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A B S T R A C T   

Purpose: We propose a method that potentially improves the outcome of mutual-information-based automatic 
image registration by using the contrast enhancement filter (CEF). 
Methods: Seventy-six pairs of two-dimensional X-ray images and digitally reconstructed radiographs for 20 head 
and neck and nine lung cancer patients were analyzed retrospectively. Automatic image registration was per
formed using the mutual-information-based algorithm in VeriSuite®. Images were preprocessed using the CEF in 
VeriSuite®. The correction vector for translation and rotation error was calculated and manual image regis
tration was compared with automatic image registration, with and without CEF. In addition, the normalized 
mutual information (NMI) distribution between two-dimensional images was compared, with and without CEF. 
Results: In the correction vector comparison between manual and automatic image registration, the average 
differences in translation error were < 1 mm in most cases in the head and neck region. The average differences 
in rotation error were 0.71 and 0.16 degrees without and with CEF, respectively, in the head and neck region; 
they were 2.67 and 1.64 degrees, respectively, in the chest region. When used with oblique projection, the 
average rotation error was 0.39 degrees with CEF. CEF improved the NMI by 17.9 % in head and neck images and 
18.2 % in chest images. 
Conclusions: CEF preprocessing improved the NMI and registration accuracy of mutual-information-based 
automatic image registration on the medical images. The proposed method achieved accuracy equivalent to 
that achieved by experienced therapists and it will significantly contribute to the standardization of image 
registration quality.   

Introduction 

In current radiotherapy, image-guided radiotherapy (IGRT) has been 
applied to achieve high-accuracy treatment [1,2]. Image registration for 
patient alignment is performed by the therapist’s manual image regis
tration or by automatic image registration. In manual image registra
tion, the therapist specifies the translation (RL, AP, SI) and rotation 
(yaw, pitch, roll) error by visual evaluation, and uses the correction 
vector calculated from these errors to align the patient’s position. 
However, manual image registration is problematic in that the regis
tration accuracy differs depending on the therapist. Court et al., [3] 
reported an inter-observer uncertainty at the isocenter of 0.6–1.2 mm in 
translation error. Mechalakos et al., [4] reported an inter-observer 

uncertainty in translation error of 1.0 mm, and an uncertainty in rota
tion error of 1.0 degree in the sagittal view and 1.5 degrees in the cor
onal view. In contrast, automatic image registration enables image 
registration to be performed with constant accuracy and speed and 
without dependence on the operator’s skill [5,6]. The similarity 
required for automatic image registration is calculated using techniques 
such as cross-correlation, entropy, and mutual information (MI) [7–12]. 
In particular, MI is widely used in automatic image registration for 
medical images with different modalities, such as two-dimensional (2D) 
X-ray images and digitally reconstructed radiographs (DRRs) [13,14]. 
However, MI-based automatic image registration is not always suffi
ciently accurate and robust for clinical images. 

In proton beam therapy (PBT), the range error affects the accuracy of 
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the delivered dose distribution [15,16]. Therefore, daily treatment with 
PBT requires the positions of the anatomical structures at the time of 
planning to correspond exactly to those at the time of fraction delivery, 
with high accuracy. This is achieved by adopting IGRT—using 2D X-ray 
images and computed tomography (CT)—during daily PBT. Although 
either 2D X-ray, Cone beam CT (CBCT), or in-room CT images can be 
used for IGRT, in-room CT images are infrequently used because of their 
inefficiency in daily treatment, and CBCT is high radiation exposure to 
patients than 2D X-rays and may not be appropriate for daily IGRT [17]. 
2D3D image registration is comparable to CT in accuracy of matching in 
head region [18]. Especially in the treatment of pediatric patients, high- 
speed workflow and reduction of radiation exposure by automatic 2D3D 
image registration are effective. Automatic 2D3D image registration 
uses 2D X-ray images and DRRs reconstructed from CT are employed for 
daily image registration [19]. However, MI-based automatic image 
registration alone cannot achieve patient alignment with sufficient ac
curacy for PBT treatment and the result must be corrected by the ther
apist’s manual operation. Therefore, to improve the performance of 
automatic image registration, we examined a new procedure for MI- 
based automatic image registration using image preprocessing. The 
purpose of this study was to investigate the use of image preprocessing 
to achieve high accuracy and robustness using the existing MI-based 
automatic image registration algorithm. We evaluated the accuracy 
and robustness of image preprocessing by comparing the calculated 
correction vectors in automatic image registration with manual image 
registration. 

