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a b s t r a c t

The redundancy inherent to the human body is a central problem that must be solved by the
brain when acquiring new motor skills. The problem of redundancy becomes particularly critical
when learning a new motor policy from scratch in a novel environment and task (i.e., de novo
learning). It has been proposed that motor variability could be leveraged to explore and identify
task-potent motor commands, and recent results indicated a possible role of motor exploration in
error-based motor learning, including in de novo learning tasks. However, the precise computational
mechanisms underlying this role remain poorly understood. A new controller in a de novo motor task
can potentially be learned by first using motor exploration to learn a sensitivity derivative, which
can transform observed task errors into motor corrections, enabling the error-based learning of the
controller. Although this approach has been discussed, the computational properties of exploration
and how this mechanism can explain recent reports of motor exploration in error-based de-novo
learning have not been thoroughly examined. Here, we used this approach to simulate the tasks used
in several recent studies of human motor learning tasks in which motor exploration was observed,
and replicating their main results. Analyses of the proposed learning mechanism using equations and
simulations suggested that exploring the entire motor command space leads to the training of an
efficient sensitivity derivative, enabling rapid learning of the controller, in visuomotor adaptation and
de novo tasks. The successful replication of previous experimental results elucidated the role of motor
exploration in motor learning.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Coordinating the various degrees of freedom of the human
ody during accurate and precise movements is a fundamen-
al problem of motor learning (Bernstein, 1967). Because of the
edundancy of the degrees of freedom of the human body, move-
ents can be realized with an infinite number of coordination
trategies, of which only one is selected and executed by the
otor system. This redundancy is present at many levels of

he motor system, ranging from joints (Dal’Bello & Izawa, 2021;
osier et al., 2005; Singh et al., 2016) to muscles (Berger et al.,
013; Hirashima & Oya, 2016) and to the neurons that are re-
ponsible for movement (Hennig et al., 2018; Sadtler et al., 2014).
owever, the mechanism by which this redundancy is solved
emains largely unknown.

The problem of redundancy is at the core of the acquisition
f new motor skills, a process also known as de novo learning
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(Krakauer et al., 2019; Sternad, 2018; Telgen et al., 2014). Acquir-
ing a new motor skill requires the learning of a new control policy
from scratch, reflecting learned information about the arbitrary
relationships between redundant motor actions and outcomes in
a novel task. Brain–machine interfaces (BMIs) also require the
learning of the redundant relationship between neural activation
and outcomes, which is not fixed due to the high variability
in neural recording conditions within- and across-days (Sussillo
et al., 2016). It has been suggested that the basal ganglia play
an important role in this process (Gutierrez-Garralda et al., 2013;
Krakauer et al., 2019).

To solve the problem of redundancy inherent to the human
body, it has been proposed that, over the course of learning,
motor variability is shaped along with the learned structure of
the task, so that variability is reduced in the degrees of freedom
that affect task outcome (Sternad, 2018). Motor exploration is
used, potentially through a reinforcement learning process (Sut-
ton & Barto, 2018), to identify a ‘‘solution manifold’’ in the motor
command space, with a progressive increase of usage of more re-
warding motor commands (Haith & Krakauer, 2013). In line with
this hypothesis, there is evidence that motor variability is cor-

related with reward-based learning (Dhawale et al., 2017; Izawa

rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

https://doi.org/10.1016/j.neunet.2022.06.011
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2022.06.011&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:lucasrdb@hebbs.emp.tsukuba.ac.jp
mailto:izawa@emp.tsukuba.ac.jp
https://doi.org/10.1016/j.neunet.2022.06.011
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


L.R. Dal’Bello and J. Izawa Neural Networks 153 (2022) 349–372

&
s
i
g

a
a
t
d
2
p
a
s
(
e
o
w
o
2
2

v
b
a
e
d
p
e
n
a
1
c
(

w
r
d
v
c
i
p
p
c
m
b
D
o
l

2

2

m
f
f
I
t
e
t
i
a
(
t
o

Shadmehr, 2011; Pekny et al., 2015; Wu et al., 2014), with
tudies in songbirds suggesting that variability-induced learning
s regulated by circuits that are homologous to cortico-basal
anglia circuits in mammals (Ölveczky et al., 2005).
It was recently reported that motor variability might also play

role in error-based motor adaptation, with variability exhibiting
correlation with the amount of adaptation in error-based motor
asks in humans (Wu et al., 2014), including in task-irrelevant
imensions, when redundancy was accounted for (Singh et al.,
016). Recently, when the reward-based and error-based com-
onents of adaptation to single-trial perturbations were dissoci-
ted, variability in both task-relevant and task-irrelevant dimen-
ions was shown to be correlated with error-based adaptation
Dal’Bello & Izawa, 2021). However, the precise role of motor
xploration in error-based motor adaptation in a redundant bi-
logical system is still unclear. Thus, the aim of the current study
as to provide a computational account of recently reported roles
f exploration during error-based motor adaptation (Singh et al.,
016) and de novo learning (Berger et al., 2013; Dal’Bello & Izawa,
021).
Computationally, to train a motor policy by the experienced

isual error, the error in the task domain should be transformed
ack to the motor commands space, a process thought to rely on
n internal model, also called a sensitivity derivative (Abdelghani
t al., 2008; Hadjiosif et al., 2021). In this framework, a sensitivity
erivative is initially unknown in a de novo task, and its learning,
ossibly via an exploration-driven process, can then drive the
rror-based learning of a new controller for the task. Although the
otion of having to learn a sensitivity derivative before learning
controller has been discussed in the past (Jordan & Rumelhart,
992; Pierella et al., 2019), it has not been investigated in the
ontext of a possible role of motor exploration on motor learning
Dal’Bello & Izawa, 2021; Singh et al., 2016; Wu et al., 2014).

In the current study, we examined this possible mechanism
ith simulations of artificial neural networks learning various
edundant motor control problems. In our simulations, sensitivity
erivatives represented by internal models were trained under
arious amounts of exploration in different subspaces of motor
ommands and used to modify control policies represented by
nverse models, with the goal of observing the effects of ex-
loration on learning of both sensitivity derivatives and control
olicies. By controlling the exploration variability and the initial
onditions of the many simulations, we aimed to replicate the
ain results of several papers on motor learning in which we
elieve motor exploration played a key role (Berger et al., 2013;
al’Bello & Izawa, 2021; Singh et al., 2016), to test the validity
f the proposed mechanism as a major component of de novo
earning.

