

Study on Adopting Open Source Software

in Business Projects

２０２１

Shinji Akatsu

Study on A
dopting O

pen Source Softw
are in B

usiness Projects

二
〇
二
一

Shinji A
katsu

Study on Adopting Open Source Software

in Business Projects

２０２１

Shinji Akatsu

Graduate School of Business Sciences
University of Tsukuba

Abstract

Recently, adopting open-source software (OSS) in the software
development process, has become wide-spread among enterprise system
development projects. It contributes to improving development effectiveness;
however, it requires important factors to be considered, such as it does relate
to business alliance strategy including the platform strategy in global
ecosystems, it does not insist on the monopolistic use of intellectual property
and its does not guarantee its software quality, and so on. This implies that
adopting OSS requires crucial decision making in terms of various aspects
including business, technology, and intellectual property management,
which are not mutually independent but may exhibit a complex set of
relationships.

Therefore, considering the situation in which the use of OSS is
indispensable in corporate system development, the subject of this
dissertation is to identify issues for adoption evaluation and to propose
technologies to support decision-making regarding adopting OSS in
business software projects. The objective is to contribute to the efficiency of
the system development of enterprises.

First, we articulate the first research question as “Isn't it possible to clarify
the decision-making procedure by extracting the axes and factors of OSS
adoption evaluation and by creating a structured map to overview the OSS
to be adopted?”

The significance of this study is its organization of the concept of the case-
by-case process in decision-making for OSS adoption of business projects in
the actual workplace.

Thus, a method for organizing the evaluation axes and factors of OSS
adoption evaluation and the structure of the evaluator hierarchy is assessed.
A structured map is proposed that defines the positioning of the OSS
evaluated from the perspective of technology, products, business project,
company operation, and intellectual property creation and application in
order for project managers responsible for the entire system development to
obtain an overview of the adoption evaluation.

In the practical consequences of the company, the adoption is decided based
on the importance priority of the desired OSS, including, for example, the
function, the quality and/or the intellectual property, however if the
positioning is the same, the OSS with better quality will be adopted.
Therefore, we decided to dig deeper into what and how OSS software quality,
which is a key factor in hiring decisions, should be evaluated. Here, from the
viewpoint of OSS usage, we define the quality of OSS as “the resolution rate
of issues processed by OSS developers as well as the promptness and
continuity of doing so.”

Second, we articulate the second research question as “By looking at the
status of the issue session of the OSS development projects by the OSS
developer community, is it possible to extract an index that can quickly
determine whether OSS can be used before starting a detailed examination?”

The significance of this research lies in the proposal of a framework for
adoption decision making from an OSS quality perspective. Software quality
indicators, which are a key factor in adopting OSS, should be explored in
depth.

Thus, from the analysis of issue sessions of the OSS development projects,
a nine-quadrant map named T-model is defined, focusing on the trends
expressed by the curve shape and the divergence time, in terms of the

cumulative number of issues raised and resolved. Then the mapped OSSs in
the T-model are examined from the perspective of the final resolution rate.
The axes to be related to software quality are the activeness of the developer
community and its maturity of the technological innovation. It is proposed
to utilize the T-model as an index to quickly judge whether the target OSS
can be used before starting a detailed examination.

Third, we articulate the third research question as “By looking at the
resolution rate and the response quickness and the response continuity of
the issue session of the OSS development projects by the OSS developer
community, is it possible to extract the knowledge to predict the final quality
including the support capability in actual use?”

The significance of this research is to quantitatively analyze the actual
activities of the development community and to extract the knowledge, from
the perspective of digging deeper into the axis of the activeness of the OSS
development community. The indicator to predict the OSS software quality
including the support capability in actual use, which is a key factor in
adopting OSS, should be explored in depth.

As a result, the resolution rate of the OSS project’s issue response and the
status of promptness and continuity are analyzed, as well as the resolution
rate of the issues at the early stage (first month) regarding quality including
support capability in actual use. There is a high correlation with the final
solution rate, which meant that it could be used as knowledge for
introduction decisions.

In this dissertation, a method to define the positioning of the target OSS

in the OSS adoption evaluation is proposed. The model consists of two axes,
which are the activeness of the community and its technological maturity, is
proposed to quickly judge based on software quality whether the target OSS

can be used before starting a detailed examination. The knowledge to judge
better quality OSS, considering support capability in actual use from the
perspective of the OSS usage side, is extracted. By utilizing this method and
model and knowledge in the decision-making process for adopting OSS, we
believe that it will contribute to improving the productivity and efficiency of
system development in business projects.

i

Contents

Abstract .. 3
1. Introduction .. 1
2. Issues on Open Source Software Adoption in Business Projects 5

2.1. Overview of Open Source Software Adoption in Business Project 5
2.2. Trends and Previous Studies on Evaluation Process for Adopting OSS 9
2.3. Trends and Previous Studies on fact-finding of OSS Development Projects . 12
2.4. Trends and Previous Studies on OSS Software Quality 15
2.5. Chapter Conclusion ... 19

3. Structured analysis of the evaluation process for adopting open-source software
 22

3.1. Introduction ... 22
3.2. Adopting OSS in the software development process 23
3.3. Structured analysis of the evaluation process when adopting OSS 24
3.4. Structured evaluation criterion map for adopting OSS 38
3.5. Chapter Conclusion ... 40

4. Quality Indicator Model of Large-Scale Open Source Software Projects for
Adoption Decision-making .. 41

4.1. Introduction ... 41
4.2. Method for Deriving OSS Quality Indicator Model ... 44
4.3. Evaluation of the Model .. 47
4.4. Discussion .. 55
4.5. Chapter Conclusion ... 59

5. Quality Prediction for Large-Scale Open Source Software Projects 60
5.1. Background and Purpose of This Chapter ... 60
5.2. Definition of OSS Quality and its Measurement .. 65
5.3. Selection and Analysis of Target Projects .. 67
5.4. Quality Prediction Model Based on Issue Resolution Rate 76
5.5. Chapter Conclusion ... 86

6. Conclusion ... 87
Acknowledgements .. 92
References .. 93
Related Achievement List ... 105

ii

List of Tables

3-1. Evaluation Layer Category and Major Factor in evaluation process when adopting
OSS ... 27

3-2. Evaluation Criteria Axis and Major Factor in evaluation process when adopting
OSS ... 29

4-1. Number of created issues, closed issues, and resolution rate for the 39 selected
projects as on April 22, 2020 ... 48

5-1. Number of created issues, closed issues, and resolution rate for the 44 selected
projects as on December 31, 2018. .. 69

5-2. Correlation between final resolution rate and resolution rate for a relevant number
of months after issue creation ... 84

iii

List of Figures

2-1. Adopting OSS in the Software Development Process ... 7

3-2. Evaluation Layer Category in adopting OSS ... 27

3-3. Overall hierarchical relationship of the evaluation layer, the evaluation criteria
axis and major factor ... 31

3-4. Hierarchical structure of technology axis factors ... 32

3-5. Hierarchical structure of products axis factor .. 33

3-6. Hierarchical structure of business project axis factors .. 34

3-7. Hierarchical structure of company operation axis factors 35

3-8. Hierarchical structure of intellectual property creation axis factors 36

3-9. Hierarchical structure of intellectual property application axis factors 37

3-10. Example of the structured evaluation criterion map ... 38

4-1. Examples of trends for changes in cumulative number of created and closed issues
 .. 51

4-2. Result of the analysis for the “Linear” category. .. 52

4-3. Result of the analysis for the “Logarithm” and the “Cubic” categories. 52

4-4. Plots of the timing of project started, deviation, and data acquisition 54

4-5. T-model: Nine-quadrant Matrix consisting of Issue Increase Trends and Timing of
Unresolved Issue Occurrences .. 55

4-6. Correlation between ratio of pro-deviation and post-deviation period and Final
Resolution Rate .. 57

4-7. Correlation between the difference of increase slope and Final Resolution Rate58

5-1(a). Examples of trends for changes in cumulative number of created and closed
issues. (a)Numbers of created and closed issues continuously match each other. 71

5-1(b). Examples of trends for changes in cumulative number of created and closed
issues. (b) Numbers of created and closed issues diverge during the middle stage of
development. .. 72

5-1(c). Examples of trends for changes in cumulative number of created and closed
issues. (c) Numbers of created and closed issues are divergent from the beginning. 73

iv

Figure 5-2(a-1). Patterns of transition in resolution status for each month by period. (a-
1) Created issues continue to be resolved in the current month. 77

5-2(a-2). Patterns of transition in resolution status for each month by period. (a-2)
Resolution period for the issues is extended; however, they are consistently closed
within 12 months. .. 78

5-2(b). Patterns of transition in resolution status for each month by period. (b)
Unresolved issues are present as new issues are created, thus extending from the
middle stage to end of the relevant period. .. 79

5-2(c-1). Patterns of transition in resolution status for each month by period. (c-1) Issue
took considerable time to resolve. Unresolved issues from the middle stage are brought
forward. .. 80

5-2(c-2). Patterns of transition in resolution status for each month by period. (c-2)
Issues continuously created and take time to resolve leading to accumulation of
unresolved issues. .. 81

Figure 5-3. Correlation between final resolution rate and that of the first month after
issue creation ... 84

1

1. Introduction

Recently, adopting open-source software (OSS) in the software development
process, has become wide-spread among enterprise system development
projects. It contributes to improving development effectiveness; however, it
requires important factors to be considered, such as it does relate to business
alliance strategy including the platform strategy in global ecosystems, it does
not insist on the monopolistic use of intellectual property and its does not
guarantee its software quality, and so on. This implies that adopting OSS
requires crucial decision making in terms of various aspects including
business, technology, and intellectual property management, which are not
mutually independent but may exhibit a complex set of relationships.

Therefore, considering the situation in which the use of OSS is
indispensable in corporate system development, the subject of this
dissertation is to identify issues for adoption evaluation and to propose
technologies to support decision-making regarding adopting OSS in business
software projects. We believe that the required items include an organized
concept of the vague behavior of the actual workplace, and a framework for
adoption decision making from an OSS quality perspective based on the
quantitative analysis of the actual activities of the OSS development
community to extract the related knowledge. The objective is to contribute to
the efficiency of the system development of enterprises.

Based on the issues of related research, the following three questions are
articulated as the research themes.

(1) Research question 1: “Isn't it possible to clarify the decision-making

2

procedure by extracting the axes and factors of OSS adoption evaluation
and by creating a structured map to overview the OSS to be adopted?”

(2) Research question 2: “By looking at the status of the issue session of the
OSS development projects by the OSS developer community, is it possible
to extract an index that can quickly determine whether OSS can be used
before starting a detailed examination?”

(3) Research question 3: “By looking at the resolution rate and the response
promptness and the response continuity of the issue session of the OSS
projects by the OSS developer community, is it possible to extract the
knowledge to predict the final quality including the support capability in
actual use?”

Regarding the first research question, it is necessary to have a method to
organize the evaluation axis and factors of OSS adoption evaluation and the
structure of the evaluator hierarchy and to define the positioning of the OSS
to be evaluated from various aspects, such as technology, including quality
and function; business, including alliance strategy; and intellectual property
management, including its creation and utilization.

In the practical consequences of the company, the adoption is decided based
on the importance priority of the function and/or intellectual property of the
desired OSS; however, if the positioning is the same, the OSS with better
quality will be adopted. Therefore, it is necessary to identify what and how
OSS software quality, which is a key factor in hiring decisions, should be
evaluated. Considering the viewpoint of OSS usage, we define the quality of
OSS as “the resolution rate of issues processed by OSS developers as well as
the promptness and continuity of doing so.”

3

Regarding the second research question, what is required to determine
quickly whether OSS can be used before starting a detailed examination, is a

framework for adoption decision making from an OSS quality perspective—

with OSS quality indicators being of major significance — which is an

important factor of OSS adoption evaluation. This should be extracted from
the analysis of the activity of OSS development projects by the OSS developer
community, as the activeness of the developer community and its maturity of
the technological innovation seems to be related to software quality.

Regarding the third research question, what is required is the knowledge of
predicting software quality including the support capability in actual use,
based on quantitative analysis of the actual activities of the development

community. It is preferable to predict the final quality—in particular, the final

resolution rate—based on the activity status in the early past stage of OSS

development projects by OSS developer continuity.

The structure of this dissertation is as follows. In Chapter 2, the position of
our study is clarified via an overview of OSS adoption in business projects
and by surveying related previous studies from the viewpoint of the
evaluation process for adopting OSS, OSS development project challenges,
and software quality modeling and prediction of OSS. In Chapter 3, a concept
of the decision-making process for adopting OSS is organized by identifying
the axes and factors of OSS evaluation and by defining a structured map. In
Chapter 4, a framework for adoption decision making from an OSS quality
perspective is proposed. The proposed model shows that the activeness of the
developer community and its maturity of the technological innovation are
important indicators in terms of OSS quality. In Chapter 5, to dive deep into
the activeness of the community, knowledge for predicting the software

4

quality, including the support capability of the developer’s community, is
extracted. Finally, in Chapter 6, the conclusion is presented.

5

2. Issues on Open Source Software Adoption in Business

Projects

In this chapter, we explain the overview of OSS adoption in business projects
and the survey results of prior related studies and also outline the key
contributions that are aimed for.

2.1. Overview of Open Source Software Adoption in Business Projects

In recent years, remarkable progress has been made in the development of
open source software (OSS). Typical examples of OSS include the web service
stack LAMP [Ware 2002] [Gerner et al. 2005]—which, in turn, is composed
of four OSS components namely Linux [Linux 2020], Apache [Apache 2020],
MySQL [MySQL 2020], and PHP [PHP 2020] / Perl [Perl 2020] / Python
[Python 2020]—and the Android [Android 2020] operating system.
Furthermore, various OSS applications that have been developed for LAMP
and Android environments have been made available free of charge along
with their source codes.

In contrast, enterprise software (ES) includes software products owned and
developed by corporations and their source codes are protected through
copyright. Owing to the cost model for ES, its development is focused on
development efficiency and the number of users. Therefore, improving
development efficiency and increasing the number of users are important
themes for ES engineering.

Because the use of an OSS is typically free, and its source code can be openly
modified and redistributed within the scope of its open source license [OSI

2013], OSS reuse is common; thus, OSS development is not focused on
development efficiency. Therefore, there is no appropriate cost model for OSS

6

development, and research is underway to define and optimize OSS
development costs [Yoshitaka et al. 2017].