Methods 

Patient information and image dataset 

Twenty patients with head and neck cancer and nine with lung 
cancer who were treated with PBT were selected for this retrospective 
study. The effectiveness of the proposed method was evaluated using 76 
sets of images; each set comprised 2D X-ray images for the AP, LAT, and 
oblique dimensions, and the corresponding DRR image. The contents of 
the study, including the investigation procedure and the handling of 
patient information, were approved by the institutional review board 
(IRB) of the National Cancer Center Hospital East (IRB No. 2018–076). 

The 2D X-ray images used in this study were acquired using an A-277 
X-ray tube (Varian, USA) and the Paxscan 4030E flat panel detector 
(Varian, USA). The gantry angle used to obtain the 2D X-ray images was 
0 degrees for the AP images, 270 degrees for the LAT images, and 35 
degrees and 235 degrees for the oblique images. The source-to-isocenter 
distance was 1480 mm and the source-to-detector distance was 2150 
mm. The image size was 3200 × 2304 pixels, and the pixel size was 
0.127 mm. The scan parameters for the head and neck region were fixed 
at a voltage of 85 kVp, current of 400 mA, and scan time of 20 ms. The 
scan parameters for the lung region AP images were 120 kVp, 400 mA, 
and 16 ms; the parameters for the LAT images were 120 kVp, 400 mA, 
and 40 ms. However, the scan time was manually adjusted to optimize 
the effect of body thickness. The 2D X-ray images of the head and neck 
region were acquired at the isocenter location after correcting the po
sition by using the described marker on the thermoplastic mask. The 2D 
X-ray images of the lung region were acquired after correcting the po
sition by using the described marker on the skin surface. The 2D X-ray 

Fig. 1. Proposed 2D3D registration workflow with the contrast enhancement filter (CEF) for mutual-information-based automatic image registration.  
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images were captured daily during the treatment period and were 
captured again after correcting the position to check the final position of 
the patient before treatment. For nine lung cancer patients, either the AP 
and LAT combination or the diagonal image combination was selected at 
the therapist’s discretion for each treatment day. 

Image registration and Creating the DRR was performed the Ver
iSuite® (MedCom, Germany) [20]. This algorithm employs the ray 

casting method for generate the DRR and the 2D3D registration method 
for image registration [21]. The simulation CT was acquired 1–2 weeks 
before treatment, and the rescan CT was scheduled by physicians as 
necessary. The scan parameters were as follows: the tube voltage was 
120 kVp, the tube current used automatic exposure control with a 
standard deviation of 10 Hounsfield unit, the rotation speed was 0.5 
cycle/s, the slice thickness was 1 mm. Helical scan was used for the head 

Fig. 2. (Left) Original image obtained by the imaging system under the reference scan parameters. (Center) Original image after processing by the contrast 
enhancement filter (CEF) in VeriSuite®. (Right) Digitally reconstructed radiograph (DRR) created from the simulation CT using the ray casting method. 

Fig. 3. Procedure to create the normalized mutual information (NMI) map.  
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and neck, and non-helical scan with respiratory synchronization mode 
was used for the chest. 

