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Abstract
Pesticides are artificially synthesized chemical compounds with high biological activity that are

widely used in agriculture for controlling pests and insects. Some pharmaceuticals and pesticides

have common active ingredients. However, unlike pharmaceuticals, pesticides are intentionally

released into the environment for crop control. As a result, they may remain in agricultural products

and then be unknowingly ingested via food over a long period. Conducting safety tests for the

registration of pesticides is usually expensive and takes up to several years. Depending on the

obtained test results, a pesticide may or may not be approved for registration or its registration may

be cancelled altogether.

Thus, it is necessary to predict the main safety parameters at the early stage of pesticide devel-

opment. In previous studies, some prediction models for such parameters have been developed.

However, calculated properties were used as explanatory variables for these models because it was

difficult to determine them experimentally. In this study, we have developed and modified a predic-

tion model for soil adsorption coefficient (Koc) and bioconcentration factor (BCF), which are two of

the most important parameters used in risk and hazard assessments to determine the registrability of

pesticides in the European Union (EU). Koc represents the distribution ratio of chemicals between

the soil/sediment phase and the aqueous phase. BCF is a widely used hazard assessment criterium

and represents the ratio of the chemical concentration in fish to its concentration in water. By

using the experimental and calculated values of physicochemical properties that are rarely used

as explanatory variables, we have managed to establish more accurate prediction models than the



conventional ones and express the relationship between selected parameters on one side and Koc

and BCF on the other side. By applying these models, a preliminary environmental risk assessment

can be performed without conducting time-consuming experiments. Consequently, the proposed

models may significantly contribute to the development of new chemical compounds, including

pesticides. This work represents a new effective approach to evaluating the Koc and BCF parame-

ters as well as the applicability of the data mining method.

In Chapter 3, we developed prediction models for Koc values. In previous studies, molecular and

topological descriptors were mainly used as explanatory variables because their magnitudes could

be easily calculated from chemical structures. In contrast, physicochemical properties are closely

related to the Koc value, but they have not been analyzed in sufficient detail. For this reason, we

collected experimental data for different physicochemical properties listed in pesticide evaluation

reports. In addition, we calculated the corresponding molecular descriptors using Cheminformatics

software. By utilizing these physicochemical properties and molecular descriptors, a new prediction

model based on the gradient boosting decision tree (GBDT) algorithm was developed. The obtained

results revealed that the proposed high-performance model was more accurate than the previously

reported models.

In Chapter 4, we propose prediction models for Koc values based only on calculated parameters.

In the previous chapter, physicochemical properties were obtained from a peer-reviewed report of

the European Food Safety Agency and Chemistry Dashboard of the U.S. Environmental Protection

Agency (EPA). However, collecting experimental data for a wide range of compounds requires a

considerable amount of time and effort. Hence, the objective of this chapter was to develop an

accurate predictive model by obtaining physicochemical properties using a relatively easy approach
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and freely available software. In addition, we employed a larger dataset of Koc values than that

utilized in the previous chapter. The resultant model demonstrated much better prediction ability

than those of the previously developed models. Although the model based on the experimental

values of physicochemical properties exhibited a good fit, high prediction accuracy, and robustness,

the approach proposed in this chapter is a good substitute for actual values if the latter are difficult

to obtain.

In Chapter 5, we establish prediction models for the estimation of logarithmic BCF values.

Similar to the previous chapter, we calculated physicochemical properties by OPERA software

because the quantitative structure-property relationships model for Koc developed in the previous

chapter exhibited superior performance. Hence, the new model based on the GBDT algorithm and

properties calculated by OPERA is more accurate than the existing BCF prediction model. The

proposed method is applicable for the development of prediction models for various parameters

used in environmental risk assessment.

In Chapter 6, we discuss the results of this work and their significance. In Chapter 7, we

summarize the conclusions of this work and outline the directions of future research studies.
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Chapter 1

Introduction

1.1 Background and purpose of this research

Pesticides are artificially synthesized chemical compounds with high biological activity that are

widely used in agriculture for controlling pests and insects. Antibiotics such as streptomycin and

oxytetracycline also contain active ingredients commonly present in pesticides and pharmaceuticals

[Thiele-Bruhn, 2003]. However, unlike pharmaceuticals, pesticides are intentionally released into

the environment for crop control, as shown in Figure 1.1. As a result, they may remain in agricultural

products and then unknowingly be ingested as food over a long period. Furthermore, the incorrect

use of pesticides may cause environmental pollution and produce a negative impact on the entire

ecosystem [Damalas and Eleftherohorinos, 2011]. Therefore, to achieve a proper balance between

risks and benefits, it is necessary to adopt special measures restricting or prohibiting the pesticide

application when the risk is too high.

There are four main safety requirements related to pesticide utilization. First, it is necessary
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Figure 1.1: Environmental effects of pesticide applications

to ensure the safety of agricultural chemical users by assessing the potential for acute poisoning

in a case of accidental human exposure to pesticides during application. Second, it is imperative

to maintain the safety of crops by examining whether their growth or yield/quality are affected

by pesticide spraying. Third, the safety of consumers must be ensured by evaluating the effects

of both the short-term and long-term pesticide exposures on human health due to the continuous

consumption of pesticide-treated crops. Finally, an environmental safety assessment is required.

During the registration of pesticides with proper authorities, the manufacturer must submit an

application form including the results of a safety evaluation to an EU inspection country. A draft

evaluation report, which is called a draft assessment report (DAR) (https://www.efsa.europa.

eu/en/publications), is issued after a certain period. Subsequently, the European Food Safety

Agency (EFSA) publishes the DAR and invites the public to comment on this document. After

that, EFSA issues the final evaluation report, and the European Commission votes on pesticide

registration. The evaluation reports issued after July 29, 2005 are published on the Web, and

each report includes the results, considerations, and evaluations of various safety tests used in the

application. Meanwhile, OPERA, a software package for calculating the physicochemical properties

of chemical compounds, has been released by the U.S. Environmental Protection agency (EPA)
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(https://github.com/kmansouri/OPERA). The U.S. EPA is an administrative agency of the

U.S. federal government created to protect the public health and preserve the natural environment.

Its main objectives include controlling air pollution, water pollution, and soil pollution.

Thus, by analyzing the DAR and physicochemical properties calculated by OPERA, it is possible

to develop a predictive model for environmental risk / hazard assessment parameters. Note that

these parameters can be predicted before the initiation of long-term studies and expensive trials for

pesticide registration, which affect R&D decisions.

In this work, we have developed prediction models for risk assessment parameters based on

machine learning by using the physicochemical properties provided in the evaluation reports for

various pesticides registered in Europe and calculated by OPERA. In previous studies, linear

relationships between some explanatory variables and the objective variable have been established.

However, because these parameters depend on various factors, it is difficult to adequately describe

them by a simple linear model [Lombardo et al., 2010]. Therefore, machine learning was used

in the present study to develop a highly accurate prediction model utilizing various explanatory

variables.

In particular, we proposed prediction models for the soil adsorption coefficient (Koc) and bio-

concentration factor (BCF), which represented the key parameters of environmental risk / hazard

assessments [Chi et al., 2018].

3



1.2 Structure of this research study

The structure of this paper can be described as follows. In Chapter 2, previous research works on the

prediction models of safety test parameters used in the environmental risk / hazard assessment of

pesticides are summarized. Such studies mainly focused on evaluating quantitative structure-activity

/ property relationships via computational methods.

In Chapter 3, we outline a prediction model for Koc, which is one of the main parameters of the

environmental risk assessment procedure. Koc is closely related to the physicochemical properties

of compounds; however, their values can be obtained only by conducting scientific experiments.

Therefore, a linear prediction model using the value of molecular descriptors calculated from a

structural formula has been developed. In this chapter, we discuss the pesticide evaluation reports

available on the EFSA website and experimentally determined physicochemical properties, Koc.

Note that EFSA is the regulatory authority in the European Union, providing scientific information

on food safety through the risk assessment conducted by experts. We also calculated molecular

descriptors using Cheminformatics software. The results of the developed prediction model were

compared with the parameters reported in selected papers. Owing to the use of both the molecular

descriptors calculated from structural formulas and experimentally determined physicochemical

properties from the literature and open databases, the prediction accuracy of the developed model

was considerably higher than those of the previously reported models. In addition, a prediction

model based on the obtained experimental data was developed in Chapter 3. Note that collecting

experimental data for a wide range of compounds requires a considerable amount of time and efforts.

The objective of Chapter 4 was to establish a predictive model with improved accuracy by analyz-
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ing the physicochemical properties of compounds using a simplified approach and freely available

software. For this purpose, the U.S. EPA has developed the OPEn structure-activity Relationship

App (OPERA) software [Mansouri et al., 2018] that utilizes the data obtained for a wide range of

chemical compounds listed in the corresponding database (PHYSPROP)[Howard and Meylan, 2000].

This software can predict various physicochemical properties and environmental effects of pollu-

tants with high reliability. By applying a prediction model based on machine learning for Koc

using the physicochemical properties and environmental parameters calculated by OPERA instead

of the experimental data, a highly accurate model may be rapidly developed. Hence, in addition

to the good fit, high prediction accuracy, and robustness demonstrated in the previous chapter, the

theoretical approach utilized in this chapter can serve as a substitute for experimental values if the

latter are difficult to obtain.

In Chapter 5, we combine the data and algorithms proposed in the previous chapters to construct

a prediction model for the bioconcentration factor (BCF), which is one of the multiple indicators

used for risk and hazard assessments during pesticide registration.

In Chapter 6, we discuss the results of this work and their significance. In Chapter 7, we draw

conclusions from the obtained data and outline the main directions of future research works.
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Chapter 2

Related works

2.1 Environmental risk/hazard assessment of pesticides

The main difference between pesticides and pharmaceuticals is that the former require an environ-

mental risk assessment. In particular, it is necessary to evaluate environmental parts containing

pesticides such as soil and rivers, their effects on individual plants, the human influence on water,

and pesticide degradability. For this reason, authorities in each country have established pesticide

registration systems based on laws, regulations, and various guidelines, and mandate conducting

multiple safety tests.

The pesticide registration system currently existing in Europe and the United States serves as an

international standard. In addition, the European pesticide registration system is one of the strictest

systems in the entire world. After the EU establishment in 1993, the 91/414/EEC Directive was

issued, and the European pesticide registration system was significantly changed [Directive, 1991].

In particular, the required number of data points was increased, and the evaluation period was
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extended. Furthermore, the evaluation criteria specified in this directive were applied not only to

new pesticides, but also to the pesticides previously registered in European countries.

During evaluation, a comprehensive risk assessment was performed for each active ingredient

of pesticides. Furthermore, the European Commission advocated the “precautionary principle”in

2000. In the “EU Thematic Strategy for Pesticides”published in July 2006 [EuropeanComission, 2006],

the main goal was to minimize risks to the human health and environment caused by the use of

pesticides. After three years of discussion, “Regulation (EC) No. 1107/2009”was adopted

[EuropeanComission, 2009]. Owing to the recent increase in food safety and security requirements,

the new European Food Safety Agency (EFSA) was established in 2002 as an independent entity

from the European Commission to assess the safety of agricultural chemicals in the EU. After that,

the data requirements related to pesticide registration have been reviewed regularly, and the number

of data points requested at the time of application increased in January 2014.

Because the persons conducting safety tests must possess advanced skills in the fields of tox-

icology and environmental chemistry, the number of research institutions that can perform these

tests is limited. Consequently, the costs of such tests remain relatively high. In addition, some

long-term tests take more than two years to complete. Traditionally, the development of pesti-

cides requires approximately 10 years and costs a significant amount of money. Furthermore, as

mentioned above, due to the increase in the number of safety tests and their complexity, the pes-

ticide development period and related costs also increased. According to the survey conducted

by CropLife International, which is an international pesticide industrial organization, the cost of

developing pesticides was approximately $286 million per product in 2015, nearly double that in

1995 [Nishimoto, 2019, McDougall, 2016]. Moreover, the pesticide development period has been
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extended to an average of 11 years, while the probability of a candidate chemical compound to be

registered as a pesticide is one in tens of thousands. Pesticide re-evaluation is performed every

10 years after the initial registration, requiring the submission of additional data in accordance

with the latest standards [EuropeanComission, 2014]. As estimated by the European Crop Control

Association (ECPA), the cost of reassessment per agent is approximately 6 million euro. At the

start of the re-evaluation process, 954 pesticides were registered in the EU. However, an over half

of these pesticides were subsequently deleted due to the tightening of regulations and increase in

the related costs [Yokota, 2014].

In particular, the majority of pesticides were removed because of the strict environmental

risk/hazard assessment and non-approval of the registration account. When a pesticide is applied

to soil, it remains near the soil surface and is decomposed by soil microorganisms. However, its

residual behavior in soil significantly depends on the pesticide and soil types. In Europe, there are

many areas where groundwater is mainly used as drinking water. Therefore, strict environmental

risk assessments are performed in Europe assuming that the active ingredients and their metabolites

flow through the soil into rivers and groundwater [EFSA, 2018, EPRS, 2018, Schäfer et al., 2019].

In particular, PECgw, a very strict standard for groundwater pollution, specifies a limits of 0.1 ppb

or less for active ingredients and 0.75 ppb or less for metabolites [EuropeanComission, 2003].

Note that a global risk assessment procedure was initially established in the EU; however, in

the developed countries, the concept of cut-off criteria based on a hazard type was adopted for the

first time based on the precautionary principle. Hazard assessment is a procedure that is restricted

to evaluating potential toxicity and hazards of compounds [Klopffer, 1994, Henschel et al., 1997].

Unlike risk assessment, these criteria do not take into account the amounts of pesticides exposed
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to living organisms and the environment. Only the compound composition determines whether

its approval is possible. Various cut-off hazard-based criteria prohibiting active ingredients that

are carcinogenic, genotoxic, reproductive, or pose significant environmental risks are listed in

Table 2.1. Furthermore, "Persistent Organic Pollutants (POPs)", "Persistent, Bioaccumulative, and

Toxic (PBT) Substances", and "Highly Persistent / Highly Bioaccumulative substances (vPvB)"

have been established. Thus, due to the rigorous risk and hazard assessment of pesticide application

data in the EU, a pesticide registration may be rejected during a new application or the re-evaluation

process.

Because advanced skills are required to experimentally determine risk assessment parameters,

and very strict guidelines such as those developed by the Organization for Economic Cooperation and

Development (OECD), Directorate General for Health and Food Safety (DG SANTE), and Office

of Chemical Safety and Pollution Prevention（OCSSP) must be followed during this procedure,

a limited number of research institutions can conduct safety tests. Moreover, the experimental

determination of such parameters for individual compounds is an expensive process that may take

several months or even a half year to complete. Since the utilized compound classification and

safety criteria are regulated internationally (including the European countries, the United States,

and Japan), pesticide registration may be limited or prohibited altogether if these criteria are not

satisfied [EuropeanComission, 2009, Markell, 2010]. Therefore, the establishment of an accurate

prediction model for estimating the risk and hazard assessment parameters of safety tests at the

early stage of pesticide development should facilitate their practical implementation.
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Table 2.1: Perticide cut-off criteria [Moermond et al., 2012, Matthies et al., 2016]
Environmental

POP
Persistence

DT50 (Water) >2 months or
DT50 (Soil) >6 months or
DT50 (Sediment) >6 months

Bioaccumulation BCF >5,000 or logPow >5

Long Range Transport The criteria utilized here include the measured distance from the source,
monitoring data and environmental properties (e.g. DT50 (AIR) >2 days

PBT

Persistence

DT50 (Marine Water) >60 days or
DT50 (Fresh/Estuarine Water) >40 days or
DT50 (Marine Sediment) >180 days or
DT50 (Fresh/Estuarine Sediment) >120 days or
DT50 (soil) >180 days

Bioaccumulation BCF >2000

Ecotoxicology and Toxicity
NOEC (Marine and Fresh Water Organisms) <0.01 mg/l or
Classified as Categories 1A or 1B
for mutagenic and carcinogenic (for reproduction, see also Category 2) or
Classified STOT RE 1 or STOT RE 2.

vPvB Persistence
DT50 (Marine/Fresh/Estuarine Water) >60 days or
DT50 (Marine/Fresh/Estuarine Sediment) >180 days or
DT50 (soil) >180 days

Very bioaccumulative BCF >5000
Endocrine Disrupter ED potential for environmental organisms
Ground water pollution PECgw >0.1 ppb (Parent), >0.75 ppb (Metabolite)
Toxicology

Carcinogenicity
Mutagenicity
Reproductive toxicity

When classified into the 1A and 1B toxicity categories
Cat. 1A: Known toxicants
Cat. 1B: Presumed human toxicants
Cat 2: Suspected human toxicants
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2.2 Quantitative Structure-Activity Relationship

Quantitative structure-activity relationship (QSAR) is a method for predicting the toxicity of chem-

ical compounds based on statistical parameters [Hansch, 1993]. In QSAR, the numerical value of

each element such as chemical structure and chemical properties is called a descriptor. Typical

descriptors include fingerprints indicating the presence or absence of a specific chemical structure

and measured / estimated values of physicochemical properties (such as molecular dipole moment,

charge, and energy) of a chemical compound.

