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Abstract 19 

It is known that the adsorption of nonionic polymers or surfactants reduces the 20 

magnitude of zeta potential of colloidal particles and provides the steric repulsion 21 

between particles. A question remains as to whether nonionic polymers affect the 22 

structure of the electric double layer (EDL). To elucidate the effect of nonionic polymer 23 

on EDL, we investigated the long-range interaction forces between silica particles in 24 

aqueous solutions with different molecular weights of polyethylene oxide (PEO) having 25 

higher affinity to silica by using optical tweezers. For all measurements, long-ranged 26 

repulsive interactions were observed. The onset of the interaction force for bare 27 

particles and those with low molecular weight PEO remained identical and was 28 

consistent with the Derjaguin-Landau-Verwey-Overbeek (DLVO) predictions. This 29 

result indicates that the adsorption of nonionic PEO does not affect the charging 30 

properties of silica, and the interaction originates from the overlapping of the EDL. 31 

With high molecular weight PEO, the onset of interactions shifted to a few hundred 32 

nanometers larger than those for bare particles and was quantified using the Alexander-33 

de Gennes model, suggesting the steric interactions originate from the protruding tails 34 

and/or loops of the adsorbed PEO layer. Based on the force measurements, we 35 

emphasize that the adsorption of nonionic polymer onto the surface of the silica 36 

particles does not affect the EDL surrounding the particles. Hence, we corroborate the 37 

notion that the reduction of the magnitude of zeta potential in the presence of nonionic 38 

polymer is attributable to the shift of the shear plane from the hydrodynamic viewpoint. 39 
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1. Introduction 41 

The control of the stability and rheology of dispersions of colloidal particles is 42 

essential in many applications, as in industrial products like paint, inks, food products 43 

like mayonnaise, chocolate, as well as cosmetics, and pharmaceutical formulations [1–44 

4]. On the other hand, applications for flocculation of particles like water and 45 

wastewater treatments are also paramount[5, 6].  46 

The stability and rheology of colloids are regulated by the interparticle forces[7, 8]. 47 

Meanwhile, colloidal particles are charged and form an electric double layer (EDL). 48 

The sum of attractive van der Waals force and repulsive force due to the overlap of 49 

EDL is known as Derjaguin-Landau-Verwey-Overbeek (DLVO) force[9–13]. DLVO 50 

force is considered ubiquitous for charge stabilized colloids[6, 9, 14].  51 

In most applications, the adsorbing polymers are usually added to the colloidal 52 

dispersions to control the stability and rheology[7, 8]. Polymers at interfaces are 53 

significantly important in many industrial applications[8, 15]. In general, polymer 54 

adsorption onto the colloidal particles can lead to various effects on the stability and 55 

rheology of their suspensions, ranging from steric stabilization to bridging flocculation, 56 

shear-thickening, and shear thinning, depending on several factors, including polymer 57 

concentration, electrolyte concentration, and polymer conformation at the surface [16, 58 

17]. Hence, the adsorbed polymers can be crucial in controlling the fate of the colloidal 59 

particles for different applications. 60 



 

4 

 

Electrokinetic techniques are widely used to characterize the surface charging 61 

properties of colloidal particles and surfaces [18–26]. From the electrokinetic 62 

measurements, so-called zeta potential, which is the electric potential at the plane of 63 

shear adjacent to the particles, can be extracted. Zeta potential with DLVO theory has 64 

been successfully used to explain the stability of the dispersion of bare colloidal 65 

particles[9, 13, 27–29]. The electrokinetic measurements are considered a standard 66 

technology, and the electrokinetics of bare particles are well studied. The presence of a 67 

polymer layer on the surface may affect the electrokinetic transport properties of the 68 

colloidal particle [22]. The adsorption of neutral polymers/surfactants on colloidal 69 

particles is reported to reduce the magnitude of zeta potential [7, 30–32]. For example, 70 

