiered, or FIFO, which is a single level LSM-tree, compaction scheme. By
default, it uses a level design, which is inherited from LevelDB. However, their
leveled strategy maintains multiple memory tables in the memory to boost up the
write throughput through parallelization. Because of this fact, it is a hybrid LSM-
tree that uses tiered compaction in the L0 and leveled compaction for other levels.
In addition to these compaction strategies, RocksDB also has point and block caches
to maximize the throughput for workloads.

RocksDB is one of the most updated KVS out there and many studies have used
RocksDB to experiment with new ideas. For example, Speicher [81] adds shielded
execution to RocksDB to protect against rollback or forking attacks, SpanDB [82]
implements SPDK in RocksDB to maximize its throughput when used with Optane
drives, and TRIAD [83] experiments with caching and batched 1/O operations. In
some cases, RocksDB adopts some of these ideas to further improve its performance.

LSM-tree with KV separation. WiscKey [76] is a key-value store that writes
the keys and values to log files and indexes the keys in an LSM-tree to improve write
latency and reduce the write amplification of the LSM trees. WiscKey is based on
LevelDB and uses leveled design. Although, the concept applies to any LSM-tree
compaction strategies, the effect on the tiered compaction strategy is unknown be-
cause WiscKey was not tested on compaction strategies other than leveled strategy.
It works by writing the KV-pairs in log files and inserting the keys and pointers to
the values in the log files to the LSM-tree. In WiscKey, the LSM-tree is significantly
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smaller than traditional LSM-trees. In some cases, the whole tree can reside in the
DRAM as demonstrated by Im et al. [84], which improves the read performance. It
performs garbage collection by checking and reinserting the old KV-pairs from the
log files into the LSM-tree. When the pair is valid then WiscKey reinserts them into
the log and updates the LSM-tree. Because most of the writes occur in the SSD,
WiscKey’s main bottleneck is the SSD. With a faster storage device, KVS with KV
separation like WiscKey can achieve higher throughput without heavily modifying
the LSM-tree.

WiscKey has several drawbacks related to its design and side-effects of the KV
separation. First, WiscKey may suffer performance degradation from a high number
of client threads depending on the storage devices. WiscKey solves this by buffering
the writes in the memory before flushing to the SSD. Although this solution can
minimize the load at the SSD because DRAM can handle the parallel load better,
this solution depends on the capacity of the buffer. Once the client write is faster
than the speed of flush to the SSD, the problem becomes prominent again. Second,
this also means that write is not atomic without a write-ahead log (WAL) because
data might be lost if there is an unexpected system crash. Third, writes to the
log may occur during compaction with large datasets because the tree’s size may
surpass the limit on the DRAM, increasing the write latency. Additionally, write
amplification is still an issue because the garbage collector still rewrites some part
of the data back to the SSD.

4.2.2 Persistent memory

Persistent memory, non-volatile memory (NVM), or also called storage class memory
(SCM) is a type of storage device that is attached to the IMC of the processor.
Like DRAM, NVM is byte-addressable and has low latency data access, which is
suitable for high-performance applications. The first commercial product to features
persistent memory is Intel’s Optane DCPM memory [85], which uses phase-change
memory (PCM) technology. NVM can be configured interleaved or non-interleaved.
Interleaved NVMs have a higher throughput compared to non-interleaved because
multiple DIMMs can share the workload [86,87].

The writes to the persistent memory are not always guaranteed because the data
might have not left the CPU’s cache and might be gone if unexpected shutdowns
occur. To ensure writes are persisted in the memory, applications can use cache
line flush operation by using the processor instructions such as CLWB, CLFLUSH,
and CLFLUSHOPT [88]. In most cases, CLWB is recommended over the other
instructions because it only persists the data in the NVM without evicting the data
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Table 4.1: The Fio sequential write test’s latency results. The lower is better.

1 thread average (us) 20 threads average (us)
DEVDAX 0.66 193.24
FSDAX 2.11 38.67
SSD 748.12 106663.84

from the cache, such that the data is still accessible through the CPU’s cache for
fast access. Intel also provides persistent memory libraries such as libpmem [89],
libpmem?2 [90], libpmemobj [91] to help application programmers to access these
storage devices and persist their data.