In the 1960s, Hansch and Fujita reported the existence of a correlation between structure and

activity, which was subsequently called the Hansch-Fujita method [Hansch and Fujita, 1964]. It

utilized linear and non-linear multiple regression analysis procedures as well as the physicochemical

and thermodynamic parameters derived from a compound structure. Kowalski applied a K-nearest

neighbor method (k-NN) based on pattern recognition to anticancer drugs and successfully clas-

sified them into active and inactive groups [Kowalski and Bender, 1974]. Various QSAR toxicity

models have been also developed in the past couple of decades [Kubinyi, 1997, Tropsha, 2010,

Halder et al., 2018].

2.2.1 QSARs established for pharmaceuticals

QSARs have been mainly used in the pharmaceutical field for predicting the safety, efficacy, and

toxicity of drugs as well as the interaction between the target and a compound.

Cos et al. determined a QSAR for flavonoids used as the inhibitors of xanthine oxidase and

scavengers of superoxide radicals produced by enzyme xanthine oxidase. The developed model was

11



able to identify gout treatment compounds more effectively than the widely used drug allopurinol,

which acted as a xanthine oxidase inhibitor [Cos et al., 1998]. Rice-Evans et al. published a review

on the relationship between the antioxidant activity as a free radical scavenger and chemical structure

describing the biological properties of flavonoids and phenolic acids[Rice-Evans et al., 1996]. Zhao

et al. evaluated the human intestinal absorption of 241 drugs by their bioavailability. They found

that 1) the urinary excretion ratio of drug-related substances after oral administration, 2) cumulative

urinary excretion ratio of drug-related substances after oral / intravenous administration, and 3)

Abraham descriptor could accurately predict the human intestinal absorption [Zhao et al., 2001].

Similarly, QSARs are widely used in various areas of the pharmaceutical field, increasing the

efficiency of a new drug development procedure.

2.2.2 QSARs established for pesticides

QSAR efficacy and safety models were also developed for pesticides [Coats, 1990, Sparks et al., 2001,

Hamadache et al., 2016, Braeuning et al., 2018]. However, unlike pharmaceuticals, pesticides re-

quire an environmental impact assessment. For this reason, QSAR environmental toxicity models

were established as well. For example, Toropova et al. developed a toxicity prediction model for

Daphnia and rainbow trout [Toropov and Benfenati, 2006, Toropov et al., 2017]. Tremolada et al.

reported a model predicting the acute toxicity of pesticides for fish and daphnia. The obtained

results revealed that the correlation between fish (rainbow trout) and daphnia toxicity was statically

significant [Tremolada et al., 2004]. Devillers developed a QSAR model based on neural network

that took into account the fish weight, exposure time, temperature, pH value, and water hardness

to predict the acute toxicity of pesticides for bluegill [Devillers, 2001]. Furthermore, Bradbury
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compiled a review paper focusing on a QSAR quantic toxicity model [Bradbury, 1995]. Hence,

multiple QSAR environmental impact assessment models have been developed in the past. More-

over, Benfenati et al. published a book on pesticide regulatory purposes, which summarized the

QSAR model outline, utilized algorithms, and validation methods [Benfenati, 2011].

2.2.3 QSAR BCF prediction models

Some linear BCF QSAR models were developed by Devillers et al. [Devillers et al., 1996], Papa et

al. [Papa et al., 2007], and Garg and Smith [Garg and Smith, 2014]. Gissi et al. attempted to predict

the BCF values of 851 compounds, as reported in the Alternative Non-Testing Methods Assessed

for REACH Substances BCF dataset [Gissi et al., 2015]. The most widely used BCF prediction

models, i.e., CAESAR and Meylan, were utilized to develop a more reliable integrated approach

[Meylan et al., 1999, Lombardo et al., 2010]. Pramanik and Roy reported two BCF prediction

models that included multiple linear regression algorithms and a partial least squares analysis

procedure [Pramanik and Roy, 2014]. These models were based on a training set that included 324

compounds. They were applied to verify the performance of a testing set containing 198 compounds.

Additionally, many other QSAR BCF prediction models have been developed for various compounds

over the last 20 years [Gramatica and Papa, 2005, Pavan et al., 2008, Nolte and Ragas, 2017].

In general, the process of bioaccumulation is strongly influenced by the physicochemical prop-

erties of compounds such as molecular size, fat- and water-solubility, and biological character-

istics of organisms including type and size [Veith et al., 1979, Connell, 1988, Garg et al., 2014].

However, such properties are typically determined experimentally. As a result, many QSAR mod-

els were established by calculating molecular descriptors such as PaDEL-Descriptor [Yap, 2011]
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Table 2.2: Previous research studies on BCF prediction models
Previous research Data Algorithm RemarksCompounds Properties m Nt/Np

[Meylan et al., 1999] Diverse BCF 2 694 MLR
R2 pred is close to 0.7
Using paid software for statistical analysis
Not performing a train-test split

[Papa et al., 2007] Diverse BCF 4 290/315 GA-VSS Using paid software for descriptor calculation

[Lombardo et al., 2010] Diverse BCF 1 327/81 LR
Some paid software is used
Only one variable was used
R2 is less than 0.6

[Pramanik and Roy, 2014] Diverse BCF 4 324/198 GFA-MLR Using paid software for model development

[Garg and Smith, 2014] Highly hydrophobic
organic chemicals BCF 3 24/5 MLR Limited number of data sets

[Gissi et al., 2015] Diverse BCF - 851 - Using existing software

and DRAGON [Mauri et al., 2006] and using them as explanatory variables [Zhao et al., 2008,

Pramanik and Roy, 2014, Toropova et al., 2020] determined by Cheminformatics software.

The most frequently employed models using physicochemical properties include the linear and

nonlinear models based on the n-octanol/water partition coefficient (log Pow) [Connell and Hawker, 1988,

Bintein et al., 1993, ECHA, 2017]. The bioconcentration of organic compounds in fish mainly

depends on their hydrophobicity [Devillers et al., 1996], and log Pow is closely related to BCF.

Furthermore, log Pow is one of the essential physicochemical properties required for registering a

chemical substance that can be determined by a simple experimental method [Klein et al., 1988].

Thus, log Pow was used in many QSAR models. Note that there are few reports of QSAR mod-

els utilizing other physicochemical properties [Isnard and Lambert, 1988, Pavan et al., 2008]. A

summary of the previously developed QSAR BCF predition models is provided in Table 2.2.

2.3 Quantitative Structure-Property Relationship

Quantitative structure-property relationships (QSPRs) have been used as another method for

predicting the physicochemical properties of chemical compounds based on statistical parame-
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ters. Various QSPR models were established to improve the development efficiency of com-

pounds, including pharmaceuticals. For instance, such models were employed to predict the

octanol/water partition coefficients (log Pow) [Haeberlein and Brinck, 1997, Zeng et al., 2012], wa-

ter solubilities [Katritzky et al., 1998, Freire et al., 2010], vapor pressures [Katritzky et al., 1998,

Gharagheizi et al., 2012], and melting points [Katritzky et al., 2002, Liang et al., 2013] of different

substances.

The soil adsorption coefficient (Koc) represents the distribution ratio of chemicals between the

soil/sediment and aqueous phases. It is a critical parameter used in environmental risk assessments

such as PECgw. A chemical with high Koc tends to be strongly adsorbed by soil. Over the past

20–30 years, many QSPR models for predicting the Koc values of various compounds have been

developed [Gawlik et al., 1997, Gramatica, 2010, Nolte and Ragas, 2017]. They included a model

for predicting the adsorption of drugs by the soil surface using an artificial neural network (ANN)

[Berthod et al., 2017]. In general, these models demonstrated the importance of taking into account

hydrophobicity, charge, and molecular shape when studying sorbate-sorbent interactions. Khan et al.

developed a model for calculating Koc values using multiple linear regression (MLR) and applied it to

344 environmental pollutants [Kahn et al., 2005]. The obtained results revealed that hydrophobicity,

molecular size, molecular shape, and charge distribution strongly influenced the interactions between

different pollutants. Goudarzi et al. developed a model for predicting pesticide properties using

MLR, ANN, and the descriptors calculated by DRAGON software [Goudarzi et al., 2009]. Shao

et al. proposed a support vector machine (SVM) model using various molecular descriptors,

including the Moriguchi octanol-water partition coefficient (MLogP), atomic bond index, and

three-dimensional (3D) structure of molecules, which were also calculated by DRAGON software
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Table 2.3: Previous research studies on Koc prediction models
Previous research Data Algorithm RemarksCompounds Properties m Nt/Np
[Gramatica et al., 2000] Pesticide Koc 6 143/20 MLR R2 pred is less than 0.7
[Huuskonen, 2003] Pesticide Koc 12 143/20 MRL Many explanatory variables (12)
[Duchowicz et al., 2007] Pesticide Koc 6 143/20 MLR Using paid software for descriptor calculation
[dos Reis et al., 2014] Pesticide Koc 4 143/20 MLR Using paid software for model development

[Shao et al., 2014] Diverse Koc 4 643/321 LS-SVM
Using paid software for descriptor calculation
Using limited access software that is available to some
people for model development

[Olguin et al., 2017] Diverse Koc 1 643/321 LR

Using limited access software that is available to
some people for model development
Low performance compared other models
due to the use of a single linear regression

[Shao et al., 2014].

Although most QSPR predicting models for Koc values utilized small datasets for compounds

with specific properties, Shao et al. employed an extensive dataset containing 964 compounds

for their QSPR model. In all these studies, molecular and topology descriptors were mainly

employed as explanatory variables. The advantage of using these descriptors is that once the

structure of a chemical compound is identified, they can be easily calculated by Cheminformatics

software. In previous works, many models were developed using molecular descriptors calculated

by the PaDEL-Descriptor [Yap, 2011] or DRAGON [Mauri et al., 2006] software as explanatory

variables. A summary of the QSPR models constructed for Koc is provided in Table 2.3.

2.4 Outline of this research study

In this research study, we propose a new QSAR / QSPR model with higher accuracy and readability

than those of previous developed models using the actual experimental data for safety studies and

calculated physicochemical properties as explanatory variables. For this purpose, we obtained both

the experimental and calculated physicochemical properties from the pesticide evaluation report
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Safety 
Assessment

POPs

PBT

vPvB

Ground water risk assessment

Human Health
Risk Assessment

①Persistent, Bioaccumulation, Mobility

②Persistent, Bioaccumulation, Toxicity

③Persistent, Bioaccumulation,

④PECgw

⑤Carcinogenicity test

⑥Mutagenicity test

⑦Genotoxicity test 

Mutagenicity

Reproductivity

Carcinogenicity

Effective 
assessment

⑪Effectiveness test

⑫Phytotoxicity test

Efficacy

Phytotoxicity

Evaluation 
of Pesticides

Environmental
Risk Assessment 

Figure 2.1: Conceptual diagram of pesticide evaluation and scope of this study

published by EFSA and utilized the Cheminformatics software developed by U.S. EPA.

Because pesticides are often deregistered after conducting an environmental risk assessment

such as PECgw, we have developed a QSPR model for predicting Koc values during the PECgw

evaluation. In addition, we established a QSAR model for predicting BCF values, representing

an evaluation standard for all hazardous compounds such as POP, PBT, and vPvB. The related

conceptual diagram is shown in Figure 2.1.

Many previous studies conducted in the past used molecular descriptors calculated by PaDEL-

Descriptor or DRAGON as explanatory variables; however, very few works utilized the experi-

mentally obtained physicochemical properties. For instance, such physicochemical parameters as

water solubility, octanol/water partition coefficient (log Pow ), and vapor pressure strongly affect

the soil adsorption process. Furthermore, log Pow is closely related to the Koc prediction procedure

[dos Reis et al., 2013]. However, because these values must be obtained experimentally, there are

few reports on QSPR models using physicochemical properties. The prediction model described in

the previous section uses the data calculated by the above-mentioned software, and it is not easy to

explain the relationship between the explanatory variable and the objective variable. Other studies
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utilized expensive software and paid databases. To select and optimize a large number of candidate

compounds with a minimum investment at the initial development stage, the cost of a conducted

study should be as small as possible.

Thus, in this work, physicochemical properties were objectively selected using free software

and open data sources and utilized them for predicting safety parameters. In previous research

studies, neural network-based and SVM models were used; however, it was difficult to investigate

the prediction process involving objective variables in these models. It was also difficult to evaluate

the importance and contribution of each explanatory variable to the objective variable. Therefore,

we employed a simple algorithm with high readability and gradient boosting as a prediction method.

To evaluate the robustness of the proposed model, the latter was validated in accordance with

the principles of the OECD [Gramatica, 2007]. By calculating the international validation index

utilized in many studies,

To increase the readability of algorithms, the European General Data Protection Regulation

(GDPR) also requires a brief explanation of the processing logic and conducting periodic reviews

of the accuracy and validity of the decision making process [EPRS, 2020].

Accordingly, an algorithm clarifying the relationship between the explanatory variables and

prediction results is desirable, and this paper proposes a prediction model for environmental risk

assessment parameters using the open data processing software and physicochemical properties

and verifies its performance. Finally, we summarized the issues encountered in previous research

studies and the present work in Table 2.4.
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Chapter 3

Prediction of soil adsorption coefficient
using experimental physicochemical
properties and molecular descriptors

3.1 Introduction

The soil adsorption coefficient (Koc) of pesticides plays an important role in risk assessment calcula-

tions, based on which, the pesticides can be allowed for application [FOCUS, 2000]. Koc represents

the distribution ratio of chemicals between the soil/sediment phase and the aqueous phase. Higher

Koc values result in strong adsorption into soils [Jury, 1986]. Advanced experimental skills are re-

quired to measure the Koc; thus, limited research organizations can perform the study. Additionally,

the cost to obtain the Koc value of a pesticide is high and the experimental period is approximately

a year. The pesticides submitted to the authorities need to undergo a strict risk assessment. De-

spite conducted safety assessment studies with the high cost and long test duration, the submitted

pesticides can be rejected in the risk assessment depending on Koc [EFSA, 2010]. Therefore, it is

necessary to develop an accurate prediction model for Koc values to efficiently develop pesticides.

In this chapter, we propose a QSPR model, which is a rapid and inexpensive method to predict
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the physicochemical properties theoretically [Hansch and Leo, 1995]. QSPR focuses on the quanti-

tative relationships between chemical structures and physicochemical properties to predict various

parameters from the structure of chemical substances. QSPR provides a numerical representation of

each element of the chemical structure. The chemical property is termed as the descriptor. Common

descriptors include fingerprints expressing the presence or absence of a specific chemical moiety.

These descriptors help estimate values of molecular descriptors (i.e., molecular dipole moment,

charge, and energy) of chemical substances [Karelson et al., 1996].

Various QSPR models have been developed to predict physicochemical properties that are

important for pharmaceutical development including octanol/water partition coefficient (log Pow)

[Padmanabhan et al., 2006] and water solubility [Chen et al., 2002]. Numerous QSPR models to

predict the soil adsorption coefficient have also been developed for various compounds over the last

20-30 years [Gawlik et al., 1997, Gramatica, 2010, Nolte and Ragas, 2017]. Kahn et.al. developed

a model to calculate the Koc value using multiple linear regression (MLR) for 344 environmental

pollutants [Kahn et al., 2005]. They suggested that hydrophobicity, compound size, shape, and

charge distribution were related to the interaction between environmental pollutants. Additionally,

Jiao developed a model to calculate the Koc value via principal component analysis and back

propagation for polychlorinated biphenyls [Jiao, 2012]. Another model using log Pow, atomic

bond index, and molecular three-dimensional structures as descriptors has also been developed to

calculate the Koc value [Shao et al., 2014]. A partial least squares regression model using the two-

dimensional chemical structure as a descriptor was developed for herbicides [Freitas et al., 2014].