. Materials and methods

.1. General framework

We employed a similar framework in all of our simulations,
aking parallels between the regions in the brain responsible

or motor execution and adaptation (Fig. 1) and the specific
unctions involved in our proposed learning mechanism (Fig. 2).
n our framework, intended movements, possibly represented in
he posterior parietal cortex (PPC) (Desmurget et al., 2009) as
xtrinsic parameters, are transformed into muscle-centered, in-
rinsic parameters in the motor cortex (Kalaska, 2009) through an
nternal inverse model, and then are delivered to the spinal cord
nd finally to the muscles that execute the intended movement
Fig. 1). This feedforward pathway going from neurons in the mo-
or cortex to the final movement can be called the environment
f the motor task to be controlled, and due to the redundancy
350
Fig. 1. Schematic of brain regions possibly involved in the proposed error-
based learning mechanism. The PPC region generates signals encoding desired
outcomes y∗ , in extrinsic coordinates, which are relayed to M1 (red). M1 encodes
the desired outcomes into a motor command signal u in intrinsic coordinates
(in our framework, the motor command u is generated from the inverse model
g acting on the desired outcome y∗). The motor commands are then relayed to
muscles via the spinal cord, generating movements and realizing a task outcome
y (green) (in our framework, generated from the environment f and the motor
command u). The task outcome is observed through vision and represented by
an outcome signal in V1 (green), in extrinsic coordinates, which is relayed to
the cerebellum (greed/red), which, along with an efferent copy of the motor
command signal, calculates an error signal that is relayed back to M1 via the
thalamus to update the generated motor commands to reduce the error (in
our framework, the task error e is transformed via a motor correction ∆u, in
intrinsic coordinates, by the sensitivity derivative ∂e

∂u ). PPC: posterior parietal
cortex. M1: primary motor cortex. V1: primary visual cortex. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

of this environment (with multiple neurons being responsible
for the task outcome), the motor command space in the motor
cortex contains dimensions which are task-potent (patterns of
neural activations which directly affect the task outcome) and
task-null (neural activations which do not affect the task out-
come). After the movement execution, the task outcome is then
visualized and represented as extrinsic parameters at the visual
cortex. This visual information is combined with a predicted
task outcome calculated by an internal forward model at the
cerebellum (Shadmehr et al., 2010) to form a sensory prediction
error signal (Tanaka et al., 2020), in extrinsic parameters. This
error signal is finally transformed into an intrinsic parameter
signal through a sensitivity derivative (Abdelghani et al., 2008),
possibly in the cerebello–thalamo–cortical pathway (Aumann,
2002), and relayed back to the motor cortex (Tseng et al., 2007),
where it alters the synaptic connectivity of the cortex (the inverse
model), resulting in a reduction in task error when the same
intended movement is executed again. During skilled motor con-
trol (Fig. 2A), this sensitivity derivative can appropriately correct
eventual task errors, with proper modifications of task-potent
patterns of neural activations in the motor cortex.
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Fig. 2. Schematic of the elements involved in the generation and update of
otor commands at different stages of de novo learning. An inverse model
transforms desired outcome signals y∗ (left, blue) into motor commands
(middle, red), which are further transformed in a task outcome signal y

right, green) by the environment f . If the task outcome contains an error,
this error is transformed into a motor update signal ∆u by the sensitivity
erivative ∂e

∂u , which is then used to update the inverse model to reduce
the error. Colors represent brain areas in which the encoding of the neural
information possibly occurs, in Fig. 1. (A) During baseline control, the inverse
model generates appropriate motor commands which will realize the correct
task outcome. Eventual errors are transformed into appropriate motor update
signals by the sensitivity derivative. (B) When the task environment suffers
a large change (from f to f ′), the relationship between motor commands
nd task outcomes changes (motor commands which previously affected the
ask outcome now do not change the outcome), and the (untrained) inverse
odel can no longer generate appropriate motor commands. Although there
re error signals available, the (untrained) sensitivity derivative generates motor
orrections which were appropriate for the previous environment, but are
ot appropriate for the current environment, and the update of the inverse
odel cannot proceed. (C) By using motor variability to explore different motor
ommands, the motor system can update its sensitivity derivative to generate
otor corrections appropriate for the current environment, enabling the update
f the inverse model. (D) Using the updated sensitivity derivative, the inverse
odel can be updated (from g to g ′) to generate motor commands with no task
rror once again. The exact solution the inverse model converges to depends on
he accuracy of the sensitivity derivative. Numbers (1) through (7) in panels
and C correspond to the processes described in the General Framework

ubsection of the Materials and Methods. (For interpretation of the references
o color in this figure legend, the reader is referred to the web version of this
rticle.)
351
When the environment of the motor task exhibits a large
change (Fig. 2B), the subspace of task-potent motor commands
changes, and the motor commands generated by the inverse
model no longer lead to the desired outcomes in the task. More-
over, because the relationship between motor commands and
task outcomes has changed, the inverse relationship, between
task errors and motor corrections, also changes, and the sensi-
tivity derivative does not generate appropriate motor correction
signals that drive the update of the inverse model. We believe
that this large change in the environment, requiring the re-
learning of the sensitivity derivative, is equivalent to a de novo
learning task, which has been characterized by the need to learn
from scratch a new controller for the task, instead of adapting an
existing controller (Krakauer et al., 2019). Tasks which could be
described as de novo learning tasks include arm reaching under
mirror reversal (Hadjiosif et al., 2021; Telgen et al., 2014; Yang
et al., 2021), novel body–machine interfaces such as arbitrary
mappings between hand gestures/movements and cursor direc-
tion on a screen (Dal’Bello & Izawa, 2021; Liu et al., 2011; Mosier
et al., 2005; Rohde et al., 2019; Thorp et al., 2017), virtual ‘‘surg-
eries’’ that change the force direction (in a virtual environment)
of muscles in the arm (Barradas et al., 2020; Berger et al., 2013),
and BMIs (Sadtler et al., 2014).

Under our proposed framework, error-based, and not reward-
based, de novo learning is involved in the learning of both sen-
sitivity derivatives (in our simulations, represented by forward
models) and inverse models. Specifically, the brain explores the
motor command space by adding noise to motor commands
generated by the inverse model, then observes the outcomes of
the noisy motor commands in the (new) task space, and uses
the motor command-task outcome pairs as training samples for
the sensitivity derivative. Once the sensitivity derivative is suffi-
ciently trained (Fig. 2C), it can be used by the brain to generate
motor correction signals appropriate for the new environment,
and when used to train the inverse model, it leads to a decrease
in errors, enabling skilled motor control once more (Fig. 2D).

An important assumption in our framework is that the motor
correction signal generated by the sensitivity derivative is limited
in its amplitude. We found that the addition of this feature
enabled the framework to reproduce the effects of task-null ex-
ploration on motor learning. Such a limitation could possibly be
implemented in the brain through biological constraints regard-
ing how the motor correction signal is encoded. The stimulation
of neural correlates of errors in the motor cortices have been
shown to increase the error in the direction opposite to their
preferred direction, suggesting that these neurons encode motor
corrections (Inoue et al., 2016). Because of the encoding of such
motor correction via the firing rate of a population of neurons
(Dayan & Abbott, 2001), it is reasonable to assume that biophys-
ical constraints of neurons, such as a limit in firing rates, can
limit the amplitude of an encoded motor correction signal. In our
simulations, we implemented such limitations by setting a fixed
maximum norm for the motor correction vector generated by the
sensitivity derivative, so that if the norm of the vector exceeded
this maximum norm, its norm would be rescaled to the maximum
norm.

The general flow of how inverse and forward models are
trained in our simulations is represented in Fig. 3. In general, one
epoch of training of the inverse model in our simulations (Fig. 3A)
consisted of: (1) forward pass with a desired outcome through
the inverse model; (2) forward pass with the motor command
generated by the inverse model through both the environment
and the forward model; (3) perturbation of the task outcome, if a
perturbation is added; (4) computation of the error between the
task outcome and the desired outcome; (5) backward pass with

the error through the forward model, back to its inputs (similar to
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Fig. 3. Flowchart of the update of the inverse and forward models in our
simulations. (A) Update of the inverse model. (B) Update of the forward model.
Colors represent brain areas in which the encoding of the neural information
possibly occurs, in Figs. 1 and 2. Numbers (1) through (7) in panel A and (1)
through (5) in panel B correspond to the processes described in the General
Framework subsection of the Materials and Methods. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)

what was proposed in Jordan & Rumelhart, 1992); (6) limitation
of the norm of the motor correction signal; and (7) backward pass
with the computed motor correction through the inverse model,
modifying its weights with a fixed learning rate. These numbered
steps are shown in Fig. 2 as well.