The users can configure the NVM in-memory mode, which allows the NVM to
act as volatile memory and extend the DRAM, or in-app direct mode, which persists
the data even after a power cycle. In-app the direct mode, users can configure the
persistent memory as a character device (DEVDAX) or use it with a file system
(FSDAX). Based on our knowledge, FSDAX is compatible with almost all libpmem
libraries, while DEVDAX is only accessible through open and mmap system calls
and the libpmem?2 library. In this work, we implemented our code with libpmem2
to persist and access the data.

Compared with other storage technology, NVM the lowest latency for the NVM
is achievable through the DEVDAX mode, which provides direct access to the NVM
without a filesystem like a DRAM to applications. To compare the latency of
NVM’s DEVDAX mode, FSDAX mode, and SSD, we ran a simple Fio [92] se-
quential write test with 4 GB of data. Our test system uses Intel Xeon 5218 (16
cores, 32 threads), 2 DIMMS of 16 GB DDR4 memories, 2 DIMMS of Intel Op-
tane DCPM NMA1XXD128GPS, and Micron 5200 480 GB SSD with 300 MBps
sustained write throughput. The test system is running Ubuntu 20.04.2 LTS with
Linux Kernel 5.5.0 74.

As shown in Table 4.1, the mean latency for DEVDAX is significantly lower for
single thread (1T) sequential writes, and we recorded up to 4.23 GBps through-
put with our 2 DIMMS interleaved Optane setup. The result also shows that la-
tency degrades with more threads, especially for the NVM with DEVDAX mode.
Additionally, as shown in Figure 4.2, only DEVDAX experiences degradation for
bandwidth with a higher number of threads because of the write buffers limita-
tion of the NVM [77]. These results indicate that DEVDAX mode can achieve the
lowest latency for NVM devices, but it may suffer performance degradation when
overwhelmed with too many write threads.

A unique characteristic for Intel PMem is that write throughput does not scale
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Figure 4.2: The Fio sequential write test’s bandwidth results. The FSDAX uses
Ext4 DAX and libpmem engine. The higher is better.

linearly with the number of access threads. As shown by Yang et al. [77], the write
throughput stops to increase at 4 threads and starts to decline after 5 threads. This
characteristic can be detrimental for most KVS that does not limit the number of
writer threads such as WiscKey on write workloads that rely on multithreading to
generate the data. For example, in our test system, using multiple YCSB threads is
crucial to produce a high amount of data as shown in Figure 4.3. In this example,
the data generation scales almost linearly with the number of threads. In such cases,
limiting the number of client threads to avoid degrading the NVM performance can
be inefficient in the system utilization for the job.
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YCSB thread scaling result
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Figure 4.3: Test system’s throughput for generating KV pairs without inserting the
data into the KVS.

4.3 Non-volatile key-value store (NVKVS)

The main bottleneck of KVSs with KV separation such as WiscKey is the storage
device because they write most of the data in the log files in the SSD. Replacing
the storage device with a faster solution like NVS seems like a natural progression
to these KVS. However, at the moment, no KVS with KV separation addresses the
potential issue that may come from the client threads, which can be detrimental to
the KVS throughput. In this paper, we propose a new NVM-based LSM-tree with
KV separation called non-volatile key-value store (NVKVS). NVKVS decouples the
client threads from the writer threads and stores the KV-pairs in the NVM to
maximize the write throughputs. It can maximize the performance of NVM devices
without degrading the write performance. Additionally, NVKVS can extend the
system lifetime by performing most writes to the NVM, which has significantly
better endurance than SSD drives with NAND flash.

Figure 4.4 shows the design of NVKVS. NVKVS maintains KV-pairs in a rotating
log file stored in NVM to reduce the write latency and increase system endurance
in write-intensive workloads. To provide fast reads, NVKVS utilizes RocksDB to
index the keys and the offset of the values, which are stored in the NVM. NVKVS
manages new writes by inserting key-value pairs into the log file first, and then into
the LSM-tree. The read process is backward from the writing process. The read
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Figure 4.4: The design and supported operations in NVKVS. Write (1) inserts the
data into the log file and (2) index it in the LSM-tree. Read (1) starts from the
LSM-tree to retrieve (2 and 3) the offset to the value in the log file. (4) NVKVS
returns the value in the log based on the offset.

starts by querying the LSM-tree and then reading the values from the log file based
on the offsets from the LSM-tree.