In these studies, molecular descriptors and topological descriptors are mainly used as explanatory

variables. The advantage of using molecular descriptors and topological descriptors is that they can
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be easily calculated using the structure.

In contrast, physicochemical properties including water solubility, octanol/water partition co-

efficient (log Pow), and vapor pressure of compounds are closely related to the soil adsorption

process. However, the properties have not been analyzed in detail in previous studies. Laboratory

experiments are required to obtain the experimental data. Thus, few experimental data have been

used to develop QSPR models to date. Specifically, previous studies indicated that log Pow is closely

related to the prediction of Koc. A model using predicted values of log P was developed by dos Reis

et al. [dos Reis et al., 2013].

The objective of our study was to create a fast and inexpensive estimation method of soil

adsorption; thus, we compared the performances of Koc prediction models using both molecular

descriptors and physicochemical properties with existing models. We gathered physicochemical

properties by using data mining technique and referring to chemical database. Gramatica et

al., Huuskonen, Duchowicz et al., and dos Reis et al. used a dataset that included 163 types

of pesticides and developed QSPR models using molecular descriptors [Gramatica et al., 2000,

Huuskonen, 2003, Duchowicz et al., 2007, dos Reis et al., 2014]. In this chapter, we used the same

data set and developed QSPR models for Koc to analyze the effect of physicochemical properties

and molecular descriptors. The data set is one of the most famous data set. The reason why the data

set is used previous studies that it includes many chemical classes. In addition, the range of the log

Koc values are relatively wide. Thus, it is suitable for building QSPR models by using the data set.
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3.2 Material and methods

3.2.1 Data set

To collect the experimental data of physicochemical properties, we used a previous study on

pesticide risk assessment in EU. For the application for the registration of pesticides in the EU,

the evaluation reports issued since July 2005 are published on the internet by EU authorities. The

results, discussion, and evaluation of the toxicity test, environmental fate test, and physicochemical

properties test used for the application are described in each evaluation report. Regarding pesticides

which were not listed in the EU evaluation reports, we gathered the values of physicochemical

properties from US EPA’s CompTox Chemicals Dashboard which was originally titled the Chemistry

Dashboard [Williams et al., 2017]. If there are more than one experimental data for a compound,

we used representative experimental data (i.e. submitted to the authorities or first displayed on the

database) which is described in the EFSA peer review report or CompTox Chemicals Dashboard

of a compound. Using the data, the QSPR model for the prediction of log Koc based on a machine

learning technique was developed, and the performance of the model was evaluated.

To compare the model developed in the study with models in previous studies, we used the Koc

experimental data (log Koc) of 163 pesticides used from previous studies [Gramatica et al., 2000,

Huuskonen, 2003, Duchowicz et al., 2007, dos Reis et al., 2014]. In these studies, 143 pesticides

were used as the training set and 20 pesticides were used as the test set. The test set is famous as the

test set of prediction of Koc [Gramatica et al., 2000] because it includes large variety of chemical

properties of pesticides. As we would like to compare our models with previous models, we used

same dataset. The chemical compound datasets belong to several pesticide classes: six acetanilides,
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29 carbamates, eight dinitroanilines, eight organochlorides, 28 organophosphates, 44 phenylureas,

13 triazines, and seven di- and triazoles. The log Koc values ranged from 0.42 to 5.31 for the training

sets and from 0.56 to 4.50 for the test sets.

3.2.2 Software and program

We used Python 3.7 as a programming language [Oliphant, 2007]. We used python modules

Numpy [Walt et al., 2011], Scipy [Jones et al., 2001] and matplotlib[Hunter, 2007] for calculations

and visualization. To implement linear regression and SVM models, we used scikit-learn which is

a machine learning package in Python [Pedregosa et al., 2011]. We optimized SVM model by grid

search implemented in scikit-learn.

We calculated the molecular descriptors by employing the following procedure. First, simplified

molecular input line entry system (SMILES) of the compound in the dataset was collected from

PubChem [Kim et al., 2016] and ChemSpider [Pence and Williams, 2010]. Specifically, SMILES

corresponds to a character string of the chemical structure of a molecule with alphanumeric char-

acters of encoding standard for electronic communication called American Standard Code for

Information Interchange (ASCII). It is typically used in chemical molecular software. The example

of SMILES was shown in Figure 3.1. Subsequently, we normalized the molecular structure of

the obtained compound by MMFF 94 Force Field (mmff 94) [Halgren, 1996] using Open Babel

[O’Boyle et al., 2011] to calculate the molecular descriptors.

Based on the above molecular structure, a total of 1,826 molecular descriptors of different types

were calculated using freely available software mordred [Moriwaki et al., 2018]. We can easily

install mordred and use it on the command line interface, web application, and Python package.
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Compound name: Chlorbufam
SMILES: CC(C#C)OC(=O)NC1=CC(=CC=C1)Cl

Figure 3.1: Chemical structural formula and the simplified molecular input line entry system
SMILES = simplified molecular input line entry system

Mordred is at least twice as fast as PaDEL-Descriptor [Yap, 2011] which is a major software for

performance benchmark tests.

The molecular descriptors calculated by mordred describe the structural diversity of the com-

pound. Types of descriptors include 1) constitutional descriptors, 2) topological descriptors, 3) 2D

matrix-based descriptors, 4) 3D matrix-based descriptors, and 5) WHIM descriptors. Table 3.1 lists

the representative descriptors. Details of the descriptors and calculation procedures are described

in the molecular descriptor handbook [Todeschini and Consonni, 2008].

3.2.3 Obtaining physicochemical properties of experimental data

The European Food Safety Authority (EFSA) publishes a peer review report of pesticide risk

assessment after reviewing a dossier submitted by a pesticide manufacturer. The peer review report

includes various experimental data and endpoints for the pesticide such as chemical properties,

toxicological, ecotoxicological, and environmental fate. The published reports are opened to public

via website of EFSA (https://efsa.onlinelibrary.wiley.com/journal/18314732). We obtained the
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experimental data of physicochemical properties of each pesticide from a previously published

peer reviewed report. With respect to the pesticides that are not registered in the EU and do not

have a corresponding EFSA Peer review report, experimental data were obtained from U.S. EPA’s

Chemistry Dashboard [Williams et al., 2017]. Seven experimental data on the physicochemical

properties of pesticides were extracted. Table 3.2 shows the physicochemical properties and their

meaning.

3.2.4 Model development and validation

We developed a prediction model based on the gradient boosting decision tree (GBDT) algorithm

[Roe et al., 2005] as a non-linear model to compare the performance with models in previous studies.

Gradient boosting was proposed by Friedman [Friedman, 2001] and consists of a gradient descent

method and a boosting method. The boosting algorithm is a part of ensemble learning and is used

to construct an entire learner by integrating a plurality of weak learners. Decision trees are often

used as weak learners. Using a decision tree as a weak learner in boosting has advantages such

as being strong against outliers in data and being able to handle discrete variables, and missing

values. Therefore, it is one of the most used algorithms in various data analysis contests such

as Kaggle and KDD Cup [Chen and Guestrin, 2016]. In addition, tree models including gradient

boosting trees are generally excellent in readability. In this chapter, it is possible to read which

physicochemical properties or molecular descriptors contribute to the model. We used XGBoost

[Chen and Guestrin, 2016], which is a machine learning package for the GBDT algorithm of Python

and has a highly scalable end-to-end tree boosting system. XGBoost employs an algorithm that

determines the direction of tree branching in advance for sparse data such as many missing values.
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Table 3.1: Representative descriptors calculated via Mordred
Descriptor type Number Representative descriptor
Acidic group count 1 nAcid
ALOGP 3 ALogP, ALogp2, AMR
Atom count 14 nAtom, nHeavyAtom, nH, nB, nC, nN, nO, nS, nP, nF
Bond count 10 nBonds, nBonds2, nBondsS, nBondsS2, nBondsS3
Atom type electrotopological state 489 nHBd, nwHBd, SHBd, minHBd, LipoaffinityIndex, MAXDN
Molecular linear free energy relation 6 MLFER_A, MLFER_BH, MLFER_BO, MLFER_S, MLFER_E
Rule of five 1 LipinskiFailures
Topological 3 topoRadius, topoDiameter, topoShape
Topological distance matrix 11 SpMax_D, SpDiam_D, SpAD_D, SpMAD_D, EE_D, VE1_D
Van der Waals volume 1 VABC
3D autocorrelation 80 TDB1u, TDB2u, TDB3u, TDB4u, TDB5u, TDB6u, TDB7u
Charged partial surface area 29 PPSA-1, PPSA-2, PPSA-3, PNSA-1, PNSA-2, PNSA-3
RDF 210 RDF10u, RDF15u, RDF20u, RDF25u, RDF30u, RDF35u,
WHIM 91 L1u P1u, E1u, Tu, Au, Du, L1m, P1m, E1m, Km, Dm

Table 3.2: Representative descriptors calculated via Mordred
Experimental data Description
log S Limit amount at which a certain solute dissolve in a certain amount of water
log P Dimensionless number of the hydrophobicity and migration of chemical substances
log H Constant representing the solubility in the liquid of the components in the gas
log VP Gas phase pressure of the substance in phase equilibrium between solid and liquid
Flash Point (FP) Lowest temperature at which the material can volatilize to make a flammable mixture with air
Melting Point (MP) Temperature at which solid melts to liquid
Surface tension (ST) Characteristics trying to make the surface as small as possible
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The model search is accelerated by parallel distributed processing.

We performed parameter tuning to find the best parameters for the prediction model using GBDT

algorithm. We conducted a grid search for the values of max depth, min child weight, n estimators,

and reg alpha. Although there are other search methods such as optuna [Akiba et al., 2019] which

is a parameter optimization framework, we adopted a grid search. It is a conventional and quick

approach to find the best parameter because of the quick algorithm of GBDT.

A total of 1,826 descriptors were calculated by mordred. It took 14 seconds to calculate

all descriptors for 163 pesticides. Most calculated molecular descriptors were not significantly

important in the calculation of log Koc values; thus, we selected the important descriptors to predict

the ability of the model by feature importance from GBDT. GBDT has three indicators―weight,

gain, and cover of feature importance. Weight is an indicator of how many times a feature is used to

split the data across all trees to only observe the existing number. There is no information on how

close the branch is to prediction or how much of the branch is used for the input. Gain is an indicator

of how much the evaluation criteria can be improved. The tree-based model finds the variable and

the threshold value that maximizes this at each branch. Cover is the sum of second order gradient

of training data classified to the leaf. Square loss simply corresponds to the number of instances in

that branch. We adopted gain which is the default parameter as an indicator of feature selection.

We also develop linear regression models based on the MLR and support vector machine (SVM)

using two molecular descriptors and five physicochemical properties selected by feature selection.

We compared these two prediction models with prediction model using GBDT algorithm.

The constructed model was evaluated based on the OECD principles for model validation

[Gramatica, 2007] and previous studies [dos Reis et al., 2014]. The fitting performance, robust-

28



ness, and prediction ability of the model were evaluated using the coefficient of determination

(R2), leave-one-out cross validation of correlation coefficient (𝑄2
𝐿𝑂𝑂), the residual sum of squares

(RSS), and the standard error of calibration (SEC). To evaluate the QSPR models, some recent

studies have suggested that R2 values should be greater than 0.7 and that values of RSS and SEC

should be close to 0. Other detailed definitions and calculations of the parameters are given in

references [Chirico and Gramatica, 2011, Chirico and Gramatica, 2012]. We also evaluated the

Applicability Domain (AD). The AD is defined as the response and chemical structure space in

which the QSAR model makes predictions with given reliability. We conducted a standardization

approach using software called“ AD using standardization approach”[Roy et al., 2015]. In the

approach, it was mentioned that 99.7% of the population will remain within the range mean ± 3

standard deviation (SD) in keeping with ideal data distribution. We also characterized applicability

domain by Euclidean distance-based method using a software called“ Euclidean-Distance 1.0”

[Ambure et al., 2015]. The Euclidean distance is the ordinary distance between two points in the

Euclidean space. In the Euclidean-Distance 1.0 software, the Euclidean distance scores and the

mean distance scores are calculated followed by the normalization within the interval of zero to one.

3.2.5 Comparison of the developed models with EPI Suite and models in the

previous studies

EPI suite (The Estimations Programs Interface for Windows) was also used for comparison with

the model constructed in this study. EPI suite was jointly developed by US EPA and Syracuse.

It is a model that predicts and calculates the physicochemical properties of each substance based
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on the chemical structure [Card et al., 2017].This software has been used in various fields for

risk assessment, such as for the examination of new chemical substances under the Toxic Substance

Control Act (TSCA) when products containing new chemical substances by the US EPA are imported

to the United States.

The EPI suite incorporates a model that predicts various parameters such as bioconcentration and

biodegradability. In addition, KOCWIN, which is a subset of EPI suite, is incorporated as a model

to predict log Koc. KOCWIN uses an estimation method using the molecular connectivity index

(MCI), the group contribution coefficient, and an estimation method based on log Kow. Prediction

parameters were calculated and compared for each compound in the training set and test set using

both the MCI estimation method and the log Kow estimation method.

We compared the prediction abilities of the QSPR model and models developed in previous

four studies using a molecular descriptor and experimental data of physicochemical properties

[Gramatica et al., 2000, Huuskonen, 2003, Duchowicz et al., 2007, dos Reis et al., 2014].

3.3 Result and Discussion

3.3.1 Result of the developed models

We optimized the standard parameters for GBDT via a grid search using the data set. We obtained

the best values of R2, SEC, and standard error of prediction (SEP) for both the training and test data

sets using maximum depth = 2, minimum child weight = 4, n estimators = 100, and reg alpha = 0.5.

We developed a prediction model via GBDT using experimental values of physicochemical

properties and molecular descriptors for pesticides in the data set. We used 143 pesticides as a
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training set and 20 pesticides as the test set, in accordance with previous studies. We compared

3 models using only physicochemical properties, only molecular descriptors, and both of these.

We obtained the best prediction ability by using both physicochemical properties and molecular

descriptors. The statistical parameters of each model are shown in Table 3.3.

We obtained the best prediction ability by using both physicochemical properties and molecular

descriptors.

For the physicochemical properties, we performed feature importance selection by GBDT, and

5 types of values were selected. The selected physicochemical properties were log S, log Pow, flash

point, log H, and surface tension, which are listed in Table 3.2. The most important physicochemical

property was log S, which is a logarithm of water solubility. Log Pow, which is a dimensionless

number of the hydrophobicity and migration of chemical substances, was also important for the

prediction of log Koc. In previous studies on the prediction of log Koc, water solubility and log Pow

were used as a part of the parameters. It was also indicated that increases in the value of log Pow

increase the ability of soil adsorption [Sabljić et al., 1995, Gao et al., 1996]. With respect to the

molecular descriptors, we also performed feature importance selection from the 1826 descriptors

calculated by mordred. Three molecular descriptors were selected for model development. The

selected molecular descriptors are presented in Table 3.4.