Garvey et al. [33] reported the rapid drop in the zeta-potential of latex particles with the 71 

addition of nonionic poly(vinyl alcohol) (PVA). This decrease is considered to originate 72 

from the adsorption of PVA onto the latex particles. Zaman [7] also reported the 73 

reduction of the zeta potential of silica particles with the addition of poly(ethylene 74 

oxide) (PEO). Meanwhile, Heiningen and Hill [34] reported the temporal decrease in 75 

the mobility magnitude of trapped silica microsphere with the adsorption of PEO using 76 

optical tweezers electrophoresis. In these studies, the reduction in the zeta potential or 77 

mobility magnitude is often interpreted by the outward shift of the location of the shear 78 

plane, and the shift is in some cases regarded as the thickness of adsorbed polymer 79 

layers [4, 22, 30, 31, 33–36]. Then, the thickness of the polymer layer is quantified from 80 

the reduction of zeta potential by assuming that the potential distribution in the EDL 81 

near the surface is hardly disturbed by the adsorbed polymer layer. The assumption 82 
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seems reasonable but has never been examined.  83 

The objective of this research is to clarify if nonionic polymer affects EDL 84 

structure. Our idea in this paper is to measure DLVO interaction force at long-range 85 

distances in the presence and absence of nonionic polymers. Using optical tweezers 86 

allows us to measure the long-range and weak interaction forces between particles for 87 

bare and with an adsorbed polymer layer at the different molecular weights. 88 

Furthermore, we utilize silica particles and polyethylene(oxide) (PEO), having a higher 89 

affinity to silica surfaces, as a model particle and nonionic polymer. The interaction 90 

between silica surfaces in the presence of PEO has been studied using different force 91 

measurement techniques [7, 20, 32–39]. While many studies reported the effect of 92 

adsorbed PEO on the interaction forces between silica surfaces, the discussion is mostly 93 

focused on the steric interactions in the presence of PEO at the surface [39–43]. In the 94 

present study, the effect of diffuse double layer and steric interactions are differentiated 95 

by varying the molecular weight of PEO and background electrolyte concentration. 96 

Suppose the force curve with nonionic polymer PEO is similar to that without PEO. In 97 

that case, we can postulate that nonionic polymer PEO does not significantly affect 98 

EDL structure. Thus, the well-known reduction in zeta potential is due to the shift of 99 

the shear plane coming from a hydrodynamic problem with adsorbed polymers. 100 

Therefore, this study has aimed to provide a basis for the assumption and improve our 101 

understanding of the EDL structure in the presence of nonionic polymer.  102 

 103 

2. Materials and Methods 104 
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2.1 Materials 105 

The probe particles used in the experiments were non-functionalized silica 106 

particles (diameters 2a= 10.0 and 5.6 μm, JGC Catalysts and Chemicals, Ltd., 107 

Japan) suspended in deionized (DI) water (Elix Advantage 5, Millipore, Tokyo, 108 

Japan). Both particle suspensions were prepared by diluting the stock suspension 109 

of 0.01 wt.% to 0.0005 wt.%. Poly (ethylene oxide) (PEO) with a molecular 110 

weight of 1000 kg/mol and 100 kg/mol were purchased from Sigma Aldrich 111 

(Sigma Aldrich: St. Louis, MO). Poly(ethylene glycol) (PEG) with an average 112 

molecular weight of 20 kg/mol was purchased from Wako Pure Chemicals Ind., 113 

Ltd. Stock polymer solutions (~500 ppm) were prepared by dissolving the 114 

powders in DI with vigorous stirring at room temperature for two days and 115 

carefully covered to avoid photodegradation. The radii of gyration, 𝑅g, of the 116 

polymers were estimated from the molecular weight following the  reference [44, 117 

45], as shown in Table 1. All polymer stock solutions were used within two 118 

weeks, and stored at 5 °C. A 10 mM KCl solution was added to control the ionic 119 

strength of the samples. 120 

2.2 Optical tweezers set up 121 

An optical trapping kit (OTKB/M, Thorlabs) equipped with a single laser 122 

(wavelength λ=976 nm) was used in the experiments, as described elsewhere[46, 47]. 123 

A 100× oil immersion objective with a high numerical aperture (NA 1.25, WD 0.23 124 

mm, Nikon) was used to tightly focus the laser beam and visualize the colloidal particle. 125 
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An air condenser then collected the trapping laser passing through the sample (10×, NA 126 

0.25, W.D. 7 mm, Nikon) and further reflected into the quadrant position detector 127 

(QPD) using a dichroic mirror for the back-focal plane detection (OTKBFM, Thorlabs). 128 

A piezo-controlled 3-dimension translational stage (NanoMax 300, Thorlabs) was used 129 

to position the microscope glass slide using the Thorlabs APT software package. We 130 

used a force measurement module (OTKBFM-CAL, Thorlabs) to record the QPD 131 

signals. The constant particle displacement was measured by image processing, and the 132 