The concept of open source software (OSS) was defined by the Open Source
Initiative (OSI) [OSI 2013]. The source code is open to the public, and
regarding use and distribution, the OSS license requires various freedoms
(free redistribution, etc.) and obligations and restrictions (distribution in
source code, allowing modifications and derived works, etc.) for each OSS
[OSI 2013]. The OSS developer community is responsible for development,
testing, maintenance, and so on [OSI 2013]. The motivation for this effort has
traditionally been volunteer based [OSI 2013], but in recent years, there has
also been strategic OSS implementation launched by IT enterprises [Android
2020] [Tatsumoto 2021].

Here, we briefly review value creation in software development, as shown
in Figure 2-1. For closed-source software development, which is performed
within a company, a company’s technology is the input, and the output is the
software to be used for business and accumulated as company assets. When
OSS is adopted in software development, the OSS, which is a third-party
software, is also included as the input to improve efficiency at the points of
the quality, development cost, and period. As a side effect, there are
limitations depending on the license of the OSS, such as disclosure of the
source code, which affect the output.

7

Figure 2-1. Adopting OSS in the Software Development Process

Nevertheless, the adoption of OSS for software development processes in
corporations improves development effectiveness and efficiency; however, it
requires important factors to be considered, such as it does relate to business
alliance strategy including the platform strategy in global ecosystems, it does
not insist on the monopolistic use of intellectual property, and its does not
guarantee its software quality, and so on [Tatsumoto 2021].

As above mentioned, the adoption of OSS technologies requires crucial
decision-making based on various aspects, including business and technology
strategies, development investment, software function, software quality, and
intellectual property management, which are not mutually independent but
instead might be related to each other in a complex manner.

8

In the practical consequences of the company, the adoption is decided based
on the importance priority of the function and/or intellectual property of the
desired OSS. However, if the positioning is the same, the OSS with better
quality will be adopted because the software quality of the system, including
the OSS itself, must be guaranteed by the company who adopted the OSS.
OSS quality, including the technical support ability in a broad sense, is
completed by its OSS development projects. OSSs are generally developed
and operated by a software development team consisting of multiple
voluntary engineers. To proceed with software development efficiently with
better quality, it is important to maximize the ability of the team.

The issues regarding OSS adoption in business projects at the ground level
are summarized as follows:

• The decision to adopt OSS is important in the upstream process of
development, but the procedure is case by case depending on the position
and priority of the decision-maker.

• The OSS with better quality is selected among the OSSs with the same
functionality and intellectual property license, but its quality must be
guaranteed by the user.

Therefore, we recognize that organizing the concept of the decision for
adopting OSS and evaluation indicators using quantitative analysis is
required, also these are an important research theme.

In the following sections, we describe the survey result of the evaluation process for

adopting OSS, the fact-finding analysis of OSS development projects, and OSS software

quality from the OSS user perspective. The reasons for choosing these items are to explore

the research points regarding, OSS adoption judgment, OSS development communities

that create the functions and quality of OSS, and OSS quality from the user's perspective.

9

2.2. Trends and Previous Studies on Evaluation Process for Adopting

OSS

Since the adoption of OSS is an action that deals with engineering objects,
its evaluation process is a domain where Management of Technology (MOT)
is applied.

Here are the general evaluation criteria of software adoption for an
enterprise software system based on the roles and viewpoints of the MOT
[Nobeoka 2006] and the axis of the integrated roadmap of MOT [Tofu 2011].
In terms of the roles and perspectives of MOT, the major indexes to be
considered include technology, customer needs, competitive environment,
differentiation and identity, enterprise business structure, and organizational
structure [Nobeoka 2006]. Technologies, products, and businesses are adopted
as the axis of the integrated roadmap [Tofu 2011]. From these points of view,
MOT perspectives include as the key evaluation criteria axis.

• Technology: including function differentiation/uniqueness and quality

• Products: including customer needs

• Business Projects: including competitive environment, differentiation,
and distinctiveness

• Company Operation: including organization, investment, policy

Moreover, from an OSS-specific perspective, intellectual property
management must be considered because OSS is third-party property as a
deliverable by the developer community. Regarding intellectual property
management, the cycle of intellectual creation [CabinetSecretariat 2007],
consisting of the creation, acquisition, and utilization of intellectual property,
is important. In the case of adopting OSS, the trade-off between the creation
of one’s own property and the utilization of third-party property must be

10

considered. It is necessary to examine the advantages and disadvantages of
the utilization of third-party intellectual property, such as the possibility of
enclosing the technology of the deliverable and restrictions on owned or
created patents, by carefully examining the license of the OSS. For example,
licensing agreements approved by the open-source initiative (OSI) [OSI 2013],
such as BSD, GPL, and Apache licenses [BSD-2 2021] [BSD-3 2021] [GPL
2021] [Apache-License 2021], provide a general definition of open source;
however, different requirements are stipulated on the terms of patent rights
for the disclosure of the source code of derivative works (such as license
suspension due to patent litigation) [JapanPatentAttorneysAssocitation
2006]. Therefore, it is necessary to deal with the software depending on the
OSS adopted.

Another important OSS-specific perspective is business alliance strategy.
The motivation of the OSS developer community’s effort has traditionally
been volunteer based, but in recent years, there has also been strategic OSS
implementation by IT enterprises. Some developer groups are launched by
enterprises. When OSS is introduced as a platform, applications and business
models may be decided based on choices [Tatsumoto 2021]; therefore, it is also
necessary to consider monetization by forming alliances considering network
externalities. When combining one’s own technology with an open technology,
we clarify whether the purpose is to supplement or reinforce one’s technology
and discuss its necessity. As the interface of joining is required to design with
open and closed clarity, consideration of feasibility is necessary.

One topic related to alliance strategy to be considered is the industry
direction, which is value creation through “product” and “service” integration.
Regarding the business model that connects a product to the Internet and

11

adds value via web services, it is key to efficiently construct the
communication section, which is a commonly used technology, and to focus on
developing the core services of the distinctive business itself. There are many
OSSs for communication and OSS coupling is important for the product (mono)
emphasis on service (koto) [Vargo and Lusch 2008] [Higashi2009]
[Chesbrough 2010]. When services became more valuable, connecting
functions became important, and OSS was used in large numbers, so the
decision to introduce OSS became more important.

Regarding decision-making in general software development, there are
common norms such as “Common Frame 2013” [IPA 2013] and “A Guide to
the Business Analysis Body of Knowledge” [IIBA2015]. The role of the
development process, the content of the role, and the task are specified.

As mentioned above, although there are studies related to the adoption of
OSS, these differ from the viewpoint of clarifying the axis of the idea of OSS
adoption decision and organizing the concept.

12

2.3. Trends and Previous Studies on fact-finding of OSS Development

Projects

OSS is generally developed, tested, and maintained by the OSS developer
community [OSI 2013]. The motivation for this effort has traditionally been
volunteer based [OSI 2013]. In recent years, there has been a strategic OSS
implementation by IT companies [Android 2020] [Tatsumoto 2021], but the
motivations of members of the developer community are just as important.
In order to proceed with software development efficiently, it is important to
maximize the ability of the team. Previous studies on this theme include the
following.

The theme of revitalizing the software development team is analyzed in
Masuda’s doctoral dissertation [Masuda 2019] from three perspectives:
project managers’ cognition and team characteristics, the measurement for
development efficiency, and the team activities measurement method.

First, regarding project managers’ cognition and team characteristics, there
is a study that showed high discriminant analysis results regarding the
success or failure of a project [Matsuodani 2014]. This is based on a
questionnaire survey administered to leaders of corporate development teams.
In Masuda’s research, the leader of a company’s development team proposes
a tool verification and optimal analysis method that can know the state of
their own team [Masuda 2017].

Second, regarding the measurement of development efficiency, there is a
Constructive Cost Model (COCOMO) as a cost model [Boehm 1981].
COCOMO has a proven track record with no restrictions on language or
target area. Masuda’s research aims to explore the actual situation of the
development team based on the relationship between the members and the
amount of development in OSS development [Masuda et al. 2018]. Assuming
that there is a relationship between the members and the amount of

13

development of OSS development, an analysis based on a cost model using
the power formula in ES development and an attempt to analyze the
characteristics of OSS development were conducted. COCOMO was used for
the analysis.

Third, for the team activities measurement method, there is a study in
which the state of the development team is indexed from the variation in the
amount of activity [Masuda 2019].

OSS development is basically volunteer based. Therefore, it is stated that
acquiring excellent contributors is a factor in project success because each
development process, including software requirement specification
development, external and internal specification determination, code writing,
testing, and user support, are all volunteer oriented.

The theme of acquiring contributors is analyzed in Kobayakawa’s doctoral
dissertation [Kobayakawa 2020] from three perspectives: influencers,
future potential, and contribution guidelines.

First, regarding influencers, there is research on indicators of influence. The
study by Blincoe used the number of followers as an indicator of influencer
influence [Blincoe et al.2016]. The study by Badashian argues that the
number of “Forks” and “Watches” in a project (owned by the user) should be
considered along with the number of followers [Badashian 2016]. The study
by Thung et al. used the PageRank algorithm and selected the score as an
indicator of influencer influence [Thung 2013]. Some research has also been
conducted on whether a lot of contribution activities are needed to become an
influencer and other research on whether influencers get more contributors.
In Kobayakawa’s study, the three patterns above were applied to a
cryptocurrency project, and the influence of influencers of cryptocurrency
domains was analyzed [Kobayakawa and Yoshida 2019].

14

Second, regarding future potential, there is a survey study that states that
the future of the project leads to the acquisition of contributors [Dabbish et
al.2012]. In Kobayakawa’s study, the causal relationship with the number of
contributors was analyzed using the market capitalization of virtual currency
as a proxy variable for the future by time series analysis [Kobayakawa et al.
2020].

Third, regarding contribution guidelines, GitHub recommends that each
project have a standard file called the Contribution Guidelines. There is a
survey showing the top 50 projects with the highest contributions
(committees) that reported that 46 of them had guidelines or websites
describing their contributions [Izquierdo et al. 2015]. In Kobayakawa’s study,
the description of the contribution guidelines was analyzed deeply, and then
the analysis method was improved and extended using the structural topic
model [Kobayakawa and Yoshida 2017].

We believe that sufficient prior research has been done in this area.

15

2.4. Trends and Previous Studies on OSS Software Quality

As specified in section 2.2, evaluation of software quality is an important
factor in the decision-making process for OSS adoption. In general,
depreciation principles of accounting define the useful life of a software as 3
or 5 years [NationalTaxAgency 2020]. During this depreciation period,
software support to resolve bugs and improve specifications is required for
OSS as well. However, in practice, for OSS, it is expected that the OSS
developer community will provide software support services instead of a
corporate enterprise. In recent corporate software development projects, most
are based on OSS, and it is very rare that software projects do not incorporate
OSS somewhere in the process.

From a software engineering point of view, the functionality and quality of
the software are the most important factors for selecting an appropriate
system. The functionality of OSS can be verified by analyzing the freely
available source code. However, as the deliverables of an OSS are developed
by the developer community, their quality is not guaranteed. As the quality
of a corporate software product must be guaranteed, the corporate user
choosing to adopt the OSS is responsible for evaluating and guaranteeing its
quality.

Thus, before examining the detailed deliverables of an OSS thoroughly, it is
requited to have the knowledge, i.e., indicator for decision, that corporate
business could use for quantitatively assessing whether a desired OSS should
be adopted.

Moreover, for the further evaluation after the first examination, a method
for predicting the quality of OSS before it is implemented would be greatly
valuable to corporate users.

In general, widely used software tends to be of better quality as more people

16

do testing and report bugs. However, there are cases in which the actual
performance results are not disclosed, and the indicators used to evaluate the
quality are unknown. Because OSS development is typically intrinsically
motivated, its quality is independent of its cost. Therefore, cost is unlikely to
be a good metric in evaluating the quality, and other factors need to be
identified. Even if these metrics are not universal, a system for selecting OSS
that is recognized as having better quality than competing OSS would be
highly advantageous. Furthermore, there have been cases in North America
where software development companies acquired the vendors who developed
a particular OSS in order to effectively incorporate it as in-house modules into
their software products. However, Japanese companies tend to use a desired
OSS as provided as third-party modules. Awareness of issues regarding OSS
selection seems to be different between Japan and North America. There have
been Japanese studies regarding the quality of OSS, but there are few studies
from elsewhere. Therefore, it is expected that there would be great demand
for a prediction model for evaluating the quality of OSS products.

The prior studies surveyed from this perspective include the following
subjects: OSS in general, software quality in general, OSS quality, and OSS
usage.

There are many prior studies regarding OSS in general. [Yoshitaka et al.
2017] define the cost model of OSS development as the overall cost from the
OSS development community via the service provider to the user and showed
the approach to optimize it as OSS development costs.
[JapanPatentAttorneysAssocitation 2006] did survey research of intellectual
property and licensing agreements perspectives. It showed that different
requirements are stipulated on the terms of patent rights for the disclosure

17

of source code of derivative works (such as license suspension due to patent
litigation). Therefore, it is necessary to deal with the software depending on
the OSS adopted. [NationalTaxAgency 2020] studied depreciation principles
of accounting to define the useful life of a software as 3 or 5 years. During this
depreciation period, software support to resolve bugs and improve
specifications is required for OSS as well. [Krogh et al. 2012] and [Izquierdo
et al. 2015] analyzed the motivation to contribute to OSS development
projects.

There are many prior studies regarding software quality by using AI
technology. [Tosun et al. 2010] presented AI-based software defect predictors
and its applications and benefits in a case study of telecommunication
software. [Radlinski 2011] showed a software quality model consisting of
multiple conventional quality features such as functional suitability,
performance efficiency, operability, security, and compatibility. It is based on
a conceptual Bayesian network of an expert type. [Xing et al. 2005] proposed
a method for early software quality prediction based on a support vector
machine and examined using software for a medical imaging system.

There are several prior studies regarding the quality of OSS. [Bahamdain
2015] did survey research on quality assurance processes on the OSS
development side.

Regarding the usage of OSS, there is research on risk management in using
it [Franch et al. 2013]. In addition, there are documents published as usage
guidelines regarding OSS maintainability and contracts [IPA 2005]
[LinuxFoundation 2011].

As mentioned above, there are studies on general software quality and
software quality from the perspective of OSS development. However, they are
studied from different objectives than ours, which are to define and analyze

18

OSS quality from the perspective of the OSS user side.