One epoch of training of the forward model (Fig. 3B) starts
imilarly, but has a few key differences: (1) a forward pass with
he desired outcome through the inverse model; (2) exploration
oise is added to the motor command generated by the inverse
odel; (3) forward pass with the motor command through both

he environment and the forward model; (4) computation of the
rediction error between the task outcome and the predicted task
utcome; (5) backward pass with the prediction error through the
orward model, modifying its weights.

We first show the equations and simulation results of a simple
earning system to demonstrate the features of our framework,
uch as how the amount and shape of the motor noise influences
he training of the forward model and its subsequent usage as a
ensitivity derivative. Specifically, we show how the exploration
f the entire motor command space is necessary if the goal
s to train a sensitivity derivative that will generate an ideal
otor correction. We then report the results from simulations
f the tasks reported in three recent studies, whose results we
elieve are well explained by our proposed framework. Finally,
e discuss the implications of our framework in these simulated
asks and in other de novo learning motor tasks.

.2. Simple linear motor task

.2.1. Definition of the task
Let us define an n dimensional task space and an m dimen-

ional motor command space, with m > n. We define an en-
ironment function f , which maps motor commands onto task
utcomes, and is represented by an environment matrix M , n×m,
uch that:

(u) = f (u) = Mu, (1)
352
here y is the n dimensional task outcome vector and u is the
m dimensional motor command vector. We assume motor com-
mands are generated from an n dimensional desired outcome, y∗.
The desired outcome is mapped to a motor command u with the
inverse model function g , represented by a m × n matrix W , via
the equation:

u
(
y∗
)

= g
(
y∗
)

= Wy∗. (2)

The inverse model matrix W can be updated by applying
gradient descent on the cost function Je =

1
2e

T e, where e is the
error vector e = y∗

− y between the desired and the actual
outcome. The gradient of the cost function Je in relation to W can
be written as:

∇W Je =

(
∂ Je
∂W

)T

=

(
1
2

∂eT e
∂W

)T

=

(
eT

∂e
∂W

)T

=
∂eT

∂W
e

= −
∂yT

∂W
(
y∗

− y
)

= −
∂uT

∂W
∂yT

∂u
(
y∗

− y
)

=

−
∂y∗TW T

∂W
∂yT

∂u
(
y∗

− y
)

= −
∂yT

∂u
(
y∗

− y
)
y∗T

= −
∂yT

∂u
ey∗T ,

(3)

so the update of the inverse model depends on the terms ∂yT
∂u e,

hich we call a motor correction term, also written as ∆u, and
∗T , which is the input of the inverse model. The term ∂yT

∂u of
he motor correction is called a sensitivity derivative (Abdelghani
t al., 2008), which relates changes in the task space to the
equired changes in the motor command space. From Eq. (1), we
now that the true sensitivity derivative is ∂yT

∂u = MT , meaning
hat the ideal motor correction is ∆u∗

= MT e and the ideal
radient of the cost function is ∇W Je = −MT ey∗T , which is a
×n matrix with the same shape as the inverse model W . Given

he gradient of the cost function above, the update of the inverse
odel in one epoch of training can be written as:

(k + 1) = W (k) − ηi∇W Je = W (k) + ηiMT ey∗T , (4)

with ηi being a scalar learning rate for the inverse model.
We assume that the learning system does not have direct

knowledge of the true sensitivity derivative ∂yT
∂u . Instead, the

learning system possesses a forward model, through which an
estimate ŷ of the task outcome given a motor command u can
be obtained, via the n × m matrix M̂:

(u) = M̂u. (5)

By backpropagating the task errors through the forward model,
we can define that ∂ ŷT

∂u = M̂T
, and we can use this estimate of

the sensitivity derivative instead of the true sensitivity derivative
∂yT
∂u to update the inverse model W and reduce the cost function.
The sufficient condition for the estimated sensitivity derivative
to reduce the cost function is that eTMM̂T e > 0, that is, the motor
correction ∆u = M̂T e =

∂ ŷT
∂u e has an angle of less than 90◦ with

the ideal motor correction ∆u∗
= MT e =

∂yT
∂u e (Lillicrap et al.,

2016). This condition ensures that the update follows roughly the
same direction of the gradient of the cost, therefore reducing the
cost and the error of the inverse model.

We can decompose the motor correction into components
belonging to the task-potent and task-null subspaces of motor
commands. Decomposing the ideal motor correction ∆u∗, we
obtain:

∆u∗
= ∆u∗

TP + ∆u∗

TN = M†M∆u∗
+
(
I − M†M

)
∆u∗, (6)

where ∆u∗
TP is the task-potent component, ∆u∗

TN is the task-
null component, and M† is the right pseudoinverse of M , M†

=
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T (MMT )−1
. We can show that, for the ideal motor correction

∆u∗
= MT e, the task-null component of the correction will be:

∆u∗

TN =
(
I − M†M

)
MT e =

(
MT

− MT (MMT )−1 MMT
)
e

=
(
MT

− MT ) e = 0,
(7)

that is, using the true sensitivity derivative in the motor correc-
tion will yield a motor correction fully in the task-potent space of
motor commands. This can be further shown by calculating the
task-potent component of the ideal motor correction:

∆u∗

TP = M†MMT e = MT (MMT )−1 MMT e = MT e, (8)

that is, the task-potent component of the ideal motor correction
is the entire ideal motor correction. All changes on the inverse
model using this ideal motor correction will affect the inverse
model’s projection in the task-potent space, with no change in
its projection in the task-null space.

Likewise, the motor correction ∆u = M̂T e generated using the
sensitivity derivative derived from the forward model can also
be decomposed into its task-potent and task-null components,
∆uTP = M†MM̂T e and ∆uTN =

(
I − M†M

)
M̂T e, respectively.

Because the ideal motor correction ∆u∗ is entirely in the task-
potent space, and points in the direction of the gradient of the
cost function, the task-potent component of the motor correc-
tion ∆u will affect changes in the inverse model W that will
cause changes in the task outcome, and in the cost. Its task-null
component, however, is perpendicular to the gradient, so that its
changes in the inverse model will not affect either the inverse
model’s task outcomes or cost.

2.2.2. Effect of amount of exploration noise on the training of the
forward model

The forward model matrix M̂ can be updated using gradient
escent on the cost function Jê =

1
2 ê

T ê, where ê is the prediction
error vector ê = y − ŷ between the actual and predicted out-
comes. The gradient of the cost function Jê in relation to M̂ can
e written as:

M̂ Jê =

(
∂ Jê
∂M̂

)T

=

(
1
2

∂ êT ê
∂M̂

)T

=

(
êT

∂ ê
∂M̂

)T

=
∂ êT

∂M̂
ê

= −
∂ ŷT

∂M̂
(y − ŷ) =

−
∂uT M̂T

∂M̂
(y − ŷ) = − (y − ŷ) uT . (9)

Given a scalar learning rate ηf, the update of the forward
model can be written as:

M̂ (k + 1) = M̂ (k) − ηf∇M̂ Jê = M̂ (k) + ηf (y (k) − ŷ (k)) u (k)T

= M̂ (k) + ηfê (k) u (k)T .