Image preprocessing 

The discrepancy between the characteristics of DRRs and those of 2D 
X-ray images affects the registration accuracy and robustness of 

automatic image registration. These discrepancies are caused by 
anatomical changes in the medical images (i.e., the 2D X-ray images). 
This led us to consider preprocessing the 2D X-ray images to correct this 
discrepancy. Preprocessing suppresses the signal of the soft tissue that is 
affected by anatomical changes and emphasizes the contours of the bone 
structures. In this study, the contrast enhancement filter (CEF) in Ver
iSuite® was adopted for preprocessing (Fig. 1). This filter has two 
functions: the first is to suppresses image blur and sharpens contours, 
and the second is to reduce the background noise by subtracting the 
blurred original image from the original image itself. Fig. 2 shows the 
difference between the characteristics of the original images and those 
of the 2D X-ray images processed by CEF in the head and neck region and 
the chest region. This CEF preprocessing can be generalized using 
Gaussian filtering and contrast enhancement preprocessing in ImageJ 
[22]. Both methods (VeriSuite® and ImageJ) were evaluated in a pre
liminary study. While the NMI between the original image and the DRR 
was 0.57, in ImageJ, the NMI increased to 0.64 by subtracting the 
blurred image under the Gaussian filter processing from the original 
image. Furthermore, the NMI increased to 0.76 by adding the contrast 
enhancement processing. The NMI under the use of Medcom CEF was 
0.67. Their performance, with respect to the improvement of the char
acteristics, was found to be similar. 

Image registration accuracy and robustness 

The image registration accuracy was evaluated by comparing the 
correction vector in automatic image registration with manual image 
registration. The correction vector was constructed from the translation 
factor (LR, SI, AP) and rotation factor (yaw, pitch, roll). Automatic 
image registration was performed on the original images and pre
processed images with CEF to obtain the correction vector between 
these images and the DRRs. The algorithm used for automatic image 
registration was based on MI, as adopted in VeriSuite®: 

MI(X, Y ) =
∑

Y

∑

X
P(X, Y )log2 P(X,Y)/P(X)P(Y) (1)  

where P(X) and P(Y) represent the marginal probability functions for 
images X and Y (the 2D X-ray image and the DRR), respectively, and P(X, 
Y) represents their joint probability density function. Manual image 
registration was performed by a skilled therapist, and the position 
decided was checked by another therapist. The position error was ob
tained from the difference between the correction vectors of the auto
matic image registration and manual image registration as the ground 
truth. In addition, to evaluate the effectiveness of MI-based automatic 
image registration with CEF for clinical, manual operation was 
compared to CEF method. Manual image registration in clinical was 
performed by three therapists and one medical physicist, and position 
was decided as level of clinical uses. The robustness of image registra
tion was evaluated using the invalid ratio, which was calculated as the 
number of unsuccessful automatic image registration cases divided by 
the number of cases used for measurement. To measure the invalid ratio, 
automatic image registration was performed after correcting the patient 
position using only the alignment on the RL, SI, and AP. We defined an 
“unsuccessful case” as one in which the translation error > 2.5 mm, and 
the rotation error > 3 degrees in any one of the correction vectors. 

Normalized mutual information (NMI) distribution 

The normalized mutual information (NMI) was calculated to eval
uate the contribution of the proposed image preprocessing to the 
improvement of the image characteristics in MI-based automatic image 
registration. NMI is defined by the following equation: 

NMI(X,Y) = MI(X,Y)/
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
H(X)H(Y)

√
(2)  

where MI(X, Y) represents the MI between images X and Y (Eq. (1)), and 

Table 1 
NMI between DRRs and 2D X-ray images (AP and LAT) for the 20 head and neck 
cases. The “CEF” and “Original” columns show results with and without CEF 
preprocessing, respectively.  

Patient NMI for AP image NMI for LAT image 

Original CEF Original CEF 

1 0.711 0.793 0.632 0.703 
2 0.634 0.738 0.655 0.767 
3 0.499 0.619 0.512 0.656 
4 0.676 0.794 0.598 0.715 
5 0.649 0.764 0.647 0.750 
6 0.473 0.614 0.465 0.573 
7 0.665 0.801 0.649 0.780 
8 0.670 0.755 0.630 0.715 
9 0.672 0.787 0.671 0.783 
10 0.654 0.791 0.591 0.708 
11 0.668 0.821 0.638 0.716 
12 0.500 0.683 0.511 0.632 
13 0.673 0.808 0.608 0.710 
14 0.602 0.702 0.523 0.585 
15 0.524 0.695 0.489 0.657 
16 0.547 0.698 0.546 0.680 
17 0.660 0.783 0.671 0.751 
18 0.678 0.799 0.655 0.742 
19 0.678 0.798 0.621 0.705 
20 0.715 0.818 0.617 0.711 
Average 0.63 0.75 0.60 0.70 
SD 0.07 0.06 0.06 0.06  

Table 2 
NMI between DRRs and 2D X-ray images (AP and LAT) for the nine chest cases.  