The most important descriptor was FilterItLogS, which denotes the calculated value of log

S by Filter‐it™. The next important descriptor was ATSC2dv, which is a centered Moreau‐

Broto autocorrelation of log function of topological distance (lag 2) weighted by valence elec-

trons. The autocorrelation of a topological structure (ATS) descriptors describe how properties are

distributed along the topological structure. The selected physicochemical properties and molec-
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Table 3.3: Comparison of statistical parameters between the prediction models by GBDT algorithm
using physicochemical properties and molecular descriptors
No. Model No. of variables Nt/Np R2 𝑅2

𝑃𝑅𝐸𝐷 𝑄2
𝐿𝑂𝑂 SEC SEP

1 physicochemical
properties 1360 143/20 0.911 0.722 0.913 0.269 0.49

2 Molecular
descriptors 11 143/20 0.887 0.682 0.873 0.303 0.524

3 (1) + (2) 7 /
(1360 + 11) 143/20 0.935 0.775 0.931 0.231 0.421

𝑄2
𝐿𝑂𝑂 = leave one out cross validation of correlation coefficient; SEC = standard error of calibration;

SEP = standard error of prediction; Np = number of test set; Nt = number of training set

Table 3.4: Molecular descriptors selected by GBDT
Molecular descriptor Description
FilterItLogS Log S calculated by Filter-it™
ATSC2dv Centered moreau-broto autocorrelation of lag 2 weighted by valence electrons
AATS4v Geary autocorrelation of lag 3 weighted by polarizability

Filter-it™ : A software that eliminates unwanted properties of molecules of chemicals.
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ular descriptors are consistent with the results of previous studies. The sorption of nonionic

organic compounds in soil is related to a mechanism that makes hydrophobicity the driving force

[Wen et al., 2012, dos Reis et al., 2013, dos Reis et al., 2014]. Thus, the physicochemical proper-

ties and molecular descriptors related to the hydrophobicity of the pesticides are relevant for the

adsorption process. This is an explanation that log S, log Pow, surface tension, and FilterItLogS

have high correlation with log Koc. The flash point is the lowest temperature at which vapor is

released at a concentration sufficient to form a flammable mixture. Thus, the flash point is de-

pendent on the boiling point and vapor pressure of the liquid [Fujii and Hermann, 1982]. Previous

studies have shown a correlation between volatilization fluxes with the log of the ratio of vapor

pressure and Koc [Woodrow et al., 1997, Alvarez-Benedi et al., 1999]. This correlation is evidence

that a binding mechanism exists, including solute exchange between the adsorbed, dissolved, and

vapor phases. Besides, the importance of ATSC2dv and AATS4v as topological descriptors was

also shown. These are topological descriptors regarding topological distance weighted by valence

electrons and polarizability. The probability of H‐bonding with soil and water is based on the

number of electronegative atoms in the molecule [Gramatica et al., 2000]. The results indicated

that the Koc values of pesticides were mainly affected by molecular lipo‐hydrophobic properties

and topological properties of molecules. To evaluate the accuracy of the models, the coefficient

of determination (R2), SEC, SEP, average relative error of prediction, and concordance correlation

coefficient were calculated. Each expression is detailed as follows:

𝑅2 = 1 −
∑𝑛
𝑖=1

(
𝑦𝑜𝑏𝑠 − 𝑦pred

)2∑𝑛
𝑖=1 (𝑦obs − 𝑦means )2 (3.1)
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𝑆𝐸𝐶 =

√∑𝑛
𝑖=1

(
𝑦𝑜𝑏𝑠 − 𝑦𝑝𝑟𝑒𝑑

)2
𝑛 − 𝑝 − 1

(3.2)

𝑆𝐸𝑃 =

√∑𝑛
𝑖=1

(
𝑦𝑜𝑏𝑠 − 𝑦𝑝𝑟𝑒𝑑

)2
𝑛

(3.3)

In Equations 3.1 to 3.3, 𝑦𝑝𝑟𝑒𝑑 denotes the predicted value of log Koc and 𝑦𝑜𝑏𝑠 denotes the

experimental data of log Koc. In addition, 𝑦𝑚𝑒𝑎𝑛𝑠 denotes the average value of log Koc, and n

denotes the number of samples. The predicted values calculated via the developed model are shown

in Table 3.5. In addition, plots of predicted values and measured values of log Koc are shown in

Figure 3.2.

An MLR model was developed using the same data set, and explanatory variables explained in

the section 3.3.1 were used. The regression equation of the prediction model is given in Equation

3.4.

𝑙𝑜𝑔𝐾𝑜𝑐 = −0.1875𝑙𝑜𝑔𝑆 + 0.1927𝑙𝑜𝑔𝑃 − 0.0004𝐹𝑃 + 0.0355𝑙𝑜𝑔𝐻 + 0.0084𝑆𝑇

− 0.1089𝐹𝑖𝑙𝑡𝑒𝑟 𝐼𝑡𝐿𝑜𝑔𝑆 − 0.0010𝐴𝑇𝑆𝐶2𝑑𝑣 + 0.0052𝐴𝐴𝑇𝑆4𝑣 + 0.7867
(3.4)

The R2 values for the training set and test set of experimental data were relatively low (0.807

and 0.637, respectively), and𝑄2
𝐿𝑂𝑂 was 0.767. Statistical parameters for the developed MLR model

are shown in Table 3.6.

We also developed SVM models using the same data set. In the present study, we compared

linear and nonlinear kernels. Polykernel, radial basis function kernel, and sigmoid kernel were used
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Table 3.5: Test set with experimental and calculated log Koc values
No. Compound name Exp.log Koc GBDT MLR SVM
1 Aldicarb sulfoxide 0.56 1.49 2.36 1.41
2 Anilazine 3.00 3.00 3.26 3.4
3 Asulam 2.48 1.69 1.35 1.4
4 Chlorbufam 2.21 2.27 2.46 2.48
5 Cyromazine Terbuthylazine 2.30 1.66 2.85 1.48
6 Demeton-S-methyl 1.49 1.59 3.92 1.55
7 Dichlorvos 1.67 1.50 2.59 1.89
8 EPN 3.12 3.58 1.31 3.9
9 Fenobucarb 1.71 2.17 3.45 2.37
10 Iprobenfos 2.40 2.56 1.37 2.44
11 Leptophos 4.50 4.12 2.43 4.23
12 Methidathion 1.53 2.44 1.83 2.53
13 Neburon 3.40 3.04 1.45 2.95
14 Piperophos 3.44 3.12 1.74 2.88
15 Pirimicarb 1.90 1.92 3.82 1.73
16 Pirimiphos methyl 3.00 2.68 2.24 2.99
17 Sulprofos 4.08 4.18 2.42 4.01
18 Terbuthylazine 2.32 2.55 4.42 2.72
19 Thiodicarb 2.54 2.36 2.39 2.64
20 Xylicarb 1.71 1.99 2.94 2.05

Figure 3.2: Plots of the experimental data and predicted values of log soil adsorption coefficient
by gradient boosting decision tree
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Table 3.6: Comparison of statistical parameters between the prediction models developed by the
GBDT, the MLR and the SVM

Model R2 𝑅2
𝑃𝑅𝐸𝐷 𝑄2

𝐿𝑂𝑂 SEC SEP
GBDT 0.935 0.775 0.931 0.231 0.421
MLR 0.822 0.742 0.812 0.397 0.539
SVM 0.817 0.720 0.812 0.401 0.528

as nonlinear kernels. Three parameters, C (regularization parameter), gamma (the relative weight

of the regression error), and sigma (kernel parameters), were optimized via a grid search. With

respect to the result of the grid search, SVM using the linear kernel (C = 10) exhibited the optimal

score. The R2 values for the training set and test set of experimental data were relatively low (0.817

and 0.720, respectively), and𝑄2
𝐿𝑂𝑂 was 0.812. Statistical parameters for the developed SVM model

are shown in Table 3.6.

To confirm the performance of the 3 developed models, we compared the calculated log Koc

and statistical parameters in Tables 3.5 and 3.6. Although some predicted values by the MLR and

SVM models showed the best accuracy, over half of the values predicted by the GBDT algorithm

exhibited the best accuracy. In addition, considering the statistical parameters shown in Table 3.6,

we obtained the best value for all statistical parameters. Thus, we assumed that the best of the three

prediction models is based on the GBDT algorithm.

3.3.2 Applicability domain

We evaluated the applicability domain (AD) by a software which is called“ AD Using Standard-

ization Approach”. We checked that the test set pesticides were not outside the AD and that the

training set compounds were not outliers. The results of the calculation of outliers by AD using

standardization approach showed that there are no outliers in the training set, with the normal
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Figure 3.3: Plot of applicability domains characterized by the Euclidean distance 1.0

distribution pattern of approximately 99.7% of the population remaining with the range mean of±

3 SD. Also, there is no test compound outside the AD. In addition, the Euclidean graph generated

by Euclidean‐Distance 1.0 is shown in Figure 3.3

According to the normalized mean distances in the graph, only one training compound (No.39)

and one test compound (No.7) located outside the AD. Therefore, the QSAR model developed in

the present study can make predictions with given reliability.

3.3.3 Comparison of the developed models with OPERA and models in the

previous studies

We compared our developed model with the calculation values of log Koc from EPI Suite. EPI is

software that predicts and calculates the physical properties of each chemical substance based on
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Table 3.7: Comparison of statistical parameters between GBDT based prediction model and EPI
suite

Model R2 𝑅2
𝑃𝑅𝐸𝐷 SEC SEP

GBDT 0.935 0.775 0.231 0.421
EPI Suite (MCI) 0.749 0.661 0.458 0.565

EPI Suite (log Kow) 0.734 0.675 0.492 0.585

Table 3.8: Overall summary of statistical parameters for all QSPR models
Model No. of variables R2 𝑅2

𝑃𝑅𝐸𝐷 𝑄2
𝐿𝑂𝑂 SEC

Gramatica et al., 2000 6 0.843 0.67 0.824 0.35
Huuskonen, 2003 12 0.82 0.79 0.79 0.37
Duchowicz et al., 2007 6 0.9 0.71 0.89 0.29
dos Reis et al., 2014 4 0.852 0.743 0.84 0.343
EPI Suite (MCI) - 0.749 0.661 - 0.458
EPI Suite (log Kow) - 0.734 0.675 - 0.492
MLR 7 0.822 0.742 0.812 0.397
SVM 7 0.817 0.72 0.812 0.401
GBDT 7 0.935 0.775 0.931 0.231

its structure. We calculated log Koc using KOCWIN by the method of MCI and log Kow. Table 3.7

compares the prediction abilities of GBDT based prediction models and EPI Suite. Although

EPI Suite has a larger chemical space compared to our developed models, our model developed by

GBDT showed better prediction ability than KOCWIN from EPI Suite with respect to both MCI and

log Kow. Table 3.8 compares the prediction abilities of QSPR models of GBDT using a molecular

descriptor and physicochemical properties with the models used in previous studies.

For our developed GBDT based prediction model, the prediction accuracy, fitness, and robust-

ness were higher than those obtained in previous studies except for the model by Huuskonen in

terms of R2. Our model showed a lower value of SEC than the model by the author. In addition,

the author used 12 explanatory variables, and we used 7 explanatory variables. The results indi-

cated that the experimental data of the physicochemical properties and molecular descriptors are
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important for log Koc estimation. Therefore, the present study showed that log Koc can be estimated

from the structure of the compound and preliminary physicochemical properties without expensive

laboratory studies on log Koc. Based on this finding, we were able to reduce the cost for log Koc

estimation as required for pesticide development and shortened the development period. In addition,

we can use the results for preliminary risk assessment. Specifically, we can stop development of

pesticides with weak prospects halfway based on the QSPR models. This is because the decision

of the project for development is currently determined via experts’ heuristics. The results provide

objective justification for the aforementioned types of decisions. An overall summary of the models

is shown in Table 3.8.

3.4 Conclusion

In this chapter, we have developed prediction models for Koc values. We proposed GBDT based

prediction model used the experimental data of physicochemical properties by gathering evaluation

report of pesticide, and molecular descriptors calculated by cheminformatics software. As a result,

the following results were obtained.

• By using both the molecular descriptors calculated from the structural formulas and ex-

perimental physicochemical properties from the literature and open databases, the model

prediction accuracy was significantly improved.

• By utilizing the GBDT algorithm, the prediction accuracy of the proposed model was further

increased.

39



• The prediction models based on the GBDT algorithm demonstrated the best prediction abilities

among the different machine learning models.

• The proposed models were developed using the open data sources and free software.

The results of this chapter showed that it is possible to perform preliminary environmental risk

assessment at a low cost and without time-consuming studies. However, it takes a considerable

amount of time and effort to collect data from huge number of documents such as literature.

Therefore, in the next chapter, we take steps to gathering physicochemical properties by using latest

cheminformatics software.
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Chapter 4

Prediction of soil adsorption coefficient
using calculated physicochemical properties
and molecular descriptors

4.1 Introduction

Physicochemical properties such as water solubility, octanol/water partition coefficient (log P), and

vapor pressure of compounds are considered to be closely related to the soil adsorption process.

Specifically, previous studies have shown that log P is closely associated with Koc prediction

[dos Reis et al., 2013]. However, as experiments are required to obtain these values, there are few

reports on QSPR models using physicochemical properties.

In the previous chapter, we developed a machine learning-based QSPR model with five physic-

ochemical properties and three molecular descriptors for 163 pesticides. We reported that a high-

performance model in terms of accuracy was established, as opposed to a model using only molecular

descriptors. Physicochemical properties were collected from EFSA peer review report of pesticides

and the U.S. EPA’s) Chemistry Dashboard. However, collecting experimental data for a wide range

of compounds requires a considerable amount of time and effort.
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In the work presented herein, the goal was to develop an accurate predictive model by gathering

physicochemical properties using a relatively easy approach and freely available software. Also, we

used largest dataset of Koc to improve accuracy and versatility compared to the previous chapter. The

U.S. EPA has developed the OPEn structure-activity Relationship App (OPERA) software to predict

physicochemical properties [Mansouri et al., 2018]. OPERA has been developed using data of a

wide range of chemical substances listed in the physicochemical properties database (PHYSPROP).

It can predict various physicochemical properties and endpoints of environmental fate, offering

highly reliable model performance. By developing a prediction model by machine learning for Koc

using physicochemical properties and environmental fate endpoints calculated by OPERA instead

of experimental data, a highly accurate model may be rapidly developed.

In this chapter, we used a dataset containing 964 different, many chemicals obtained in a previous

study [Shao et al., 2014]. We also changed the collection method of physicochemical properties

by using OPERA software. We developed machine learning models using molecular descriptors,

physicochemical properties, and environmental fate endpoints as calculated by OPERA. Although

using experimental data is ideal for the development of QSPR models, our proposed procedure

is considered an acceptable substitute for experimental data if the latter is difficult to obtain. In

addition, as we used the biggest Koc dataset available, it was possible to apply the developed

models to a diverse range of chemical compounds. After developing the model, we confirmed its

performance and the contribution of molecular descriptors and physicochemical properties.
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Figure 4.1: Histogram of distribution of experimental log Koc in the dataset

4.2 Material and methods

4.2.1 Dataset

A dataset of 964 nonionic chemicals was obtained from previous studies [Shao et al., 2014, Olguin et al., 2017].

In this study, the dataset was divided into training and test sets using a Y-ranking method

[Bhhatarai and Gramatica, 2011], resulting in 644 and 320 chemicals, respectively. We used the

same training and test sets to compare each model. The dataset is ideal for QSPR modeling because

it is the largest dataset of Koc available, with many varieties of chemicals included. The log Koc

values ranged from -0.386 to 6.469 for the training sets and from -0.630 to 6.100 for the test sets.

The distribution of Koc values and chemical groups of the dataset are shown in Figure 4.1 and

Table 4.1.
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Table 4.1: Chemical groups of the target chemicals in the dataset
Chemical group Number of chemicals
Alcohols 53
Alkanes 26
Alkenes and Alkynes 28
Amides 26
Amines 30
Anilines 44
Aromatic heterocycles 35
Benzene derivatives 85
Benzenes and Alkylbenzenes 36
Biphenyls 42
Carbonyl compounds 35
Esters 45
Ethers 20
Halogenated benzenes 31
Halogenated alkanes 64
Halogenated alkenes 13
Heterocycles 10
Nitriles 16
Nitroalkanes 6
Nitrobenzenes 22
Organic acids 67
Organophosphorus compounds 20
Organosulfur compounds 18
Other Compounds 32
Phenols 66
Phenyl ureas 24
Polyaromatic heterocycles 14
Polyciclyc aromatic hydrocarbons 49
Triazines 7
Total 964
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Table 4.2: The parameters calculated by OPERA.
Descriptor type Number Representative descriptor
Acidic group count 1 nAcid
ALOGP 3 ALogP, ALogp2, AMR
Atom count 14 nAtom, nHeavyAtom, nH, nB, nC, nN, nO, nS, nP, nF
Bond count 10 nBonds, nBonds2, nBondsS, nBondsS2, nBondsS3
Atom type electrotopological state 489 nHBd, nwHBd, SHBd, minHBd, LipoaffinityIndex, MAXDN
Molecular linear free energy relation 6 MLFER_A, MLFER_BH, MLFER_BO, MLFER_S, MLFER_E
Rule of five 1 LipinskiFailures
Topological 3 topoRadius, topoDiameter, topoShape
Topological distance matrix 11 SpMax_D, SpDiam_D, SpAD_D, SpMAD_D, EE_D, VE1_D
Van der Waals volume 1 VABC
3D autocorrelation 80 TDB1u, TDB2u, TDB3u, TDB4u, TDB5u, TDB6u, TDB7u
Charged partial surface area 29 PPSA-1, PPSA-2, PPSA-3, PNSA-1, PNSA-2, PNSA-3
RDF 210 RDF10u, RDF15u, RDF20u, RDF25u, RDF30u, RDF35u,
WHIM 91 L1u P1u, E1u, Tu, Au, Du, L1m, P1m, E1m, Km, Dm

4.2.2 Software and program

Python 3.7 was the programming language used and the Python modules, Matplotlib, Numpy, and

Scipy were used for calculation and visualization. We also used scikit-learn, a machine learning

package in Python.

