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Terahertz-induced high-order harmonic generation and nonlinear charge transport in graphene

Wenwen Mao,! Angel Rubio®,"? and Shunsuke A. Sato®3!-*
'Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
2Center for Computational Quantum Physics (CCQ), Flatiron Institute, 162 Fifth Avenue, New York, New York 10010, USA
3Center for Computational Sciences, University of Tsukuba, Tsukuba 305-8577, Japan

® (Received 15 March 2022; accepted 13 July 2022; published 29 July 2022)

We theoretically study the terahertz-induced high-order harmonic generation (HHG) and nonlinear electric
transport in graphene based on the quantum master equation with the relaxation time approximation. To obtain
microscopic insight into the phenomena, we compare the results of the fully dynamical calculations with those
under a quasistatic approximation, where the electronic system is approximated as a nonequilibrium steady state.
As a result, we find that the THz-induced electron dynamics in graphene can be accurately modeled with the
nonequilibrium steady state at each instance. The population distribution analysis further clarifies that the THz-
induced HHG in graphene originates from the reduction of effective conductivity due to a large displacement of
electrons in the Brillouin zone. By comparing the present nonequilibrium picture with a thermodynamic picture,
we explore the role of the nonequilibrium nature of electron dynamics on the extremely nonlinear optical and

transport phenomena in graphene.
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I. INTRODUCTION

High-order harmonic generation (HHG) is an extreme
photon-upconversion process via strongly nonlinear light-
matter interactions, and it has been intensively studied in gas
systems [1-3], enabling the generation of attosecond laser
pulses and opening a novel avenue to study ultrafast electron
dynamics in the time domain [4-7]. Since the discovery of
HHG in the ZnO crystal [8], HHG in extended systems has
been attracting much interest as it may further contribute to
the development of novel light sources [9]. Among various
materials, HHG in graphene has been intensively studied both
theoretically [10-15] and experimentally [16,17] as graphene
has a unique electronic structure, Dirac cones. Recently, HHG
in graphene has been investigated in the terahertz (THz)
regime [18,19]. Furthermore, the field-induced transparency
of graphene has been investigated as yet another intriguing
nonlinear optical effect in the THz regime [20-22]. These
nonlinear optical effects have been addressed based on the
reduction of the electric conductivity with the thermodynamic
model [19,23]. However, the microscopic mechanism of these
nonlinear effects still has not been understood based on the
nonequilibrium quantum dynamics under dissipation beyond
the phenomenological treatment.

To develop the microscopic understanding of the physical
mechanism of HHG in graphene in the THz regime, we in-
vestigate the nonequilibrium electron dynamics in graphene
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with the quantum master equation. We simulate the THz-
induced electron dynamics under the dissipation and compare
it with a nonequilibrium steady state under a static field. As
a result, we find that the THz-induced electron dynamics in
graphene can be well described, at each instance, with the
nonequilibrium steady state. Furthermore, the nonequilibrium
simulation clarifies that the effective electric conductivity of
graphene is reduced due to the depletion of effective carri-
ers, resulting in nonlinear current and HHG. In this work,
we further compare the present nonequilibrium description
of electron dynamics in graphene and the recently developed
thermodynamic model [23] in order to clarify the role of the
nonequilibrium nature of dynamics in the nonlinear optical
phenomena in graphene.

The paper is organized as follows. In Sec. II, we first de-
scribe theoretical methods to study the light-induced electron
dynamics in graphene based on the quantum master equation.
In Sec. III, we investigate the THz-induced HHG in graphene
with the method described in Sec. II. We further analyze the
microscopic mechanism of HHG with the quasistatic approx-
imation and the population distribution in the Brillouin zone.
In Sec. IV, we elucidate the role of the nonequilibrium nature
of THz-induced electron dynamics by comparing the nonequi-
librium picture in the present work and the thermodynamic
picture in the previous work [23]. Finally, our findings are
summarized in Sec. V.