4.3.1 NVKYVS design challenges

NVM brings potential performance and endurance improvements over SSDs devices.
For example, NVM has a significantly higher endurance and a lower access latency
when compared to other persistent storage mediums. However, to achieve the max-
imum throughput of the NVMs, the system’s design must consider the unique char-
acteristics of NVM devices [77]. NVKVS uses several programming techniques and
optimizations to maximize the performance of NVMs while ensuring atomicity.

Parallel data access

Similar to SSDs, NVMs require multiple threads to access the data to saturate the
throughput. This can be solved easily by spawning multiple threads to execute
multiple jobs in parallel. However, simply creating new threads without limits will
degrade the performance of NVMs because of the limited capability of the NVM’s
underlying write buffers [77]. For example, when multiple threads try to write data
into NVM, the throughput may decline after several parallel accesses, which depends
on the number of DIMMSs for the interleaved NVM setup.
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Figure 4.5: NVKVS’s components that handle write-operations.

To avoid degrading the performance, NVKVS has a worker pool with a config-
urable number of threads that decouples the client threads with the NVM to ensure
client-side multithreading does not harm the key-value store performance. This
number of threads can be configured based on the configuration of the NVMs in
their systems. For example, users with more interleaved NVM DIMMs can use a
higher number of threads to maximize their system throughput. This system al-
lows the client to submit a new job in a multithreaded manner without significantly
harming the performance.

Figure 4.5 shows the multithreading aspect of NVKVS. NVKVS handles data
reads from the log file in the NVM separately from the client threads. The client
threads first submit the write jobs to the job list and notify the corresponding worker
pool. The client threads then wait for the job status to change while the workers in
the pool work do the job. After job completion, the worker threads notify the client
threads regarding the job completion status. This process occurs asynchronously
between the client threads and the NVKVS threads.

Atomicity

WAL is one of the most used techniques in databases to ensure that the durability
of each write is atomic. However, in the case of separated KV-pairs databases such
as WiscKey and NVKVS, this can be a wasteful process because they already write
the KV-pairs to the log files in persistent storage devices such as NVMs and SSDs.
Adding an extra log would be wasteful. In this case, NVKVS writes the WAL to
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the NVM and reuses it as the log file. When a new KV-pair does not reach the
LSM-tree, it is assumed as lost because the read always starts from the LSM-tree
and not from the log file.

Write persistency

Because NVM shares some programming models with DRAM, data writes to the
NVM are not always persistent because the data might still lie in the cache line of
the processor [88]. NVKVS solves this by calling processor instruction called CLWB
through libpmem?2 persist function [90], which flushes the cache line of the processor
to the NVM, to ensure the write but without evicting the data in the cache. This
solution guarantees that each inserted KV-pair is in the NVM and does not harm
the data access performance because the data is still accessible in the cache.

Data recovery

Unexpected events like system crashes from hardware or software errors may occur in
any system. To prevent such events, KVSs like NVKVS must handle data recovery
once the system is back online. Because each write in NVKVS is atomic and done
in chronological order, NVKVS handles these events in two ways. First, if the
LSM-tree is not lost, NVKVS can query the log files from the tail. Second, if the
LSM-tree is lost, NVKVS can recover the data by reading the log file from the head
and reconstructing the LSM-tree. NVKVS may lose any writes that occur during
these events because it only updates the current offset data for completed writes. In
such cases, NVKVS never has corrupted writes unless there is an error in the NVM
device.

4.4 Implementation

To evaluate the performance of the proposed design, we implemented a prototype
of NVKVS by extending the RocksDB 6.15.2. In the code, we modified the main
DB class, which is the DBImpl class, to intercept and retrieve the KV-pairs be-
fore RocksDB stores them in the LSM-tree. Once NVKVS receives the KV-pairs,
NVKVS registers an offset for the KV-pairs and returns the offset to the RocksDB
to store in the LSM-tree. The implementation of NVKVS is illustrated in 4.6.
NVKVS currently supports write and simple read to ensure that KV-pairs writes
are successful. Each operation, especially for writers, uses thread-safe implementa-

tion to ensure atomicity for the database, such that no writes can overlap each other.
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Figure 4.6: The implementation of NVKVS in RocksDB 6.15.2. The grayed part is
the NVKVS specific components.