Mordred was used to calculate molecular descriptors. A total of 1826 molecular descriptors were

calculated by Mordred. The descriptors and calculation procedures are provided in the molecular

descriptor handbook [Todeschini and Consonni, 2008].

The calculated physicochemical properties and environmental fate endpoints were generated by

OPERA. OPERA is available in Matlab, C, and C++ languages and is based on PaDEL-descriptors.

OPERA was developed using the publicly available PHYSPROP database. A total of 46 properties

can be generated by OPERA and representative properties calculated by OPERA are shown in

Table 4.2. OPERA demonstrated good predictive performance for determining physicochemical

properties: the R2 test values ranged from 0.71 to 0.96 (average: 0.82).
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4.2.3 Model development and validation

In this chapter, the GBDT algorithm was also adopted as a non-linear model and an ensemble algo-

rithm for the prediction models. A boosting algorithm such as XGboost [Chen and Guestrin, 2016]

or CatBoost [Prokhorenkova et al., 2017] is one of the most popular additions in data analysis com-

petitions. We confirmed the explanatory variables that contributed to the developed model as tree

models, generally have excellent readability. Among the boosting algorithms, LightGBM, provided

by Microsoft, has attracted great attention [Ke et al., 2017]. LightGBM has significantly improved

performance compared to other GBDT algorithm in terms of computational speed, memory con-

sumption, and communication costs for parallel learning. In cheminformatics, there is little research

available on the use of LightGBM [Zhang et al., 2019, Su et al., 2021]. The use of this algorithm

ensures accurate, rapid parameter tuning as well as efficient prediction.

The SVM and MLR models were developed using the same explanatory variables used in the

GBDT based prediction model. The performance of these models was compared to the performance

of the GBDT based prediction model.

Model validation was conducted for the developed models in accordance with the principles of

the Organization for Economic Co-operation and Development (OECD) [Gramatica, 2007]. The

fitting performance, prediction ability, and model robustness were evaluated by the coefficient of

determination (R2), the coefficient of multiple determinations of 10-fold cross-validation (𝑅2
10 𝑓 𝑜𝑙𝑑),

leave-one-out cross-validation of correlation coefficient (𝑄2
𝐿𝑂𝑂), concordance correlation coeffi-

cient in the internal validation (CCC), and the root mean square error (RMSE). To eliminate the

possibility that the relationship between the explanatory variable and the objective variable is
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accidental, a Y-scrambling test was performed and 𝑅2
𝑌𝑠𝑐𝑟 , 𝑄

2
𝑌𝑠𝑐𝑟 , and RMSE 𝐴𝑉𝑌𝑌𝑠𝑐𝑟 were cal-

culated. The possibility by chance is ruled out if the values of 𝑅2 and 𝑄2
𝐿𝑂𝑂 are greater than

𝑅2
𝑌𝑠𝑐𝑟 and 𝑄2

𝑌𝑠𝑐𝑟 , respectively, and the value of RMSE is less than RMSE 𝐴𝑉𝑌𝑌𝑠𝑐𝑟 . A detailed

definition of the statistical parameters is provided in the literature [Chirico and Gramatica, 2011,

Chirico and Gramatica, 2012]. We compared these statistical parameters with those of previous

studies [Shao et al., 2014, Olguin et al., 2017].

In addition, to evaluate the external predictivity of our model, we performed validation according

to the previous literature [Chirico and Gramatica, 2011, Chirico and Gramatica, 2012, Roy et al., 2015].

We calculated the values of variance explained in external prediction (𝑄2
𝐹1 and 𝑄2

𝐹2), root mean

square error in external prediction (RMSEext), the modified coefficient of determination of the

external validation (𝑟𝑚2), and the value of the concordance correlation coefficient (CCCext). The

equations and criteria are shown in Table 4.3.

4.2.4 Applicability Domain

The definition of the applicability domain (AD) is the response and chemical structure space in

which the QSPR model shows reliable predictions. The AD of the dataset was evaluated using

three different methods: a standardization approach, the Euclidean distance-based method, and

the one-class support vector machine (OCSVM) method. The first method uses the AD using the

standardization approach software developed by Roy et al. [Roy et al., 2015]. In this approach,

99.7% of the population remains within the range of mean ± three standard deviations (SD) to

maintain ideal data distribution.

The second method, the Euclidean distance-based method, is commonly used in distance mea-
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Table 4.3: Statistical metrics and criteria for external validation
Sta t i s t i ca l  

met r ics  Def in i t ion Equat ions Cri te r ia  

Q 2
F 1  Externa l  p red ic t ive  ab i l i ty  

𝑄 1
∑ 𝑦 𝑦

∑ 𝑦 �̄�  
Q 2

F 1  >  0 .70  

Q 2
F 2  Externa l  p red ic t ive  ab i l i ty  

𝑄 1
∑ 𝑦 𝑦

∑ 𝑦 �̄�  
Q 2

F 2  >  0 .70  

RMSE e x t  Root  Mean  Square  Er ror  in  

ex te rna l  p red ic t ion  
𝑅𝑀𝑆𝐸

∑ 𝑦 𝑦

𝑛
-  

CCC e x t  Concordance  cor re la t ion  

coef f i c ien t  
𝐶𝐶𝐶

2 ∑ 𝑦 �̄� 𝑦 𝑦

∑ 𝑦 �̄� ∑ 𝑦 𝑦 𝑛 �̄� 𝑦

ŷ  :  the  average  o f  a l l  iŷ

CCC e x t  >  

0 .85  

𝑟 Average  o f   𝑟  and  𝑟
𝑟

𝑟 𝑟
2  

𝑟 𝑅 1 𝑅 𝑅  

𝑟 𝑅 1 𝑅 𝑅  

𝑟  >  0 .65  

𝛥𝑟 Diffe rence  be tween  𝑟  and  𝑟 𝛥𝑟 𝑟 𝑟  𝛥𝑟  <  0 .2  
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sures using the "Euclidean-Distance 1.0" software [Ambure et al., 2015]. The Euclidean distance

is an ordinary distance between two points in Euclidean space [Golmohammadi et al., 2012]. The

software can calculate the Euclidean distance and mean distance scores, followed by normalization

within intervals of zero to one. The calculations of Euclidean distance are shown in the following

equations:

𝑑𝑖 𝑗 = ∥𝑋𝑖 − 𝑋 𝑗 ∥ =

√√
𝑚∑
𝑘=1

(
𝑋𝑖𝑘 − 𝑋 𝑗 𝑘

)2 (4.1)

𝑑𝚤 =

∑𝑛
𝑗=1 𝑑𝑖 𝑗

𝑛 − 1
(4.2)

MeanDistance (Normalized ) =
( MeanDistance − Min_MeanDistance )

( Max_MeanDistance − Min_MeanDistance ) (4.3)

where 𝑑𝑖 𝑗 is the distance score between two compounds, and 𝑑𝑖 is the mean distance.

The third method, OCSVM, is a method that applies the SVM to the area estimation problem

[Kaneko and Funatsu, 2015]. The data density can be estimated continuously, and it is applied to

outlier detection, outlier sample detection, and setting of the model application range.

4.2.5 Comparison of the developed models with OPERA and the models in

the previous study

The log Koc calculated by OPERA was also compared with our developed model. OPERA in-

corporates a model that directly predicts log Koc values. The data from the OPERA model are
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derived from PHYSPROP, a collection of a wide variety of sources built by the Syracuse Research

Corporation (USA). Experimental protocols of different parts of the data may be traced back to the

original referenced literature from the database. PHYSPROP’s Koc data were collected from Arnot

and Gobas [Arnot and Gobas, 2006]. The original data collected from the PHYSPROP database

underwent a series of processes to curate chemical structures and remove duplicates.

The prediction abilities of the developed QSPR model were compared with those of the models

developed in previous studies. Two studies used the same dataset; Shao et al. developed the LS-

SVM, genetic algorithm-multiple linear regression (GA-MLR), and local linear regression (LLR)

models and [Shao et al., 2014]. Olguin et al. developed QSPR models based on the calculated log

Pow by linear regression [Olguin et al., 2017].

Our proposed model development procedure was compared with our previous chapter, which

adopted the experimental data of physicochemical properties as explanatory variables. In the

previous chapter, 163 pesticides were used as the dataset. Five physicochemical properties and

three molecular descriptors were used as explanatory variables.

4.3 Results and discussion

4.3.1 Result of the developed models

Parameter tuning of the GBDT based prediction model was carried out by a grid search using the

dataset. We obtained the best R2 values and RMSE for the training and test datasets using a max

depth = 15, a min child weight = 5, n estimators = 400, and gamma = 0.001.

For the development of the GBDT based prediction model, we used 324 chemicals as a training
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Table 4.4: Statistical parameters of the GBDT based prediction models using physicochemical
properties, environmental fate endpoints, and molecular descriptors

No. Model No. of
variables 𝑅2

𝑡 𝑅2
𝑝 𝑄2

𝐿𝑂𝑂 𝑅2
10 𝑓 𝑜𝑙𝑑 𝑅𝑀𝑆𝐸𝑡 CCC

1 Physicochemical properties
and environmental fate endpoints 5 0.95 0.835 0.95 0.677 0.248 0.912

2 Molecular descriptors 5 0.958 0.874 0.959 0.713 0.227 0.932
3 1 and 2 6 0.990 0.904 0.995 0.777 0.110 0.944

Nt/Np: the number of compounds in the training set/test set; 𝑅2
𝑡 : coefficient of determination for

training set; 𝑅2
𝑝: coefficient of determination for test set; 𝑄2

𝐿𝑂𝑂: correlation coefficient of leave-
one-out cross validation; 𝑅2

10 𝑓 𝑜𝑙𝑑: coefficient of determination of 10-fold cross validation; RMSEt:
root mean square error of training set; RMSEt: root mean square error of test set; CCC: the value
of the concordance correlation coefficient

set and 198 chemicals as the test set following the process from a previous study. Although a

model using molecular descriptors calculated by Mordred as explanatory variables demonstrated an

excellent performance compared with the previous model (R2 > 0.85), a model using physicochem-

ical properties and environmental fate endpoints generated by OPERA and molecular descriptors

generated by Mordred also demonstrated excellent performance (R2 > 0.90). In addition, the GBDT

based prediction model showed the best performance comparing to other models. The statistical

parameters of each model are listed in Table 4.4.

The feature importance selection of explanatory variables was performed to select physico-

chemical properties. The selected physicochemical property was Log P pred, the prediction value

of log Pow, as calculated by OPERA. In terms of the molecular descriptors, we also conducted

feature importance selection for the 1826 descriptors calculated by Mordred, and four molec-

ular descriptors were selected. The most essential descriptor was Slog P_VSA2, representing

different aspects of the van der Waals surface area contribution to the chemical’s lipophilicity

[Leszczynski and Puzyn, 2012]. The next imperative descriptor was S log P, a calculated log Pow
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based on the atomic contribution mode [Wildman and Crippen, 1999]. The SIC0 is structural in-

formation content (neighborhood symmetry of 0-order) [Magnuson et al., 1983] and GATS1Z is

Geary’s coefficient of log function for topological distance (lag 1) weighted by atomic number. The

final imperative descriptor was AATSC1v, an average centered Broto-Moreau autocorrelation of

lag 1 weighted by van der Waals volumes.

The selected physicochemical properties and molecular descriptors had the same tendencies

as those observed in previous research. The mechanism of sorption in soil was related to the

hydrophobicity of the chemicals as a driving force [Wen et al., 2012, dos Reis et al., 2014]. This

mechanism demonstrated the underlying reason why Log P pred, Slog P_VSA2, and SLogP are

highly related to log Koc. Additionally, the importance of GATS1Z and AATSC1v as topological

descriptors was also indicated. These topological descriptors were related to the topological distance

weighted by the valence electrons and polarizability. he probability of H-bonding with water and

soil is dependent on the number of electronegative atoms of the molecule [Gramatica, 2010].

We calculated the R2, 𝑄2
𝐿𝑂𝑂 , 𝑅2

10 𝑓 𝑜𝑙𝑑 , CCC, and RMSE to evaluate the developed models. The

expressions are shown in the following equations:

R2 = 1 −
∑𝑛
𝑖=1

(
𝑦𝑜𝑏𝑠 − 𝑦𝑝𝑟𝑒𝑑

)2∑𝑛
𝑖=1 (𝑦𝑜𝑏𝑠 − 𝑦means )2 (4.4)

RMSE =

√∑𝑛
𝑖=1

(
𝑦𝑜𝑏𝑠 − 𝑦𝑝𝑟𝑒𝑑

)2
𝑛

(4.5)
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Figure 4.2: Plots of the experimental and predicted values of log Koc

𝐶𝐶𝐶 =
2
∑𝑛
𝑖=1

(
𝑦𝑜𝑏𝑠𝑖 − �̄�𝑜𝑏𝑠

) (
𝑦
𝑝𝑟𝑒𝑑
𝑖 − �̄�𝑝𝑟𝑒𝑑

)
∑𝑛
𝑖=1

(
𝑦𝑜𝑏𝑠𝑖 − �̄�𝑜𝑏𝑠

)2 +∑𝑛
𝑖=1

(
𝑦
𝑝𝑟𝑒𝑑
𝑖 − �̄�𝑝𝑟𝑒𝑑

)2
+ 𝑛

(
�̄�𝑜𝑏𝑠 − �̄�𝑝𝑟𝑒𝑑

)2 (4.6)

where yobs, and yobs denote the experimental data and the predicted value of log Koc, respectively;

and ymeans and n denote the average value of log Koc and the number of samples, respectively.

The R2 values for the training and test sets were 0.990 and 0.904, respectively, and the 𝑄2
𝐿𝑂𝑂 and

𝑅2
10 𝑓 𝑜𝑙𝑑 were 0.995 and 0.777, respectively. The plots of the predicted and measured values of log

Koc are shown in Figure 4.2.

The MLR and SVM models were developed using the same dataset and explanatory variables

used for the GBDT based prediction model. In the MLR model, the regression equation of the

prediction model was shown in the following equations::
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𝑙𝑜𝑔𝐾𝑜𝑐 = 0.4323𝐿𝑜𝑔𝑃𝑝𝑟𝑒𝑑 + 0.0021𝑆𝐿𝑜𝑔𝑃_𝑉𝑆𝐴2 − 0.0031𝐴𝐴𝑇𝑆𝐶1𝑣

+0.0774𝑆𝐿𝑜𝑔𝑃 + 0564𝐺𝐴𝑇𝑆1𝑍 − 1.0836𝑆𝐼𝐶0 + 1.7039
(4.7)

The R2 for the training set and test sets was relatively low (0.817 and 0.815, respectively),

compared to the GBDT based prediction model. The 𝑄2
𝐿𝑂𝑂 and 𝑅2

10 𝑓 𝑜𝑙𝑑 were 0.818 and 0.656

shown in the Table 4.3.

We also compared four kernels for the SVM models: one linear kernel and three non-linear

kernels, including a poly kernel, a radial basis function kernel, and a sigmoid kernel. Two param-

eters, C (regularization parameter) and gamma (the relative weight of the regression error), were

optimized using a grid search. The SVM model with the RBF kernel (C = 100, gamma = 0.001)

had the best prediction score, and the R2 values for the training and test sets were also relatively

low, 0.849 and 0.828, respectively. The 𝑄2
𝐿𝑂𝑂 and 𝑅2

10 𝑓 𝑜𝑙𝑑 were 0.847 and 0.692, respectively. The

overall statistical parameters for the developed MLR and SVM models are shown in Table 4.5.