(10)

We can observe from Eq. (10) that the update of the forward
odel depends on the prediction error ê (k) and on the motor
ommand u (k). Thus, the update of the forward model depends
n the active exploration of motor commands, generating task
utcomes and sensory prediction errors, which are then used for
earning. Sensory prediction errors are thought to be essential in
he adaptation of internal models (Shadmehr et al., 2010), and
t has been observed that the amount of motor exploration is
orrelated with motor learning (Dal’Bello & Izawa, 2021; Singh
t al., 2016; Wu et al., 2014).
Instead of using a single motor command to update the for-

ard model at every learning epoch, we can update it by using
ultiple samples of motor commands at every epoch. Defining
 w
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as the number of motor command samples to use in the up-
ate, we can obtain the following equation for the update of the
orward model:

M̂ (k + 1) = M̂ (k) +
ηf

S

S∑
s=1

ês (k) us (k)T

= M̂ (k) +
ηf

S

S∑
s=1

(
Mus (k) − M̂ (k) us (k)

)
us (k)T

= M̂ (k)

(
I −

ηf

S

S∑
s=1

Z s (k)

)
+ M

ηf

S

S∑
s=1

Z s (k) ,

(11)

here ês (k) is the sth prediction error, us (k) is the sth motor
command at learning epoch k, and Z s (k) = us (k) us (k)T . As-
uming that the motor commands us (k) used in the update of
he forward model are independent and identically distributed
andom variables, having the same probability distribution at
very sample s and every epoch k, the term 1

S

∑S
s=1 Z s (k) can be

replaced by the expected value E [Z s (k)] = Z when the number
of samples S is large. On this basis, Eq. (11) can be rewritten as:

M̂ (k + 1) = M̂ (k)
(
I − ηfZ

)
+ ηfMZ . (12)

2.2.3. Effect of a limitation of the neural representation of the motor
correction on the update of the inverse model

We will now analyze the effects of our assumption that, be-
cause of the encoding of the motor correction in the brain via
the firing rate of a population of neurons (Dayan & Abbott, 2001;
Inoue et al., 2016), biophysical constraints of neurons, such as a
limit in their firing rates, can limit the amplitude of an encoded
motor correction signal. Given our motor correction ∆u = M̂T e
generated using the sensitivity derivative derived from the for-
ward model, this sensitivity derivative can be decomposed on its
task-potent and task-null components using Eq. (6), resulting in:

∆u = ∆uTP + ∆uTN = M†MM̂T e +
(
I − M†M

)
M̂T e. (13)

Let us now assume that there exists a maximum allowed norm
a for the motor correction, so that when this norm is surpassed,
we change the gain of the motor correction without changing its
direction. The neural representation of the norm-limited motor
correction will then be:
∆̂u =

a
∥∆u∥

∆u, (14)

here the gain a
∥∆u∥

limits the norm of the motor correction to
a, and the norm of the motor correction signal is given by:

∥∆u∥ =

√
∥∆uTP∥

2
+ ∥∆uTN∥

2. (15)

he update of the inverse model in this epoch can be written as:

W (k) = W (k + 1) − W (k) = ηW ∆̂uy∗T . (16)

his limitation of the norm of the motor correction shares similar-
ties with the technique of gradient clipping proposed in the field
f machine learning (Pascanu et al., 2013). However, gradient
lipping is traditionally applied to a single neural network, and
ith the objective of avoiding the problem of exploding gradients,
hile in our approach we apply it to the backpropagation of the
otor correction between two neural networks, from the forward
odel to the inverse model, with the objective of mimicking
iophysical constraints of the encoding of the motor correction
ignal in the human brain.
The task-potent component of the update of the inverse model,

hich will effectively reduce the cost of the inverse model, will
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e:
W TP (k) = ηW ∆̂uTPy∗T

= ηW
a

∥∆u∥
∆uTPy∗T

=
a√

∥∆uTP∥
2
+ ∥∆uTN∥

2
∆uTPy∗T .

(17)

or the update to cause a larger change in the inverse model,
educing the cost more in a single epoch, it is desirable for the
ask-potent component of the update (parallel to the gradient of
he cost function) to be as large as possible. For fixed ∆uTP and
∗T in Eq. (17), this can be achieved by minimizing ∥∆uTN∥

2, that
is, minimizing the norm of the task-null component of the motor
correction.

2.2.4. Updating the forward model with an exploration of the en-
tire motor command space guarantees efficient motor correction of
inverse model

We can minimize the norm of the task-null component of
the motor correction ∆u by updating the forward model, using
Eq. (12). Let us compare the motor correction ∆u before and after
the update of the forward model, supposing a fixed inverse model
error e, and using the fact that the matrix Z is symmetrical:

u (k + 1) = M̂ (k + 1)T e =
(
M̂ (k)

(
I − ηfZ

))T
e + ηf

(
MZ

)T
e

=
(
I − ηfZ

)
M̂ (k)T e + ηfZMT e =

(
I − ηfZ

)
∆u (k) + ηfZ∆u∗,

(18)

so the updated motor correction ∆u (k + 1) can be defined in
terms of the previous motor correction ∆u (k) and the ideal
motor correction ∆u∗.

Eq. (18) can be rewritten in terms of the initial motor correc-
tion at k = 0 as:

∆u (k) =
(
I − ηfZ

)k
∆u (0) +

k∑
j=1

(
I − ηfZ

)j−1
ηfZ∆u∗. (19)

he second term in the equation, multiplying the ideal motor
orrection ∆u∗, can be rewritten in a form other than a sum.
efining Sk =

∑k
j=1

(
I − ηfZ

)j−1
ηfZ , we have:

k −
(
I − ηfZ

)
Sk =

k∑
j=1

(
I − ηfZ

)j−1
ηfZ −

k∑
j=1

(
I − ηfZ

)j
fZ = ηfZ −

(
I − ηfZ

)k
ηfZ = ηfZSk

(20)

nd then, assuming that Z has an inverse:

k = I − Z
−1 (

I − ηfZ
)k

Z, (21)

o that Eq. (19) can be rewritten as:

u (k) =
(
I − ηfZ

)k
∆u (0) +

(
I − Z

−1 (
I − ηfZ

)k
Z
)

∆u∗. (22)

he convergence of the term
(
I − ηfZ

)k
, with k going to infinity,

n Eq. (22) will depend on the eigenvalues of the matrix I − ηfZ
de Boor, 2002), which can be represented by λ

(
I − ηfZ

)
= 1 −

ηfλ
(
Z
)
. Given a symmetric matrix A, Ak converges to a finite

matrix, with k going to infinity, if |λ (A)| ≤ 1 (that is, all of its
eigenvalues have a norm that is less than or equal to 1), with
convergence to the zero matrix if |λ (A)| < 1 (that is, all of its
eigenvalues have a norm strictly less than 1).