19

2.5. Chapter Conclusion

This chapter firstly summarizes the overview of OSS adoption in business
projects. Then, the trends and past studies on the key elements of OSS
adoption in business projects are surveyed. These include the evaluation
process for adopting OSS, OSS development projects (revitalizing a team and
acquiring contributors in a developer community), and OSS software quality
modeling and prediction. Although there are studies related to the adoption
of OSS, these differ from the viewpoint of clarifying the axis of the idea of OSS
adoption decision and organizing the entire concept. Regarding fact-finding
studies on OSS development projects, we believe that sufficient prior research
has been done. There are studies on general software quality and software
quality from the perspective of OSS development. However, they have been
studied from different objectives than ours, which are to define and analyze
OSS quality from the perspective of the OSS user side.

Since the use of OSS is indispensable for corporate system development, the
objective of this research is to contribute to the efficiency of corporate system
development by extracting the challenges related to the OSS adoption
decisions and by proposing the methods to support decision-making.

 The first challenge in an enterprise software project willing to adopt OSS
is that there are a wide variety of factors to consider, making it difficult to
make decisions. It is required that the studies have structured the procedure
for considering OSS adoption. As shown in section 2.2, there have been no
previous studies about this theme to the extent we have investigated. There
are similar studies, but no matching ones. Thus, we felt conducting this study
would be valuable. Based on the axis and factors of OSS introduction
evaluation, it is useful to examine the order of consideration of the factors in

20

the axis and to clarify the decision-making procedure by the structured map.
This theme is studied in Chapter 3.

The second challenge in an enterprise software project willing to adopt OSS
is that how to index software quality. Since the user who decides to adopt OSS
is responsible for the quality of OSS, the index that can quantitatively judge
whether or not it is available OSS is required. As shown in section 2.4, there
have been no previous studies about this theme to the extent we have
investigated. There are similar studies, but no matching ones. From the
survey of prior studies, there is a suggestion that it may be possible to indicate
the quality status by looking at the status of the issue session of the OSS
project. Thus, we felt compelled to study this issue. This theme is studied in
Chapter 4.

The third challenge in an enterprise software project willing to adopt OSS
is that how to predict software quality. Since the user who decides to adopt
OSS is responsible for the quality of OSS, prediction knowledge to predict the
final software quality that can quantitatively judge whether or not it is
available OSS is required. From the survey of prior studies, there is a
suggestion that it may be possible to derive knowledge for predicting
responsiveness and final quality by looking at the resolution rate and the
status of speed and continuity of problem response in OSS projects. This
theme is studied in Chapter 5.

The key contributions of this thesis are centered around improving the
efficiency of corporate system software development in adopting OSS. We
propose the following:

• A method of structured analysis of the evaluation process for adopting

21

OSS

• An OSS quality indication model of large-scale OSS projects for adoption
decision-making

• An OSS quality prediction model considering support in use of large-
scale OSS projects for adoption decision-making

22

3. Structured analysis of the evaluation process for adopting

open-source software

In this chapter, we attempt to clarify the decision-making procedure using
the structured map by extracting the evaluator layers, axes, and factors of
OSS adoption evaluation.

3.1. Introduction

Recently, adopting open-source software (OSS) in the software development
process, for reducing the development cost and development period, has
become wide-spread among software development venders. It contributes to
improving development effectiveness; however, it requires important factors
to be considered such as it does relate to business alliance strategy, it does not
insist on the monopolistic use of intellectual property [Chesbrough and
Appleyard 2007], [JapanPatentAttorneysAssocitation 2006] and its does not
guarantee its software quality, and so on. This implies that adopting OSS
requires crucial decision making in terms of various aspects including
business, technology, and intellectual property management, which are not
mutually independent but may exhibit a complex set of relationships.

This chapter is organized as follows. In section 3.2, we briefly review how
adopting OSS in the software development process is different from the
conventional approach. In section 3.3, we propose a judgment factor and
evaluation criteria axis when adopting OSS as the decision-making problem.
Then, we consider a structured analysis by breaking down the evaluation axis
and major factors. Finally, we note the structured evaluation criterion map
and suggest possible directions for future investigations.

23

3.2. Adopting OSS in the software development process

Management of technology (MOT) maximizes the value creation of a
company, in which input such as materials is converted into output such as
customer value [Nobeoka 2006].

Here, we briefly review value creation in software development, as shown
in Figure 2-1. For closed-source software development, which is performed
within a company, a company’s technology is the input, and the output is
software to be used for business and accumulated as company assets. When
OSS is adopted in software development, OSS, which is a third-party software,
is also included as input to improve efficiency at the points of quality,
development cost and period. As a side effect, there are limitations depending
on the license of the OSS, such as disclosure of the source code, which affect
the output.

Therefore, decision making in terms of various aspects when the OSS is
introduced becomes important in earlier stages of the development process.
Some of these aspects include effective development (e.g., cost, development
period, quality, and operation), acquired technology (e.g., innovative functions
and solutions in line with customer needs), and strategic business value (e.g.,
differentiation, originality, alliance, and barriers). Judgment must be made
considering various aspects including business, product, technology, and
intellectual property. It is noted that these judgment indexes are not mutually
independent but may exhibit a complex set of relationships.

24

3.3. Structured analysis of the evaluation process when adopting OSS

3.3.1. Judgment Index and Evaluation Criteria Axis

For evaluating the introduction of OSS based on the roles and viewpoints of
MOT [Nobeoka 2006] and the axis of the integrated roadmap of MOT [Tofu
2011], we will consider an OSS-specific point of view.

In terms of the roles and perspectives of MOT, the major indexes to be
considered include technology, customer needs, competitive environment,
differentiation and identity, enterprise business structure, and organizational
structure. Technologies, products, and businesses are adopted as the axis of
the integrated roadmap. From these points of view, MOT perspectives include
the following as the evaluation criteria axis: (1) technology: includes
differentiation and uniqueness; (2) products: include customer needs; (3)
business projects: include competitive environment, differentiation, and
distinctiveness; and (4) company operation.

Moreover, for an OSS-specific point of view, the following indexes should be
investigated because OSS is third-party property as a deliverable by the
developer community. In the case of adopting OSS, the trade-off between the
creation of one’s own property and the utilization of third-party property must
be considered. Therefore, the indexes include (5) the creation of intellectual
property and (6) the utilization of intellectual property. In terms of utilization,
the items to be examined are, for example, the possibility of enclosing the
technology of the deliverable and restrictions on owned or created patents by
carefully examining the license of the OSS.

Alliance strategy is an OSS-specific evaluation sub-index, which is

25

categorized as a factor under several indexes. In recent years, there has been
strategic OSS implementation by IT enterprises. Some of the developer
groups are launched by enterprises. When OSS is introduced as a platform,
applications and business models may be decided based on choices; therefore,
it is also necessary to consider monetization by forming alliances considering
network externalities. When combining one’s own technology with an open
technology, we clarify whether the purpose is supplementing or reinforcing
one’s technology and discuss its necessity. As the interface of joining is
required to design with open and closed clarity, consideration of feasibility is
necessary.

Value creation through “product” and “service” integration is another OSS-
specific evaluation sub-index. Regarding the business model that connects a
product to the Internet and adds value by web services, it is key to efficiently
construct the communication section, which is a commonly used technology,
and to focus on developing the core services of the distinctive business itself.
There are many OSSs used for communication, and OSS coupling is
important for the product emphasis on service. When services became more
valuable, connecting functions became important, and OSS was used in large
numbers, so the decision to introduce OSS became more important.

26

3.3.2. Evaluation Layers, Evaluation Criteria Axis and Factors

In this section, the evaluator layers, evaluation criteria axis, and factors are
explained.

First, as the evaluation layers, the business executive layer, strategic
planning layer, technological design layer, and software implementation layer
are defined. Figure 3-2 shows the roles of each layer, corresponding to the V-
shaped model of software development. The V-shaped model of software
development is a definition of the design layer and the implementation layer,
but here it is set as a plus two because it is necessary to judge the area of
management and planning further upstream [IPA 2013] [IIBA 2015]. Table 3-
1 summarizes the evaluation layer categories and their major evaluation
factors.

The business executive layer analyzes the business environment in the first
stage of development, ultra-upstream, and verifies the business results in the
second stage. Prioritized factors to evaluate are investment policy, human
resources, alliance possibility, and business structure,

The strategic planning layer plans the business strategy in the first stage of
development, super upstream, and verifies the result of strategy
implementation in the second stage. The main factors to evaluate are the
company’s strength (business and technology), positioning, technology
innovation and maturity, and market requirements.

The technological design layer performs requirements analysis and basic
design at the upstream of development and a system test and acceptance test
at the latter stage. The main factors to evaluate are technological challenge,
quality requirement, development cost and term, patent, and license.

The software Implementation layer is functionally and detailly designed,
and then mounted and united/integrated. The main factors to evaluate are
specification of interface and code, quality of code, maintenance, and difficulty

27

level of coding and testing.

Figure 3-2. Evaluation Layer Category in adopting OSS

Table 3-1. Evaluation Layer Category and Major Factor in evaluation
process when adopting OSS

Tasks to Invest Management Resources of Each Layers =
Prioritized Considerations

Business Environment
Analysis

Business Strategy
Planning

Busines Performance
Verification

Business Strategy
Verification

Business Executive
Layer

Strategic Planning
Layer

Technological Design
Layer

Software Implementation
Layer

Requirements
Analysis

Basic Design

Acceptance/Operatio
nal Test

System Test

Detailed Design

Coding and Code
Review

Unit Test

Functional Design Integration Test

Evaluator Layer Category Major Evaluation Factors
Business Executive Investment Policy,

Human Resources,
Alliance Possibility
Business Structure,
Engineering Resources

Strategic Planning Strength (Business and Technology),
Positioning,
Technology Innovation and Maturity
Market Requirements
Characteristics of Customer/User Needs

Technological Design Technological Challenge,
Quality Requirement,
Development Cost and Term,
Patent,
License

Software Implementation Specification of Interface & Code,
Quality of Code,
Maintenance,
Difficulty Level of Coding and Testing,

28

Next, the evaluation criteria axis and factors are defined.

The evaluation criteria axes are technology, products, business project, and
company operation as four indexes of MOT and intellectual property creation
and application as two OSS-specific indexes; these are identified in section
3.3.1. Regarding the sub-indexes in section 3.3.1, alliance strategy is defined
as the factor of business project, and value creation through “product” and
“service” integration is defined as the factor of products. Table 3-2
summarizes the evaluation criteria axis and their major evaluation factors.

Regarding the technology axis, each of the above-mentioned evaluation
layers evaluates the strength of technology, technology innovation and
maturity, quality of software and systems, engineering resource and so on.
About the product axis, each layer evaluates customer needs, product/service
integration as market requirements (integration of things), and so on. In
terms of the business axis, each layer evaluates alliance strategies,
competition circumstances, and investment for differentiation and
uniqueness. As the management axis, each layer evaluates organization,
human resources, business situation, financial situation and so on.

Regarding intellectual property creation, each layer evaluates novelty and
inventive steps of the software created possibility of license-out and so on. In
terms of intellectual property application, each layer evaluates license
content of adopting software, availability of guard from the others, usage
limitation of the patent, and so on.

29

Table 3-2. Evaluation Criteria Axis and Major Factor in evaluation process
when adopting OSS

Evaluation Criteria Axis Major Factors

MOT Technology Strength of Technology,
Technology Innovation/ Maturity,
Quality of Software and System,
Engineering Resources

Products Customer Needs,
Products/Services Integration

Business Project Alliance Strategy,
Competition Circumstances,
Investment for Differentiation/Uniqueness

Company Operation Organization,
Human Resources,
Business Situation,
Financial Situation

OSS-
Specific

Intellectual
Property Creation

Novelty and Inventive Steps of the Software
Created,
Possibility of License-Out

Intellectual
Property
Application

License Content of Adopting Software,
Availability of Guard from the Others,
Usage Limitation of the Patent

30

3.3.3. Structured Analysis

We consider OSS implementation as a decision-making problem. The final
goal (problem) is “judgment of adopting OSS”; the evaluation criterion was
set as the “evaluation factor” group extracted from the viewpoint of six
evaluation axes defined in Table 1. We defined “alternative OSS solution” as
“OSS introduction” and “company’s development.”

The evaluation factors were extracted by considering car navigation
software development as an example. Car navigation systems have been
developed not only for embedded software development but also for
multifaceted applications because of the changes in market demand due to
the spread of smartphones, the existence of OSS platform options such as
Android, the intellectual property litigation risk of patent infringement and
license violation, and technology commoditization. This is a case that requires
decision making regarding to adopting OSS.

Figure 3-3 shows the overall hierarchical relationship of the evaluation layer,
the evaluation criteria axis, and the major factors. Evaluators of four layers
evaluate each factor in terms of six evaluation axes. Factors that require
evaluation and unnecessary factors are different for each axis; it is assumed
that one factor can be evaluated on multiple axes by changing the viewpoint.

31

Figure 3-3. Overall hierarchical relationship of the evaluation layer, the
evaluation criteria axis and major factor

In the following section, the relationship between the axis and major factors
is analyzed. It is a hypothesis, and we will proceed with the verification of
generalization in the future.

3.3.3.1 Technology Axis Factors

Figure 3-4 shows the result of examination of the technology axis factors.
The factors related to the development period and cost are evaluated on the
arc from the engineering resources to the development man-hours; factors
related to the technical value of third-party technology introduction are
evaluated next on the arc concerning the comparison of the difference
between the company’s technology strength and the development target; and
then the delay in the commoditization of technology is evaluated to make the

Judgement of Adopting OSS

Requirement
Specs.

Product/Service
integration

Customer Needs
Characteristics

Utilization of
Development

Results

Competition
circumstances

Engineering
Resources

Organization
Human Resources
(Member quality,

number, skill)

Existence of
Applicable OSS

(Function, License)

Commoditization
Factor

(Time Series)

Novelty of Target
Technology

IP Value of
Owned Patent

IP Value of
Development
Technology

IP Value of
Utilization

Technology
Characteristics of
Software Market

Investment
Recovery Forecast

Alliance
Environment and

Requirements

[Evalu-
ation
Axis]

[Factors]

Business
Situation

Adopting OSS Company’s Development

Technology Products Business
Project

Company
Operation

Intellectual
Property
Creation

Intellectual
Property

Application

Business
Executive

Strategic
Planning

Technological
Design

Software
Implementation

[Evaluation
Layers]

Quality of software
and system

Strength of Technology
(Differentiation,

Uniqueness)

Presence of own
Company Strength

Investment Effect
for Differentiation/

Uniqueness

Financial
Situation

Novelty and
inventive steps of
created software

Possibility of
license-out

License content
of Introduction

Software

Availability of
Guard from the

others

Usage Limitation
of the patent

32

decision of adopting OSS.