II. METHODS

Theoretical modeling

In this work, we describe the light-induced electron dy-
namics in graphene with the following quantum master
equation [24-27]:

d 1 n
Epk(t) = E[Hk+eA(t)/ha k()] + D[ pr (1)1, (1)

Published by the American Physical Society


https://orcid.org/0000-0003-2060-3151
https://orcid.org/0000-0001-9543-2620
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.106.024313&domain=pdf&date_stamp=2022-07-29
https://doi.org/10.1103/PhysRevB.106.024313
https://creativecommons.org/licenses/by/4.0/

MAO, RUBIO, AND SATO

PHYSICAL REVIEW B 106, 024313 (2022)

where k is the Bloch wave vector, pg(¢) is the reduced density
matrix at k, and A(¢) is a spatially uniform vector potential
related to applied electric fields as A = — fioo dt'E(t"). The
time-dependent Hamiltonian, Hgica¢ )5, is constructed with
the Peierls substitution [28], simply replacing the Bloch wave
vector, k, with the shifted wave vector, k + eA(t)/h, in the
static Hamiltonian Hy. To describe the electronic structure of
graphene, we employ the following tight-binding Hamiltonian
[29]:

tof(k )) @

0
("
tof (k) 0

where £, is the nearest-neighbor hopping, and f (k) is given by
fk) = e*d 4 k% 1 ¢k wyith the nearest-neighbor vectors
d; [29]. We set the hopping parameter #, to 2.8 eV and the
lattice constant a to 1.42 A in accordance with the previous
work [29].

To describe the effect of dissipation, we construct the
relaxation operator, ﬁ[pk(t)], in Eq. (1) with the relaxation
time approximation [30] with the Houston basis [31,32]. The
Houston states are eigenstates of the instantaneous Hamilto-
nian: Hk+eA(,)/h|ug((t)) = Gb’kJreA([)/hh/th(t)), where b denotes
the band index, valence (b = v) or conduction (b = c¢) bands.
The reduced density matrix can be expanded with the Houston
states as

o) = oy 1)t ()1 ()], 3)
bl

where ppy 1 (¢) are the expansion coefficients. On the basis of

the Houston state expansion, we define the relaxation operator

[25] as

Dlpe(1)] = —

Z Pob k(@) — P (b preacrryns Tos V)

b L

x g () up ()| — Z pbbg(t) |uag () ()
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“

where 77 is the longitudinal relaxation time, 7 is the
transverse relaxation time, and ffP(e) is the Fermi-Dirac
distribution

1

ele—w/ksTe 4 1° )

e, T, ) =

Here, @ is the chemical potential, and 7, is the electron
temperature. In this work, we set the longitudinal relaxation
time 7 to 100 fs and the transverse relaxation time 75 to 20
fs in accordance with previous works [24-27]. The electron
temperature T, is set to 300 K unless stated otherwise. The
chemical potential u is treated as a tunable parameter to study
the effect of doping.

By employing the time-dependent density matrix px(t)
evolved with Eq. (1), we compute the electric current as

J(@) = Wfdka[jk(f)Pk(f)], (6)
where J (1) is the current operator defined as
n _ _3H(k+eA(t)/Fz)

Ji(@) = A0 @)

By analyzing the current induced by electric fields, we further
investigate the high-order harmonic generation and nonlinear
transport properties of graphene.

III. RESULTS

In this section, we study the microscopic mechanism be-
hind the THz-induced high-order harmonic generation in
graphene. We first investigate the THz-induced electron dy-
namics in graphene with fully dynamical simulations based
on the quantum master equation, Eq. (1). Then, we intro-
duce a quasistatic approximation to analyze the THz-induced
electron dynamics, revisiting the nonlinear electric transport
and field-induced transparency of graphene. Furthermore, we
compare a nonequilibrium steady state realized in the qua-
sistatic picture with the recently developed thermodynamic
model [23] in order to clarify the nonequilibrium mecha-
nism behind nonlinear optical and transport phenomena in
graphene in the THz regime.

A. Fully dynamical simulations for high-order
harmonic generation in graphene

We first perform the electron dynamics simulation with
Eq. (1) by using a linearly polarized laser pulse in order to
analyze the high-order harmonic generation in graphene. For
this purpose, we employ the following form for the applied
vector potential,

Ey . 4
A(t) = ——e, sin(wpt ) cos t), (®)
o Trun

in the domain —T7g,;/2 < t < T /2 and zero outside. In ac-
cordance with the previous experiment [18], we set the peak
field strength Ey to 8.5 MV /m, the mean photon-energy ficwg
to 1.2407 meV, and the pulse duration Ty to 40 ps. The
direction of the electric field e, is set to I'-M direction.