Once RocksDB indexes the KV-pairs, the client can access the KV-pairs through
the RocksDB.

4.4.1 PMEM manager

To manage the writes and offsets in NVKVS, we included an NVM manager called
PMEM manager as shown in 4.6. On startup, the PMEM manager loads the offset
from the header of the log file, which contains the start offset, current write offset,
current garbage collector offset, and the max offset. Additionally, it will try to get
the NVM base offset, which is randomized by the operating system’s address space
layout randomization, by using the lpmem?2 library. Based on these offsets, the
PMEM manager can guide the writer threads in writing the data to the NVM by
adding the current write offset to the base offset. It also provides persist function

to the writer threads to ensure the atomicity of each write.

4.4.2 Log file

To store the KV-pairs, NVKVS uses a rotating log, which is a log file that is reusable
when full by rewriting from the beginning. Inspired by WiscKey, NVKVS checks
the validity of the KV-pairs before rewriting them. If the pairs are still valid in the
LSM-tree, NVKVS reinserts the KV-pairs back to the log file. This solution may
increase the write amplification of the log file. However, write amplification is less
of a concern for NVM, which is more durable than SSDs.
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Figure 4.7 illustrates the structure of the rotating log file. The log file contains
two important structures, the header of the log file and the header of the KV-pair.
The header of the log file contains the offset data, which are the maximum length
of the log file, the last write offset, and the last garbage collector offset. NVKVS
updates these offset information for every KV-pair write and when NVKVS closes
the log file. The header of the KV pair contains the length for the trailing key and
value. In this aspect, NVKVS is similar to WiscKey, which can store variable-sized
values without any padding. NVKVS uses unsigned short, which is 16 bits in length,
for the key and value. Based on this specification, the maximum length for a key or
a value would be 64 kB, which is sufficient for most workloads that may have values
varying from 10 B to 4 kB [76]. This limit can be changed to accommodate larger
values by increasing the size of the header. For larger values, the cost of the larger
header is insignificant compared to the value size.

4.4.3 WiscKey reimplementation

At the time of writing this paper, we do not have any access to the source code of
WiscKey. Because of this issue, some parts of the implementation might be different
from the original work. For example, we did not implement the write buffers for the
value log because of our time limitation. However, our reimplementation retains the
key features of WiscKey such as KV separation and log file in the SSD. Additionally,
the reimplementation uses the same code as NVKVS to evaluate the benefit of NVM
over SSD for KVS with KV separation.

4.5 Experimental results

In this section, we discuss the performance aspect of NVKVS for write workloads
based on our experimental testing.

4.5.1 Test setups

To compare NVKVS in write workloads with vanilla RocksDB and our reimplemen-
tation of WiscKey, we conducted database load experiments where each tested KVS
runs on the same test system described in Section 4.2. NVKVS uses the SSD to store
the LSM-tree and the NVM to manage the log files. Vanilla RocksDB and WiscKey
have two versions, which are SSD and NVM. In the test results, the storage medium
is indicated in the name. Both NVKVS and WiscKey have their RocksDB’s WAL
disabled as explained in Section 4.3. All tests are run 3 times and the shown re-
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sults are the average of the 3 runs’ results. All tested KVSs use the same RocksDB
configuration with compression disabled except for vanilla RocksDB with WAL and
pipelined write enabled.

To test these KVSs, we use a popular database benchmark application called
YCSB [93]. The default YCSB also tests the test system by performing serialization
and deserialization. Additionally, it uses column family to store the values into the
LSM-tree. These operations are compute-intensive, expensive, and may misrepre-
sent the performance of the database under plain key-value insertion. To test the
maximum potential of each KVS, we remove these extra operations for YCSB, which
is similar to what is done in SpanDB [82].