Figure 3-4. Hierarchical structure of technology axis factors

3.3.3.2 Product Axis Factors

Figure 3-5 shows the result of the examination of the product axis factors.
From the comparison of the difference between the company’ s strengths and
customer needs and product/service integration requirement for the
evaluation of the delay in the commoditization of products, we evaluate the
effect of network externality of mono/koto’ s applications and business models
under alliance requirements to make the decision of adopting OSS.

33

Figure 3-5. Hierarchical structure of products axis factors

3.3.3.3 Business Project Axis Factors

Figure 3-6 shows the results of the study on the business axis factors. There
are arcs for evaluating customers, user characteristics, and required
specifications and also for comparing intellectual property competitiveness to
competitors; however, no hierarchical relationship among the major factors
has been found.

34

Figure 3-6. Hierarchical structure of business project axis factors

3.3.3.4 Company Operation Axis Factors

Figure 3-7 shows the results of investigations on the company operation axis
factors. From the evaluation of engineering resources, there are arcs for the
selection of the core/non-core business and evaluation of the investment scale;
however, no hierarchical relationship among the major evaluation factors has
been found.

35

Figure 3-7. Hierarchical structure of company operation axis factors

3.3.3.5 Intellectual Property Creation Axis Factors

Figure 3-8 shows the result of the examination of the intellectual property
creation axis factors. Although there are arcs from the evaluation of the
novelty and inventive step of the creation to the evaluation of the
innovativeness of the required specification and the arc of the evaluation of
the intellectual property range that can be entitled to the design object
(mono/koto), any major hierarchical relationship among the evaluation
factors has not been found.

36

Figure 3-8. Hierarchical structure of intellectual property creation axis
factors

3.3.3.6 Intellectual Property Application Axis Factors

Figure 3-9 shows the results of examination of the intellectual property
application axis factors. The factors related to profit-and-loss arithmetic
based on the intellectual value of OSS are evaluated; factors related to the
alliance relationship and utilization of the developed output including OSS
are evaluated to make the decision of adopting OSS.

37

Figure 3-9. Hierarchical structure of intellectual property application axis
factors

38

3.4. Structured evaluation criterion map for adopting OSS

We wanted to map the entire picture of this structure shown as Figure3-3,
but it is impossible to represent it with a conventional model like the V-shaped
model as in Figure3-2. This is because the two-axis model and V-shaped model
are conventional waterfall-type development frameworks. Therefore, we
decided to map the relationship between the evaluation factors for the six
evaluation axes and the four evaluator layers on concentric circles. An
example of the overall evaluation is shown in Figure 3-10.

Figure 3-10. Example of the structured evaluation criterion map

The evaluation factors related to software implementation, technological
design, strategic planning, and business executive are arranged in order from
the criteria axis origin.

Products

Business Project

Technology

Intellectual
Property
Creation

Company Operation

Intellectual
Property
Application

Customer /User’s needs Characteristics

Requirement Specs.

Quality of software and system

Own Strength of Technology

Engineering Resources

Existence of Applicable OSS (Function, License)

Technology Innovation/ Maturity

Technology Innovation/ Maturity

IP value of owned patent

IP value of development technology

Possibility of license-out

License content of
Introduction Software

Technology Innovation/ Maturity
Availability of Guard from the others

Utilization of
development results

Usage Limitation of the patent

Utilization of
Development
Results

Investment Effect for Differentiation/ Uniqueness

Business situation

Organization
Human Resources

Financial Situation
Investment recovery forecast

Engineering
Resources

Alliance Environment
and Requirements

Competition circumstances

Existence of Applicable OSS
(Function, License)

Commoditization
factor(time series)

Competitor's Intellectual
Property Situation

IP value of development technology
IP value of adopting technology

Characteristics of software market
Product/Service Integration

Business
Executive

Software
Implementation

Strategic
Planning

Technological
Design

Product/Service
Integration

Requirement Specs.

Existence of Applicable OSS
(Function, License)

Alliance Environment
and Requirements

Possibility of license-out

IP value of adopting technology

39

The usage example is as follows. Technology innovation/maturity is
evaluated primarily by business executive layer and strategic planning layer
from the perspectives of technology, business project, and intellectual
property creation. Quality requirement and quality of software and system
are evaluated primarily by the technological design layer and software
implementation layer from the perspective of technology, product, and
intellectual property utilization. Alliance environment and requirements are
evaluated primarily by business executive and strategic planning from the
perspectives of business project, technology, and intellectual property
utilization.

It is presumed that this map will be created by the project manager
responsible for the entire system and/or product based on discussions in
meetings that transcend departmental boundaries. It is intended to be used
by the project manager responsible for the entire system and/or product to
make optimal OSS adoption decisions by giving a bird’s-eye view of the overall
status of the project.

40

3.5. Chapter Conclusion

For the decision making for adopting OSS, a method to analyze the
relationship between the evaluation criteria axis and contributing factors was
examined.

First, for the evaluation criteria axis, the basic axes from the MOT viewpoint
were defined; then the axis of intellectual property creation and application
were defined from the OSS-specific viewpoint to use third-party intellectual
property. Second, the evaluation factors, using car navigation development as
an example, were extracted. Each factor is not an independent event but is
intertwined as a different real item (instance) on multiple axes, and we
attempted to analyze the hierarchical structure of the factors for each axis.

The evaluation factors and axes of OSS adoption are influenced by the
progress of the open innovation strategy and tactics of the company. The
factors for each evaluation layers and axes will be examined continuously.

In this chaper, a method for organizing the evaluation axes and factors of
OSS adoption evaluation and the structure of the evaluator hierarchy were
studied. A structured map was proposed that defines the positioning of the
OSS evaluated from the perspective of technology, products, business project,
company operation, and intellectual property creation and application so that
the project managers responsible for the entire system development can get
an overview of the adoption evaluation.

41

4. Quality Indicator Model of Large-Scale Open Source

Software Projects for Adoption Decision-making

In this chapter, we attempt to identify a quality indicator model to quickly
determine whether the OSS under evaluation can be adopted before starting
a detailed examination from the analysis of the activity of the OSS
development projects by the OSS developer community.

4.1. Introduction

Open source software (OSS) has seen remarkable progress in recent years.
Typical examples of OSS include the web service stack LAMP [Ware 2002]
[Gerner et al. 2005], which is further composed of four OSS components,
namely, Linux [Linux 2020], Apache [Apache 2020], MySQL [MySQL 2020],
and PHP [PHP 2020] / Perl [Perl 2020] / Python [Python 2020]), and the
Android [Android 2020] operating system. Furthermore, various OSS
applications that have been developed for LAMP and Android environments
have been made available for free, including their source codes. Moreover,
OSS usage in corporate information systems has been essential.

Because the use of an OSS is typically free, and its source code can be openly
modified and redistributed within the scope of its open source license, OSS
reuse is common; thus, OSS development is not focused on development
efficiency. Therefore, there is no appropriate cost model for OSS development,
and research is underway to define and optimize OSS development costs
[Yoshitaka et al. 2017].

Nevertheless, adopting OSS for software development processes improves
development effectiveness and efficiency, but important factors need to be
considered as OSS licenses do not promote the monopolistic use of intellectual

42

property. Particularly, the adoption of OSS technologies requires crucial
decision-making based on various aspects, including software quality,
development investment, business and technology strategies, and intellectual
property management, which are not mutually independent, but might
instead be related to each other in a complex manner. In our previous study,
we presented a structured analysis approach to separate evaluation criteria
and their contributing factors for OSS adopted development and attempted
to clarify the structured evaluation criterion map [Akatsu et al. 2018].

In the practical consequences of the company, OSS adoption is decided based
on the important priority of the projects concerning, for example, the function
and quality and intellectual property of the desired OSS. However, if the
positioning is the same, the OSS with better quality will be adopted, because
the software quality of the system including OSS itself must be guaranteed
by the company who adopted its OSS. From an OSS usage perspective, OSS
quality includes the technical support ability in a broad sense. This is the
reason to delve deeper into the quality aspect among the various indexes
described in Chapter 3.

From a software engineering point of view, functionalities and quality are
the two important decision factors for adoption. Regarding OSS, the
functionalities could be verified by surveying the source code due to the OSS’s
remarkable characteristic of delivering this code freely. In contrast, as the
deliverables of an OSS are developed by its developer community, their
quality is not guaranteed. The user corporate that decides to adopt the OSS
is responsible for evaluating the quality of the desired OSS.

One index for measuring the quality is how the desired software is
extensively used. Regarding ES, which is a software product of enterprise, it
can be assumed that the proven software is of good quality. However,

43

regarding OSS, the track record of adoption is not disclosed. On the other
hand, the activity status of the OSS developer community, including
specification creation and code implementation and testing, is disclosed at
development community websites such as GitHub. Appropriate maintenance
by OSS developers is important, so the definition of OSS quality can be
considered how sufficiently it is maintained by OSS development
communities.

Thus, before examining the detailed deliverables of an OSS thoroughly, it is
required to have knowledge about OSS quality, i.e., indicators for decision,
that corporate business could use for quantitatively assessing whether a
desired OSS should be adopted. The objective of this study is to propose an
OSS quality indicator model and assessment method by examining the status
of both created and closed user-raised issue sessions in OSS development
projects.

44

4.2. Method for Deriving OSS Quality Indicator Model

Thus, in this study, the quality of an OSS is defined based on the manner in
which software code and specifications are maintained by the OSS
development community. Furthermore, the OSS code itself can be checked
and issues can be raised by users considering its adoption; therefore,
promptness and continuity of maintenance are requirements for software
adoption. In particular, status transition of an identified issue is an indicator
of quality for such software; this is because a high-resolution rate and short
resolution time could be assumed as indications of good software quality.

Despite not solely being intended for the quality-related discussions,
sessions at the OSS developer community website are crucial for building a
quality indicator model, considering the following two factors. Firstly, the
session contains a certain proportion of quality-related content, including bug
reports and specification improve requests. Second, fast response and
resolution among OSS developer/user community are indispensable in order
to maintain the acclaimed quality of OSS.

Therefore, considering the first factor, in order to evaluate the trends for the
amount of quality handled, we examine how the trends for changes in the
cumulative number of created and closed issue sessions is shifted. Regarding
the second factor, in order to estimate the quickness and continuity of the
quality handled, we observe when the number of created and closed sessions
becomes dissociated.

Consequently, we built a quantitative model regarding OSS quality
applicable as knowledge by observing the status of sessions based upon two
axes, which are the trends for transition and timing of deviation between
created and closed issue sessions.

4.2.1 Axis 1: Trends for transition of cumulative number of created/closed

45

issues

The trends are summarized in three categories, “Linear,” “Logarithmic
curve,” and “Cubic curve” for the following reason: Linear is supposedly a
general transition, in other words, monotonically increasing. Logarithmic
curve shows that session's created/closed number has been gradually
increasing in the latest phase, then we could assume that it is in a stable state
period. By contrast, Cubic curve shows that session's created/closed number
is increasing in the latest phase, meaning that there is a “potential” which
the quality information is increasing.

The method for classifying trends as “Linear,” “Logarithm,” or “Cubic” is as
follows: First, curve fitting with linear and nonlinear regression is performed
toward the time-series data plots of a cumulative number of created and
closed issues regarding each project. Nonlinear regression here uses
logarithmic functions and cubic functions. Second, whether the classification
target of the OSS project is classified as Linear—where R2, the determination
coefficient, is large enough—is examined. The reason to classify firstly as
Linear is that it is a general transition. Then, those deviating from a Linear
definition are assessed for Logarithm or Cubic definition. Finally, the
judgement of Logarithm or Cubic is classified by which the R2, coefficient of
determination, of both are relatively smaller.

4.2.2 Axis 2: Timing of deviation between the number of created and closed

issues

The deviation timing between the number of created and closed issues is
summarized in three categories: “Early stage,” “Middle stage,” and “Late
stage.”

In this study, we define the deviation timing as the points at which the
difference between the created number and the closed number exceeds 1% of

46

the created number. The difference is calculated by taking a 3-month moving
average. If there is no divergence, it can be concluded that quick response and
resolution have been achieved. Next, to classify the timing of the deviation,
we divide the period between the project start and the time of data acquisition
(April 22, 2020, for this study) into three parts. The period between the start
and 33% is the Early stage, from 34% to 66% is the Middle stage, and from
67% to the data collection is the Late stage.

The method for classifying the “Early,” “Middle,” and “Late” stages is the
following: By searching the number of created and closed cases for each month,
the deviation timing is identified for each project. Then, the corresponding
stage is assigned according to the percentage of the project period.

47

4.3. Evaluation of the Model

We attempt to improve the understanding by examining the 39 large-scale
OSS projects according to the method described in Chapter 2. These data of
39 projects are the research materials that we use in various studies, so they
are the universal datasets within our research group.

4.3.1. Target Project Selection

To analyze OSS quality, it is necessary to obtain a large amount of OSS
development data. The source of the analysis data may be GitHub [GitHub
2020b] or Bitbucket [Bitbucket 2020], which are web sharing services
providing a version control system. In this study, we used OSS development
project data published on GitHub.

GitHub uses the version management system Git [Git 2020] and provides
the web application program interface (API) GitHub API v3 [GitHubAPI
2020], with which users can access repositories and directories storing project
deliverables and development history, among others. In this study, we used
the GitHub REST API to select the target projects and examine them. For
example, the function “Issues”—the issue management feature in GitHub—
returns the timestamp for the issue creation date, the status of the issue, and
its related comments.

In this study, sample projects were selected using GitHub API v3 as per the
following criteria:

• Extract OSS development projects registered in early 2012—when
GitHub started—until August 11, 2017, to ensure that the collected data
was long-term

• Extract projects whose repository size is 15 MB or more to ensure a
large-scale OSS is selected

48

• Extract projects whose developers duplicate projects in their own
development environment, and these developers have 200 or more forks,
to ensure a large-scale OSS is selected

• Extract projects whose star counts evaluated by OSS users are 1000 or
more to ensure the quality of OSS project deliverables

Next, we selected projects whose contributor and commit numbers are
within the second quartile or over to avoid bias due to considerably few project
contributors; this is because the number of contributors indicates whether
sufficient human resources were available for a project. Then, for accurate
statistical analysis, we excluded projects with missing values and projects
wherein no deviation was discovered. Finally, 39 projects were selected.

These selected sample projects are listed in Table 4-1. In particular, Table
4-1 shows the project data as of April 22, 2020, which was extracted from
GitHub on April 22, 2020. In Table 4-1, the “Created Issues” column
represents the total number of issues created in the repository, while the
“Closed Issues” column indicates the number of created issues closed after
resolution. “Resolution Rate” is the ratio of the number of “Closed Issues” to
those of “Created Issues.” The total number of created issues included in the
selected repositories is about 660,000, which is sufficient for statistical
analysis.