Patient NMI for AP image NMI for LAT image 

Original CEF Original CEF 

1 0.639 0.778 0.583 0.701 
2 0.621 0.761 0.580 0.710 
3 0.694 0.777 0.646 0.690 
4 0.693 0.775 0.612 0.715 
5 0.444 0.616 0.427 0.567 
6 0.475 0.618 0.470 0.568 
7 0.700 0.796 0.690 0.795 
8 0.692 0.784 0.705 0.728 
9 0.612 0.784 0.581 0.748 
Average 0.62 0.74 0.59 0.69 
SD 0.09 0.07 0.09 0.07  

Table 3 
NMI between DRRs and oblique 2D X-ray images for the nine chest cases.  

Patient NMI for right oblique NMI for left oblique  

Original CEF Original CEF 

1 0.699 0.775 0.712 0.778 
2 0.639 0.762 0.641 0.749 
3 0.606 0.759 0.593 0.759 
4 0.695 0.775 0.673 0.765 
5 0.560 0.646 0.563 0.632 
6 0.571 0.643 0.599 0.649 
7 0.666 0.793 0.679 0.797 
8 0.689 0.762 0.683 0.764 
9 0.666 0.778 0.652 0.785 
Average 0.64 0.74 0.64 0.74 
SD 0.05 0.05 0.05 0.06  
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H(X) and H(Y) represent the marginal entropies of images X and Y, 
respectively. In-house software (developed using Python) was used to 
calculate the NMI. The original 2D X-ray images and the preprocessed 
image were imported into the software, and each image was converted 
to a mathematical array. Each array was converted to a one-dimensional 
(1D) mathematical array for calculation, and the NMI value was ob
tained from these arrays. 

To visualize the manner in which the MI-based algorithm performs 
image registration using anatomical structures, we presented the dis
tribution of the NMI between a DRR and a 2D X-ray image in the form of 
an NMI map. This map was created using in-house software (developed 
using Python). Fig. 3 shows the procedure for creating the NMI map. The 
details of the procedure are as follows:  

1. The 2D X-ray image and DRR are imported into the system and each 
image is converted to a 2D mathematical array.  

2. One pixel is selected in the 2D X-ray image array, the corresponding 
pixel is selected in the DRR array, and 20 × 20 pixels are extracted 
around both of the selected pixels, as 2D arrays.  

3. Each extracted 2D array is converted to a 1D mathematical array and 
the NMI is calculated using these arrays; in addition, new 2D arrays is 
created using these NMI values.  

4. The data format of this array is converted to image format and the 
NMI map—with the NMI distribution expressed using color 
information—is displayed. 

The NMI map that was created was displayed using the same window 
parameters to compare several conditions of the 2D X-ray images. 

Manual and automatic image registration 

To evaluate the effectiveness of MI-based automatic image registra
tion with CEF, manual operation was compared to CEF method. Manual 
image registration was performed by three therapists and one medical 
physicist, and position was decided as level of clinical uses. 

Results 

Evaluation of NMI 

Table 1 presents the NMI between the 2D X-ray image (with and 
without CEF) and the DRR for the 20 head and neck cancer patients. The 
average NMI values of the AP and LAT images without CEF were 0.63 ±
0.07 (mean ± SD) and 0.60 ± 0.06, respectively, and the average NMI 