Decoupled write experiment

One of the main issues with existing KVS with KV separation is that the client
threads and the writer threads are coupled together, which can be detrimental for
NVM. In this test, we compared NVKVS with coupled threads and NVKVS with
decoupled threads. The NVKVS with decoupled threads uses 6 threads for the
writer threads in the worker pool. We used YCSB and inserted 20 million keys with
a 1000 bytes value each into the KVS with YCSB threads from 15 to 25 threads.
As shown in Figure 4.8, NVKVS with decoupled threads scales better with the
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Figure 4.8: The comparison of NVKVS with coupled threads and NVKVS with
decoupled threads. NVKVS with decoupled threads uses 6 writer threads. The
higher is better.

number of client threads when NVKVS limits the number of writer threads through
decoupling. When NVKVS does not separate the client’s and writer’s threads, the
performance degrades more with a higher number of threads. This result indicates
that simply replacing the SSD with NVM in WiscKey will degrade the performance
because of the lack of writer threads decoupling.

Worker thread scaling

In this experiment, we tested the worker threads scaling for the worker pool in
NVKVS and WiscKey with 20 million keys and 1000 bytes values. As shown in
Table 4.2, NVKVS scales well with the number of YCSB threads because of the
worker pool. Without the worker pool, the client’s threads may overstress the
write buffer, degrading the write throughput. However, when the YCSB thread’s
number is too low, the performance degrades because it is not enough to saturate the
NVM. Additionally, when the number of YCSB threads is too high, the performance
starts to degrade because of the overhead of each thread. These values may vary
depending on the NVM configuration. With our NVM configuration, we saturated
the performance at 23 YCSB worker threads and 6 threads in NVKVS’s worker pool
with 648 kOps/s.
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Table 4.2: The throughput for thread number scaling test of NVKVS. The higher

is better.
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Next, to measure the best number of threads for YCSB for the tested KVSs,
we used a fixed number of threads for the worker pools in NVKVS and WiscKey
and changed the number of worker threads for YCSB. The test uses 20 million keys
and a 1000 bytes value each. In this test, we use 6 threads for NVKVS’s write
threads. These numbers are obtained based on our experiment, where we varied the
number of threads for YCSB and the KVSs in the worker pool to get the maximum
throughput.

Figure 4.9 shows the result for YCSB scaling for the tested KVSs with a fixed
number of worker pools for NVKVS. From the result, we observed that NVKVS
performed well up to 25 YCSB threads with only 6 threads in the write thread
pool. This result indicates that more direct solutions such as limiting the number
of client threads to limit the number of access to the NVM would not saturate the
system because the client cannot generate enough data. For example, if we restrict
the number of client threads to 6, NVKVS would only achieve around 285 kOps in
this test. With the asynchronous multithreading, NVKVS allows the application
to generate more data by increasing the thread count without affecting the write
throughput. However, over 25 threads, the overhead of the multithreading starts to
degrade the performance of the KVS.

The results depicted in Figure 4.9 also indicate that the performance may change
when using Vanilla RocksDB and WiscKey on NVM. For Vanilla RocksDB, the
throughput increases by over 2-times at around 238 kOps for NVM and 76 kOps
for SSD. However, we observed throughput inconsistencies with 10-threads or more.
WiscKey on the other hand, performed more consistently than Vanilla RocksDB
because it performs fewer merge operations. However, switching to NVM from SSD
only slightly improved the performance of WiscKey.

Additionally, the results in Figure 4.9 show that WiscKey only scales well up
to 5 threads. From 6 threads to 15 threads, we observed a small increase in the
throughput for WiscKey. After 15 threads, the throughput of WiscKey started to
degrade because of the parallel write limitation of the SSD and the multithreading
overhead. We also observed that RocksDB does not scale well with over a single
YCSB thread because it must write the data into the WAL and the extra overhead
from threads synchronization [82].

YCSB load

One of the main usages of KVSs is to manage a live databases system [94, 95]
where the KV-pairs are inserted individually without any type of batching from
the client. This type of insertion is more sensitive to the overhead of each write
unlike batched insertions, which amortizes the overhead through bulk writes. In
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Table 4.3: The average, 99th percentile, and maximum latency results for the tested
K-V stores for a short load (20 million keys). The values are 1000 bytes in size. The
lower is better.

Short load
Average (us)  99th percentile (us)  Max (us)
NVKVS 30 59 9843
WiscKey SSD 44 92 74986
WiscKey NVM o1 148 7275
V. RocksDB SSD 123 22 6671018
V. RocksDB NVM 79 364 16542

Table 4.4: The average, 99th percentile, and maximum latency results for the tested
K-V stores for a long load (100 million keys). The values are 1000 bytes in size. The
lower is better.