We compute the induced electric current, J(¢), under the
field given by Eq. (8). Then, we apply the Fourier transform
to the current in order to evaluate the high-order harmonics
spectrum as

2
2

©))

Inpg(w) ~ o

/ dtJ(t)e™

o]

Figure 1(a) shows the computed high-order harmonic spec-
tra, Iypg(w), for different chemical potentials . For each
chemical potential, clear harmonic peaks are observed. The
intensities of emitted harmonics increase with the increase in
the chemical potential. These results are consistent with the
observation in the recent experiment [19], where the emitted
harmonic intensity increases with the increase in the gate
voltage. In previous work, the THz-induced high-order har-
monic generation in graphene was interpreted on the basis
of the thermodynamic picture [23]. In this work, we aim to
develop a comprehensive microscopic understanding of the
THz-induced nonlinear phenomena by taking into account the
nonequilibrium nature of electron dynamics in the description
of light-matter interactions.
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FIG. 1. (a) Computed harmonic spectra Iygg(w) with Eq. (9) for

different chemical potentials, u = 0, 70, and 170 meV. (b) Com-

parison of the HHG spectra computed with the fully dynamical

simulations in Sec. III A and the quasistatic approximation Sec. III B.
Here, the chemical potential is set to . = 170 meV.

B. Quasistatic approximation for THz-induced
electron dynamics in graphene

To develop a microscopic understanding of the THz-
induced high-order harmonic generation in graphene, we
introduce a quasistatic picture to describe the induced electron
dynamics [27]. Here, we assume that the THz field varies so
slowly that the electronic system can be well described with
a nonequilibrium steady state at each time under the balance
between the field-induced excitation and the relaxation. This
assumption becomes accurate when the mean frequency of the
THz field is much smaller than the intrinsic relaxation rates,
1/Th and 1/75.

For practical analysis with the quasistatic approximation,
we first evaluate the electric current of a nonequilibrium
steady state under a static electric field, E(¢) = Epe,, as

Js(E) = lim —>— / AT (10)
t—o0 (217)
Here, the electron dynamics are computed under a static field,
A(t) = —Epe,t. The electronic system reaches a nonequilib-
rium steady state after sufficient time due to the balance
between the field-induced excitation and the relaxation (see
the Appendix for details). With the relation between the
current and the field in Eq. (10), we approximate the field-

1= 170 meV (total)
u= 170 meV (intra) = =

4 u= 70 meV (total) |
u= 70 meV (intra) = =
3l u= 0 meV (total) |

u= 0meV (intra) = —

o(Ep) (normalized)

—
_——
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Field strength, E; (MV/m)

FIG. 2. Nonlinear effective conductivities of graphene as a func-
tion of the static field strength E, evaluated with the total currents
(solid lines) and intraband currents (dashed lines) for different values
of the chemical potential, © = 0, 70, and 170 meV.

induced current J(¢) by the steady-state current with the
instantaneous electric field as J (1) ~ Js(E(1)).

To assess the accuracy of the quasistatic approximation,
we computed the high-order harmonic generation spectrum
Inpc (w) with the approximated current, Js(E (¢)). Figure 1(b)
shows the computed spectrum Iypg(w) with the quasistatic
approximation by setting p to 170 meV. For comparison,
the corresponding result of the fully dynamical calculation is
also shown. As seen from the figure, the result of the qua-
sistatic approximation accurately reproduces that of the fully
dynamical calculation. Hence, we confirm that the quasistatic
approximation can well describe the electron dynamics in
graphene under THz fields. This indicates that the microscopic
mechanism of the THz-induced HHG in graphene can be
developed on the basis of the nonequilibrium steady state
under the balance between the field-induced excitation and the
relaxation. Note that the quasistatic approximation becomes
less accurate for the higher-order harmonics due to the fast
component of the dynamics that cannot be well captured by
the quasistatic picture.