Fig. 4. NMI map for the AP and LAT images in the head and neck region. (a) Original LAT image. (b) Original AP image. (c) LAT image after preprocessing by 
contrast enhancement filter (CEF). (d) AP image after preprocessing by CEF. Color scale: white shows regions with NMI = 1.0 (maximum) and black shows regions 
with NMI < 0.6. The CEF-preprocessed images improved NMI in the location of sella turcica, occipital bone, mandible, cervical spine, and orbital bone. 
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values of the AP and LAT images with CEF were 0.75 ± 0.06 and 0.70 ±
0.06, respectively. The use of CEF increased the NMI by 0.12 for the AP 
image and 0.10 for the LAT image. Table 2 presents the NMI between the 
2D X-ray image (with and without CEF) and the DRR for the nine lung 
cancer patients. The average NMI values of the AP and LAT images 
without CEF were 0.62 ± 0.09 and 0.59 ± 0.09, respectively, and the 
average NMI values of the AP and LAT images with CEF were 0.74 ±
0.07 and 0.69 ± 0.07, respectively. The use of CEF increased the NMI by 
0.12 for the AP image and 0.10 for the LAT image. The average NMI 
values of the right oblique and left oblique images without CEF were 
0.64 ± 0.05 and 0.64 ± 0.05, respectively, and the average NMI values 
of the right oblique and left oblique images with CEF were 0.74 ± 0.05 
and 0.74 ± 0.06, respectively (Table 3). The oblique image increased the 
average NMI by 0.02–0.05 and the SD by 0.04, compared with the AP 
and LAT images. The use of CEF increased the NMI by 0.1 for both left 
oblique and right oblique images. 

NMI mapping was conducted for the head and neck images (AP and 
LAT) with and without CEF, the chest image (AP and LAT) with and 
without CEF, and the chest oblique image (right oblique and left obli
que) with and without CEF. In the images of the head and neck region 
without CEF, high-NMI signals were observed for the mandible, fore
head, nose tip, and occipital bone. However, regions with NMI < 0.6 
were widely observed in the brain parenchyma. In contrast, in the im
ages with CEF, although low-NMI signals were locally observed in the 
clivus, high-NMI signals were observed in most other regions (Fig. 4). 
These results indicate that the NMI distribution between the 2D X-ray 
images and the DRRs can be improved by using CEF preprocessing. In 
the images (AP and LAT) of the chest without CEF, areas with NMI < 0.6 
were observed in the lung regions and shoulder overlapping regions, and 
the NMI values for the bone structure around the shoulder were low. In 
contrast, in the images with CEF, the NMI values of the bone structure 
increased in most regions but were suppressed in the low-NMI region in 
the shoulder. In the oblique images of the chest region without CEF, 
high-intensity (compared with the AP and LAT images) NMI signals 
were observed for the clavicle, rib, and sternum. In addition, in the 
oblique images with CEF, locally low-intensity NMI signals in the 

Fig. 5. NMI map for the AP, LAT, and oblique images in the chest region of patient no. 1. (a) Original AP image. (b) Original LAT image. (c) CEF-preprocessed AP 
image. (d) CEF-preprocessed LAT image. (e) Original right oblique image. (f) Original left oblique image. (g) CEF-preprocessed right oblique image. (h) CEF- 
preprocessed left oblique image. The corresponding NMI values are 0.639 (a), 0.583 (b), 0.778 (c), 0.701 (d), 0.699 (e), 0.712 (f), 0.775 (g), and 0.778 (h). The 
oblique images suppressed local low-NMI regions resulting from shoulder overlap, and the CEF-preprocessed images increased NMI in the thoracic spine, clavicle, 
and ribs. 

Table 4 
Difference of translation error and rotation error between automatic and manual 
image registration on the 20 head and neck cancer patients.   

Original CEF 

Mean ± SD (Max) Mean ± SD (Max) 

R-L (mm) 0.81 ± 1.03 (3.95) 0.39 ± 0.33 (1.21) 
S-I (mm) 0.65 ± 0.67 (2.24) 0.33 ± 0.25 (0.82) 
A-P (mm) 0.48 ± 0.79 (3.10) 0.32 ± 0.25 (0.86) 
Yaw (deg.) 0.70 ± 1.36 (5.58) 0.14 ± 0.13 (0.62) 
Pitch (deg.) 0.59 ± 1.16 (4.86) 0.13 ± 0.08 (0.28) 
Roll (deg.) 0.84 ± 1.10 (3.10) 0.21 ± 0.16 (0.6)  

Table 5 
Difference of translation error and rotation error between automatic and manual 
image registration, using AP, LAT, and oblique images, on the nine lung cancer 
cases.   