4.3.2 Applicability Domain

Evaluation of the AD of the dataset using the standardization approach was performed using a

software called "AD using standardization approach." There were 23 compounds (Nos.2, 6, 8, 9,

10, 11, 13, 15, 20, 21, 51, 191, 252, 277, 292, 294, 421, 525, 526, 527, 609, 633, 634, 639) from

the training set considered to be outliers. In addition, there were ten compounds (Nos.2, 6, 8, 9, 11,

13, 15, 20, 21, 51, 191, and 252) outside the AD. The results of the AD using the standardization
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Table 4.5: Statistical parameters of the optimal and previous models.
Study Algorithm Nt Np No. of

variables 𝑅2
𝑡 𝑅2

𝑝 𝑄2
𝐿𝑂𝑂 𝑅2

10 𝑓 𝑜𝑙𝑑 𝑅𝑀𝑆𝐸𝑡 𝑅𝑀𝑆𝐸𝑝

Shao et al.
2014

LS-SVM 643 321 4 0.904 0.846 0.840 - 0.344 0.431
GA-MLR 644 320 4 0.817 0.808 0.813 - 0.490 0.475
LLR NA NA 4 0.873 0.831 0.824 - 0.398 0.45

Olguin et al.
2017

LR 639 321 1
(ALOGPs) 0.85 0.809 0.849 - 0.428 0.48

LR 639 321 1
(KOWWIN) 0.85 0.796 0.848 - 0.428 0.496

LR 639 321 1
(XLOGP3) 0.85 0.79 0.848 - 0.428 0.504

OPERA - 643 321 - 0.912 0.849 - - 0.330 0.426

Current work
GBDT 643 321 6 0.99 0.904 0.995 0.777 0.110 0.335
MRL 643 321 6 0.817 0.815 0.818 0.656 0.475 0.472
SVM 643 321 6 0.849 0.828 0.847 0.692 0.432 0.455

Nt/Np: the number of compounds in the training set/test set; 𝑅2
𝑡 : coefficient of determination

for training set; 𝑅2
𝑝: coefficient of determination for test set; 𝑄2

𝐿𝑂𝑂: correlation coefficient of
leave-one-out cross validation; 𝑅2

10 𝑓 𝑜𝑙𝑑: coefficient of determination of 10-fold cross validation;
RMSEt: root mean square error of training set; RMSEt: root mean square error of test set
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Figure 4.3: The plot of applicability domains by the Euclidean-Distance 1.0.

approach showed few outliers in the test set with a normal distribution pattern of approximately

99.7% of the population remaining within the range mean± 3 standard deviation (SD).

Next, we implemented the Euclidean-Distance approach and generated a Euclidean graph using

Euclidean-Distance 1.0, as shown in Figure 4.3. Only one compound in the training set (No.609;

nicosulfuron) and one compound in the test set (No.308; morphine) were located outside the AD.

Both compounds have a chiral center and cyclic structure in the molecule; the chemical structures

of the two compounds are shown in the Figure 4.4.

Finally, we conducted OCSVM and generated a graph. Only seven compounds in the training

set (Nos.1, 5, 126, 147, 151, 200, and 308) were located outside the AD. The graph is shown in

the Figure 4.5. The three AD methods showed that the developed QSPR models were able to make

reliable predictions.
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Figure 4.5: The plot of applicability domains by OCSVM
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Table 4.6: Statistical parameters of external validation
Model Q2F1 Q2F1 RMSEext CCC𝑒𝑥𝑡 𝑟2

𝑚 Δ𝑟2
𝑚

MLR 0.988 0.828 0.455 0.908 0.757 0.11
SVM 0.987 0.815 0.471 0.898 0.736 0.155

GBDT 0.993 0.903 0.341 0.95 0.862 0.038

4.3.3 Comparison of the developed models with OPERA and models in the

previous studies

The statistical parameters of the three developed models are shown in Table 4.5. There exist a

few chemicals whose prediction values from the MLR and SVM models demonstrated the best

prediction ability. However, considering the statistical parameters of the models, the best value

for all statistical parameters was demonstrated by the GBDT based prediction model. Thus, we

concluded that the GBDT based prediction model was the superior model. External validation of the

three models was also performed with the results shown in Table 4.6. The results presented include

all values that were greater than the criteria shown in Table 4.3. These criteria were recommended

in previous studies [Chirico and Gramatica, 2011, Chirico and Gramatica, 2012, Roy et al., 2012].

We compared the prediction ability of our developed models with the calculated values of log

Koc from OPERA. The prediction abilities of the GBDT based prediction model and OPERA are

listed in Table 4.5. The GBDT based prediction model demonstrated a better prediction ability than

OPERA.

The prediction abilities of our developed QSPR models and models used in previous research

[Shao et al., 2014, Oliphant, 2007] were compared and are shown in Table 4.5. Our GBDT based

prediction model demonstrated the highest fitness, prediction accuracy, and robustness than the
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Table 4.7: Features of QSPR models in current work and previous study
Study Algorithm Software for calculation of

explanatory variables
Software for
model development

Advantages of developed model
compared with other models

Shao et al. 2014 LS-SVM DRAGON 5.4
(Shareware)

Matlab/C toolbox
(Shareware) -Highest prediction ability

-Only using freeware
-No need for registration
-Versatile programming language

Olguin et al. 2017 LR ALOGPs algorithm
(Freeware)

QSARINS
(Freeware, Limited)

Current work GBDT Mordred, OPERA
(Freeware)

Python
(Freeware)

models reported in previous research. As a result, the physicochemical properties and molecular

descriptors were found to be essential for the determination of Koc. Therefore, this study shows that

Koc may be estimated from chemical structures without expensive and time-consuming laboratory

studies. Based on these findings, the experimental cost for the determination of Koc for chemical

development may be reduced, along with the duration required for chemical development.

Furthermore, it is possible to use the developed model for preliminary environmental risk

assessment during the early stages of chemical development. As such, we can make a determination

as to whether the research and development of chemicals should be proceeded by QSPR models.

This decision for the development project is currently determined by experts. Our models can

provide objective justification for decisions associated with product development. The overall

summary of the model performance is shown in Table 4.5. We have also summarized the features

of all QSPR models developed in previous research and the current work in Table 4.7.

4.3.4 Comparison of the developed models with the previous chapter using

experimental data

The model development procedure proposed in this work was compared to the procedure in the

previous chapter using the experimental data of physicochemical properties. We developed a GBDT
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Table 4.8: Statistical parameters of the various models including a model by experimental data of
physicochemical properties for the 163 pesticides

Reference Algorithm Nt Np No. of
variables 𝑅2

𝑡 𝑅2
𝑝 𝑄2

𝐿𝑂𝑂 RMSE

Gramatica et al. (2000) GA-MLR 143 20 6 0.843 0.670 0.824 0.350
Huuskonen (2003) MLR 143 20 12 0.820 0.790 0.790 0.370
Duchowicz et al. (2007) MLR 143 20 6 0.900 0.710 0.890 0.290
Rinaldo dos Reis (2014) MLR 143 20 4 0.852 0.743 0.840 0.343
Models in Chapter 3 GBDT 143 20 7 0.935 0.775 0.931 0.231
Current chapter GBDT 143 20 6 0.897 0.729 0.910 0.290

based prediction model using properties calculated from OPERA and Mordred for 163 pesticides

used in the previous chapter. The performance of our model and previous models are shown

in Table 4.8. The model using experimental data of physicochemical properties demonstrated

the highest fitness, prediction accuracy, and robustness. However, the models developed in this

chapter showed better performance with some of the models in the previous chapter. Although the

actual experimental data is considered to be the best choice for development for QSPR models, our

proposed procedure is a good substitute for actual values if these are difficult to obtain.

4.4 Conclusion

In this chapter, we have improved prediction models for Koc values by using only calculated

values. We have also proposed GBDT based prediction model as in the previous chapter used

physicochemical properties and molecular descriptors quantified by OPERA and Mordred for a

large dataset. As a result, the following results were obtained.

• By using both the physicochemical properties and molecular descriptors calculated from

structural formulas, the model prediction accuracy was considerably increased as compared
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with that of the model described in the previous chapter.

• By using the GBDT algorithm, the prediction accuracy was further improved.

• The prediction models based on the GBDT algorithm exhibited the best prediction abilities

among various machine learning models.

• The performance of the model developed in this chapter was much higher than those of the

models developed in the previous chapter.

Although the model using the experimentally determined physicochemical properties demonstrated

a good fit, high prediction accuracy, and robustness, the method proposed in this chapter can be

used instead of the actual values if the latter are difficult to acquire. The results contribute to the

establishment of a new chemical development process with quick and easy procedure.
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Chapter 5

Prediction of fish bioconcentration factors
using calculated physicochemical properties
and molecular descriptors

5.1 Introduction

When applying for the registration of chemicals such as pesticides, risk and hazard assessments

must be performed to evaluate the impact not only on humans and animal species but also on

the environment [Danaei et al., 2005, Damalas and Eleftherohorinos, 2011, EFSA, 2013]. Both the

application method and the quantity of the chemical substances to be applied are considered in the

risk assessment [van der Oost et al., 2003, Hernando et al., 2006]. On the other hand, the hazard

assessment is an index that is restricted to evaluating potential toxicity and hazards [Klopffer, 1994,

Henschel et al., 1997].

BCFs are widely used criteria for hazard assessment [Arnot and Gobas, 2006] that represent the

ratio of the concentration of the chemical in the fish to the concentration of the chemical substance

in the water [Mackay and Fraser, 2000]. The higher the value of BCF, the more likely the chemical

is to concentrate in the organism. The conceptual diagram of BCF was shown in the Figure 5.1.
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Figure 5.1: Conceptual diagram of Bioconcentration

Various bioconcentration properties and bioconcentration factors used as indicators have been

considered due to differences in the exposure routes and evaluation status [Miyamoto et al., 1990,

OECD, 2012]. The subjects of evaluation are aquatic, benthic, and soil organisms. Among these,

the most widely evaluated species are fish. The establishment of safe daily consumption limits for

fish and pesticide concentrations in water, using BCF, aids in the estimation of daily pesticide intake

by the organism. Thus, it is crucial to investigate the BCF of pesticides.

Due to the high level of skill required to determine the BCF and the need to conform

to strict guidelines [OECD, 2012], only a limited number of research institutions can conduct

BCF tests. Moreover, an experiment to obtain the BCF of a single compound is a costly un-

dertaking and requires a period of several months to half of a year to complete. In some

cases, it may cost $125,000 [Weisbrod et al., 2007]. Furthermore, since the BCF classification

and criteria are regulated internationally, including countries in Europe, the United States, and

Japan, the registration of the pesticide may be limited or prohibited if the criteria are exceeded

[Moss et al., 2000, EuropeanComission, 2009, Markell, 2010]. Therefore, the development of an

accurate prediction model for estimating BCFs in the early stage of pesticide development is con-

sidered necessary to facilitate efficient research and development.
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QSAR is a quick and inexpensive method of evaluating the toxicity of a compound without the

need to perform actual experiments [Hansch and Leo, 1995]. Various QSAR models of toxicity have

been developed in the past couple of decades [Kubinyi, 1997, Tropsha, 2010, Halder et al., 2018].

Some linear BCF QSAR models were developed by Devillers et al.[Devillers et al., 1996] , Papa et

al. [Papa et al., 2007], and Garg et al. [Garg and Smith, 2014]. Gissi et al. attempted to predict

the BCF of 851 compounds, as reported in the ANTARES (Alternative Non-Testing methods

Assessed for REACH Substances) BCF dataset [Gissi et al., 2015]. The most widely used BCF

prediction models, i.e., CAESAR and Meylan, were utilized to develop a more reliable integrated

model for predictions. Pramanik and Roy developed two models for BCF prediction that include

multiple linear regression algorithms and partial least squares analysis [Pramanik and Roy, 2014].

These models were based on a training set that included 324 compounds. The models were

applied to the test set with 198 compounds to verify performance. Additionally, many other QSAR

models to predict the BCFs of various compounds have also been developed over the last 20 years

[Gramatica and Papa, 2005, Pavan et al., 2008, Nolte and Ragas, 2017].

It is believed that the process of bioaccumulation is impacted by physicochemical properties

such as the molecular size, fat- and water-solubility of the compound, and the biological characteris-

tics of the organisms such as species and size [Veith et al., 1979, Connell, 1988, Garg et al., 2014].

However, to obtain the physicochemical properties, experiments are basically needed. As a result,

many QSAR models have been developed by calculating molecular descriptors using cheminfor-

matics software such as PaDEL-Descriptor [Yap, 2011] and DRAGON [Mauri et al., 2006] and

using molecular descriptors as explanatory variables [Zhao et al., 2008, Pramanik and Roy, 2014,

Toropova et al., 2020].

64



The most frequently reported models using physicochemical properties are linear and non-

linear models using n-octanol/water partition coefficient (log Pow) [Connell and Hawker, 1988,

Bintein et al., 1993, ECHA, 2017]. The bioconcentration of organic compounds in fish mainly

depends on the hydrophobicity of the compounds [Devillers et al., 1996], and log Pow is closely

related to the BCF. Furthermore, log Pow is one of the essential physicochemical properties required

when registering a chemical substance and can be calculated using a simple experimental method

[Klein et al., 1988]. Thus, log Pow was used in many QSAR models. There are few reports of QSAR

models using other physicochemical properties [Isnard and Lambert, 1988, Pavan et al., 2008]. In

the chapter 3 and 4, we have achieved to develop good prediction models by using molecular de-

scriptors and physicochemical properties. In order to confirm the generality and versatility of the

proposed method in the previous chapters, we have applied the method to the model development

of the BCF which is one of the important parameters of environmental risk/hazard assessment.

We have developed a machine learning based prediction model with experimental and calculated

physicochemical properties and of pesticides. The physicochemical properties were collected from

the EFSA peer review report and the U.S. EPA’s Chemistry Dashboard. Despite the development of

a high-performance model in terms of accuracy compared to that in the previous study, it is difficult

and time-consuming to collect experimental data for diverse chemicals. In this study, we propose

to develop an accurate prediction model by gathering physicochemical properties using a simple

method employing a freely available software.

The U.S. EPA released OPERA, which is a software that predicts the physicochemical proper-

ties and environmental fate endpoints [Mansouri et al., 2018]. OPERA was developed using data

collected from the PHYSPROP database and can predict various physicochemical properties and
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environmental fate endpoints. It is a model constructed using a wide range of chemical substances,

and its performance is good; the R2 test ranges from 0.71 to 0.96 (average 0.82). Thus, it is believed

that a highly accurate prediction model can be developed by machine learning using the properties

calculated by OPERA in addition to the molecular descriptors. Furthermore, BCF results can be

predicted before the start of expensive long-term experiments using the developed model, which

will contribute to the decision making for chemical substance development.

In this chapter, we collected physicochemical properties, environmental fate and toxicol-

ogy estimated value calculated by OPERA and molecular descriptors calculated by Mordred

[Moriwaki et al., 2018]. Then, by incorporating the calculated values, we developed a QSAR

model for the dataset of chemicals used in the previous research [Pramanik and Roy, 2014]. More-

over, we compared our developed models with previously reported models and the BCF value

calculated by OPERA was used as a reference.

5.2 Material and methods

5.2.1 Dataset

We used the dataset of 522 chemicals from previous studies [Fernández et al., 2012, Pramanik and Roy, 2014].

The reason why we used the data set is that it includes a large number of chemicals. In addition,

we used the dataset because we intended to check if the combination of molecular descriptor and

physicochemical properties would perform better than previous models. In these studies, 60%

(324) and 40% (198) of the chemicals were used as the training and test sets. We use same way of

splitting in accordance with previous studies. The test set was suitable for model validation because
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Figure 5.2: Histogram of distribution of experimental log BCF values in the dataset

it includes a wide range of chemicals. The chemical datasets were classified into various categories:

aliphatic and aromatic hydrocarbons, alcohols, anilines, amides, amines, cyanides, esters, ethers,

halogenated derivatives, heteroaromatics, nitriles, nitroaromatics, organochlorines, organophos-

phates, phenols, phosphate esters, sulfonic acids, and thiols. The industrial classifications of these

chemicals were as follows: agrochemicals, industrial chemicals, pharmaceuticals, plant secondary

metabolites, and pollutants. The logarithm of BCF (log BCF) was used for the QSAR models.