Table 4-1. Number of created issues, closed issues, and resolution rate for
the 39 selected projects as on April 22, 2020.

No.
Repository Name Created

Issues
Closed
Issues

Resolution
Rate

1 alluxio 11,319 11,011 0.972789116
2 ansible 68,889 62,867 0.912584012
3 atom 20,277 19,586 0.965921981

49

4 bokeh 9,948 9,436 0.948532368
5 bosh 2,257 2,127 0.942401418
6 canjs 5,475 5,171 0.944474886
7 Cataclysm-DDA 39,786 38,650 0.971447243
8 collectd 3,442 2,979 0.865485183
9 conda 9,851 8,315 0.844076743
10 contiki 2,645 2,046 0.773534972
11 core 37,254 35,775 0.960299565
12 crystal 9,032 8,012 0.887068202
13 darktable 4,788 4,294 0.896825397
14 DefinitelyTyped 44,085 40,693 0.923057729
15 django 12,751 12,522 0.982040624
16 druid 9,718 8,720 0.897303972
17 Firmware 14,717 14,039 0.953930828
18 habitica 12,097 11,785 0.974208481
19 hazelcast 16,900 16,148 0.955502959
20 kotlin 3,303 3,081 0.932788374
21 libgdx 5,995 5,633 0.939616347
22 linux 3,555 3,247 0.913361463
23 llvm 69 67 0.971014493
24 mpv 7,588 7,147 0.941881919
25 neo4j 12,448 12,238 0.98312982
26 nixpkgs 85,666 79,911 0.932820489
27 opencv 17,094 15,347 0.897800398
28 phpmyadmin 16,058 15,535 0.967430564
29 ppsspp 12,720 11,817 0.929009434
30 PrestaShop 18,714 16,869 0.901410709
31 presto 14,415 13,426 0.931390912
32 radare2 16,664 15,310 0.918747
33 ReactiveCocoa 3,690 3,641 0.986720867
34 rethinkdb 6,831 5,424 0.794027229
35 RIOT 13,917 13,145 0.944528275
36 servo 26,233 23,082 0.879884115
37 spring-boot 20,955 20,479 0.977284658
38 web-platform-tests 23,119 21,343 0.923180068
39 yii2 17,634 17,117 0.970681638
 Total 661,899 618,035

50

4.3.2. Trends for Change in the Number of Created and Closed Issues

In order to analyze the overall issue resolution rate for the 39 selected
projects, the cumulative number of created and closed issues was determined
on a monthly basis. Example transition plots for this cumulative analysis are
shown in Figure 4-1. The blue line is the plots for created, and the red line is
the plots for closed issues. The red dotted vertical line shows the deviation
timing.

First, the corresponding relationships between the increase in the number
of created issues and their resolution are presented in Figures 4-1(a)–(i);
these relationships are as follows:

• Figure 4-1(a), (b), (c): Numbers of created and closed issues continuously
match each other.

• Figure 4-1(d), (e), (f): Numbers of created and closed issues diverge
during the middle stage of development.

• Figure 4-1(g), (h), (i) Numbers of created and closed issues are divergent
from the beginning.

Second, three patterns can be recognized from the increasing number of
created issues, also in Figure 4-1(a) –(i); these patterns are as follows:

• Figure 4-1 (a), (d), (g): Increases in the number of created issues is
almost linear, i.e., there is a continuous increase in the number of issues
during the development period.

• Figure 4-1 (b), (e), (h): Increase in the number of issues was large at the
beginning but decreased at the end, i.e., the number of issues increased

51

logarithmically.

• Figure 4-1 (c), (f), (i): Increase in the created issues is small in the initial
stage, large in the middle stage, and small again in the final stage, i.e.,
the increasing trend follows the curve for the third power.

4.3.3. Evaluation of the Result of Method Axis 1

The objective of Method Axis 1 is to classify the 39 selected projects as either
“Linear,” “Logarithm,” or “Cubic.” The results for the Linear category are
shown in Figure 4-2, and for the Logarithm and the Cubic in Figure 4-3.

We examine the plots of the increasing number of created issues for all

Figure 4-1. Examples of trends for changes in cumulative number of created and
closed issues

52

projects. Then, we choose the threshold value of R2, the determination
coefficient, as 0.975. In total, 16 projects, whose R2s are greater than 0.975,
are classified as Linear.

We examine the plots of the increasing number of created issues of the
projects leaks from Linear. Then, we compare the value of R2, the
determination coefficient, of Logarithmic and Cubic functions. In total, 9
projects are classified as Logarithm, and 14 projects as Cubic.

Figure 4-2. Result of the analysis for the “Linear” category.

53

4.3.4. Evaluation of the Result of Method Axis 2

The objective of Method Axis 2 is to classify the 39 selected projects in the
“Early stage,” “Middle stage,” or “Late stage” categories. Plots of three kinds
of timing are shown in Figure 4-4. The period between the project start and
the time of data acquisition (April 22, 2020, for this study) is divided into
three parts. The period between the start and 33% is the Early stage, from
34% to 66% is the Middle stage, and from 67% to the data collection is the
Late stage.

The deviation timing depends on the projects. Three stages classification
seems reasonable because there is a tendency that projects deviated lately
make better final resolution rates.

Figure 4-3. Result of the analysis for the “Logarithm” and the “Cubic”
categories.

54

Figure 4-4. Plots of the timing of project started, deviation, and data acquisition

55

4.4. Discussion

As a summary of the evaluation, the results shown in Figure 4-5 are
obtained. The horizontal axis is issue increase trends, which is divided into a
linear curve, a logarithmic curve, and a cubic curve, respectively. The vertical
axis is the timing of unresolved issue occurrences, which is divided into late,
middle, early, respectively. 39 projects are mapped to this nine-quadrant
matrix. The three “Late” regions in the timing of unresolved issue occurrences
and the three “Logarithm” regions in the issue increase trends are labeled
blue “Convergence Continues” and “Stable State,” respectively. It is the T-
shaped area of the alphabet.

Considering the meaning of the axes of the T model, it can be interpreted
that the axis of issue increase trends indicates “the technological maturity,”

Increasing Trend of Issue Creation
Linear Logarithm Cubic

Ti
m

in
g

of
 U

nr
es

ol
ve

d
Iss

ue
 O

cc
ur

en
ce

s

Late

['Cataclysm-DDA',
'django', 'habitica',
'phpmyadmin’,
'spring-boot’]

['ReactiveCocoa’]
['alluxio', 'darktable',
'Firmware', 'kotlin',
'llvm', 'PrestaShop’]

Mid
['bokeh', 'bosh', 'canjs',
'linux', 'mpv', 'opencv',
'presto', 'RIOT’]

['atom', 'libgdx', 'yii2’] ['ansible', 'nixpkgs’]

Early ['collectd', 'hazelcast',
'servo’]

['contiki', 'core', 'neo4j',
'ppsspp', 'rethinkdb’]

['conda', 'crystal',
'DefinitelyTyped', 'druid',
'radare2', 'web-platform-
tests’]

Convergence continues

Stable State

Stable State

Stable State
Convergence continues

Convergence continues

Figure 4-5. T-model: Nine-quadrant Matrix consisting of Issue Increase Trends
and Timing of Unresolved Issue Occurrences

56

and the axis of the timing of unresolved issue occurrence indicates “the
activeness of the development community.” As technological maturity
increases, the tendency for issue occurrence is expected to diminish. In the
case that the activeness of the development community is high, the tendency
for unresolved issue occurrence is expected to be low. Recognizing that the
“logarithm” type has a high technology maturity level, we interpreted its
increase as caused by the issues of unfatal matter such as comments rather
than fatal problems. Detailed content analysis will be reserved for a future
study.

Assessing only these quantitative evaluations, we can see that the projects

in the part composed of the “Late” row and the “Logarithm” column

(where “Convergence Continues” and “Stable State” are shown in blue）

maintain the adequate quality that can be sufficiently used for system
development in business corporate.

Therefore, we name T-model the quality indicator model for OSS adoption
decision-making from the form shown in Figure 4-5. It is derived that these
two axes, “the technological maturity” and “the activeness of the development
community” are important indicators for determining the quality of OSS.

This T-model was evaluated as a result without any discomfort by four
software development engineer specialists.

Regarding the OSS project revealed from this T-model region, it is necessary
to analyze the availability with additional investigation. The method could be
the way as it has been presently. We found a possible indicator, explained
briefly below, during the examination.

First, we investigated 19 projects revealed from the T-model region. Figure

57

4-6 shows that the ratio of the pro-deviation and post-deviation periods and
the final resolution rate correlate. Second, we investigated 11 projects in the
Linear category, revealed from the T-model region. Figure 4-7 shows that the
difference between the increase slope of created and closed issues and the
final resolution rate are correlated. They will be further studied.

Figure 4-6. Correlation between ratio of pro-deviation and post-deviation
period and Final Resolution Rate

58

Figure 4-7. Correlation between the difference of increase slope and Final
Resolution Rate

59

4.5. Chapter Conclusion

The T-model proposed in this paper has shown the possibility of speedy
decision-making regarding whether to adopt the desired OSS for software
development of a corporate information system. This T-model simply
indicates “a region where there is generally no quality problem.” It does not
indicate that the OSS project leaks from this region are “unavailable” for the
target system development.

Regarding the OSS project revealed from this T-model region, it is only
necessary to assess the availability as it has been presently by comparing
with other various indexes, such as the degree of matching with the
specifications in system development, required quality, required delivery time,
and skills of the development team.

It is proposed to utilize the T-model as an index to quickly judge whether
the target OSS can be used before starting a detailed examination.

The T-model consists of two axes: the maturity of the technological
innovation and the activeness of the developer community. It was derived that
the maturity and the activeness are important indicators for determining
OSS quality. As a result of the analysis of these two axes, it was found that
more accurate quality information may be obtained if a more detailed analysis
is performed on each axis.

60

5. Quality Prediction for Large-Scale Open Source Software

Projects

In Chapter 4, it was derived that the maturity of the technological
innovation and the activeness of the developer community are important
indicators for judging OSS quality. Of these two indexes, the technological
maturity of the desired OSS could be evaluated explicitly by the development
period and its usage frequency. Therefore, in this chapter, we delve deeper
into the activeness of the OSS developer community.

5.1. Background and Purpose of This Chapter

In recent years, remarkable progress has been made in the development of
open source software (OSS). Typical examples of OSS include the web service
stack LAMP [Ware 2002] [Gerner et al. 2005]—which, in turn, is composed of
four OSS components namely Linux [Linux 2020], Apache [Apache 2020],
MySQL [MySQL 2020], and PHP [PHP 2020] / Perl [Perl 2020] / Python
[Python 2020]—and the Android [Android 2020] operating system.
Furthermore, various OSS applications that have been developed for LAMP
and Android environments have been made available free of charge along
with their source codes.

In contrast, enterprise software (ES) includes software products owned and
developed by corporations and their source codes are protected through
copyright. Owing to the cost model for ES, its development is focused on
development efficiency and the number of users. Therefore, improving
development efficiency and increasing the number of users are important
themes for ES engineering.

Because the use of an OSS is typically free, and its source code can be openly

61

modified and redistributed within the scope of its open source license, OSS
reuse is common; thus, OSS development is not focused on development
efficiency. Therefore, there is no appropriate cost model for OSS development,
and research is underway to define and optimize OSS development costs
[Yoshitaka et al. 2017].

Nevertheless, the adoption of OSS for software development processes in
corporations improves development effectiveness and efficiency; however,
important factors need to be considered because OSS licenses do not promote
monopolistic use of intellectual property. In particular, the adoption of OSS
technologies requires crucial decision-making based on various aspects,
including software quality, development investment, business and technology
strategies, and intellectual property management, which are not mutually
independent, but instead might be related to each other in a complex manner.
In our previous study, we presented a structured analysis approach to
separate evaluation criteria and their contributing factors for OSS-adopted
software development and attempted to clarify the structured evaluation
criterion map [Akatsu et al. 2018].

As specified above, evaluation of software quality is an important factor in
the decision-making process for OSS adoption. In general, depreciation
principles of accounting define the useful life of a software as 3 or 5 years
[NationalTaxAgency 2020]. During this depreciation period, software support
to resolve bugs and improve specifications is required for OSS as well.
However, in practice, for OSS, it is expected that the OSS developer
community will provide software support services instead of a corporate
enterprise. In recent corporate software development projects, most are based
on OSS and it is very rare that software projects do not incorporate OSS
somewhere in the process.

From a software engineering point of view, the functionality and quality of
the software are the most important factors for selecting an appropriate

62

system. The functionality of OSS can be verified by analyzing the freely
available source code. However, as the deliverables of an OSS are developed
by the developer community, their quality is not guaranteed. As the quality
of a corporate software product must be guaranteed, the corporate user
choosing to adopt the OSS is responsible for evaluating and guaranteeing its
quality. Hence, a method for predicting the quality of OSS before it is
implemented would be greatly valuable to corporate users.

In general, software that is extensively used tends to be of better quality as
more people do testing and report bugs. However, there are cases in which
the actual performance results are not disclosed, and the indicators used to
evaluate the quality are unknown. Because OSS development is typically
intrinsically motivated, its quality is independent of its cost. Therefore, cost
is unlikely to be a good metric for evaluating the quality, and other factors
need to be identified. Even if these metrics are not universal, a system for
selecting OSS that is recognized as having better quality than competing OSS
would be highly advantageous. Furthermore, there have been cases in North
America where software development companies acquired vendors who
developed a particular OSS in order to effectively incorporate it as in-house
modules into their software products. However, Japanese companies tend to
use a desired OSS provided as third-party modules. Awareness of issues
regarding OSS selection seems to be different between Japan and North
America. There have been Japanese studies regarding the quality of OSS, but
there are few studies from elsewhere. Therefore, it is expected that there
would be great demand for a prediction model for evaluating the quality of
OSS products.

There are many prior studies regarding OSS in general [Yoshitaka et al.
2017] [Akatsu et al. 2018] [National Tax Agency 2020] [Krogh et al. 2012]
[Izquierdo et al. 2015] and software quality [Tosun et al. 2010] [Radlinski
2011] [Xing et al. 2005]. However, regarding the quality of OSS, prior studies

63

are limited to quality processes on the development side [Bahamdain 2015],
while there has been no discussion of predicting quality from the perspective
of the user, except for a recent study by our research group [Akatsu et al.
2020].

In this study, the quality of OSS is defined as the “resolution rate of the
issues processed by OSS developers and the promptness and continuity of
handling bugs and the other issues.” The objective of this study is to develop
an artificial intelligence (AI)-based quality prediction model that corporations
could use to assist in deciding whether an OSS should be adopted based on
its quality. In particular, the code development records for an OSS can be
examined to determine OSS quality in terms of issue resolution rate.