QPD calibration factor was determined to be around 0.16 V/μm[46]. The stage 133 

displacement and the x- and y-  displacement of the particle in the optical trap were 134 

recorded using a custom-made data acquisition program in LabVIEW software 135 

(National Instruments, Austin, TX). 136 

2.3 Force measurement 137 

The force measurement between two particles with different radii, as shown in Fig. 138 

1, was performed in a microscope cell separated by a double adhesive tape and sealed 139 

with a vacuum sealant following the reference with slight modifications [48, 49]. The 140 

vacuum sealant protects the sample from evaporation during the measurements. A 141 

particle A1 with radius a1 was optically trapped at a height equal to the radius of a large 142 

particle A2, a2. The larger particle, A2, was initially allowed to adhere to the cover glass 143 

by drying in a closed environment. Then, the cover glass was used to make the 144 

microscope cell. After that, the particle suspension of 0.0005 wt%, 5.6 μm particle was 145 

injected into the cell without or with 100 ppm of the polymer [42, 50, 51]. The sample 146 
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pH was measured to be around 6. The addition of an excess amount of polymer 147 

molecule is also expected to be adsorbed onto the large particles pre-adhered on the 148 

cover glass. The sample cell was kept for 10 minutes to develop adsorption on the 149 

adhered particles and obtain saturation. A free 5.6 μm particle was then held in an 150 

optical trap for the measurements. We determined the initial surface-to-surface distance 151 

between particles by image processing and converted it from pixels to micrometers 152 

using microscope calibration scales.  153 

 Force measurement was performed by translating the adhered large particle via the 154 

piezo-controlled stage at a speed of 0.02 µm/s using custom software in LabVIEW 155 

(National Instruments, Austin, TX). We assume no hydrodynamic interaction takes 156 

place at this slow translation speed. As the larger particle approaches the trapped 157 

particle, the trapped particle is displaced laterally from its equilibrium position, Δx, 158 

which is detected by the QPD. The force is obtained from the lateral displacement 159 

measurement, k Δx, where k is the trap stiffness. The trap stiffness k was fixed at 160 

2.35×10-5 N/m in all force measurements. Force measurements were repeated for at 161 

least five different pairs of particles. All measurements were performed at room 162 

temperature, 20 °C. 163 

3. Results and Discussions 164 

3.1 Interaction forces between silica particles in KCl solutions 165 

The double-layer forces between bare silica particles in electrolyte concentrations 166 

were measured to validate the methodology. Figure 2 shows the experimental results of 167 
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direct force measurements between silica particles in dilute KCl concentration. When 168 

the adhered particle approached the trapped particle at a constant speed of 0.02 µm/s, a 169 

repulsive force was observed for both KCl concentrations due to the overlapping of the 170 

EDL, and the onset of repulsion decreased with the increasing electrolyte concentration.  171 

 To further evaluate the experimental force curve, the total interaction force 172 

between the two colloidal particles was analyzed using the DLVO theory, wherein the 173 

interparticle forces were governed by the electrostatic double-layer (EDL) force and the 174 

van der Waals (VDW) attraction force: 175 

𝐹𝑇 =  𝐹EDL(ℎ)  + 𝐹VDW(ℎ)       (1) 176 

The EDL interactions for a sphere-sphere geometry with different sizes can be 177 

described as follows: 178 

𝐹EDL(ℎ) =
128𝜋𝑁A 𝑐𝑠 𝑘𝐵𝑇 𝛾2

𝜅
(

𝑎1𝑎2

𝑎1+𝑎2
) 𝑒−𝜅ℎ       (2) 179 

where 
𝑎1𝑎2

𝑎1+𝑎2
 is the effective radius following Derjaguin’s approximation with 𝑎1 and 180 

𝑎2 are the particle radii, h is the surface-to-surface distance, 𝑁𝐴 is Avogadro’s number, 181 

𝑐𝑠 is the electrolyte concentration in mM, 𝑘𝐵𝑇 is the Boltzmann constant multiplied by 182 

absolute temperature, T, 𝛾 is given by 𝛾 = tanh (𝑧𝑒𝜓/4𝑘𝐵𝑇) where e is the elementary 183 

charge, z is the valence of ions, ψ is the surface potential, and 1/𝜅 is the Debye length. 184 