Long load
Average (us)  99th percentile (us)  Max (us)
NVKVS 31 59 18671
WiscKey SSD 38 113 123391
WiscKey NVM 51 149 13162
V. RocksDB SSD 31 4552 15103316
V. RocksDB NVM 147 2536 56607

this test, we evaluated these three KVSs by using YCSB workload A load, which
inserts the K'V-pairs separately from each other with RocksDB’s put command, with
two different database sizes. The first one contains 20 million keys with a 1000 bytes
value each. The second one has 100 million keys with a 1000 bytes value each. We
used the best numbers of YCSB threads from the previous subsection, which are:
6 threads in the worker pool and 23 threads for NVKVS, 11 threads for WiscKey
on SSD, 15 threads for WiscKey on NVM, 23 threads for vanilla RocksDB on SSD,
and 20 threads for vanilla RocksDB on NVM.

As shown in Table 4.3 and 4.4, for short and long loads, NVKVS performed
better than other tested KVSs for average and maximum latencies because of the
characteristics of NVM. As for WiscKey, it also performed consistently because
of the KV separation. However, the maximum latency becomes more significant
because compaction in the LSM-tree is more often with long writes. The 99th-
percentile latency of vanilla RocksDB for short load is better than WiscKey’s because
these KVS with KV separation have extra overhead for writing into the log files.
However, the average latency is worse for vanilla RocksDB because the max latency
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Figure 4.10: The average latency for each 10 seconds time point during 100 million
keys upload by using YCSB load for NVKVS.

is significantly worse.
The results also indicate that for long load, vanilla RocksDB performed poorly

because compaction is more often for larger LSM-trees. This reason is also supported
by the results in Figure 4.10, 4.11, 4.12, 4.13, and 4.14, , which illustrates the average
latencies for 10s durations during the 100 million keys YCSB load test. The smaller
LSM-tree in NVKVS and WiscKey is more advantageous in terms of latency because
they can deliver consistent latencies throughout the write workload. The results
also indicate that NVM can provide more consistent latency for Vanilla RocksDB.
However, WiscKey with NVM regressed in latency because it does not decouple the
client threads from the writer threads, which is detrimental for NV M.
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Figure 4.11: Average latency for each 10 seconds time point during 100 million keys
upload by using YCSB load for WiscKey on SSD.
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Figure 4.12: Average latency for each 10 seconds time point during 100 million keys
upload by using YCSB load for WiscKey on NVM.
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Figure 4.13: Average latency for each 10 seconds time point during 100 million keys
upload by using YCSB load for Vanilla RocksDB on SSD.
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Figure 4.14: Average latency for each 10 seconds time point during 100 million keys
upload by using YCSB load for Vanilla RocksDB on NVM.

As shown in Figure 4.15, with short writes of 20 million keys NVKVS outperforms
other tested KVSs with 648 kOps/s, which is over double the throughput of our
WiscKey reimplementation. During short writes, the throughput for all tested KVSs
is stable because the burden of compaction is not significant. With long writes of
100 million keys, which has an approximate size of 100 GB, NVKVS performs better
with long writes because the startup overhead becomes more apparent with the short
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Figure 4.15: Write throughput for short write (20 million keys) and long write (100
million keys) with 1000 bytes values. The higher is better.

writes of 20 million keys. Similar to the latency, NVKVS and WiscKey do not suffer

from long write sessions because of the smaller LSM-tree, unlike vanilla RocksDB.

4.5.2 Data recovery

Unwanted events like unexpected shutdowns from hardware failures or software fail-
ures may cause data loss for KVS systems like NVKVS. In NVKVS, data loss may
occur in two ways: (1) partial loss from the current writes where NVKVS have not
persisted some keys from the client in the log file, and (2) index loss, where the
data is already in the log file, but not in the LSM-tree. NVKVS solves the former
by reading the header and checking the written data in the log file and inserting it
back into the LSM-tree. As for the latter, NVKVS simply reinserts keys in the log
file into the LSM-tree starting from the last-known key in the LSM-tree.