The OSS development data used in this study were obtained from GitHub
[GitHub 2020b]. To perform statistical analysis and improve the accuracy of
analysis results, it is necessary to consider a significant number of OSS
development data. Therefore, we extracted 44 large-scale projects that were
registered on GitHub in 2012 and were still under development until August
11, 2017. For the 44 extracted projects, the Git repositories included around
17,000 MB of deliverables data, and the total number of issues identified for
resolution was approximately 620,000.

In this study, we analyzed the quality of OSS based on the following
propositions.

• Proposition 1: For each extracted project, aggregate the status
transitions for software issues including creation (open) and resolution
(close) of issues on a monthly basis and determine the characteristics
peculiar to OSS development.

• Proposition 2: Analyze the relationship between the final resolution rate
and factors that affect it.

64

• Proposition 3: Examine the cause of the identified peculiar
characteristics of OSS development.

The corresponding results obtained in this study are summarized as follows.

• Three patterns of increase in issue creation and three trends in the
relationship between the increases in issue creation and resolution were
identified. Multiple cases for each pattern were confirmed during the
different resolution periods.

• The correlation between the final resolution rate and resolution rate for
the relevant period was analyzed. It was found that the correlation
coefficient between the resolution rate for the first month and final rate
also exceeded 0.5.

• Based on our analyses, it was observed that in OSS projects, which are
voluntary projects, promptness of bugs and issues resolution was
prioritized over activity continuity. It was concluded that the resolution
rate for issues in the first month after they are identified is applicable
as knowledge for knowledge-based AI systems that can be used to assist
businesses with decision-making regarding OSS adoption.

65

5.2. Definition of OSS Quality and its Measurement

In this section, we define the quality of OSS and describe a measurement
method for it.

5.2.1 OSS Quality

A track record of adopted implementation is one of the criteria considered
by corporations before adopting new software. In the case of ES, the company
that develops an ES also performs thorough testing before deployment; in
addition, it fixes bugs or improves software specifications after deployment.
Their efforts regarding quality will lead to adoption results. Therefore, it is
assumed that ES typically is of good quality. In contrast, the record of adopted
implementation for OSS is not obvious. Thus, in this study, the quality of an
OSS is defined based on the manner in which software code and specifications
are maintained by the OSS development community. Furthermore, the OSS
code itself can be checked and issues can be raised by users considering its
adoption; therefore, promptness and continuity of maintenance are
requirements for software adoption. In particular, status transition of an
identified issue is an indicator of quality for such software; this is because a
high resolution rate and short resolution time could be assumed as
indications of good software quality.

5.2.2 Quality Measurement Method

OSS development communities perform issue management for OSS using
the “Issues” tracker feature in each repository wherein the project
deliverables are stored. We made the following measurements using their
issue management data.

Here, resolved means that the created issue has been closed, and unresolved

66

means that the created issue has not been closed. The resolution rate is the
quotient of the number of closed issues divided by the number of created
issues.

First, to determine the resolution rate for an OSS project, the number of
issues that transitioned from being created to being closed was measured on
a monthly basis. Next, to estimate promptness and maintenance continuity,
the transition time from identification to resolution of issues was also
measured on a monthly basis. In particular, we summarized the transition
time it took to resolve created issues every month.

67

5.3. Selection and Analysis of Target Projects

In this section, we describe the selection method based on which the 44 OSS
projects were considered for analysis. Moreover, an overview of these projects
and the results of our data aggregation are presented.

5.3.1 Extraction of OSS Development Data

To analyze OSS quality, it is necessary to obtain a large amount of OSS
development data. The source for the analysis data may be GitHub [GitHub
2020b] or Bitbucket [Bitbucket 2020], which are web sharing services that
provide a version control system. In this study, we used OSS development
project data published on GitHub.

GitHub uses the version management system Git [Git 2020] and provides
the web application program interface (API) GitHub API v3 [GitHubAPI
2020], using which users can access repositories that are directories storing
project deliverables and development history, among others. In this study, we
used the GitHub REST API to select the target projects as well as survey
them. For example, the function “Issues”—the issue management feature in
GitHub—returns the timestamp for the issue creation date, status of an issue,
and comments related to an issue.

5.3.2 Target Project Selection

In this study, sample projects were selected using GitHub API v3
[GitHubAPI 2020] as per the following criteria.

• Extract OSS development projects registered in early 2012—when
GitHub started—until August 11, 2017, to ensure that the collected data
were long-term data.

68

• Extract projects whose repository size is 15 MB or more to ensure a
large-scale OSS was selected.

As a result of surveying companies in terms of the OSS repository size (≥10
MB, ≥15 MB, or ≥20 MB), 15 MB was the most common and was hence used
as a criterion for judging large-scale OSS development in the software
development industry. For example, a premium automobile contains close to
100 million lines of software code [Charette 2009], which is about 10 times
that of a 15 MB repository. In a previous study [Masuda et al. 2019], 15 MB
was also used.

• Extract projects whose developers duplicate projects in their own
development environment, and these developers have 200 or more forks
to ensure a large-scale OSS is selected.

• Extract projects whose star counts evaluated by OSS users are 1000 or
more to ensure the quality of OSS project deliverables.

Next, we selected projects whose contributor number and commit number
are within the second quartile or more of those numbers to avoid bias because
of considerably few project contributors; this is because the number of
contributors indicates whether sufficient human resources were available for
a project. Then, for accurate statistical analysis, we excluded projects that
have missing values and projects wherein all issues were deemed resolved.
Finally, 44 projects were selected.

These selected sample projects are listed in Table 5-1. In particular, Table
5-1 shows the project data as of December 31, 2018, which were extracted
from GitHub on April 23, 2020. Data as of December 31, 2018, were selected
in order to eliminate the influence of unresolved issues between December 31,
2018 and March 31, 2020 on our analysis. In Table 5-1, the “Created Issues”

69

column represents the total number of issues created in the repository, while
the “Closed Issues” column indicates the number of created issues closed after
resolution. “Resolution Rate” is the ratio of the number of “Closed Issues” to
those of “Created Issues.” The total number of created issues included in the
selected repositories is about 620,000, which is sufficient for statistical
analysis.

Table 5-1. Number of created issues, closed issues, and resolution rate for
the 44 selected projects as on December 31, 2018.

No. Repository Name Created Issues Closed Issues Resolution Rate
1 alluxio 8,226 8,218 0.9990
2 ansible 50,412 47,431 0.9409
3 atom 18,429 18,068 0.9804
4 bokeh 8,528 8,259 0.9685
5 bolt 7,725 7,692 0.9957
6 bosh 2,108 2,014 0.9554
7 canjs 4,688 4,470 0.9535
8 Cataclysm-DDA 27,376 27,127 0.9909
9 collectd 3,031 2,648 0.8736
10 conda 8,070 7,306 0.9053
11 contiki 2,550 2,032 0.7969
12 core 33,974 32,824 0.9662
13 crystal 7,129 6,566 0.9210
14 DefinitelyTyped 31,807 29,494 0.9273
15 django 10,800 10,743 0.9947
16 druid 6,780 6,425 0.9476
17 Firmware 11,116 11,009 0.9904
18 frontend 20,861 20,835 0.9988
19 habitica 10,912 10,745 0.9847
20 hazelcast 14,333 13,845 0.9660
21 homebrew-cask 56,809 56,800 0.9998
22 Kotlin 2,046 2,018 0.9863
23 libgdx 5,489 5,235 0.9537
24 linux 2,787 2,705 0.9706
25 lodash 4,127 4,125 0.9995
26 meteor 10,373 10,341 0.9969
27 mpv 6,357 6,074 0.9555

70

28 neo4j 12,109 11,985 0.9898
29 nikola 3,192 3,178 0.9956
30 nixpkgs 53,069 50,965 0.9604
31 opencv 13,547 12,274 0.9060
32 openlayers 9,092 9,081 0.9988
33 phpmyadmin 14,811 14,533 0.9812
34 ppsspp 11,585 10,957 0.9458
35 PrestaShop 11,995 11,467 0.9560
36 presto 12,148 11,670 0.9607
37 radare2 12,616 11,726 0.9295
38 ReactiveCocoa 3,629 3,591 0.9895
39 rethinkdb 6,686 5,316 0.7951
40 RIOT 10,686 10,404 0.9736
41 servo 22,577 20,451 0.9058
42 spring-boot 15,583 15,397 0.9881
43 web-platform-tests 14,664 13,701 0.9343
44 yii2 16,680 16,282 0.9761
 Total 621,512 598,027

5.3.3 Change in the Number of Created and Closed Issues

In order to analyze the overall issue resolution rate for the 44 selected
projects, the cumulative number of created and closed issues was determined
on a monthly basis. Example transition plots for this cumulative analysis are
shown in Figure 5-1.

71

Figure 5-1(a). Examples of trends for changes in cumulative number of
created and closed issues. (a)Numbers of created and closed issues
continuously match each other.

72

Figure 5-1(b). Examples of trends for changes in cumulative number of
created and closed issues. (b) Numbers of created and closed issues diverge
during the middle stage of development.

73

Figure 5-1(c). Examples of trends for changes in cumulative number of
created and closed issues. (c) Numbers of created and closed issues are
divergent from the beginning.

Useful information regarding OSS quality can be deduced based on the
change in the cumulative numbers of created and closed issues in OSS
development. First, three patterns can be recognized from the increasing
number of created issues. As shown in the example in Figure 5-1(a), the
increase in the number of created issues is almost linear, i.e., there is a
continuous increase in the number of issues during the development period.
Then, as shown in the example in Figure 5-1(b), the increase in the created
issues is small in the initial stage, large in the middle stage, and small again
in the final stage of the extracted OSS development data. In this case, the
increasing trend in the number of issues follows the curve for the third power.

74

Moreover, as shown in the example in Figure 5-1(c), the increase in the
number of issues was large at the beginning but decreased at the end, i.e., the
number of issues increased logarithmically. It is noteworthy that the 44
projects selected in our study were fairly successful long-term development
projects, and therefore, the number of issues decreases in the later stages of
all examples shown in Figure 5-1. However, in other projects wherein the
number of issues increases steadily or as a power of two, their project quality
is difficult to determine, and these will be considered in a future work.

Second, the corresponding relationships between the increase in the number
of created issues and their resolution are also depicted in Figures 5-1(a)–(c);
these relationships are as follows:

• Figure 5-1(a): Increases in the number of created and closed issues are
aligned together.

• Figure 5-1(b): Increases in the number of created and closed issues begin
to diverge during the middle stage.

• Figure 5-1(c): Increases in the number of created and closed issues
remained separate from the beginning.

In Figure 5-1(a), a pattern is observed wherein new issues are continuously
generated and also continuously solved; consequently, the final resolution
rate is high. Figure 5-1(b) depicts a pattern wherein the initial resolution rate
is in line with the increase in created issues, but the issue resolution
frequency slows down during the middle development phase, and thus, the
final resolution rate gradually decreases. Finally, Figure 5-1(c) shows a
pattern wherein the number of created issues exceeded the number of
resolved issues from the beginning; therefore, the final resolution rate is
relatively low.

Because the three types of patterns described above are derived based on

75

the cumulative numbers of created and closed issues, it is difficult to
determine if there are many unresolved issues or time-consuming ones in a
specific project, which would then lead to a decrease in the overall resolution
rate. Thus, in the next section, we investigate the development stage wherein
such issues were created and study the distribution of the time required for
their resolution.

76

5.4. Quality Prediction Model Based on Issue Resolution Rate

Here, we analyze the timestamp information of created issues and the
duration required to resolve these issues. Then, we examine these data to
derive knowledge that can be applied to the proposed AI-based quality
prediction model.

5.4.1 Trends in Monthly Resolution Status

To understand resolution promptness and maintenance continuity, we
measured the time in which a created issue was closed every month based on
the data of the 44 selected projects; in particular, we investigated the
transition period for issue resolution status on a monthly basis. Example
trend plots for this resolution status analysis are shown in Figure 5-2. In
short, there is more the “dark blue,” which means “closed in 1 month” in the
graph, the more prompt issue resolution is realized. The following
observations were made for the three examples discussed in Clause 5.3.3.

77

Figure 5-2(a-1). Patterns of transition in resolution status for each month by
period. (a-1) Created issues continue to be resolved in the current month.

78

Figure 5-2(a-2). Patterns of transition in resolution status for each month
by period. (a-2) Resolution period for the issues is extended; however, they are
consistently closed within 12 months.

79

Figure 5-2(b). Patterns of transition in resolution status for each month by
period. (b) Unresolved issues are present as new issues are created, thus
extending from the middle stage to end of the relevant period.

80

Figure 5-2(c-1). Patterns of transition in resolution status for each month by
period. (c-1) Issue took considerable time to resolve. Unresolved issues from

the middle stage are brought forward.

81

Figure 5-2(c-2). Patterns of transition in resolution status for each month by
period. (c-2) Issues continuously created and take time to resolve leading to

accumulation of unresolved issues.

The pattern in Figures 5-2(a-1) and 5-2(a-2) indicates a high resolution rate.
In the case shown in Figure 5-2(a-1), the created issues are typically resolved
in the same month they are created, while in the case shown in Figure 5-2(a-
2), the issue resolution period is longer, but an issue is typically closed within
12 months. The pattern in Figure 5-2(b) indicates that the resolution rate
slows down during the middle period of OSS development; this is because
there are cases wherein unsolved issues gradually accumulate during the
middle phase leading to longer resolution period for created issues. Finally,
Figures 5-2(c-1) and 5-2(c-2) show patterns wherein the resolution rate was
slow from the beginning of OSS development. In particular, in the case shown
in Figure 5-2(c-1), issues seemed to take a relatively long time to resolve in
the beginning, and thus, unresolved issues overflowed into the middle
development period.

82

5.4.2 Resolution Analysis Summary

Regarding the creation and resolution of issues in each project, we
investigated the transition in the statuses of issues on a monthly basis and
confirmed that OSS development had the following characteristics:

• In terms of issue resolution rate, it was confirmed that there are three
types of resolution patterns that affect the final resolution rate.

• It was also confirmed that different cases of resolution promptness and
maintenance continuity lead to different final resolution rates.

• It was assessed that a final resolution rate can be predicted based on the
resolution rate in the later stages of OSS development. However, it is
possible to predict the final resolution rate based on the status of issue
resolution in the early stages of development.