Meanwhile, the attractive VDW interaction is given as 185 

𝐹𝑉𝐷𝑊(ℎ) =
−A𝐻

6ℎ2 (
𝑎1𝑎2

𝑎1+𝑎2
)       (3) 186 

where the 𝐴H is the Hamaker constant between silica particles in an aqueous solution. 187 

The 𝐴H was set to 2.0×10-21 J; this value is within the reported values of the Hamaker 188 

constant of silica in water [13, 52]. The theoretical DLVO force curve was compared to 189 
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the experimental data with 𝜓 as a fitting parameter, and the 𝜅 was calculated directly 190 

from the electrolyte concentration of the solution.  191 

In Fig. 2, the experimental and theoretical curves showed good agreement. From 192 

the fit of DLVO theory to the measured curves, the absolute surface potential was 193 

obtained to be around 65.7±1.2 mV and 50±1.7 mV for 0.1 mM and 0.5 mM KCl 194 

solutions, respectively. As the salt concentration increases, the onset of the double layer 195 

forces decreases at a surface-to-surface distance of around 250 nm and 150 nm for 0.1 196 

mM and 0.5 mM KCl due to the thinning of the diffuse double layer. The measured 197 

force curve and surface potential between silica particles using optical tweezers were 198 

consistent with the theoretical predictions and agreed with previous studies [13, 27]. 199 

Hence, this agreement indicates that our methodology is sound for measuring long-200 

range interactions between two particles.  201 

3.2 Interaction forces between silica particles with adsorbed PEO layer 202 

The addition of a PEO in the particle suspension would result in polymer 203 

adsorption onto the surface of the silica particle[8, 37, 42, 47, 53–56]. The interaction 204 

forces between two surfaces with the adsorbed polymer layers with different molecular 205 

weights were measured to evaluate the effect of PEO on the surface properties of the 206 

silica particles. Figure 3 presents the experimental results of direct force measurement 207 

between silica particles mediated with PEO of different molecular weights at 0.1 mM 208 

and 0.5 mM KCl. The force curve is purely repulsive for all particles mediated with 209 

PEO. At a low KCl concentration (0.1 mM), the force curve for a low molecular weight 210 
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PEO (20 kg/mol) converges quite well with the bare particles. Since the layer thickness 211 

of the adsorbed polymer, which is assumed to be around 2Rg-3Rg where Rg of a 20 212 

kg/mol PEO is estimated to be 7.6 nm (see Table 1), is thinner than the diffuse part of 213 

the double-layer structure, we postulate that the observed repulsion is dominated by the 214 

overlapping of diffuse double-layer. This resembles the interaction of silica particles 215 

even in the presence of the small molecule polymer adsorbed at the surface, and thus 216 

the force is governed by the overlapping of diffuse double-layer and is electrostatic in 217 

nature. Furthermore, increasing the molecular weight to 100 kg/mol with Rg estimated 218 

to be 17.1 nm (see Table 1), the force curve still converges with those for bare and with 219 

20 kg/mol adsorbed PEO layer. Therefore, similar to the interaction mediated with the 220 

20 kg/mol adsorbed PEO layer, we consider that the interaction originated from the 221 

EDL repulsion, and the adsorption of the nonionic polymer did not affect the surface 222 

property of the particles.  223 

On the other hand, for a high molecular weight PEO, the onset of the interaction 224 

was shifted to a few hundreds of nanometers around to 3Rg, significantly larger than 225 

those for bare particles and with a low molecular weight polymer. With the presence of 226 

a high molecular weight PEO, the thickness of the adsorbed polymer layer was 227 

expectedly thicker; hence when the two polymer-covered surfaces approach each other, 228 

the trapped particle experiences a force from the outer segments of the adsorbed 229 

polymer layer. Thus, the shift was attributed to the steric repulsion, and the onset of 230 

repulsion can be used to estimate the layer thickness of the adsorbed polymer layer [42].  231 
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The effect of double-layer structure and steric repulsion on the interaction between 232 

silica particles was further differentiated by increasing the background salt 233 

concentration. Increasing the salt concentration suppresses the EDL repulsion due to 234 

the charge screening. Figure 3b presents the force curve for bare and adsorbed polymer 235 

layers at 0.5 mM KCl concentration. The onset of the interaction force for bare silica 236 