We tested the indexing speed by indexing a 100 GB log file. NVKVS completed
this indexing process in 202 seconds on a single thread, which translates to 495
MBps. This indexing process is slower than the YCSB load in the previous sub-
section because NVKVS indexes the keys in chronological order, which limits the
number of threads to 1.
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4.5.3 Write amplification

In terms of write amplification, we recorded 3 for both NVKVS and WiscKey and
7.4 for vanilla RocksDB from RocksDB stats. Vanilla RocksDB has a higher number
of write amplification because the LSM-tree is significantly larger than other tested
KVSs, thus increasing the occurrence of compaction. As for NVKVS and WiscKey,
the write amplification number is lower and limited to the LSM-tree, which only
takes 3% of the dataset’s size. As for the log file, which is significantly larger than
the LSM-tree, the write amplification is 1 because no garbage collection scheme is
currently implemented. In the case of NVKVS, write amplification for the log file
is less of a concern because NVM is more durable than SSD. In the future, we are
planning to test other operations such as point query, range query, and garbage

collection for NVKVS.

4.6 Related work

WiscKey [76] is the first work that uses KV separation in the LSM-tree. It introduces
KV separation into the LSM-tree by chronologically writing the KV-pairs in log
files and indexes the keys in the LSM-tree. The implementation of WiscKey uses
LevelDB for the LSM-tree. The main drawback of WiscKey is the lack of write
thread management, which is crucial for storage technologies like Optane NVM
from Intel. These type of storage technologies has a limited write buffer [77], which
may degrade the write throughput when overwhelmed by write-operations from a
large number of threads.

One of the main concerns for the existing KVSs with LSM-tree is write-thread
synchronization, which can take a significant amount of time when using high-
performance storage devices. SpanDB [82] extends the existing RocksDB’s code
to accommodate low latencies writes when using high-performance NVMe SSDs.
SpanDB replaces the synchronized write method in the RocksDB with asynchronous
write-operations where the client can submit the KV-pairs and wait. SpanDB uti-
lizes batching and parallel-writes methods to maximize the throughput of the storage
devices.

NoveLSM [96] is an LSM-tree-based KVS system that is designed for NVM to
achieve low latency and high throughput in applications. The main feature of Nov-
eLLSM is the use of a byte-addressable data structure to store the data in the NVM
called persistent skiplist. This approach avoids the block I/O, minimizing the la-
tency and data recovery time.

The work presented in this paper compares directly to WiscKey because it shares
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the idea of the KV separation from WiscKey and extends it for NVM-based storage
devices. This paper proposes a write decoupling method for LSM-tree with KV
separation like WiscKey to exploit the high throughput and low latency of NVM.
Our experimental results show that decoupling the write is crucial to maintain high
throughput with a high number of client threads during write-intensive workloads.

4.7 Conclusion of this chapter

LSM-trees with KV separation such as WiscKey solve the issue with high write
tail latency for LSM-tree especially for workloads with large datasets. However,
the current design of WiscKey is only optimized for SSD by using in-memory write
buffers, which does not guarantee atomicity and might run out during write-intensive
workloads. Additionally, no mechanism limits the write to the SSD. Writes from
a high number of client threads may exceed the buffer capacity and flush speed,
degrading the system performance. Simply replacing the SSD with faster storage
devices like NVM may degrade the performance of the KVS because of the unique
characteristics of the NVM.

In this work, we propose an NVM-based KVS with KV separation that indexes
the keys through LSM-tree called NVKVS. It features asynchronous multithreading
that decouples the client and writer threads to maximize the storage device through-
put, and reusable WAL to maximize the performance of NVM devices without sac-
rificing the atomicity of each write. Based on our experimental testings, NVKVS
can offer over double the throughput and better write latencies when compared to
other tested KVSs.
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Chapter 5

Conclusion

5.1 Summary

Data reduction schemes play an important role in modern storage technologies in-
cluding distributed file systems (DFSs), which is a scalable solution to store a mas-
sive amount of data. To improve the performance and ease of use of these schemes
mainly in DFS environments, this study explores three important aspects to the ap-
plication of data reduction schemes in DF'Ss, which are the data reduction schemes,
the distributed file systems (DFSs), and the metadata system that supports many
applications including the data reduction schemes and DFSs. First, it summarizes
the challenges of chunking in deduplication and how it affects the performance of the
deduplication scheme. Second, it reviews the challenges of applying data reduction
schemes in a DFS environment, which may hinder the use of the schemes. Third, it
discusses the issues of log-structured merge-tree (LSM-tree) based key-value stores
(KVSs) when used with a non-volatile memory (NVM).