Original (AP/ 
LAT) 

CEF (AP/LAT) Original 
(Oblique) 

CEF (Oblique) 

Mean ± SD 
(Max) 

Mean ± SD 
(Max) 

Mean ± SD 
(Max) 

Mean ± SD 
(Max) 

R-L 
(mm) 

1.12 ± 1.90 
(3.63) 

0.21 ± 0.37 
(0.97) 

0.14 ± 0.14 
(0.50) 

0.87 ± 0.71 
(2.32) 

S-I (mm) 1.67 ± 2.51 
(7.09) 

0.60 ± 1.34 
(3.93) 

0.64 ± 1.80 
(5.37) 

0.64 ± 0.71 
(1.83) 

A-P 
(mm) 

1.01 ± 1.50 
(3.18) 

0.53 ± 0.94 
(2.66) 

0.19 ± 0.37 
(1.09) 

0.42 ± 0.59 
(1.40) 

Yaw 
(deg.) 

2.58 ± 6.81 
(20.01) 

0.39 ± 0.58 
(1.67) 

1.10 ± 2.76 
(8.03) 

0.28 ± 0.39 
(0.81) 

Pitch 
(deg.) 

3.70 ± 4.14 
(11.87) 

3.60 ± 7.41 
(22.46) 

1.60 ± 4.08 
(12.25) 

0.35 ± 0.47 
(1.06) 

Roll 
(deg.) 

1.73 ± 2.07 
(2.83) 

0.94 ± 1.54 
(3.22) 

0.80 ± 0.99 
(1.76) 

0.53 ± 0.63 
(1.16)  
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shoulder region were removed and the NMI distribution was improved 
across the entire image (Fig. 5). 

Translation and rotation error 

The correction vectors in the automatic image registration for the 
original images and the CEF-preprocessed images were compared with 
the manual image registration (the ground truth). Tables 4 and 5 list the 
correction vector differences for translation (LR, SI, AP) and rotation 
(yaw, pitch, and roll) for the 40 head and neck images, 18 chest AP and 
LAT images, and 18 chest oblique images. In the average difference from 
manual image registration for the original image for the head and neck 
regions, the rotation errors (in degrees) were 0.70 ± 1.36 (mean ± SD) 
for yaw rotation, 0.59 ± 1.16 for pitch rotation, and 0.84 ± 1.10 for roll 
rotation. In contrast, in the CEF-preprocessed images, the rotation errors 
were 0.14 ± 0.13 for yaw rotation, 0.13 ± 0.08 for pitch rotation, and 
0.21 ± 0.16 for roll rotation. CEF preprocessing reduced the yaw, pitch, 
and roll rotation errors, compared with the original images; in partic
ular, for roll rotation, CEF preprocessing reduced the average error by 
0.63 degrees and the SD by 0.94 degrees. In the average difference from 
manual image registration for the original image for the chest AP and 
LAT, the rotation errors were 2.58 ± 6.81 for yaw rotation, 3.70 ± 4.14 
for pitch rotation, and 1.73 ± 2.07 for roll rotation. In contrast, in the 
CEF-preprocessed images, the rotation errors were 0.39 ± 0.58 for yaw 
rotation, 3.60 ± 7.41 for pitch rotation, and 0.94 ± 1.54 for roll rota
tion. The accuracy of the automatic image registration of the original 

chest AP and LAT images tended to be inadequate, particularly for roll 
rotation, compared with that of the head and neck images. Although CEF 
preprocessing reduced the yaw and roll rotation errors, it did not 
contribute to improving the accuracy of pitch rotation. In the average 
difference from manual image registration for the CEF-preprocessed 
image of the chest oblique, the rotation errors were 0.28 ± 0.39 for 
yaw rotation, 0.35 ± 0.47 for pitch rotation, and 0.53 ± 0.63 for roll 
rotation. For the chest region, the rotation errors of the automatic image 
registration with CEF-preprocessed oblique images were the most 
reduced, compared with the orthogonal images with and without CEF 
and oblique images without CEF. Figs. 6 and 7 shows the average dif
ference of translation and rotation error between manual and automatic 
image registration with and without CEF. In head and neck region, CEF 
preprocessing reduced the outlier cases and improved the rotation error. 
In chest region, the combination of Oblique image and CEF most 
reduced translation and rotation error. 