C. Nonlinear electric conductivity of graphene

Having established the quasistatic picture of THz-induced
electron dynamics in graphene, we then study the nonlinear
electric conductivity in a static regime in order to develop
microscopic insight into the THz-induced HHG. For this
purpose, we first define the intraband component of the
steady-state current in Eq. (10) as

. (=2)e 0€p kreA)/h
lim dk AW/ b JeteA (1) /1>

imraE — e
Js" (Eo) e Qn ) h ok

b=v

an

where the band population 7pxieaqyn 1is defined as
M keveary/n(t) = (g (O] px () g (1)) with the instantaneous
eigenstates of the Hamiltonian, |u£ +(@)). We then evalu-
ate the effective conductivities from the total steady current
Js(Ep) and the intraband component J ismra (Ep)aso(Ey) =ey -
Js(Ey)/Ep and 0™ (Ey) = e, - J ismra (Ep)/Ey, respectively.
Figure 2 shows the computed effective conductivities,
o (Ey) and 6" (Ey), as a function of the applied field strength
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Ey. The results for different chemical potentials, p, are shown.
In Fig. 2, the conductivities o (Ey) evaluated with the total
steady current Jg(Ey) are well reproduced with those evalu-
ated with the intraband current Jis‘“m(Eo) for all investigated
field strengths Ey and chemical potentials . Therefore, the
charge transport in graphene under static and THz fields is
dominated by the intraband current, which is described by the
product of the band group velocity and the band population in
the Brillouin zone.

As seen from Fig. 2, the effective conductivities, o (Ey), are
first reduced for all investigated chemical potentials ; when
the field strength increases from zero. The reduction of the
conductivity is consistent with the field-induced transparency
of graphene [27] since the conductivity o (Ey) is directly
related to the photoabsorption via Joule heating, Ejoye =
Eq-Js(Ey) = o(Ey )Eg. Once the field strength becomes even
stronger, graphene with relatively small chemical potentials
(e.g., w = 0 or 70 meV) shows a conductivity increase, while
graphene with the relatively large chemical potential (e.g.,
u = 170 meV) keeps showing a conductivity decrease. These
results are consistent with the previous theoretical study on
the nonlinear transport in graphene with the linear band ap-
proximation, Hy = vr(oxk, + o,k,) [27]. Since the present
work employs a more comprehensive electronic structure in
the full Brillouin zone based on the tight-binding model, the
low-energy Hamiltonian approximation for the graphene band
structure in the previous work can be verified on the basis of
the present results. In the previous work [27], the decrease of
the effective conductivity has been understood by the disper-
sion of the population imbalance in the Brillouin zone, and
the conductivity increase has been understood by the addi-
tional carrier injection via the Zener tunneling mechanism.
These interpretations can be naturally applied to the present
results.

Since the quasistatic approximation well describes the
THz-induced electron dynamics, the THz-induced HHG can
be interpreted on the basis of the effective conductivities
o (Ep) in Fig. 2. If the conductivity o (Ey) is independent of
the field strength Ej, the induced current is always linearly
proportional to the field strength, resulting in the absence
of harmonics. Therefore, the emitted harmonics in the qua-
sistatic picture originate from the nonlinearity of the current
Js(Ep) and the field-strength dependence of the conductivity
o (Ep). As seen from Fig. 2, the conductivity has a stronger
dependence on the field strength for a larger chemical poten-
tial, manifesting a significant conductivity reduction with an
increase in the field strength. This indicates that the enhance-
ment of the HHG with the chemical-potential shift in Fig. 1
can be understood by the significant reduction of the conduc-
tivity with the increase in the field strength at a larger chemical
potential. In previous work [18,19], the THz-induced HHG in
graphene was also interpreted by the reduction of the conduc-
tivity but with the thermodynamic model [23]. To understand
the role of the nonequilibrium nature in the steady state, we
elucidate a relation of the two models, the nonequilibrium
steady-state model and the thermodynamic model, in the next
section, Sec. IV.