particles and those mediated with 20 kg/mol PEO remained identical and shifted to a 237 

lower surface-to-surface distance. This observation is in line with those found for 0.1 238 

mM KCl background concentration. Since the layer thickness of the adsorbed polymer 239 

is still thinner than the diffuse double layer; thus, the interaction is driven by the 240 

overlapping of the EDL, and the adsorption of small molecular weight nonionic 241 

polymer does not alter the surface property of the particle. Moreover, a fluctuation in 242 

the force curve could be seen at large separation distance and may be a possibility of 243 

secondary minimum or depletion force in the presence of polymer. However, this is not 244 

the case in our measurements because the polymer size is small and the concentration 245 

of polymers is low. Hence, this could be an artifact since these forces are too weak and 246 

may be masked by the limitation of the force detection at very low forces. On the one 247 

hand, the onset of interaction for silica particles mediated with 1000 kg/mol PEO did 248 

not show significant differences from those in 0.1 mM KCl concentration. This implies 249 

that the steric interaction is also not affected by the change in the diffuse double-layer 250 

[35, 57, 58]. Hence, based on the above discussion, we consider that the adsorption and 251 

attachment of the PEO molecule on the surface of the silica particle do not affect the 252 

charge group at the surface and imply that the presence of nonionic polymer does not 253 
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influence the double-layer structure of the particles. 254 

A similar observation was also reported by Giesbers et al. [41] using AFM between 255 

the polymer-covered sphere and polymer-covered plate, wherein the approach curve 256 

with low molecular weight PEO at 10−3 M NaCl is dominated by electrostatic repulsion. 257 

Correspondingly, Wei et al. [39] observed a similar tendency in the interaction between 258 

latex particles and silica glass surface-mediated with PEO at low polymer concentration. 259 

Although reported, the consideration of the surface potential and the commonly 260 

observed reduction in the zeta-potential was not addressed. Moreover, the effect of PEO 261 

on the surface of silica particles has been studied using electrokinetic measurements[7, 262 

8,33, 36, 37]. It was shown that the absolute magnitude of zeta-potential (ζ-potential) 263 

decreases with the increasing adsorbed amount of PEO. As mentioned in the 264 

introduction, electrokinetic measurements provide information on the surface 265 

properties of the charged particles; however, it is equally reliant on the hydrodynamic 266 

properties of the outermost region of the interface. Thus, the observed decrease in the 267 

ζ-potential somehow reflects the hydrodynamic properties of the adsorbed PEO layers. 268 

Since the long-range force measurements did not exhibit any significant changes in the 269 

surface properties of the particles in the presence of the nonionic polymer layer, we 270 

attribute that the adsorption of the nonionic polymer has almost no effect on the surface 271 

potential and EDL structure of charged silica particles, albeit the commonly reported 272 

change in the ζ -potential. Therefore, based on the above discussion, we postulate that 273 

the reported decrease in the absolute magnitude of ζ-potential in the presence of PEO 274 

was attributed to the shift of the shear plane from the hydrodynamic point of view as 275 
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schematically drawn in Fig. 4.  276 

3.3 Steric interactions by large molecular weight polymer 277 

The effect of steric repulsion by large molecular weight polymers was quantified 278 

using the Alexander-de Gennes (AdG) model [60, 61]. Following Derjaguin’s 279 

approximation, the interaction force between two surfaces for the symmetric case of the 280 

AdG model is given as follows: 281 

𝐹symm(ℎ) =
8𝜋𝑘𝐵𝑇 𝐿

35𝑠3 (
𝑎1𝑎2

𝑎1+𝑎2
) [7 (

2𝐿

ℎ
)

5/4
+ 5 (

ℎ

2𝐿
)

7/4
− 12]     (4) 282 

where 𝑘B𝑇, 𝑎1, 𝑎2 and h are defined earlier, and L is originally defined as the thickness 283 

of the grafted polymers. In this case, we followed the consideration of Block et al. [62] 284 

and considered the PEO as only physisorbed on the surface of the silica particles. Hence, 285 

L can be redefined as the thickness of the adsorbed PEO layer [62, 63]. In addition, the 286 

parameter s is originally defined as the average distance between two anchoring, grafted 287 

chains. Again, since the polymer was treated as physisorbed on the surface of the 288 

particles; hence, the steric force was considered to originate from the opposing loops 289 

and tails [62, 63]. Therefore, the parameter s may provide information on the average 290 

density of tails and loops of the adsorbed polymer [62, 63]. For the fitting, the 291 

parameters s and L were kept constant with a value of 75 nm and 198 nm, respectively. 292 