In MI-based automatic image registration for the head and neck, the 
invalid ratio was 15 % without CEF and 0 % with CEF; for the chest 
region using AP and LAT images, it was 67 % without CEF and 22 % with 
CEF; for the chest region using oblique images, it was 11 % without CEF 
and 0 % with CEF. The number of invalid cases was small in head and 
neck images and chest oblique images. In contrast, the MI-based algo
rithm was ineffective for more than half of the chest AP and LAT images. 
The CEF method reduced the invalid ratio in all cases. 

Fig. 6. The average difference of translation (upper) and rotation (lower) error 
between manual and automatic image registration with and without contrast 
enhancement filter (CEF), in head and neck region. The x-axis represents pa
tient No., and the y-axis represents the difference of the correction vector. * 
Unsuccessful case (the translation error > 2.5 mm, and the rotation error > 3 
degrees in any one of the correction vectors.). 

Fig. 7. The average difference of translation (upper) and rotation (lower) error 
between manual and automatic image registration with and without contrast 
enhancement filter (CEF), in chest region. The x-axis represents patient No., and 
the y-axis represents the difference of the correction vector. * unsuccessful case 
(the translation error > 2.5 mm, and the rotation error > 3 degrees in any one 
of the correction vectors.). 

K. Hirotaki et al.                                                                                                                                                                                                                                



Physica Medica 101 (2022) 95–103

102

Manual operation vs automatic image registration with CEF 

Comparison between manual operation by four therapists and MI- 
based automatic registration with CEF was shown Fig. 8. In the 
manual result, the accuracy of image registration varies depending on 
years of experience. and the difference with the grand trues was smaller 
for therapists with more years of experience. CEF method showed the 
best correction values in adjusting for rotation error. 

Discussion 

This study sought to improve the registration accuracy and robust
ness of MI-based automatic image registration using image preprocess
ing. The MI-based algorithm is widely used in clinical applications for 
image registration of DRRs and 2D X-ray images, and high registration 
accuracy has been confirmed in the phantom study. In this study, we 
performed image preprocessing to improve the automatic image regis
tration accuracy and robustness for 2D3D image registration with an MI- 
based algorithm using clinical images, and evaluated the effectiveness of 
the proposed procedure and workflow. Image preprocessing was per
formed using blurring subtraction and contrast enhancement. The sim
ilarity between DRRs and 2D X-ray images was evaluated using NMI. 
Ranjbar et al., [23] assessed the similarity between fluoroscopic images 
and DRRs created from 4DCT using NMI. In that report, the NMI be
tween 2D X-ray images and DRRs was shown to be 0.45–0.85 in five lung 
patients. Our analysis of nine lung patients showed that the NMI was 
0.43–0.71 in orthogonal images; these findings are in agreement with 
[23]. Using the proposed CEF method, the NMI was 0.57–0.80 in lung 
patients. The proposed CEF method increased the NMI by 0.1 in all 
cases, demonstrating a large improvement compared with previous 
studies. In addition, we performed NMI mapping to visualize the 

influence of image characteristics on MI-based automatic image regis
tration. In the NMI map of the head and neck images without CEF, a 
region with NMI < 0.6 was observed in the brain parenchyma. In 
contrast, with CEF images, the NMI was increased in almost all regions. 
Although a local region with NMI < 0.6 was found in the clivus, it had no 
influence on the registration accuracy. In the chest region images 
without CEF, a region with NMI < 0.6 was observed over a wide area of 
the image. In oblique images with CEF, a large increase in NMI was 
observed. This was achieved by avoiding bone overlap by using oblique 
projection. As a result, oblique images with CEF achieved the best NMI 
distribution and the smallest difference in rotation errors (pitch and roll 
rotation), compared with manual operation. Hence, our CEF method 
with oblique images may be an effective strategy in MI-based automatic 
image registration for the chest region. These contributions to accuracy 
are attributed to the effect of CEF preprocessing on reducing the dif
ference in image characteristics between DRRs and 2D X-ray images. 