Let us now assume that the motor commands us (k) used in
the update of the forward model are defined as:

us (k) = b + ns (k) , ns (k) ∼ N (0, Σ) , (23)

where b is a constant bias vector and ns (k) is exploration noise,
represented by a random variable from a multivariate normal
distribution with a mean vector of 0 and covariance matrix Σ .
iven this,
354
Z = E
[
us (k) us (k)T

]
= Σ + bbT . (24)

Being composed of a sum of two positive semidefinite matrices, Z
s then also positive semidefinite, with the property that λ

(
Z
)

≥

0, that is, all of its eigenvalues are nonnegative. If we have any
λ
(
Z
)

= 0, this would give us at least one λ
(
I − ηfZ

)
= 1,

which would make
(
I − ηfZ

)k
fail to converge to the zero matrix

(in this case, the inverse of Z does not exist, so we cannot
rewrite Eq. (19) as Eq. (22)). A way to guarantee that λ

(
Z
)

> 0
(i.e., all eigenvalues of Z are strictly positive) is to use motor
commands us (k) that span the entire motor command space,
which is equivalent to making the matrix Z full rank. This can
be achieved by having non-zero variance in all dimensions of the
motor command covariance matrix Σ , even with the presence
of correlation in the noise (although not a full correlation, be-
cause this would constrain the dimensions in which the noise is
generated). This enables us to write the following:

The entire motor command space explored ⇒ Z full rank

⇒ λ
(
Z
)

> 0 ⇒

lim
k→∞

(
I − ηfZ

)k
= 0, 0 < ηf < min

(
2

λ
(
Z
)) , (25)

here 0 is a m×m matrix of zeros. Thus, when the entire motor
ommand space is explored, Z will be full rank, and we will have:

lim
k→∞

∆u (k) = 0∆u (0) +

(
I − Z

−1
0Z
)

∆u∗
= ∆u∗, (26)

hat is, the forward model motor correction converges to the
deal motor correction ∆u∗, thus guaranteeing that its use in the
pdate of the inverse model W will reduce its error and cost.
If the condition of Eq. (25), that Z is full rank, is not met,

then Z will have at least one eigenvalue equal to 0, which would
make I − ηfZ have at least one eigenvalue equal to 1. Although
this is sufficient to make

(
I − ηfZ

)k
converge to a finite ma-

trix with k going to infinity (de Boor, 2002), this finite matrix
ill not be the zero matrix, so the convergence of ∆u (k) to
he ideal motor correction ∆u∗ is not guaranteed. In particular,
ithout any exploration of motor commands, such as when the
otor commands us (k) are just composed of the bias vector b in
q. (23), then the rank of Z = bbT will be 1, which is far from the

requirement that Z is full rank (assuming the dimension of the
motor command space m > 1). Therefore, motor exploration is
essential in the training of a forward model, with exploration of
the entire motor command space guaranteeing that the sensitiv-
ity derivative obtained from the forward model will lead to the
decrease of the error and cost of the inverse model.

2.2.5. Not exploring the task-null space of motor commands during
update of the forward model does not guarantee efficient motor
correction of inverse model

In the previous section, we showed that exploring the entire
motor command space leads to the forward model’s motor cor-
rection converging to the ideal motor correction, which does not
have a task-null component (Eq. (7)). However, when the task-
null space of motor commands is not explored, the convergence
of the task-null component of the motor correction to zero is not
guaranteed. This derives directly from the equation of the update
of the forward model, Eq. (11). Assuming a constant inverse
model error e, we have:

∆u (k + 1) = M̂ (k + 1)T e = M̂ (k)T e +
ηf

S

(
S∑

s=1

ês (k) us (k)T
)T

e

= ∆u (k) +
ηf

S

S∑
us (k) ês (k)T e. (27)
s=1
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Assuming that the task-null space is not explored, we can
write us (k) = MTa (k), with a (k) being a n × 1 vector; that is,
s (k) is a linear combination of the motor commands belonging
o the task-potent space. Given this, and using Eq. (13), the
ask-null component of the updated motor correction will be:

uTN (k + 1) =
(
I − M†M

)
∆u (k + 1) =

(
I − M†M

)
∆u (k)

+
ηf

S

(
I − M†M

) S∑
s=1

us (k) ês (k)T e

= ∆uTN (k) +
ηf

S

S∑
s=1

(
MT

− MT ) a (k) ês (k)T e

= ∆uTN (k) ,

(28)

that is, motor commands with a zero task-null component will
never generate a change in the task-null component of ∆u. When
the task-null space is not explored, the only way ∆u will have
no task-null component is if ∆uTN (0) = 0 (i.e., if the initial
otor correction ∆u (0) already has a zero task-null compo-
ent). From this, we can conclude that exploration of task-null
otor commands is necessary if the aim is to reduce the task-
ull component of the motor correction to zero, enabling an
fficient update of the inverse model when the norm of the motor
orrection is limited.

.2.6. Predictions of our framework
In summary, our theoretical analysis enabled us to make the

ollowing predictions regarding the usage of motor exploration
n learning:

• Prediction 1: the task-potent component of the motor cor-
rection signal used to train the inverse model is responsible
for reducing the test cost of the inverse model;

• Prediction 2: when the motor correction used to train the
inverse model has a limited norm, a motor correction with
a smaller task-null component leads to a faster decrease of
the cost of the inverse model;

• Prediction 3: a larger motor command used in the training
of a forward model/sensitivity derivative will lead to a larger
update, and to a faster decrease of its test cost;

• Prediction 4: when the entire motor command space is ex-
plored in the training of a forward model/sensitivity deriva-
tive, its motor correction will converge to the ideal motor
correction, with no task-null component;

• Prediction 5: if the task-null space of motor commands
is not explored during the training of a forward model/
sensitivity derivative, the task-null component of its motor
correction will never be minimized.

.2.7. Simulations
To show some of the features of the learning system discussed

bove, we performed simulations of a simple linear motor task in
hich the motor command space is 2D and the task outcome (and
esired outcome) space is 1D. The environment used in the task
Eq. (1)) was arbitrarily defined as M =

[
0 1

]
, so that the Y axis

of the motor commands space is the task-potent space and the X
axis is the task-null space of motor commands. We decided to
focus our simulations on the problem of de novo learning, where
the initial sensitivity derivative, here represented by the forward
model, does not generate an adequate motor correction that will
lead to a decrease in the inverse model’s test cost. To that end,
we initialized our forward model at M̂ =

[
1 0

]
(Eq. (5)), that

is, belonging only to the task-null space. The inverse model is
initialized at W =

[
0.5 0

]T (Eq. (2)). From a de novo learning
point of view, the original task-potent space is the X axis (the new
355
task-null space), and the original task-null space is the Y axis (the
new task-potent space).

We conducted two separate simulations of this simple linear
motor task. In simulation 1 (Fig. 4), we aimed to verify some
of the predictions regarding the training of the forward model
shown earlier in our equations by analyzing the training of the
forward model under different combinations of exploration noise
in the task-potent and task-null spaces. In a single epoch, we
first updated the forward model using a batch of S = 10 motor
command samples, with a learning rate ηf = 0.05, and the
inverse model was then updated, in the same epoch, with the
desired outcome of 0.5 and with a learning rate ηi = 0.2.
Motor commands used in the training of the forward model were
obtained from a bivariate normal distribution with a mean vector
of 0 and variances in the X and Y axes (task-null and task-potent
axes respectively) being combinations among the possible values
of 0, 0.1, 0.2, 0.3, and 0.4. The networks were trained for a total
of 250 epochs.