The intraband current in Eq. (11) consists of the product
of the band velocity and population. Since the band veloc-
ity is an intrinsic property of material and invariant under
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FIG. 3. (a) The equilibrium population distribution in the con-
duction band f*(e.z). (b)~(d) The field-induced conduction pop-
ulation change for different field strengths, (b) 0.01 MV/m, (c)
3 MV/m, and (d) 10 MV/m. (e) The population distribution in the
conduction band in the nonequilibrium steady state under a static
field, Eo = 10 MV/m.

the presence of electric fields, the field-induced population
modification plays an essential role in the generation of the
intraband current. Furthermore, the THz-induced current is
dominated by the intraband current as discussed above. To
obtain microscopic insight into the THz-induced current, we
thus analyze the population distribution in the Brillouin zone
under the field. Figure 3(a) shows the equilibrium popula-
tion distribution in the conduction band, f™P(e, ), around a
Dirac point (K point) of graphene: k = %(1, %). Here, the
chemical potential 11 is set to 170 meV. One sees that the
equilibrium population is distributed around the Dirac point
with circular symmetry as the Dirac cone is partially filled by
doped electrons.

We define the field-induced conduction population change
in a nonequilibrium steady state as Anc g = 1 g ea( )/ () —
FP(€ ek reriyy) i +eaw)nek- Figures 3(b)-3(d) show the
field-induced conduction population An,j for different field
strengths, (b) 0.01 MV/m, (c) 3 MV/m, and (d) 10 MV /m.
As seen from Fig. 3(b), the field-induced population mod-
ification is induced around the ring-shaped line, which is
defined with the single-particle energy €, and the Fermi en-
ergy €r = f|7,—o as €y = €r. The population modulation is
induced around the Fermi energy by the weak-field excitation,
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and the ring structure is formed due to the circular symmetry
of the Dirac cone. The increase and decrease of the conduc-
tion population An,j show symmetric distribution along the
direction of the field (x axis) in the weak-field regime. By
contrast, the increase and decrease in population distribution
become nonsymmetric in the strong-field regime. As seen
from Figs. 3(c) and 3(d), the population increase (red color
region) is caused in a wider range on the left side of the Dirac
point, while the population decrease (blue color region) is
caused in a narrower region on the right side. The significant
elongation of the population increase along the field direction
can be understood as the field-induced intraband acceleration
in the Brillouin zone, while the localized population decrease
around the Dirac point can be understood as the field-induced
displacement of the initially localized electrons around the
Dirac point in Fig. 3(a).

In previous work [27], the reduction of the conductivity has
been understood as the saturation of the population imbalance
around the Dirac point. To assess this interpretation, we show
the conduction population distribution 1. g1 o4 )/ |k +ed )/ rimk
in Fig. 3(e) instead of the population change An, ;. Here, we
set the field strength £y to 10 MV /m. Note that the summation
of the density in Fig. 3(a) and the density change in Fig. 3(d)
corresponds to the density in Fig. 3(e). As seen from Fig. 3(e),
most of the conduction population is transferred from the right
side of the Dirac cone to the left side. This indicates that
the population imbalance around the Dirac cone is already
closely maximized and saturated since no more population
can be transferred from the right side to the left side. Hence,
the population imbalance cannot significantly increase more
in the strong-field regime even if the field strength becomes
stronger. The saturation of the population imbalance further
causes the saturation of the intraband current, which is the
dominant component of the current in the nonequilibrium
steady state, resulting in the reduction of the conductivity in
the strong-field regime.

IV. COMPARISON WITH THERMODYNAMIC MODEL

Having established the microscopic understanding of the
THz-induced HHG in graphene based on the nonequilibrium
steady state, we then study the role of the nonequilibrium
nature of THz-induced electron dynamics in graphene by
comparing it with the previously developed thermodynamics
model [23]. In contrast to the present nonequilibrium model,
the thermodynamic model is based on the thermal Fermi-
Dirac distribution to describe laser-excited electronic systems
under the assumption that electrons are rapidly thermalized
and can be well treated as an equilibrium state with a high
electron temperature 7.