Williams et al., [12] investigated the accuracy and robustness of 
registration for human skulls using several image registration algo
rithms. They reported a translation error of 2.34 mm and a rotation error 
of 0.63 degrees when using MI-based automatic image registration. 
Gendrin et al., [24] reported that, in an evaluation of registration ac
curacy for a porcine cadaver head, MI-based algorithms were more ac
curate than other intensity-based methods, with a target registration 
error between a DRR and a 2D X-ray image of 2.20 ± 0.92 mm (mean ±
SD). This result is not sufficiently accurate for daily patient alignment in 
PBT. Using the proposed method, in the head and neck region, the dif
ference between automatic image registration with CEF and manual 
image registration was < 1 mm for the translation error, and yaw = 0.14, 
pitch = 0.13, and roll = 0.21 for the rotation error. The proposed 
method is inferior to the current method in some translation and rota
tion errors for patients 3 and 13. Patient No. 3 is a patient with a ther
apeutic device implanted in the brain. This device is distinctive, it 
improved mutual information and registration accuracy in the non-CEF 
images. Patient No. 13 is a patient with nasal cancer. Isocenter located 
nasal center and lacks the occipital information from registration image. 
It affected the accuracy of proposed method. However, inferior status 
was small and either translation or rotation error was superior to the 
non-filter method. In a comparison of the required time to perform 
image registration, the mean time for manual image registration (in the 
head and neck region) by four therapists was 2 min, whereas the time for 
automatic image registration with CEF was 15 s. The proposed CEF 
procedure facilitates high accuracy and fast treatment, and is dramati
cally effective in the head and neck region. In the comparison with 3D 
imaging, although in-room CT or CBCT is used to observe changes in 
body thickness and tumor size for adaptive treatment, these variations 
can be also detected using 2D X-ray images [25]. In addition, this 
method is faster than In-room CT process, and it is lower exposure to 
patients than CBCT process. Especially, the proposed procedure will be 
useful for suppressing intra-fractional motion and reducing exposure 
dose in pediatric treatment. 

This study had several limitations. The algorithms for automatic 
image registration and CEF preprocessing used in the study were pro
vided by VeriSuite®. The registration algorithm is based on MI and uses 
CEF to subtract the Gaussian blurring image from the original and 
emphasize the image contrast. Although the function of CEF can be 
reproduced in ImageJ, part of the MI-based automatic image registration 
algorithm was not revealed, and it may not be possible to reproduce the 
results of this study when using different automatic image registration 
systems. In addition, although manual image registration by two expe
rienced therapists were used as the ground truth, the results may vary 
according to the therapists’ policy. 

Conclusions 

We investigated image preprocessing to improve the accuracy and 
robustness of MI-based automatic image registration. The proposed 

Fig. 8. The comparison of integrated translation error (upper) and rotation 
error (lower) error in the head region. * T: Therapist (the number represented 
their experience) †CEF: Automatic image registration with Contrast enhance
ment filter ‡NF: Automatic image registration without filter processing. 
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method using CEF achieved high accuracy and robustness, compared 
with the conventional method without CEF. The use of CEF pre
processing increased the NMI for the head and neck region and the chest 
region. Furthermore, we visualized the difference in image character
istics between DRRs and 2D X-ray images by performing NMI mapping. 
NMI mapping revealed the effectiveness of CEF preprocessing on the 
performance of MI-based automatic image registration and the effec
tiveness of oblique projection on automatic image registration in the 
chest region. The incorporation of CEF preprocessing in the automatic 
image registration procedure is expected to improve the accuracy and 
robustness of MI-based automatic image registration on clinical images. 
It may also be useful for reducing the time necessary for image regis
tration and the differences between therapists with respect to registra
tion accuracy. 
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