In simulation 2 (Fig. 5), we aimed to replicate a scenario which
is possibly closer to how motor commands would be generated
in a biological system. Again, both forward and inverse models
are updated in the same epoch. However, in this simulation
the update of the forward model occurs with a single motor
command. The motor command used in the update of the forward
model is obtained by first using the state of the inverse model at
the current epoch, with the desired outcome of 0.5, to generate a
motor command, to which noise is added, with the same possible
combinations of variances in the task-potent and task-null spaces
as in the previous simulations. This noisy motor command is then
used in the update of the forward model. In addition, the noisy
motor command is also used in the training of the inverse model:
this motor command is used to obtain the (noisy) task outcome,
which is used to calculate the task error used in the update.
The learning rates were the same as those used in the previous
simulations.

Each simulation is repeated 20 times for each combination
of exploration noise variance in the task-potent and task-null
spaces. We calculate the average forward and inverse models
across the 20 repetitions for every epoch of the simulation, to an-
alyze the models’ convergence. At every epoch we also calculated
the test cost of the forward model, using 50 motor commands
obtained from a bivariate normal distribution with a mean vector
of 0 and a variance of 0.5 on both axes. The test cost of the inverse
model was calculated with the four desired outcomes of −0.75,
−0.25, 0.25 and 0.75.

2.3. Arm reaching task

2.3.1. Task summary
To examine whether the recently reported effect of explo-

ration on motor learning might be explained by our theoretical
outcomes, we simulated three different motor tasks under our
proposed framework. The first motor task we simulated was the
typical visuomotor learning task described by Singh et al. (2016)
(Fig. 6). In this experiment, participants made reaching move-
ments with their arms to eight targets shown on a screen, with
their real arms obscured. During the experiment, the participants’
arm joint angles were recorded (Fig. 6A), as well as their hand
position. The experiment was divided into three phases (Fig. 6B):
a preadaptation (or baseline) phase, in which the positions of the
real hand and the cursor shown on the screen were the same; a
visuomotor adaptation phase, in which a visuomotor rotation of
45◦ was applied to the cursor; and a postadaptation (washout)
phase, in which the visuomotor rotation was removed. During
the task, the main performance metric measured was the error
at peak velocity (Fig. 6C), defined as the perpendicular distance
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Fig. 4. Diagrams and results from simulation 1 of a simple linear motor task. In this simulation, both forward and inverse models are trained simultaneously, with
the forward model trained with a batch of 10 random motor commands at every epoch. (A) Update of the forward model through learning, in all combinations of
variances of exploration noise in the task-potent and task-null spaces. Blue lines represent contours of the test cost across the possible configurations of the forward
model, with the red cross indicating the configuration with minimum cost (the ideal forward model, equal to the task environment). Empty circles represent the
initial configuration of the forward model, and empty squares represent the final configuration. Gray circles represent intermediary configurations at every 50 epochs.
(B) The test cost of the forward models across all combinations of exploration noise in the task-potent and task-null spaces. (C) Update of the inverse model through
learning, in all combinations of variances of exploration noise in the task-potent and task-null spaces (note that exploration noise was only used during the training
of the forward model). The inverse model configuration with minimum cost is the red line. (D) Test cost of the inverse models across all combinations of exploration
noise in the task-potent and task-null spaces. In all panels, lines are averages across 20 repetitions of each simulation. (For interpretation of the references to color

in this figure legend, the reader is referred to the web version of this article.)
of the hand trajectory at peak velocity from the straight line
connecting the start position and the target position. Learning
during the visuomotor adaptation phase was analyzed for each
participant by fitting an exponential function to the error at peak
velocity, with the equation:

f (n) = ae−βn, (29)

here n is the trial number, a is a scaling parameter and β is an
stimated learning rate, with a larger estimated learning rate cor-
esponding to a faster decrease in errors during the visuomotor
daptation phase.
356
The authors analyzed the motor variability in both task and
null spaces of movements during the baseline phase. Variability
in the task space was measured with the standard deviation of
the error at peak velocity, defined above, across all trials in the
baseline phase. For the null space, the authors first defined a 2D
forward kinematics model in which the hand position y in the 2D
task space is defined by the arm joint angles and segment lengths,
and was calculated as follows:

y =

[
l1 cos θ1 + l2 cos θ2 + l3 cos θ3 + l4 cos θ4

]
, (30)
l1 sin θ1 + l2 sin θ2 + l3 sin θ3 + l4 sin θ4



L.R. Dal’Bello and J. Izawa Neural Networks 153 (2022) 349–372

a
m
c
t
a

Fig. 5. Diagrams and results from simulation 2 of a simple linear motor task. In this simulation, both forward and inverse models are trained simultaneously.
However, the forward model is updated with a single motor command, originating from the inverse model, with the addition of exploration noise. The noisy motor
command is then also used to update the inverse model. (A) Update of the forward model through learning, in all combinations of variances of exploration noise
in the task-potent and task-null spaces. Blue lines represent contours of the test cost across the possible configurations of the forward model, with the red cross
indicating the configuration with minimum cost (the ideal forward model, equal to the task environment). Empty circles represent the initial configuration of the
forward model, and empty squares represent the final configuration. Gray circles represent intermediary configurations at every 50 epochs. (B) Test cost of the forward
models across all combinations of exploration noise in the task-potent and task-null spaces. (C) Update of the inverse model through learning, in all combinations
of variances of exploration noise in the task-potent and task-null spaces (in this simulation, the motor command with added exploration noise was also used in
the training of the inverse model). The inverse model configuration with minimum cost is the red line. (D) Test cost of the inverse models across all combinations
of exploration noise in the task-potent and task-null spaces. In all panels, lines are averages across 20 repetitions of each simulation. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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where the pairs (lj, θj) correspond to the jth arm segment length
nd joint angle, respectively, among the four defined arm seg-
ents/joints. The authors then calculated the mean arm joint
onfiguration at peak velocity, θ

V
, across all baseline trials, and

hen computed the Jacobian matrix of the forward kinematics
t the peak velocity, J

(
θ
V
)
. Variability in the null space was

then calculated by averaging the projection of the deviation from
357
mean joint configuration, ∆θk = θ
V

− θV
k (where θV

k is the joint
configuration at trial k), on the null space of the Jacobian J

(
θ
V
)

cross all baseline trials.
The main finding of Singh et al.’s (2016) experiment was

hat participants’ null space variability exhibited a significant
orrelation with the estimated learning rate during the visuo-
otor adaptation (Fig. 6D), whereas task space variability did
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Fig. 6. Diagrams and results of the task from Singh et al. (2016). (A) The task involved participants making reaching movements to targets shown on a screen
while their real arms were hidden. In addition to the position of their hands, the joint angles of the arm were also measured, from which they could estimate
task-potent and task-null variabilities at the instant of peak hand velocity in the beginning of the experiment (during the preadaptation stage). (B) Their experiment
was divided into three stages: preadaptation, where the positions of the hand and the displayed cursor are the same; visuomotor adaptation, where a constant
visuomotor rotation is added to the cursor; and postadaptation, where again the positions of the hand and the cursor are the same. (C) Data from the eight-trial
running mean error at peak velocity across participants. (D–E) Correlation between the estimated learning rate, estimated by fitting an exponential curve to the
error at peak velocity during the visuomotor adaptation for each participant, and the variability in the null (D) and task (E) spaces. (F) Mean inverse model error
across our simulations of the motor task The graph shows the mean error throughout the training of the inverse model across 20 simulations, where motor noise
with a variance of 0.2 in both task-potent and task-null spaces was used to update the forward model before the training of the inverse model. The shaded region
corresponds to one standard error. (G–H) Correlation between the estimated learning rate (estimated with the same method as the original experiment) and the
variances in the task-null (G) and task-potent (H) spaces used in the motor noise during the training of the forward models in our simulations. Each point is an
average across 20 simulations. Panels C, D, E were reproduced from Singh et al. (2016). TP: task-potent. TN: task-null.
not (Fig. 6E). Similar results were obtained in further force field
adaptation experiments, with both dominant and nondominant
hands (although the correlation in the nondominant hand was
not significant). In addition, it was found that the nondominant
hand, which had significantly less null space variability than the
dominant hand (but not significantly different task space vari-
ability), also exhibited a significantly slower estimated learning
rate during force field adaptation. The authors concluded that
variability in the null space aided learning, and suggested that
such null space variability may reflect active control and not only
the biomechanical characteristics of the arm.