The log BCF values ranged from –1.70 to 4.85 and -0.73 to 4.85 for the training and test sets,

respectively. The distribution of the dataset is shown in Figure 5.2.
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5.2.2 Software and program

Python 3.7 was used as the programming language. Python modules such as Matplotlib, NumPy,

and SciPy were used for calculations and visualization. Scikit-learn was used for implementing

linear regression and SVM models. We optimized the SVM model using a grid search method

implemented in scikit-learn. XGBoost was used for the development of the gradient boosting

decision tree model.

We have conducted the standardization for the molecular structure of the obtained compounds

by MMFF 94 Force Field (mmff 94) using Open Babel [O’Boyle et al., 2011] before the calculating

the molecular descriptors. A total of 1,826 molecular descriptors were calculated using Mordred

[Moriwaki et al., 2018].

Table 5.1: Representative descriptors calculated by Mordred
Descriptor type Number Representative descriptor
Acidic group count 1 nAcid
ALOGP 3 ALogP, ALogp2, AMR

Atom count 14 nAtom, nHeavyAtom, nH, nB, nC,
nN, nO, nS, nP, nF

Molecular linear
free energy relation 6 MLFER_A, MLFER_BH, MLFER_BO,

MLFER_S, MLFER_E
Rule of five 1 LipinskiFailures
Topological 3 topoRadius, topoDiameter, topoShape

Topological distance matrix 11 SpMax_D, SpDiam_D, SpAD_D,
SpMAD_D, EE_D, VE1_D

3D autocorrelation 80 TDB1u, TDB2u, TDB3u, TDB4u,
TDB5u, TDB6u, TDB7u

WHIM 91 L1u P1u, E1u, Tu, Au, Du, L1m,
P1m, E1m, Km, Dm

We gathered predictive physicochemical properties and environmental fate estimated value for

the dataset using OPERA, which is a standalone free and open-source software for predicting
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physicochemical properties and environmental fate endpoints developed by the U.S. EPA. OPERA

can predict the properties of chemicals based on PaDEL-descriptors, which were available in

MATLAB, C, and C++ languages. We calculated 46 properties for the dataset using OPERA. The

calculated properties are shown in Table 5.2.

Table 5.2: The parameters calculated by OPERA

Type Description

MolWeight Molecular weight

nbAtoms Number of atoms

nbHeavyAtoms Number of heavy atoms (i.e. not hydrogen)

nbC Number of carbon atoms

nbO Number of oxygen atoms

nbN Number of nitrogen atoms

nbAromAtom Number of aromatic atoms

nbRing Number of rings

nbHeteroRing Number of rings containing heteroatoms (N, O, P, S, or halogens)

Sp3Sp2HybRatio Fraction of sp3 carbons to sp2 carbons

nbRotBd Number of rotatable bonds, excluding terminal bonds

nbHBdAcc
Number of hydrogen bond acceptors (using CDK HBondAcceptorCount

Descriptor algorithm)
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ndHBdDon
Number of hydrogen bond donors (using CDK HBondDonorCount

Descriptor algorithm)

nbLipinskiFailures Number failures of the Lipinski’s Rule Of 5

TopoPolSurfAir Topological polar surface area

MolarRefract Molar refractivity

CombDipolPolariz Combined dipolarity/polarizability

BP Boiling Point at 760 mm Hg

HL Henry’s Law constant (air/water partition coefficient) at 25 ◦C

KOA The octanol/air partition coefficient.

LogP Octanol-water partition coefficient

MP Melting Point

VP Vapor Pressure

WS Water solubility at 25 ◦C

RT HPLC retention time.

Pka Logarithmic (acid) dissociation constant

logD Octanol-water distribution coefficient

LogBCF Fish bioconcentration factor

AOH
OH rate constant for the atmospheric, gas-phase reaction between

photochemically produced hydroxyl radicals and organic chemicals
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BioDeg
biodegradation half-life for compounds containing only carbon

and hydrogen

RBioDeg Ready biodegradability of organic chemicals

KM
The whole body primary biotransformation rate (half-life) constant

for organic chemicals in fish.

KOC soil adsorption coefficient of organic compounds.

CERAPP-Binding
Collaborative Estrogen Receptor Activity Prediction Project.

Binding consensus

CERAPP-Agonist
Collaborative Estrogen Receptor Activity Prediction Project.

Agonist consensus

CERAPP-Antagonist
Collaborative Estrogen Receptor Activity Prediction Project.

Antagonist consensus

CoMPARA-Binding
Collaborative Modeling Project for Androgen Receptor.

Binding consensus

CoMPARA-Agonist
Collaborative Modeling Project for Androgen Receptor.

Agonist consensus

CoMPARA-Antagonist
Collaborative Modeling Project for Androgen Receptor.

Antagonist consensus

CATMoS-VT
Collaborative Acute Toxicity Modeling Suite.

very_toxic LD50 ≤ 50 mg/kg vs LD50 >50 mg/kg
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CATMoS-NT
Collaborative Acute Toxicity Modeling Suite.

Nontoxic. LD50 >2000 mg/kg vs LD50 ≤ 2000 mg/kg

CATMoS-EPA

Collaborative Acute Toxicity Modeling Suite.

EPA_categories. 1 is LD50 ≤ 50 mg/kg;

2 is LD50 >50 to ≤ 500 mg/kg; 3 is LD50 >500 to

LD50 ≤ 5000 mg/kg; 4 is LD50 >5000 mg/kg

CATMoS-GHS

Collaborative Acute Toxicity Modeling Suite.

GHS_categories. 1 is LD50 ≤ 5 mg/kg;

2 is LD50 >5 to ≤ 50 mg/kg;

3 is LD50 >50 to LD50 ≤ 300 mg/kg;

4 is LD50 >300 to LD50 ≤ 2000 mg/kg;

5 is LD50 >2000 mg/kg

CATMoS-LD50
Collaborative Acute Toxicity Modeling Suite.

LD50 point estimate model

FuB Human plasma fraction unbound

Clint Human hepatic intrinsic clearance

MolWeight Molecular weight

nbAtoms Number of atoms

nbHeavyAtoms Number of heavy atoms (i.e. not hydrogen)

nbC Number of carbon atoms
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nbO Number of oxygen atoms

nbN Number of nitrogen atoms

nbAromAtom Number of aromatic atoms

nbRing Number of rings

nbHeteroRing
Number of rings containing heteroatoms

(N, O, P, S, or halogens)

Sp3Sp2HybRatio Fraction of sp3 carbons to sp2 carbons

5.2.3 Model development and validation

The GBDT based prediction model was developed as a non-linear model and an ensemble algorithm.

This GBDT based prediction model was developed using physicochemical properties, environmental

fate endpoints, and molecular descriptors for the chemicals in the dataset. Gradient boosting

consisted of gradient descent and boosting methods developed by Friedman [Friedman, 2001].

The boosting algorithm was a part of ensemble learning and was used to integrate multiple weak

learners, such as decision trees, to build the entire learner. The use of a decision tree as a weak

learner in boosting had advantages such as good resistance to outliers in the data and the ability to

withstand discrete variables and missing values. Accordingly, the boosting algorithm is one of the

most popular algorithms in data analysis competitions, such as KDD Cup and Kaggle. Since the

tree models are also generally excellent in readability, it was possible to determine the explanatory

variables that contributed to the developed model. XGBoost, which is a machine-learning package
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for the GBDT algorithm [Chen and Guestrin, 2016], was executed in Python. XGBoost had a very

scalable end-to-end tree boosting system. XGBoost employed an algorithm that determined the

direction of tree branching in advance for sparse data, i.e., when there are many missing values. The

model search was accelerated by parallel distributed processing. XGBoost adopted an algorithm

that determined the branch direction of a tree in advance for sparse data, including many missing

values, and model retrieval was accelerated by parallel distributed processing.

Parameter tuning was performed by a grid search to determine the optimum parameters for the

GBDT based prediction model. The grid search was performed in 5-fold cross-validation on the

training set and evaluated by R2 value. The values of maxdepth, min child weight, n estimators, and

regalpha were optimized. Grid search is a conventional, reliable, and rapid approach that was used

to determine the optimum parameter due to quick algorithms such as GBDT.

A total of 1,826 descriptors and 46 physicochemical properties and environmental fate endpoints

were generated using Mordred and OPERA. The descriptors for all 522 chemicals were calculated

within 20 second using Mordred. The physicochemical properties and environmental fate endpoints

were calculated in 35 min using OPERA. Majority of the molecular descriptors and properties were

not essential for the calculation of log BCF. Therefore, we selected the descriptors that were relevant

to the predictability of the developed model using the feature importance implemented in the GBDT.

The tree-based model was used to determine the variable and threshold value that maximized the

model at each branch. We adopted gain as an indicator, which is the default and critical parameter

for feature selection.

Linear regression models based on the multiple linear regression (MLR) and support vector

machine (SVM) were developed using molecular descriptors, physicochemical properties, and
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environmental fate endpoints selected by feature selection. We compared these models with the

GBDT based prediction models.

The performance of the developed model was evaluated based on the OECD principles for

model validation [Gramatica, 2007]. The prediction ability, fitting performance, and robustness

of the model were evaluated using R2, the leave-one-out cross-validation of correlation coefficient

(𝑄2
𝐿𝑂𝑂), the coefficient of multiple determinations of 10-fold cross-validation (𝑅2

10 𝑓 𝑜𝑙𝑑), and the

root-mean-square error (RMSE). Other detailed definitions and calculations of the parameters are

provided in references [Chirico and Gramatica, 2011, Chirico and Gramatica, 2012].

5.2.4 Applicability Domain

We evaluated the applicability domain (AD) of the dataset using same approach in the previous

chapter. We adopted two approaches for evaluating AD. The first was a standardization approach

using the AD using standardization approach program [Roy et al., 2015]. The second approach was

the Euclidean distance-based method using Euclidean-Distance 1.0 software [Ambure et al., 2015].

𝑑𝑖 𝑗 = ∥𝑋𝑖 − 𝑋 𝑗 ∥ =

√√
𝑚∑
𝑘=1

(
𝑋𝑖𝑘 − 𝑋 𝑗 𝑘

)2 (5.1)

𝑑𝚤 =

∑𝑛
𝑗=1 𝑑𝑖 𝑗

𝑛 − 1
(5.2)

MeanDistance (Normalized ) =
( MeanDistance − Min_MeanDistance )

( Max_MeanDistance − Min_MeanDistance ) (5.3)
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where, 𝑑𝑖 𝑗 is the distance score between two compounds; and 𝑑𝑖 is the mean distance.

5.2.5 Comparison of the developed models with OPERA and models in pre-

vious studies

The EPI (Estimations Programs Interface for Windows) suite was also used for comparison with

the model developed in this study.

The predictive values of log BCF calculated by OPERA were also compared with our developed

model. OPERA contained a model for the direct prediction of log BCF values. These data yielded

by the OPERA were from the PHYSPROP, which is a collection of a wide variety of sources

built by Syracuse Research Corporation. Experimental protocols for the different components

of the data were traced to the originally referenced literature from the database. PHYSPROP’s

BCF data were collected from Arnot and Gobas [Arnot and Gobas, 2006]. The original data

collected from the PHYSPROP database underwent a series of processes to curate the chemical

structures and remove duplicates. We compared the predictive abilities of the QSAR model and

models developed in the previous study by Pramanik [Pramanik and Roy, 2014]. They developed

two models using genetic function approximation followed by multiple linear regression (GFA-

MLR) [Rogers and Hopfinger, 1994] and subsequent partial least squares (PSL) regression models

[Eriksson et al., 2013].
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Table 5.3: Statistical parameters of the developed models using physicochemical properties,
environmental fate estimated value, and molecular descriptors

No. Model No. of
variables R2 𝑅2

𝑃𝑅𝐸𝐷 𝑄2
𝐿𝑂𝑂 𝑅2

10 𝑓 𝑜𝑙𝑑 𝑅𝑀𝑆𝐸𝑡 𝑅𝑀𝑆𝐸𝑝

1 Physicochemical properties and
e-fate estimated value 5 0.927 0.833 0.907 0.802 0.368 0.545

2 Molecular descriptors 7 0.91 0.831 0.896 0.763 0.409 0.549
3 1 + 2 5 0.923 0.863 0.917 0.815 0.378 0.494

5.3 Results and discussion

5.3.1 Result of the developed models

The standard parameters for the developed models were optimized via a grid search using the

dataset. We obtained the optimum values of R2 and RMSE for both the training and test datasets

using maxdepth, min child weight, n estimators, and gamma at measures of 30, 15, 200, and 0.001,

respectively. Several studies have suggested that R2 values should be greater than 0.7 and RMSE

values should be as low as possible [Chirico and Gramatica, 2011, Chirico and Gramatica, 2012].

We used 324 chemicals as a training set and 198 chemicals as the test set, as outlined in a previous

study [Pramanik and Roy, 2014]. A model using molecular descriptors calculated by Mordred as

an explanatory variable demonstrated excellent performance compared with the previous model (R2

> 0.8). However, the models that used both values calculated by OPERA and Mordred showed the

best parameters. The statistical parameters of the model are shown in Table 5.3.

We selected the descriptors using the feature importance. There are three indicators of feature

importance: cover, gain, and weight.Cover is the sum of the quadratic gradients of the training data

classified into leaves. The squared loss corresponds to the number of instances on that branch and

gain is an indicator of the extent to which the evaluation criteria can be improved. Weight is a
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measure of the number of times the feature was used to split the data across all trees to observe only

the existing number. There is no information on the proximity of the branch to the prediction or the

number of branches used for input. We adopted gain as an indicator.

After conducting the feature importance selection of the explanatory variable, six values were

selected. The selected physicochemical properties and environmental fate endpoints were LogD74

and LogKM_pred, which are listed in Table 5.2. LogD74 is a predictive logarithmic distribution

coefficient at pH 7.4. Log D represents a measure of lipophilicity at the physiologically relevant

pH. Log P represents the concentration ratio at the neutral species, whereas log D is defined as the

total concentration of all charge-state forms of the substance dissolved in the lipid (octanol) phase

divided by the total concentration dissolved in water at a selected pH. Thus, log D is a more relevant

parameter for describing the biological effects of chemicals because it considers ionization at the

relevant pH. LogKM_pred is the logarithmic predictive fish biotransformation half-life.

The fish biotransformation half-life is closely related to the bioconcentration process [Papa et al., 2007].

Of the 1,826 descriptors calculated by Mordred, the three molecular descriptors that were selected

for model development are presented. The most important descriptor was XLogP, which denotes the

calculated value of log P. XlogP was calculated by decomposing the molecule into individual atoms

and calculating the total contribution of each. A correction term was included in the calculation.

The value of Log P published in PubChem is based on XLogP. The next important descriptor was

TopoPSQ (NO), which is a topological polar surface area. Last, the fMF is a descriptor character-

izing the complexity of a molecule. The fMF was described in a previous report [Yang et al., 2010]

and is an approach used for characterizing molecular complexity based on the Murcko framework

present in the molecule. The descriptor is the ratio of heavy atoms per the total number of atoms in
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the molecule. By definition, acyclic molecules that have no frameworks will have a value of zero.

Last, the FilterItLogS is the calculated value of the base 10 logarithm of the solubility (log S) via

Filter-it™.