As shown in Fig. 3, the AdG model showed good agreement with the measured force 293 

curve without adding the electrostatic forces, implying that the model is sufficient to 294 

describe the steric forces generated by the adsorbed polymer layer for both salt 295 

concentrations. These findings are fairly intuitive as the adsorbed polymer layers are 296 

thicker than the double-layer structure. Hence, the high molecular weight PEO provides 297 

a steric repulsion by the adsorbed polymer layer's opposing tails and/or loops. 298 
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Additionally, depletion was not observed in this study, as was previously observed [39], 299 

probably due to the concentration used in the present study. Depletion usually occurs at 300 

overdose polymer concentration, where the concentration of free polymers in the 301 

solution is relatively high, thereby increasing the osmotic pressure between the particles 302 

upon approach.  303 

According to the AdG model, several pieces of information could be obtained. 304 

Firstly, the layer thickness of the adsorbed polymer layer was estimated to be around 305 

2Rg - 3Rg for both salt concentrations. This observation was rather consistent and within 306 

the range of the previous studies, as the range of steric forces can be as several times as 307 

Rg [42, 65–67]. Meanwhile, our previous study on the kinetics of PEO adsorption onto 308 

silica surfaces showed a hydrodynamic layer thickness of around 1.3Rg at 50 ppm for 309 

the same molecular weight polymer [47]. Secondly, the parameter s was not affected 310 

much by the salt concentrations. However, the obtained parameter s was slightly higher 311 

than those for the grafted polymer case and in molecular dynamics simulations, with a 312 

value of around 3-18 nm [36, 68]. This is reasonable as the polymers in this study were 313 

only physisorbed onto the surface, and parameter s may be from the average density of 314 

tails and loops of the adsorbed polymer. On the other hand, Klein and Luckham 315 

obtained a value of s to be 11.0 nm for physisorbed PEO on mica surfaces[66]. In the 316 

case of physisorbed poly(styrene sulfonate), the value of s was within 50-60 nm [62, 317 

63], while Mohamad et al.[69] reported the value of s around 30-44 nm for the case of 318 

pseudo-brush poly(diallyl dimethylammonium chloride) (PDADMAC), which were 319 

comparable to our fitted value of s. Hence, we attribute the steric interactions were 320 

caused by the dangling loops and tails of the adsorbed PEO layer.  321 
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4. Conclusion 322 

The present study provides long-range force measurements between silica particles 323 

without and with nonionic PEO polymer layers at different molecular weights. In 324 

samples without PEO, the force profiles can be quantitatively interpreted in terms of 325 

DLVO theory, provided by the parameters describing the surface properties of the 326 

particles. This quantitative comparison between the experimental and theoretical 327 

features provides strong support for the applicability of the methodology for the force 328 

measurements in the presence of adsorbed PEO layer. In the presence of adsorbed PEO 329 

layer, the addition of low molecular weight PEO did not affect the double-layer 330 

structure. Based on this observation, we corroborate the notion that the reduction in the 331 

magnitude of the zeta potential in the presence of neutral polymer can be attributed to 332 

the shift of the shear plane from the hydrodynamic point of view. 333 
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Table 1. Estimated radius of gyration of PEO as a function of molecular weight 

Molecular weight (kg/mol)a Rg (nm) 

20 7.6 

100 17.1 

1000 64.9 

a Supplier Information 
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Figure 1. Schematic diagram of the silica-silica 

interaction. The large particle is adhered to the 

glass slide and displaced by moving the stage at 

a speed of 0.02 µm/s.  
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Figure 2. Effect of electrolyte concentration on the

interaction between silica surfaces. Solid line:

Theoretical curve using for 0.5 mM KCl (red), and for

0.1 mM KCl (blue).
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Figure 3. Effect of adsorbed PEO with different molecular

weight on the interaction between silica surfaces: a) in 0.1

mM KCl, and b) in 0.5 mM KCl. Solid line: Theoretical

curve using DLVO (Black) and AdG model (Orange).
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Figure 4. Schematic illustration of the interaction between 

particles with adsorbed neutral polymer. Inset of Figure 4a is the 

schematic potential distribution in the presence of PEO.  
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