A possible interpretation of Singh et al.’s (2016) findings, un-
er our framework, is that the participants’ differences in null
pace variability reflected their certainty about which motor com-
ands were task-null, with more certainty resulting in more
358
variability allocated to the null space (Sternad, 2018). This cer-
tainty is also reflected in their internal sensitivity derivatives’
task-null component, with more certainty leading to a smaller
component in the task-null space. From our Prediction 2, we
hypothesized that participants who were more certain about
task-null movements (and with more task-null variability) would
exhibit a sensitivity derivative with a smaller task-null compo-
nent, and therefore the adaptation of their inverse models during
the visuomotor adaptation phase would be faster, resulting in
a positive correlation between the estimated learning rate and
task-null variability.

2.3.2. Simulations
To simulate this task using our framework, we first defined

the nonlinear mapping between joint angles and hand position
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n a 2D plane. To achieve this, we used Eq. (30), with lengths
f 0.1, 0.33, 0.27, and 0.08 for the four segments in our arm
odel. Next, we initialized an inverse model as an artificial neural
etwork with three layers: an initial linear layer, whose input
s the 2D desired outcome vector; a middle layer with eight
eural units, using the hyperbolic tangent function, enabling the
onlinearities of the task environment to be captured; and a
inear output layer, outputting the 4D motor command (in this
ase, the joint angles used in the arm) that will generate the
utcome. To mimic the results of the experiment, in which task
erformance was good at the baseline phase (Fig. 6C), we initially
rained the inverse model for 1000 epochs, with a learning rate of
.1, with a 3 × 3 grid of desired outcomes, with the values among
−0.2, 0.0, +0.2) in both the X and Y axes of the task space. The
ensitivity derivative used in this initial training was the actual
acobian of the environment calculated at the motor command
enerated by the inverse model. To evaluate the training of the
nverse model, we defined a single target at ytgt =

[
0 0.3

]T and
an initial arm position at y0 =

[
0 0.1

]T , and analyzed the error
as the perpendicular distance between the outcome of the inverse
model using the target ytgt as an input (the desired outcome)
and the straight line connecting the starting position y0 and the
target position ytgt, in a similar way to that performed in Singh
et al.’s (2016) experiment. For simplicity, we evaluated this error
at a single target, and our simulation did not include the arm
dynamics to generate the entire arm trajectory during reaching,
so we evaluated the error at the endpoint instead. The last 250
epochs of such initial training of the inverse model are shown in
the baseline/preadaptation phase in Fig. 6F.

Next, we initialized our forward models to be used as sensi-
tivity derivatives during the update of the inverse model at the
visuomotor adaptation and postadaptation phases of training. We
decided to represent the forward models of our simulations in a
linearized way, approximating the Jacobian of the environment
at the motor command θ obtained by inputting the previously
defined target ytgt in the inverse model trained for 1000 epochs.
To initialize the forward models, we first calculated the Jacobian
of the environment at the motor command θ, J

(
θ
)
, a 2 × 4

matrix. We then calculated a matrix representing the null space of
the Jacobian, JN

(
θ
)
, and 2 × 4 (the rows of this matrix represent

hanges in the default motor command θ which will not have an
effect on the outcome), using singular value decomposition. We
then initialized our forward models as the sum of the Jacobian
J
(
θ
)

and the null space of the Jacobian JN
(
θ
)
, so that forward

odels are initialized with a large projection in both task-potent
nd task-null spaces. Regarding our previous findings about the
ffect of a task-null component of the forward model in the
pdate of the inverse model, in these simulations, it is desirable
or the task-null component of the forward models to be reduced,
nd for the task-potent component to be maintained as it is.
For the training of the forward models, we used combinations

f exploration noise variance in both task-potent and task-null
paces, among the nine possible values going from 0.0 to 0.4
ith steps of 0.05, giving a total of 81 different combinations,
ith 20 repetitions of simulations for every combination of noise
ariance. To generate motor commands for the training of the
orward models, we first calculated the Jacobian and null space
f the Jacobian but with each row having a norm of 1, which we
efer to as normalized Jacobian and null space of the Jacobian
atrices, Ĵ

(
θ
)

and ĴN
(
θ
)

respectively. Then, at every training
poch, we obtained two 2D random variables from bivariate
ormal distributions, one for the task-potent noise and the other
or the task-null noise, nTP and nTN respectively. Both random
359
ariables had a mean vector of 0, and their covariance matrices
ere the identity matrix times the variance in the task-potent
pace for nTP and the variance in the task-null space for nTN,
according to the combination of noise variance of the simulation.
The motor command used in the training of the forward model
is then defined by:

θ = θ + θn = θ + Ĵ
(
θ
)T

nTP + ĴN
(
θ
)T

nTN. (31)

he forward models were then trained for a total of 50 epochs,
ith a learning rate of 0.05, and at every epoch we evaluated the
raining using a batch of 50 motor commands obtained by adding
he motor command θ with random samples from a multivariate
normal distribution with a mean vector of 0 and standard devi-
ation of 0.1 on all four axes, from which we calculate a test cost
(Fig. 7A). The number of epochs and the learning rate used in the
training of the forward models is insufficient to fully train them
(insufficient to fully reduce their task-null components). This is
intentional, however, because it creates a relationship between
the accuracy of the forward model (how small their task-null
component is) and the amount of variability, specifically task-
null variability. We believe that this relates directly to one of
the main findings of Singh et al. (2016), who reported that the
nondominant hand exhibited smaller task-null variability and a
lower estimated learning rate in the task, compared with the
dominant hand, and the relationship between task-null variability
and estimated learning rate was significant across participants
using their dominant hands.

After the training of the forward models, we used them to
train the inverse model (previously trained for 1000 epochs) un-
der a visuomotor rotation of 45◦ for 500 epochs, with a learning
rate of 0.1, again using the target ytgt =

[
0 0.3

]T as a desired
outcome during training, and measuring the perpendicular dis-
tance between the inverse model outcome and the straight line
connecting the start position y0 to the target ytgt (Fig. 6F). After
the visuomotor adaptation training, we trained the inverse mod-
els one more time, this time in the original environment (with
the visuomotor rotation removed), to observe the training and
the error during the postadaptation phase (Fig. 6F). Both trainings
occurred 20 times for each combination of noise variance used to
train the forward models.