The Byte-values-based content-dependent chunking (CDC) algorithms’ mainly
use byte-value comparisons to determine the cut-point. Reducing the number of
comparisons can directly translate to higher throughput. The proposed work called
Rapid Asymmetric Maximum (RAM) improves upon the state-of-the-art algorithm
called Asymmetric Extremum (AE) [14] by changing the conditions and window
configuration. This new condition reduces the possibility of entering the condition
and the overall number of comparisons. Additionally, RAM performs fewer variable
assignments because the variable assignments to track the maximum-sized byte are
located in the first if statement. However, RAM’s window configuration is worse at
detecting low entropy string, which can result in long chunks and lower duplicate
finding performance. To solve this issue, this work also proposes RAML, which uses
a size limit that slightly increases the number of comparisons. Compared to AE,
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RAM can produce up to 48% higher throughput at the cost of 2% to 16% lower
duplicate found.

Adding and enabling data reduction schemes in a DFS environment can be a
challenge depending on the applications and the DFS environment, which often is
inaccessible to the users. This work proposes a new DFS design that enables easy
data reduction schemes to use and implement in the DFS through programming
techniques such as the dynamic library. It evaluates the feasibility of the design by
implementing it as a framework called Hadoop Data Reduction Framework (HDRF)
in a DFS called Hadoop DFS (HDFS). HDRF enables file system-level reduction in
HDFS without relying on the underlying file system’s reduction scheme, making
it compatible with all Hadoop applications. The experimental results show that
HDRF can speed up data transfer when using a data transfer optimized application
without affecting the compression ratio. The results also indicate that HDRF has
minimal runtime and storage overhead compared to vanilla HDFS when running the
same application.

LSM-trees with KV separation such as WiscKey solve the issue with high write
tail latency for LSM-tree by writing the key-value pairs (KV-pairs) into a log file
and indexing them in the LSM-tree. This separation reduces the LSM-tree’s size
and the number of merge processes, increasing the consistency of write latencies for
write-intensive workloads. However, these KVS with KV separation does not limit
the number of threads that access the storage devices, which can be detrimental for
storage devices that do not scale well with a high number of threads such as NVM.
This work proposes a KVS called Non-volatile KVS that controls the number of
access to the NVM by using asynchronous multithreading. This solution limits the
number of write-threads without limiting the number of client threads, which is cru-
cial to generate the data. This study evaluates the proposed approach through the
implementation of the design called NVKVS in RocksDB. The experimental results
show that NVKVS can perform up to 2-times better than the reimplementation of
WiscKey for write-intensive workloads with a high number of client threads.

The combination of the three works proposed in this study are not tied to each
other and can work on top of each other to improve the DFS’s performance and
ease of use. For example, the metadata system can run in both the DFS and the
deduplication scheme with the proposed CDC algorithm that runs in the DF'S. This
study can improve the existing DFS design and inspire future DFS design to be

more easily accessible in the aspect of the data reduction scheme applications.
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5.2 Future work

This study explores three different aspects of data reduction schemes usage in DFS
environments and proposes solutions to improve the DFS in the terms of performance
and ease of use when performing data reduction in the DFS. As a whole study, it
can be expanded in several aspects. For example, evaluation of the DFS design in
different DFS software such as Lustre to confirm its effectiveness.

The work presented in this study is also expandable as an independent study. For
example, the use of RAM in performance limited environments such as deduplica-
tion in IoT devices. For HDRF, it has other potentials such as the data processing
capability of HDRF, which can improve the compatibility of HDFS with other stor-
age devices without relying on other solutions with high processing overhead such as
FUSE [97]. For NVKVS; it still requires a garbage collection scheme to address the
limited capacity of the NVM and to minimize the write amplification on the NVM
by writing the data in an efficient data structure on more cost-effective storage

mediums such as SSD.
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