5.4.3 Derivation of Knowledge for Prediction of Final Resolution Rate

As discussed previously, the quality of an OSS is an important issue when
its adoption is being considered for business projects. Although there are
various quality indicators, prompt and continuous issue resolution are two
indispensable ones. Therefore, it is necessary to observe two operations,
namely, the occurrence of and response to events.

Occurrences and responses that can be observed in the current OSS include
the creation and resolution of issues. While issues are not necessarily limited
to bugs or quality, most issues are related to bugs after all. In addition,
software issues affect terms of use and consultation items regarding usage,
which in turn, affect sales activities of business products as well as the role
of customer care. Although these factors also determine the usefulness of an
OSS in business projects, analyzing the resolution time for issues and number

83

of issues still help understand the quality of an OSS.

Therefore, to determine whether an OSS would be appropriate for a
business project, we decided to observe the resolution time and number of
created and resolved issues. We observed that it is not so difficult to judge the
appropriateness of an OSS after analyzing the transitions of created and
resolved issues in each considered OSS project over many years. For example,
on observing the cumulative transitions of created and closed issues of three
projects as depicted in Figure 1, we can determine the comparative quality of
the different OSS. Furthermore, human evaluator bias will not distort these
results.

However, not all OSS projects necessarily accumulated development years
enough for the prediction of quality by long- term observation. There are quite
a few OSS that corporate business desire to adopt, regardless of their short
development history. Therefore, we investigated whether it is possible to
roughly grasp the resolution time and number of created and resolved issues
in a few years in the future by observing the number of created and resolved
issues for a certain number of months after the deliverables of the project are
made available.

Thus, in order to predict the final issue resolution times and number of
issues for the 44 selected projects, the distribution of the number of months
it took for each issue in the project from creation to resolution was calculated.
Then, the correlation between the above-mentioned distribution and the
approximate final resolution status was examined. Table 5-2 lists our
calculation results for the correlation between the resolution rate of issues at
the nth month after each issue is identified and the final resolution rate of all
44 projects.

84

Table 5-2. Correlation between final resolution rate and resolution rate for a
relevant number of months after issue creation

Months for Resolution Correlation Coefficient

1 0.502241981
2 0.485930706
3 0.474072147
4 0.465699399
5 0.458041663
6 0.451808318
7 0.450845338
8 0.450177635
9 0.450427825
10 0.449877651
11 0.44847918
12 0.447750932

Figure 5-3. Correlation between final resolution rate and that of the first
month after issue creation

85

It is clear from the results in Table 5-2 that at the end of the first month,
the correlation coefficient between the final resolution rate and that of the
month exceeded 0.5, which is an extremely high value. Furthermore, this
correlation in the final resolution rate does not change, even when the
observation period is increased. Figure 5-3 shows the correlation between the
resolution rates in the first and final observation month for all 44 projects.
From the figure, it can be observed that a project that responds well to each
issue at an early stage also responds well to them at the end, i.e., it can be
said that it is sufficient to analyze the correlation between open and resolved
issues in the first month in order to decide whether to adopt an OSS in a
business project.

86

5.5. Chapter Conclusion

In this study, we selected 44 large-scale OSS projects from GitHub for our
analysis to deduce the quality of an OSS and determine if it would be suitable
for adoption in a business project. First, we investigated the monthly changes
in the status of issue creation and resolution for each project. It was found
that there are three patterns in the increase in issue creation as well as three
patterns in the relationship between the increase in issue creation and that
of resolution. Based on our analysis, we confirmed that there are multiple
cases of each pattern that affect the final resolution rate.

Next, we investigated the correlation between the final resolution rate and
the resolution rate for a relevant number of months after issue creation. We
observed that the correlation coefficient even between the resolution rate in
the first month and the final rate exceeded 0.5. Therefore, it can be concluded
that the issue resolution rate for the first month is suitable as knowledge for
knowledge-based AI systems, which in turn, can be used to assist in decision-
making regarding OSS adoption in business projects.

Because information technology is being constantly improved, an increasing
number of useful OSS are being developed as well. Therefore, in the near
future, the adoption decision for the latest OSS will have to be made with a
short track record. Thus, a possible future work will involve the derivation of
knowledge based on which the final quality of an OSS can be predicted from
the initial response status after the project is launched.

As a result, the resolution rate of the OSS project's issue response and the
status of promptness and continuity are analyzed, and the resolution rate of
the issues at the early stage (first month) regarding quality including support
capability in actual use. There is a high correlation with the final solution
rate, which leads to the fact that it can be used as knowledge for introduction
decisions.

87

6. Conclusion

The purpose of this study was to identify the issues of OSS adoption
decision-making and propose the technology to support the judgment,
considering the situation that the use of OSS is indispensable in the system
development of the company. In this study, we organized the concept of the
vague behavior of the actual workplace and proposed a framework for
adoption decision making from an OSS quality perspective, and we analyzed
quantitatively the actual activities of the OSS development community to
extract the knowledge.

Based on the issues of related research, the following three questions were
articulated as the research themes.

• Research question 1: “Isn't it possible to clarify the decision-making
procedure by extracting the axes and factors of OSS adoption evaluation
and by creating a structured map to overview the OSS to be adopted?”

• Research question 2: “By looking at the status of the issue session of the
OSS development projects by the OSS developer community, is it
possible to extract an index that can quickly determine whether OSS
can be used before starting a detailed examination?”

• Research question 3: “By looking at the resolution rate and the response
promptness and response continuity of the issue session of the OSS
projects by the OSS developer community, is it possible to extract
knowledge to predict the final quality including the support capability
in actual use?”

In the first study, the significance was to organize a case-by-case process in

88

decision-making for OSS adoption of business projects in the actual workplace.

As a result, a method for organizing the evaluation axes and factors of OSS
adoption evaluation and the structure of the evaluator hierarchy was studied.
A structured map was proposed that defines the positioning of the OSS
evaluated from the perspective of technology, products, business project,
company operation, and intellectual property creation and application, so
that the project managers responsible for the entire system development can
get an overview of the adoption evaluation.

In the practical consequences of the company, the adoption is decided based
on the importance priority of the desired OSS, for example, the function,
quality, and intellectual property matters; however, if the positioning is the
same, the OSS with better quality will be adopted. Therefore, we decided to
dig deeper into what and how OSS software quality, which is a key factor in
hiring decisions, should be evaluated. Here, from the viewpoint of OSS usage,
we defined the quality of OSS as “the resolution rate of issues processed by
OSS developers as well as the promptness and continuity of doing so.”

In the second study, the significance was the proposal of a framework for
adoption decision making from an OSS quality perspective. Software quality
indicators, which are a key factor in adopting OSS, were explored in depth.

As a result, from the analysis of the issue sessions of the OSS development
projects, a 9-quadrant map named T-model was defined, focusing on the
trends expressed by curve shape and the divergence time, in terms of the
cumulative number of issues raised and resolved. Then, the mapped OSSs in
the T-model were examined from the perspective of the final resolution rate.
The axes to be related to software quality are the activeness of the developer
community and its maturity of the technological innovation. It is proposed to

89

utilize the T-model as an index to quickly judge whether the target OSS can
be used before starting a detailed examination.

Our proposed quality indicator model, the T-model, has shown the possibility
of speedy decision-making regarding whether to adopt the desired OSS for
software development of corporate information system. This T-model simply
indicates “a region where there is generally no quality problem.” It does not
indicate that the OSS project leaks from this region are “unavailable” for the
target system development. Regarding the OSS project revealed from this T-
model region, it is only necessary to assess the availability as it has been
presently, by comparing with other various indexes, such as the degree of
matching with the specifications in system development, required quality,
required delivery time, and skills of the development team.

In the third study, the significance was to quantitatively analyze the actual
activities of the development community and extract knowledge from the
perspective of digging deeper into the axis of the activeness of the OSS
development community. The indicators to predict OSS software quality,
including support capability in actual use, which are a key factor in adopting
OSS, should be explored in depth.

As a result, the resolution rate of the OSS project’s issue response and the
status of promptness and continuity were analyzed, and the resolution rate
of the issue at the early stage (first month) regarding quality including
support capability in actual use. There is a high correlation with the final
solution rate, which leads to the fact that it can be used as knowledge for
introduction decisions.

Future study themes are as follows:

• The evaluation factors and axes of OSS adoption are influenced by the

90

progress of the open innovation strategy and tactics of the projects and
the company. The factors for each evaluation layer and axis will be
examined continuously.

• Regarding the OSS project revealed from this T-model region, it is
necessary to analyze the availability with additional investigation. The
method could be the way as it has been presently. The additional
indicator could be extracted as the ratio of the pro-deviation and post-
deviation periods, and the difference between the increase slope of
created and closed issues. These will be further studied.

• Because information technology is being constantly improved, an
increasing number of useful OSS are being developed as well. Therefore,
in the near future, the adoption decision for latest OSS will have to be
made with a short track record. Thus, possible future work will involve
the derivation of knowledge based on which the final quality of an OSS
can be predicted from the initial response status after the project is
launched.

Moreover, another future study theme is the quantitative analysis from the
remaining one axis, “the maturity of the technological innovation,” out of the
two axes of indexes for OSS software quality.

In this dissertation, a method to define the positioning of the target OSS in
the OSS adoption evaluation is proposed. And a model consisting of two axes,
which are the activeness of the developer community and its maturity of the
technological innovation, is proposed to quickly judge from software quality
of whether the target OSS can be used before starting a detailed examination.
The knowledge to judge better quality OSS including support capability in
actual use from the perspective of the OSS usage side is extracted. By
utilizing this method and model and knowledge in the decision-making

91

process for adopting of OSS, we believe that it will contribute to the
improvement of the productivity and efficiency of system development in
business projects.

92

Acknowledgements

I would like to express my deepest appreciation to Prof. Tsuda whose
comments and suggestions were of inestimable value for my dissertation.
Throughout my time at Tsukuba University, he has been supporting me with
great enthusiasm and patience. I am also deeply grateful to Prof. Tatsumoto
and Prof. Kino for their thoughtful and practical comments and suggestions
on this dissertation. My gratitude extends to my dissertation committee
members, Prof. Yoshida, Prof. Morimoto, for their insightful comments and
questions to my dissertation.

I would also like to thank the current and former Tsuda laboratory members
for gratefully acknowledge their works, especially Dr. Masuda and Dr. Shida,
also Prof. Fujita and Prof. Kato. Without their guidance and persistent help,
this dissertation would not have been possible. I would like to offer my special
thanks to Prof. Takahashi, and Prof. Suzuki. Besides, without the
encouragement from Dr. Yanagihori, Dr. Sekiguchi, Dr. Ikoma, Dr. Murakami,
Dr. Tanaka, and Dr. Tsujii, this dissertation would not have materialized.

Finally, I would like to thank my family for their love, support, and warm
encouragement. In particular, I appreciate my wife Emiko and my daughter
Shiho for their support, understanding, and encouragement throughout my
long PhD journey. Thank you very much.

93

References

[Abdullah et al. 2009]

Abdullah R et al. The challenges of open source software
development with collaborative environment. International
Conference on Computer Technology and Development (ICCTD).
Kota Kinabalu; 13-15 Nov. 2009. p. 251 - 255 ,2009

[Aberdour 2007]

Mark Aberdour. Achieving Quality in Open Source Software.
IEEE.Jan-Feb 2007. p. 58-64 ,2007

[Akatsu 2012]

Akatsu S., Research on intellectual property management in open
innovation development project, Department of Intellectual Property
Strategy, Tokyo University of Science graduate school Intellectual
Property Project Research papers, 2011, in Japanese

[Akatsu et al. 2018]

Akatsu S, Fujita Y, Kato T, Tsuda K. Structured analysis of the
evaluation process for adopting open-source software. Procedia
Comput. Sci. 2018 Jan; 26:1578-86, 2018

[Akatsu et al. 2020]

Akatsu S, Masuda A, Shida T, Tsuda K. A Study of Quality Indicator
Model of Large-Scale Open Source Software Projects for Adoption
Decision-Making, Procedia Comput. Sci. 2020 176:3665-72, 2020

[Akatsu et al.-2 2020]

Akatsu S, Masuda A, Shida T, Tsuda K., A Study of Quality
Prediction for Large-Scale Open Source Software Projects, Artificial
Intelligence Research, 2021, Vol. 10, No.1:33-41, 2020

[Android 2020]

Android [Internet] [cited 2020 Mar 26] Available from:

94

https://www.android.com/.

[Apache 2020]

Apache [Internet]. [cited 2020 Mar 26] Available from:
https://www.apache.org/.

[Apache-License 2021]

Apache Licenses [Internet]. [cited 2021 April 23] Available from:
https://www.apache.org/licenses/

[Atieh and Riza 2011]

Atieh K and Riza S. The process of quality assurance under open
source software development. IEEE Symposium on Computers &
Informatics. 20-23 March 2011. p. 548-552

[Badashian and Stroulia 2016]

Ali Sajedi Badashian and Eleni Stroulia. Measuring user influence in
GitHub. Proceedings of the 3rd International Workshop on Crowd-
Sourcing in Software Engineering - CSI-SE ’16, pp. 15–21, 2016

[Bahamdain 2015]

Bahamdain SS. Open Source Software (OSS) Quality Assurance: A
Survey Paper, Procedia Computer Science, 2015 – Elsevier, 2015

[Bitbucket 2020]

Bitbucket [Internet]. [cited 2020 Mar 26] Available from:
https://bitbucket.org/.