The selected physicochemical properties, environmental fate endpoints, and molecular de-

scriptors are consistent with the results of previous studies. The bioconcentration of a chemical

substance in fish is related to mechanisms and properties such as the molecular size, the fat- and

water-solubility of the compound, and the biological characteristics of the organisms such as species

and size [Veith et al., 1979, Connell, 1988, Garg and Smith, 2014]. The accuracy of the models was

evaluated by calculating R2 , 𝑄2
𝐿𝑂𝑂 , 𝑅2

10 𝑓 𝑜𝑙𝑑 , and RMSE. Each expression is detailed as follows:

R2 = 1 −
∑𝑛
𝑖=1

(
𝑦𝑜𝑏𝑠 − 𝑦𝑝𝑟𝑒𝑑

)2∑𝑛
𝑖=1 (𝑦𝑜𝑏𝑠 − 𝑦means )2 (5.4)

RMSE =

√∑𝑛
𝑖=1

(
𝑦𝑜𝑏𝑠 − 𝑦𝑝𝑟𝑒𝑑

)2
𝑛

(5.5)

where 𝑦𝑝𝑟𝑒𝑑 denotes the predicted value of log BCF and 𝑦𝑜𝑏𝑠 denotes the experimental data of

log BCF Additionally, 𝑦𝑚𝑒𝑎𝑛𝑠 denotes the average value of log BCF, and n denotes the number of

samples. The R2 values for the training and test sets were 0.923 and 0.863, respectively. 𝑄2
𝐿𝑂𝑂

and 𝑅2
10 𝑓 𝑜𝑙𝑑 were 0.917 and 0.815, respectively. The predicted values calculated via the developed

model are shown in Table 5.4. Additionally, plots of predicted values and measured values of log

BCF are shown in Figure 5.3.

An MLR model was developed using the same dataset, and explanatory variables were used in

GBDT based prediction model. The regression equation of the prediction model is shown in the
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Table 5.4: Statistical parameters of the GBDT, MLR, and SVM based prediction models
Model 𝑅2

𝑡 𝑅2
𝑝 𝑄2

𝐿𝑂𝑂 𝑅2
10 𝑓 𝑜𝑙𝑑 𝑅𝑀𝑆𝐸𝑡 𝑅𝑀𝑆𝐸𝑝

GBDT 0.923 0.863 0.917 0.815 0.378 0.494
MLR 0.727 0.757 0.739 0.704 0.712 0.658
SVM 0.783 0.805 0.808 0.75 0.635 0.589
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Figure 5.3: Plot of the experimental data and predicted values of log BCF by GBDT based prediction
model

following equations:

𝑙𝑜𝑔𝐵𝐶𝐹 = 0.1615𝐿𝑜𝑔𝐷74 − 0.7043𝐿𝑜𝑔𝐾𝑀𝑝𝑟𝑒𝑑 + 0.0327𝑋𝐿𝑜𝑔𝑃

−0.0061𝑇𝑜𝑝𝑜𝑃𝑆𝐴 + 1.1044 𝑓 𝑀𝐹 + 0.0604𝐹𝑖𝑙𝑡𝑒𝑟 𝐼𝑡𝐿𝑜𝑔𝑆 + 1.1595
(5.6)

The R2 values for the training and test sets were relatively low (0.727 and 0.757, respectively)

compared to the GBDT based prediction model. 𝑄2
𝐿𝑂𝑂 and 𝑅2

10 𝑓 𝑜𝑙𝑑 were 0.739 and 0.704. Statistical

parameters for the developed MLR model are shown in Table 5.4.

The SVM model was also developed using the same dataset. We compared linear and non-linear
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kernels; poly kernel, radial basis function (RBF) kernel, and the sigmoid kernel were used as the

non-linear kernels. Two parameters, C (regularization parameter) and gamma (the relative weight

of the regression error), were optimized by the grid search. Based on the result of the grid search,

SVM using the RBF kernel (C = 100, gamma = 0.001) exhibited the optimal score. The R2 values

for the training and test sets were relatively low (0.783 and 0.805, respectively) compared to the

values obtained using the GBDT based prediction models. 𝑄2
𝐿𝑂𝑂 and 𝑅2

10 𝑓 𝑜𝑙𝑑 were 0.808 and 0.750,

respectively. Statistical parameters for the developed SVM model are shown in Table 5.4.

5.3.2 Applicability Domain

We evaluated the Applicability Domain (AD) using two approaches: the standardization approach

and the Euclidean-Distance approach. We confirmed that only four chemicals (Nos.29, 125, 196,

and 278) in the training set compounds were outliers, and one chemical (No.90: 6,6’-Ureylene-Bis

(1-Naphthol-3-Sulfonic Acid)) in the test set lied outside the applicability domain. The results by

AD using the standardization approach showed that there are few outliers in the training set with

the regular distribution pattern in which 99.7% of the population remained within the range of

mean± 3 SD. The Euclidean graph generated by Euclidean-Distance 1.0 was prepared and shown

in Figure 5.4. The Euclidean distance is an ordinary distance between two points in the Euclidean

space. Based on the normalized mean distances in the graph, only one training compound (No.125)

and one test compound (No.90) were located outside the AD. The two AD methods showed an

almost identical result, and the QSAR model developed in this study can make predictions with

excellent reliability.
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Figure 5.4: Plot of Euclidean-Distance applicability domain

5.3.3 Comparison of the developed models with OPERA and models in the

previous studies

We compared the calculated log BCF to evaluate the performance of the three developed models.

The statistical parameters are shown in Table 5.4. Some values that were predicted by the MLR

and SVM models exhibited the greatest accuracy. However, considering the statistical parameters

shown in Table 5.4, we obtained the best values for all statistical parameters by the GBDT based

prediction model; hence, we concluded that GBDT algorithm was the best of the three models.

We compared the predictive ability of our developed model with the calculated values of log

BCF using the EPI suite and OPERA. EPI suite is a model that was jointly developed by the U.S. EPA

and Syracuse to predict and calculate the physicochemical properties of each substance based on its
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chemical structure [Card et al., 2017]. This software has been used for risk assessment in various

fields, such as in the examination of new chemical substances under the Toxic Substances Control

Act (TSCA) when products containing new chemical substances are imported into the United States.

The EPI suite incorporated a model that predicts various parameters, such as bioconcentration and

biodegradability. BCFBAF™, formerly called BCFWIN™, is a subset of the EPI suite. This

program estimates the logarithm of the fish BCF by two different methods. The first estimation

method is the regression model based on log Pow and any relevant correction factors; this method is

analogous to the WSKOWWIN™ method. The second method is the Arnot-Gobas method, which

calculates the BCF from mechanistic first principles. The predictive abilities of the GBDT based

prediction model, EPI suite, and OPERA are shown in Table 5.5. OPERA demonstrated good

predictive ability compared to the EPI Suite. Although the EPI suite and OPERA possess a more

extensive chemical space compared to our developed models, our GBDT based prediction model

exhibited better predictive ability than the EPI Suite, and is compare with OPERA.

Table 5.5: Overall summary of statistical parameters for all QSPR models
Model No. of

variables 𝑅2
𝑡 𝑅2

𝑝 𝑄2
𝐿𝑂𝑂 𝑅2

10 𝑓 𝑜𝑙𝑑 𝑅𝑀𝑆𝐸𝑡 𝑅𝑀𝑆𝐸𝑝

Pramanik et al., 2014 (Model 1) 7 0.641 0.659 0.62 - - 0.78
Pramanik et al., 2014 (Model 2) 4 0.614 0.696 0.597 - - 0.738
CAESAR reported by Pramanik et al. - - 0.828 - - - -
TEST reported by Pramanik et al. - - 0.83 - - - -
OPERA - 0.798 0.885 - - - 0.463
EPI Suite (BCFBAF™) - 0.618 0.661 - - - 0.669
MLR 5 0.725 0.761 0.739 0.706 0.715 0.652
SVM 5 0.783 0.805 0.808 0.75 0.635 0.589
GBDT 5 0.923 0.863 0.917 0.815 0.378 0.494

Table 5.5 compares the predictive abilities of our developed QSAR models with the models used

in previous studies reported by Pramanik [Pramanik and Roy, 2014]. Our developed GBDT based
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prediction model showed higher predictive accuracy, fitness, and robustness than those reported

in the previous study. The results indicated that the physicochemical properties, environmental

fate endpoints, and molecular descriptors are important for log BCF estimation. Therefore, this

study demonstrated that log BCF could be determined from the chemical structure without expensive

laboratory studies on log BCF. On the basis of this finding, the experimental cost for BCF calculation

as required for chemical development, may be significantly reduced and shorten the development

period.

Additionally, we can apply the developed model for preliminary environmental risk assessment,

whereby we can determine whether the development of the chemical should be pursued or aborted

by the QSAR models based on the chemical structure. Though the decision of the project for de-

velopment is currently determined via expert heuristics, these results provide objective justification

for the use to guide product development. An overall summary of the models is shown in Table 5.5.

5.4 Conclusion

In this chapter, we have developed prediction models for the estimation of BCF. We have used

calculated physicochemical properties by OPERA as in the previous chapter because the QSPR

models for Koc developed in the previous chapter showed high performance comparing to the

previous models. As a result, the following results were obtained.

• By using both the physicochemical properties and molecular descriptors calculated from

structural formulas, the model prediction accuracy was considerably improved.

• By using the GBDT algorithm, the model prediction accuracy was further increased.
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• The prediction models using the GBDT algorithm demonstrated the best prediction abilities

among various machine learning models.

The results suggest that by using molecular descriptors, physicochemical properties, and envi-

ronmental fate endpoints as explanatory variables, we have developed a high-performance prediction

model in terms of accuracy that is comparable to the existing model as well as QSPR models for Koc

in the previous chapter. Thus, we showed the generality and versatility of the procedure developed

in the chapter 3 and 4.Our proposed procedure is applicable for development of prediction models

for various parameters for environmental risk assessment. A preliminary environmental risk assess-

ment can be performed without the need to perform time-consuming experiments. Consequently,

the developed models can significantly contribute to the development process of new chemicals.

This work is not only an effective proposal for the BCF evaluation method, but also evaluated the

applicability of the data mining method.
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Chapter 6

Discussion

In previous research studies, different predictive models for the toxicity and environmental effects

of various chemicals were developed; however, no research works have focused on the risk and

hazard assessment of pesticides using the data obtained from EU pesticide evaluation reports and

physicochemical properties calculated by OPERA software. The results obtained in the present work

revealed that it was possible to predict whether a particular pesticide would be registered or not by

building an evaluation report database using publicly available pesticide application information

and constructing an appropriate prediction model. In addition, the data contained in the officially

issued evaluation reports have uniform standards and are highly reliable.

Therefore, it can be concluded that it is possible to predict environmental risk/hazard assess-

ment parameters related to the registrability of pesticides using publicly available information and

experimentally determined physicochemical properties and constructing an appropriate prediction

model.

This study will serve as a model for predicting the outcomes of environmental tests and other
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parameters involved in the registration of pesticides, facilitating the decision-making process regard-

ing pesticide registration at an early stage. Compared to the traditional empirical and logic-based

approaches utilized in drug discovery, our research is expected to strongly contribute to the rapid and

efficient development of pesticides by reducing the timeframe required for issuing recommendations

by R&D organizations and related costs.
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Chapter 7

Conclusion and future works

Pesticides are artificially synthesized biologically active chemicals that are applied to agricultural

crops to control pests and diseases. Because pesticides remain in agricultural products and people

may ingest them unknowingly over a long period via food, it is necessary to ensure the safety

of these products. For this reason, authorities in all countries across the globe have established

pesticide registration systems based on laws and regulations, which require conducting numerous

safety tests and risk and hazard assessments. Some of these tests take several years to complete and

are very expensive. Depending on the obtained results, a pesticide may or may not be approved for

registration or its registration may be cancelled.

Thus, it is necessary to be able to efficiently predict safety parameters at the early development

stage of chemical compounds. In this study, we developed a prediction model for Koc and BCF,

which are two of the most important parameters used in the risk and hazard assessments conducted

in Europe by analyzing the DAR and physicochemical properties calculated by OPERA software.

In Chapter 3, we developed prediction models for Koc values based on the GBDT algorithm.
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For this purpose, we collected experimentally determined physicochemical properties from pesti-

cide evaluation reports. In addition, we calculated molecular descriptors by the Cheminformatics

software. As a result, the following results were obtained.

• By using both the molecular descriptors calculated from the structural formulas and ex-

perimental physicochemical properties from the literature and open databases, the model

prediction accuracy was significantly improved.

• By utilizing the GBDT algorithm, the prediction accuracy of the proposed model was further

increased.

• The prediction models based on the GBDT algorithm demonstrated the best prediction abilities

among the different machine learning models.

• The proposed models were developed using the open data sources and free software.

The results of this work revealed that it was possible to perform a preliminary environmental

risk assessment at a relatively low cost and without conducting time-consuming experiments.

However, retrieving data from a large number of documents takes a considerable amount of time.

Therefore, in the next chapter, physicochemical properties were evaluated by using the latest version

of Cheminformatics software.

In Chapter 4, we established prediction models for Koc values utilizing only calculated pa-

rameters. We also proposed a prediction model based on the GBDT algorithm that utilized the

physicochemical properties and molecular descriptors quantified by the OPERA and Mordred (for

large datasets) software packages. After performing these steps, the following results were obtained.

89



• By using both the physicochemical properties and molecular descriptors calculated from

structural formulas, the model prediction accuracy was considerably increased as compared

with that of the model described in the previous chapter.

• By using the GBDT algorithm, the prediction accuracy was further improved.

• The prediction models based on the GBDT algorithm exhibited the best prediction abilities

among various machine learning models.

• The performance of the model developed in this chapter was much higher than those of the

models developed in the previous chapter.

Although the model using the experimentally determined physicochemical properties demonstrated

a good fit, high prediction accuracy, and robustness, the method proposed in this chapter can be

used instead of the actual values if the latter are difficult to acquire.

In Chapter 5, we developed prediction models for the estimation of BCF values. In particular,

we calculated physicochemical properties by OPERA software because the QSPR models for Koc

developed in the previous chapter demonstrated higher performance than those of the previously

constructed models. As a result, the following conclusions were drawn.

• By using both the physicochemical properties and molecular descriptors calculated from

structural formulas, the model prediction accuracy was considerably improved.

• By using the GBDT algorithm, the model prediction accuracy was further increased.

• The prediction models using the GBDT algorithm demonstrated the best prediction abilities

among various machine learning models.
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The obtained results suggest that by using the GBDT algorithm for constructing a prediction model

including molecular descriptors, physicochemical properties, and environmental parameters as

explanatory variables, it is possible to establish a high-performance model that is comparable to the

existing models as well as to the QSPR models for Koc described in the previous chapter. Thus, the

proposed approach is applicable for the development of prediction models for various parameters

with a potential utilization in the environmental risk assessment.

Future research studies should focus on the following topics.

1. In Chapters 3 and 4, we developed prediction models for the Koc values of pesticides; however,

because a large pesticide database called“Pesticide Properties Database”[Lewis et al., 2016]

is publicly available, prediction models for compounds with a wider range of physicochem-

ical properties can be developed as well. Furthermore, because this dataset includes other

parameters in addition to Koc magnitudes, it can be applied to develop a more comprehensive

prediction model for the risk assessment of pesticides.

2. In Chapter 5, we proposed a prediction model for BCF, which is the most representative

factor describing the bioaccumulation of chemicals. Other bioconcentration parameters in-

clude the bioaccumulation factor, which is a bioconcentration factor of the surrounding

environment (water, soil, and food); biomagnification factor, a bioconcentration factor char-

acterizing the oral intake of food; and biota-substrate (soil/sediment) accumulation factor,

which represents a bioconcentration factor of the soil and sediment of the habitat substrate

[Crookes and Brooke, 2011, Burkhard et al., 2012].

Thus, a comprehensive prediction model that includes these bioaccumulation factors should
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be developed in the future.

3. While the prediction models for Koc and BCF were established in Chapters 3 and 4 as part of the

environmental risk/hazard assessment procedure, other important environmental parameters

include the mobility and degradation of soils [Arias-Estévez et al., 2008]. In addition to en-

vironmental assessments, human health risk assessments are also routinely conducted for the

safety evaluation of pesticides, and various toxicity tests such as carcinogenicity, mutagenicity,

and genotoxicity tests are performed as well [Bolognesi, 2003, Tchounwou et al., 2004].

The methodology of the QSAR/QSPR models proposed in this study is highly versatile and

can be applied to other environmental impact assessments and human and animal toxicity

evaluations. Therefore, a comprehensive prediction model must be established for various

pesticide evaluation parameters to further improve the accuracy of predicting whether a

particular pesticide should be registered or not.

4. In Chapters 3, 4, and 5, we summarized the physical properties of chemical compounds and

developed prediction models for Koc and BCF values. In a recent research work, the structures

of chemical compounds were considered graph structures, which were successfully used for

designing neural network-based applications [Altae-Tran et al., 2017, Gilmer et al., 2017]. In

the future, the possibility of applying graph convolutional networks to the development of

prediction models for chemical risk assessment parameters should be explored.
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