While equilibrium states of the thermodynamic model are
characterized by the electron temperature 7,, nonequilibrium
steady states of the model developed in this work are naturally
characterized by the applied field strength E, without relying
on the temperature. To fairly compare the nonequilibrium
model with the thermodynamic model, one needs to connect
the electron temperature 7, to the field strength Ey. For this
purpose, we introduce the field-induced excess energy of each
model. The total energy of the electronic system can be eval-

1.8 T T T T T
Nonequilibrium model (present work)
16 + Thermodynamic model = =
Thermodynamic model + Single-band approx. = = =
14

1.2

1
0.8
0.6
0.4
0.2

6(Ep) (normalized)

0 L L L L L L L
0 01 02 03 04 05 06 07 08
Excess energy (meV per atom)

FIG. 4. Computed effective conductivities are shown as a func-
tion of the excess energy. The results for the nonequilibrium steady
state (red solid), the thermodynamic model (green dashed), and the
thermodynamic model plus the single-band approximation (blue dot-
ted) are shown.

uated as

E(t) =

dkTr[Hy.. ]. 12
(271)2/ (Hiteay/npr(t)) (12)
Then, we define the field-induced excess energy of the
nonequilibrium steady state as

€xcess

AELE(Ep) = lim [Eo(t) = Ea(=0)].  (13)

where lim,_, o, Eyo(t) corresponds to the total energy in the
nonequilibrium steady state under the presence of the field,
Ey, while lim;_, o, Ey((—t) corresponds to that of the equilib-
rium state without the field. Hence, the field-induced excess
energy of the nonequilibrium model is defined as the energy
difference between the nonequilibrium steady state under an
external field Ey and the field-free equilibrium state.

We define the field-induced excess energy of the ther-
modynamic model as the energy difference between finite-
temperature states at 7, and 300 K, which is the initial
temperature of the present nonequilibrium model:

2
AEgess = Z W/dkéhk[fm(ébk,n,ﬂ)

b=v,c
— ™ (e, T, = 300 K, 0)]. (14)

Hence, AEIM  is a function of the electron temperature T,.
With Eq. (13) and Eq. (14), the applied field strength Ey
to the nonequilibrium steady state and the electron temper-
ature T, of the thermodynamic model are connected via the
excess energy. On the basis of this connection, we compare
the effective conductivity o (E() of the nonequilibrium steady
state and the linear conductivity of the thermodynamic model.
Figure 4 shows the conductivities of the nonequilibrium
steady state (red solid line) and the thermodynamic model
(green dashed line). The results of the nonequilibrium steady
state are computed by setting the chemical potential p to
170 meV and the electron temperature 7, in the relaxation
operator to 300 K. The linear conductivity of the thermody-
namic model is evaluated by applying a weak field so that the
induced current is described as a linear response. The results
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of the thermodynamic model are computed by changing the
electron temperature 7, but fixing the total population,

2 FD
Niot = ngv:cfdkf (epk, To, 1), (15)

to the value at 7, = 300 K and u = 170 meV. Hence, the
chemical potential changes with the electron temperature.

As seen from Fig. 4, the conductivity of the thermody-
namic model (green dashed line) first decreases with the
increase in the excess energy, and then it increases signif-
icantly once the excess energy reaches a moderately large
value. By contrast, the conductivity of the nonequilibrium
steady state (red solid line) decreases with the increase in
the excess energy in the whole investigated range. Note that
the conductivity of the nonequilibrium steady state in Fig. 4
is identical to that in Fig. 2 with the converted x axis.
The qualitative difference between the conductivities of the
nonequilibrium steady state and the thermodynamic model
originates from the temperature-induced interband excitation.
In the thermodynamic model, electrons are thermally excited
from the valence band to the conduction band, and the number
of effective carriers increases with the increase in the electron
temperature, resulting in the enhancement of the conductivity.
On the other hand, in the nonequilibrium steady state, the
field-induced interband excitation from the valence band to
the conduction band is significantly suppressed by the Pauli
blocking due to the presence of electrons in the conduction
band, preventing the spurious increase in the effective carrier
population and the enhancement of the conductivity.