[Blincoe et al. 2016]

Kelly Blincoe, Jyoti Sheoran, Sean Goggins, Eva Petakovic, and
Daniela Damian. Understanding the popular users: Following,
affiliation influence and leadership on GitHub. Information and
Software Technology, Vol. 70, pp. 30–39, 2016

[Boehm 1981]

B.W. Boehm, Software engineering economics, Prentice-hall Engle-
wood Cliffs. NJ, Vol.197, 1981

95

[BSD-2 2021]

The 2-Clause BSD License [Internet]. [cited 2021 April 23] Available
from: https://opensource.org/licenses/BSD-2-Clause

[BSD-3 2021]

The 3-Clause BSD License [Internet]. [cited 2021 April 23] Available
from: https://opensource.org/licenses/BSD-3-Clause

[CabinetSecretariat 2007]

Cabinet Secretariat Intellectual Property Strategy Headquarters,
Promotion Measures of Intellectual Creation Cycle, Intellectual
Property Strategy Headquarters, 2007, in Japanese

[Charette 2009]

Charette RN. This car runs on code. IEEE Spectrum, 2009 Feb,
2009

[Chesbrough 2003]

Chesbrough H. Open Innovation: The New Imperative for Creating
and Profiting from Technology, Harvard Business Review Press, 2003

[Chesbrough 2006]

Chesbrough H., Open Business Models: How To Thrive In The New
Innovation Landscape, Harvard Business Review Press, 2006

[Chesbrough 2010]

Chesbrough H. Open Services Innovation: Rethinking Your Business
to Grow and Compete in a New Era, Jossey-Bass, 2010

[Chesbrough and Appleyard 2007]

Henry Chesbrough and Melissa Appleyard, Open innovation and
strategy, California Management Review, 2007

[Cubranic and Booth 1999]

Cubranic D and Booth K.S. Coordinating open-source software
development. IEEE 8th International Workshops on Enabling
Technologies, 1999

96

[Dabblish et al. 2012]

Laura Dabbish, Colleen Stuart, Jason Tsay, and Jim Herbsleb. Social
coding in github: transparency and collaboration in an open software
repository. In Proceedings of the ACM 2012 conference on computer
supported cooperative work, pp. 1277–1286. ACM, 2012

[Dewan et al. 2004]

Dewan, Rajiv M and Freimer, Marshall L and Seidmann, Abraham
and Zhang, Jie, Web portals: Evidence and analysis of media
concentration, Journal of Management Information Systems. Taylor
& Francis, Vol.21, No. 2, pp. 181–199, 2004

[Dindin et al. 2007]

Dindin W, Alexander S, Dietmar W and Stefan B. Aspects of software
quality assurance in open source software projects: two case studies
from Apache project. 33rd EUROMICRO Conference on Software
Engineering and Advanced Applications. Lubeck; 28-31 Aug 2007. p.
229 - 236., 2007

[Franch et al. 2013]

Franch, X. [et al.]. Managing risk in open source software adoption.
A: International Joint Conference on Software Technologies.
"Proceedings of the 8th International Joint Conference on Software
Technologies: Reykjavík, Iceland, 29-31 July, 2013". Scitepress, 2013,
p. 258-264., 2013

[Gacek and Arief 2004]

Gacek C and Arief B. The many meanings of open source. IEEE. Jan-
Feb 2004. p. 34-40 ,2004

[Gastwirth 1972]

Gastwirth, J. L., The Estimation of the Lorenz Curve and Gini Index,
The Review of Economics and Statistics. The MIT Press, Vol.54, No.
3, pp. 306–316, August, 1972

[Gerner et al. 2005]

97

Gerner J, Naramore E, Owens M, Warden M. Professional Lamp:
Linux, Apache, MySQL and PHP5 Web Development. John Wiley &
Sons; 2005

[Git 2020]

Git [Internet]. [cited 2020 Mar 26] Available from: https://git-
scm.com/.

[GitHub 2020a]

GitHub: The largest open source community in the world [Internet].
[cited 2020 Mar 26] Available from: https://github.com/open-source/.

[GitHub 2020b]

GitHub [Internet]. [cited 2020 Mar 26] Available from:
https://github.com/.

[GitHubAPI 2020]

GitHub API v3 [Internet]. [cited 2020 Mar 26] Available from:
https://developer.github.com/v3/.

[Glynn et al. 2005]

E. Glynn; B. Fitzgerald; C. Exton, Commercial adoption of open
source software: an empirical study, 2005 International Symposium
on Empirical Software Engineering, 2005.

[GPL 2021]

GNU General Public License [Internet]. [cited 2021 April 23]
Available from: https://www.gnu.org/licenses/gpl-3.0.en.html

[Guimara et al. 2013]

A. LS. Guimara ̃es, H. J. Korn, N. Shin, and A. B. Eisner, The life
cycle of open source software development communities, Journal of
Electronic Commerce Research, Vol. 14, No. 2, pp. 167, 2013

[Heisis 2007]

J. J. Heiss. The meanings and motivations of open-source
communities. Aug 2007, from Oracle, 2007

98

[Higashi 2009]

Toshikazu Higashi, What is Koto Marketing? – New Perspective on
Customers -, Ryutsukagaku Daigaku Ronbunshu Ryustu Unei Hen,
Dai21kan2gou, 2009, 115-127, 2009, in Japanese

[IPA 2005]

IPA Information-technology Promotion Agency Japan, Investigation
of legal risks of open source software in business use, IPA
Information-technology Promotion Agency Japan, 2005, in Japanese

[IPA 2013]

IPA Information-technology Promotion Agency Japan, Common
Frame 2013 -Realization of a "usable" system that works with
management and business departments, IPA Information-technology
Promotion Agency Japan, 2013 in Japanese

[IIBA 2015]

IIBA International Institute of Business Analysis, BABOK: A Guide
to the Business Analysis Body of Knowledge, IIBA International
Institute of Business Analysis, 2015

[Izquierdo et al. 2015]

Javier C ́anovas Izquierdo, Valerio Cosentino, and Jordi Cabot.
Attracting contributions to your github project. 2015. [cited 2020 Mar
26] Available from:
https://www.researchgate.net/publication/291172663_Attracting_Con
tributions_to_your_GitHub_Project

[JapanPatentAttorneysAssocitation 2006]

Japan Patent Attorneys Association, 2nd Committee of the 2005
Software Committee. , Open Source Software License and Patent
Rights, Monthly "Patent" Vol. 59 No. 6, 2006, in Japanese

[Jensen 2007]

C. Jensen, W. Scacchi, Role migration and advancement processes in
OSSD projects: A comparative case study, Proceedings of the 29th

99

international conference on Software Engineering, IEEE Computer
Society. pp. 364–374, 2007

[Kitayama 2009]

Kitayama S., Social Network Analysis of Communities in
Organization, The Journal of Communication Studies. Japan, 29, 3-
16, 2009. in Japanese

[Kobayakawa 2020]

Kobayakawa N, A Study on Acquiring Contributors in Open Source
Software, Doctoral Dissertation Tsukuba University, 2020

[Kobayakawa and Yoshida 2017]

Naoki Kobayakawa and Kenichi Yoshida. How github contributing.
md contributes to contributors. In 2017 IEEE 41st Annual Computer
Software and Applications Conference (COMPSAC), Vol. 1, pp. 694–
696. IEEE, 2017

[Kobayakawa and Yoshida 2019]

Naoki Kobayakawa and Kenichi Yoshida. Study on influencers of
cryptocurrency follow-network on github. In Pacific Rim Knowledge
Acquisition Workshop, pp. 173–183. Springer, 2019

[Kobayakawa et al. 2020]

Naoki Kobayakawa, Mitsuyoshi Imamura, Kei Nakagawa, and
Kenichi Yoshida. Impact of cryptocurrency market capitalization on
open source software participation. Journal of Information
Processing, Vol. 28, pp. 650–657, 2020

[Krogh and Hippel 2006]

G Von Krogh, E Von Hippel, The promise of research on open source
software, Management science, 2006

[Krogh et al. 2012]

Georg Von Krogh, Stefan Haefliger, Sebastian Spaeth, and Martin W
Wallin. Theory and Review Carrots and Rainbows : Motivation and
Social Practice in Open Source Software Development. Vol. 36, No. 2,

100

pp. 649–676, 2012

[Linux 2020]

Linux [Internet]. [cited 2020 Mar 26] Available from:
https://www.linux.com/.

[LinuxFoundation 2011]

Linux Foundation，Overview of Open Source Compliance End-to-end
Process，Linux Foundation, 2011

[Masuda 2019]

Masuda A., A Study on Revitalizing Software Development Team,
Doctoral Dissertation Tsukuba University, 2019

[Masuda et al. 2017]

Ayako Masuda, Tohru Matsuodani, and Kazuhiko Tsuda., A
Comparative Study Using Discriminant Analysis on a Questionnaire
Survey Regarding Project Managers ’Cognition and Team
Characteristics., IEEE 41st Annual Computer Software and
Applications Conference (COMPSAC), Vol.2, pp.643–648，2017

[Masuda et al. 2018]

A. Masuda, C. Morimoto, T. Matsuodani, and K. Tsuda, A Study of
Measurement for Development Efficiency in Large Scale Open
Source Software Projects, IEEJ Transactions on Electronics,
Information and Systems. Japan, Vol.138, No.8, pp. 1011—1019,
August 2018

[Masuda et al. 2019]

Masuda A, Matsuodani T, Tsuda K. Team Activities Measurement
Method for Open Source Software Development Using the Gini
Coefficient, 2019 IEEE International Conference on Software
Testing, Verification and Validation Workshops (ICSTW). 2019; 140-
147, 2019

[Munaiah et al. 2017]

101

Munaiah Nuthan, Kroh Steven, Cabrey Craig and Nagappan
Meiyappan, Curating GitHub for engineered software projects,
Empirical Software Engineering, Springer, Vol.22, No. 6, pp. 3219–
3253, 2017

[MySQL 2020]

MySQL [Internet]. [cited 2020 Mar 26] Available from:
https://www.mysql.com/.

[Nakamura 2019]

K. Nakamura, Index for measuring the Income Gap: the Gini
coefficient and the Lorenz curve,
http://www.pref.toyama.jp/sections/1015/ecm/ back/2005apr/shihyo/
(accessed: Jan 7, 2019)

[National Tax Agency 2020]

No. 5461 Acquisition cost and useful life of software [Internet].
National Tax Agency [cited 2020 Apr 29]
https://www.nta.go.jp/taxes/shiraberu/taxanswer/hojin/5461.htm/.

[Nobeoka 2006]

Nobeoka K., Introduction to MOT (Technology Management), Nihon
Keizai Shimbun, 2006, in Japanese

[OSI 2013]

OSI (Open Source Initiative), available from http://opensource.org/;
Internet; Accessed 20 September 2013

[Otte et al. 2008]

Otte T, Moreton R and Knoell D. Applied quality assurance methods
under the open source development model. Computer Software and
Applications IEEE. Turku; July 28 -Aug 1, 2008. p. 1247 – 1252, 2008

[Pekka et al. 2009]

Pekka A, Janne M, and Eila O. Model-driven open source software
development - the open models approach. International Conference
on Software Engineering Advances (ICSEA). Portugal; 20-25 Sep

102

2009. p.185-190 ,2009

[Perl 2020]

Perl [Internet]. [cited 2020 Mar 26] Available from:
https://www.perl.org/.

[PHP 2020]

PHP [Internet]. [cited 2020 Mar 26] Available from: http://php.net/.

[Python 2020]

Python [Internet]. [cited 2020 Mar 26] Available from:
https://www.python.org/.

[Radlinski 2011]

Radlinski L. A conceptual Bayesian net model for integrated software
quality prediction, Annales UMCS Informatica AI XI, 4 (2011) 49–60

[Stefano et al. 2005]

Stefano C, Fabio M and Maria P. From planning to mature: on the
determinants of open source take-off. July 2005, Marco Fanno G. G.
Schulmeyer & J. I. McManus, Handbook of software quality
assurance 4th edition, 2005

[Tatsumoto 2021]

Tatsumoto H. Platform Strategy for Global Markets: Strategic Use of
Open Standards and Management of Business Ecosystems, Springer,
2021

[Thung et al. 2013]

Ferdian Thung, Tegawende F. Bissyand ́e, David Lo, and Lingxiao
Jiang. Network structure of social coding in GitHub. Proceedings of
the European Conference on Software Maintenance and
Reengineering, CSMR, pp. 323–326, 2013

[Tofu 2011]

Tofu Degawa, Perfect MOT, Shuwa-system, 2011, in Japanese

[Tosun et al. 2010]

103

Tosun A, Bener A, Kale R. AI-Based Software Defect Predictors:
Applications and Benefits in a Case Study, Proceedings of the
Twenty-Second Innovative Applications of Artificial Intelligence
Conference (IAAI-10) (2010), 2010

[Ui 1995]

Tetsuo Ui, "Decision Support and Groupware" Kyoritsu Publishing,
1995, in Japanese

[Vargo and Lusch 2008]

Stephen L. Vargo & Robert F. Lusch, Service-dominant logic:
continuing the evolution, Journal of the Academy of Marketing
Science, March 2008, 36:1–10, 2008

[Ware 2002]

Ware B. Open source web development with LAMP: Using Linux,
Apache, MySQL, Perl, and PHP. Addison-Wesley Longman
Publishing Co., Inc.; 2002

[Xing et al. 2005]

Fei Xing, Ping Guo, M.R.Lyu, A Novel Method for Early Software
Quality Prediction Based on Support Vector Machine, Proceedings of
the 16th IEEE International Symposium on Software Reliability
Engineering (ISSRE 2005), 2005

[Xiong et al. 2009]

Xiong C.J et al. A model of open source software maintenance
activities. IEEE International Conference on Industrial Engineering
and Engineering Management. Hong Kong; 8-11 Dec 2009. p.267-
271, 2009

[Xu et al. 2005]

J. Xu, Y. Gao, S. Christley, and G. Madey, A topological analysis of the
open source software development community, System Sciences,
2005. HICSS’05. Proceedings of the 38th Annual Hawaii
International Conference on, IEEE. pp. 198a–198a, 2005

104

[Yoshitaka et al. 2017]

Yoshitaka, Kuwata. Toru, Ishizuka. Shigetoshi, Yokoyama. Kento,
Aida.; A study on a cost model of OSS community and the
optimization of operation of operation cost. 20th Study Group of
Knowledge Sharing Network. SIG-KSN Vol. 20, No. 7. The Japanese
Society for Artificial Intelligence (2017), 2017

[Zhou & Mockus 2012]

M. Zhou, A. Mockus, What make long term contributors: Willingness
and opportunity in OSS community, Proceedings of the 34th Interna-
tional Conference on Software Engineering, IEEE Press. pp. 518–
528, 2012

105

Related Achievement List

Akatsu S, Fujita Y, Kato T, Tsuda K., Structured analysis of the
evaluation process for adopting open-source software, Procedia
Computer Science, 2018 126:1578-1586

Akatsu S, Masuda A, Shida T, Tsuda K., A Study of Quality
Indicator Model of Large-Scale Open Source Software Projects for
Adoption Decision-Making, Procedia Computer Science, 2020
176:3665-3672

Akatsu S, Masuda A, Shida T, Tsuda K., A Study of Quality
Prediction for Large-Scale Open Source Software Projects, Artificial
Intelligence Research, 2021, Vol. 10, No.1:33-41

Akatsu S, Fujita Y, Tsuda K., A study on the structured analysis of
the evaluation process for adopting open-source software, In
Japanese, The Japan Society for Management Information,
National Conference of JASMIN 2013 Autumn

Akatsu S, Fujita Y, Kato T, Tsuda K., A study on the structured
evaluation criterion map for adopting open-source software in
consideration of the management resources, In Japanese, The
Japan Society for Management Information, National Conference
of JASMIN 2014 Spring