In previous work [23], the microscopic mechanism of the
THz-induced high-order harmonic generation and the field-
induced transparency of graphene has been investigated with
the thermodynamic model. The authors reported that the ther-
modynamic model with a single-band approximation, where
only the conduction band is considered while the valence
band is frozen, well reproduces the experimental results.
On the other hand, it has been reported that the thermody-
namic model with the two-band approximation, where both
valence and conduction bands are considered, fails to re-
produce the experimental results [19]. Although one may
naturally expect that the two-band approximation should be
more accurate than the single-band approximation, the single-
band approximation apparently provides a better description
in the thermodynamic model. To understand the role of the
single-band approximation in the thermodynamic model, we
extend the above comparison between the thermodynamic
model and the nonequilibrium steady state by introducing the
single-band approximation into our analysis. For this purpose,
we phenomenologically freeze the population in the valence
band while we continue employing the Fermi-Dirac distribu-
tion for the conduction band by modifying the Fermi-Dirac
distribution as

M e, T, w) = e, T,, w)O(e) + O(—e),  (16)

where ®(¢) is the Heaviside step function. By replacing
the Fermi-Dirac distribution of Eq. (5) with the modified
distribution of Eq. (16), we repeat the conductivity analy-
sis with the thermodynamic model. The computed results
of the thermodynamic model with the single-band approx-

imation are shown as the blue dotted line in Fig. 4. One
sees that the conductivity of the thermodynamic model with
the single-band approximation fairly reproduces that of the
nonequilibrium steady state, showing the monotonic decrease
with the increase in the excess energy. By comparing the
single-band approximation with the two-band approximation
in the thermodynamic model, the increase of the conductivity
in the two-band approximation is significantly suppressed in
the single-band approximation. This indicates that the phe-
nomenological freezing of the valence band in the single-band
approximation suppresses the spurious interband excitation in
the thermodynamic model, resulting in a better description
of the conductivity. By contrast, the nonequilibrium steady
state with the fully dynamical model naturally describes the
suppression of the interband excitation, providing the correct
behaviors of the conductivity. Therefore, the nonequilibrium
steady-state picture can provide the correct description of
electron dynamics in graphene under THz fields by properly
taking into account both valence and conduction bands with-
out phenomenological freezing of the valence band.

V. SUMMARY

We developed the theoretical modeling of THz-induced
electron dynamics in graphene and the high-order harmonic
generation based on the quantum master equation with the re-
laxation time approximation. As a result of electron dynamics
calculation under THz fields, we found that the emitted har-
monics are enhanced by increasing chemical potential. This
theoretical finding is consistent with the recent experimental
observation, where the high-order harmonic generation is en-
hanced by applying the gate bias voltage [19].

To develop the microscopic insight into the THz-induced
electron dynamics in graphene, we introduced the nonequilib-
rium steady-state picture based on the quasistatic approxima-
tion. We confirmed that the THz-induced high-order harmonic
generation in graphene can be well described by the qua-
sistatic approximation, demonstrating that the nonequilibrium
steady state reflects the important aspect of the THz-induced
electron dynamics. The microscopic analysis has been per-
formed to study the role of the intraband current and the
population distribution in the Brillouin zone in the steady
state. We found that the effective conductivity of graphene is
significantly reduced in the strong-field regime due to the sat-
uration of the population imbalance in the Brillouin zone. The
reduction of the conductivity is consistent with the experimen-
tally observed THz-induced transparency of graphene [20-22]
and the previous theoretical investigation [27]. Furthermore,
we found that the reduction of the effective conductivity
causes the nonlinear current in the strong-field regime, result-
ing in high-order harmonic generation in graphene. Therefore,
the origin of the high-order harmonic generation can be under-
stood as the saturation of the population displacement in the
Brillouin zone in the strong-field regime from the viewpoint
of the nonequilibrium electron dynamics.

In a recent study, the THz-induced electron dynamics in
graphene have been modeled with the thermodynamic pic-
ture [23]. In contrast, we modeled the electron dynamics
with the nonequilibrium picture in this work. To elucidate
the role of the nonequilibrium nature of the dynamics, we
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further investigated both the thermodynamic picture and the
nonequilibrium picture. As a result, we found that the thermo-
dynamic model shows a spurious enhancement of the electric
conductivity under the irradiation of strong THz fields due
to the significant interband transitions from the valence to
conduction bands. By employing the single-band approxi-
mation introduced in the previous work [19], we artificially
froze the valence band and further computed the conductivity
with the thermodynamic model. Consistently with the previ-
ous work [19], the single-band approximation suppresses the
spurious interband excitation, and the computed conductivity
in the thermodynamic picture properly shows the decreasing
trend under the field irradiation, which is consistent with the
experimental observation of the field-induced transparency of
graphene [20-22]. By contrast to the thermodynamic model,
the nonequilibrium model developed in this work properly
describes the decreasing trend of the conductivity under the
field irradiation even without artificially freezing the valence
band. This indicates that the nonequilibrium nature of electron
dynamics is essential to describe the reduction of the conduc-
tivity under the field irradiation by preventing the spurious
interband excitation from the viewpoint of the comparison
with the thermodynamic model. The fully dynamical calcu-
lation based on the quantum master equation offers a natural
description of the nonequilibrium nature of field-induced phe-
nomena such as symmetry breaking and delayed responses.
The theoretical studies on these aspects of the nonequilibrium
nature of light-induced phenomena are already underway.
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APPENDIX: HIGH-ORDER HARMONIC
GENERATION IN THE QUASISTATIC PICTURE

Here, we describe a method to compute the high-order
harmonic generation in the quasistatic approximation. The
spectra of the high-order harmonic generation are computed
with the Fourier transform of the induced current with Eq. (9).
In the quasistatic approximation, we approximate the induced
current J(#) with the steady current Js(Ep) in Eq. (10) by
substituting the instantaneous electric field as

J(@) = Js(E(1)).

To evaluate the approximated current in Eq. (Al), we
first evaluate the steady current in Eq. (10) for several field
strengths. For practical evaluation, we compute the electron
dynamics under a static electric field, Ey = Epe,. Figure 5
shows the evaluated current under a static field as a function
of time. In this simulation, the chemical potential u is set
to 170 meV, and the field strength Ej is set to 8.5 MV/m.
The initial state at t = 0 is set to the thermal equilibrium
state. As seen from Fig. 5, the electric current is induced
at t = 0 due to the field application, and it reaches a value
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FIG. 5. Electric current in graphene under a static electric field,
Ey=8.5MV/m.

of the steady state, Js(Ep). Therefore, we confirm that the
electronic system evolved with Eq. (1) under a static electric
field reaches a nonequilibrium steady state after sufficiently
long time propagation.

We repeat the above simulations by changing the field
strength E and evaluating the values of the steady current. We
denote the kth set of the employed field strength and the eval-
uated current as Ej and Jy, respectively. The computed steady
current J; is shown as the red points in Fig. 6 as a function
of the applied field strength E;. To construct the continuous
function of the steady current Js(Ep) from the discrete data
points {Ey, Ji} in Fig. 6, we employ the following two-step
interpolation procedure.

As the first step to construct the continuous function,
we perform a polynomial regression with the following odd
function,

4

— 2 : 2j41) p2j+1
Jpo]ynomials(EO) = exo[( J )EO ,
Jj=0

(A2)

where /) are optimization parameters. These parameters are
optimized so that the polynomial function .J poiynomiats (Eo) well
reproduces the discrete points {Ey, J;} in Fig. 6.

As the second step, we refine the discrepancy between
the discrete points in Fig. 6 and the polynomial function

4 : :

Dynamical simulation e
3+ Interpolation
2

Jg (10%a.u)

10

Eq (MV/m)

FIG. 6. Steady current Js(Ey) as a function of field strength E,.
The results of the fully dynamical calculation are shown as the red
points, while the interpolated result is shown as the blue solid line.
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FIG. 7. Comparison of the THz-induced current computed with
the fully dynamical calculation and the quasistatic approximation.

J polynomiats (Eo ). Practically, we first define the residual error of
the above polynomial regression as

AJk = Jk - Jpolynomials (Ek)

Then, we apply the spline interpolation to the data points
{Ex, AJi}. Here, we denote the interpolated function as
AJ sptine (Ep). Finally, we approximate the continuous func-
tion, Js(Ep), as

JS (EO) ~ Jpolynomials(EO) + AJspline (EO)

By employing the approximated function, Eq. (A4), we
evaluate the THz-induced electric current with the quasistatic
approximation, Eq. (A1). Figure 7 shows the computed cur-
rent as a function of time with the quasistatic approximation.
For comparison, the result of the fully dynamical calcula-
tion is also shown. By applying the Fourier transform to the
obtained current in Fig. 7, we obtain the HHG spectra in
Fig. 1(b).
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