After training of the inverse model, we analyzed the estimated
learning rate during the visuomotor adaptation phase in the same
way, using the same method as that in the experiment, by fitting
the exponential function of Eq. (29) to the perpendicular error
measured during the training. The average estimated learning
rates across the 20 repetitions for each combination of noise
variance were then compared with the amount of variance used
in both task-null (Fig. 6G) and task-potent spaces (Fig. 6H) used
in the training of the forward models.

Finally, we analyzed the training of the forward models by
calculating their projections on both task-potent and task-null
spaces after training (Fig. 7B). We calculated these projections
using the Jacobian J

(
θ
)
and the null space of the Jacobian JN

(
θ
)

matrices using the equations:

projTP =


diag

(
J
(
θ
)
M̂T
)

diag
(
J
(
θ
)
J
(
θ
)T)

 , (32)

projTN =


diag

(
JN
(
θ
)
M̂T
)

diag
(
JN
(
θ
)
JN
(
θ
)T)

 , (33)
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Fig. 7. Results from the simulations of the task from Singh et al. (2016). (A) Test cost of the forward models across the training epochs (training of the forward model
ccurred before the training of the inverse model throughout the experiment) for various combinations of motor noise in the task-potent (colors) and task-null (rows)
paces of motor commands. (B) Projection of the forward models (at the end of their training) on both task-potent and task-null spaces, for various combinations
f motor noise in the task-potent (x axis) and task-null (rows) spaces of motor commands. Error bars represent one standard error. (C) Estimated learning rates
Z axis) of the inverse models (calculated in the same way as in the original experiment) trained by forward models with different amounts of projection in the
ask-potent and task-null spaces (X and Y axes). The forward models depicted here are the same as those in (A) and (B). Colored surface calculated with multiple
inear regression with an interaction term. Data from the simulations (larger black spheres) are connected to the data predicted by the regression (smaller gray
pheres) with thin lines, for better visualization. Lines, columns, and points in panels (A), (B), and (C) respectively are averages across 20 simulations. TP: task-potent.
N: task-null. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
here projTP and projTN are the projections of the forward model
n the task-potent and task-null spaces, respectively, M̂ is the
orward model at the end of training, and diag returns a vector
ith the elements in the diagonal of its matrix argument. These
rojections were then averaged across the 20 repetitions for
ach combination of noise variance, and compared across these
ariances (Fig. 7B). We also analyzed the estimated learning rate
f the inverse models in terms of the projections of the forward
odels used to train them (Fig. 7C).
360
2.4. Hand gesture task

2.4.1. Task summary
The next task we simulated was reported in an experiment

by Dal’Bello and Izawa (2021) (Fig. 8). In this experiment, an
arbitrary mapping between hand gestures (measured with a data
glove device detecting the joint angles of 10 joints of the hand)
and cursor directions on a screen was defined by applying prin-
cipal component analysis to a calibration dataset (Fig. 8A). The
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Fig. 8. Diagrams and results of the task from Dal’Bello and Izawa (2021). (A) In the task, participants made fast movements with their hands, and the hand
average velocity vector in a trial, vavg (composed of the angular velocity of 10 hand joints), was projected on two perpendicular 2D spaces, with the projection
in the task-relevant space, vTR , being shown on the screen and therefore reflecting task error and reward, and the projection in the task-irrelevant space, vTI , not
shown to participants. (B) Learning was analyzed in sequences of probe trials to a single target, where a visuomotor rotation p(k) of either +30◦ , −30◦ , or 0◦ was
applied to the cursor direction at trial k, and the change in motor commands between trials k and k + 1 (∆v

(k)
TR and ∆v

(k)
TI for the change in the task-relevant and

task-irrelevant spaces, respectively) was measured. (C–D) Correlation between the estimated error-based learning rate βTR and the variabilities in the task-relevant
(C) and task-irrelevant (D) spaces, across participants in the experiment. σTR: standard deviation of noise in the task-relevant space. σTI: standard deviation of noise in
the task-irrelevant space. (E–F) Correlation between estimated error-based learning rate βTP and the variabilities in the task-potent (E) and task-null (F) spaces in our
simulations of the motor task. Each point is the average of 20 simulations. σTP: standard deviation of noise in the task-potent space (equivalent to the experiment’s
task-relevant space). σTN: standard deviation of noise in the task-null space (equivalent to the experiment’s task-irrelevant space). Panels A, B, C, D are reproduced
from Dal’Bello and Izawa (2021).
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rthogonal principal components were then used to define a pair
f orthogonal, 2D control spaces: a task-relevant space, whose
ursor direction was shown to participants on the screen and was
herefore related to task error and reward, and the task-irrelevant
pace, whose cursor direction was not shown to participants and
as not related to task error or reward.
In their task, learning was analyzed in sequences of probe

rials (Fig. 8B), implemented after participants became skilled in
he task. In the first trial of the sequence, a random perturbation
etween +30◦, −30◦ or 0◦ was added to the displayed cursor
irection, and in the second trial of the sequence, the same per-
urbation was added but with an invisible cursor, so that reward
ould be higher if the participant changed their gesture to correct
he error observed in the previous trial. The data from these
robe sequences were then analyzed with a model of update of
motor memory, where the contribution of error-based learning

n their model was defined as a change to the motor memory x
with components related to the reaching direction in both task-
elevant and task-irrelevant spaces) between the first trial k of
the probe sequence and the second trial k + 1 of the sequence
proportional to the scalar angle error e(k) observed at trial k, such
that:

∆x(k)
EL =

[
βTR

βTI

]
e(k)

(34)

where βTR and βTI are the estimated learning rates of the error-
based learning in the task-relevant and task-irrelevant spaces,
respectively.

In their experiment, a significant, positive correlation was
found between the estimated task-relevant, error-based learn-
ing rate βTR and the estimated motor variabilities in both task-
relevant (Fig. 8C) and task-irrelevant (Fig. 8D) spaces. Further
modeling results showed that these effects were simultaneous,
and not mediated by one another, suggesting a role of the explo-
ration of both task-relevant and task-irrelevant motor commands
on error-based motor learning. On the basis of our Predictions
2, 3 and 4, we interpret these results as reflecting the explo-
ration of the entire motor command space leading to the learning
of an efficient sensitivity derivative, which results in greater
error-based learning during the sequences of probe trials, with
a larger amount of exploration reflecting a faster convergence of
sensitivity derivatives to the ideal value.

2.4.2. Simulations
To simulate this task using our framework, we first defined

an arbitrary linear map between 10D motor commands and 2D
task outcomes by initializing a random 10D base vector (with
random variables from a normal distribution with a mean of 0
and a standard deviation of 1), then obtaining a family of or-
thogonal vectors covering the entire 10D motor command space.
From this family of vectors, we arbitrarily selected one pair of
vectors for our task-potent (referred to as task-relevant in the
previous study) space, and a separate pair of vectors for our task-
null (referred to as task-irrelevant in the previous study) space
of motor commands, assembling 2 × 10 environment matrices
MTP and MTN, respectively. In all simulations, the linear forward
models were initialized as M̂ = 0.5MTP+0.5MTN and the inverse
models were initialized as W = MT

TP + MT
TN. This procedure was

conducted so that the forward models started with a component
in both the task-potent and task-null spaces, and so that the
inverse models started with good task performance, being able
to generate appropriate motor commands for any targets in the
2D task space.

Each simulation started with the training of the forward model
for 100 epochs. At each training epoch, a random exploration
noise signal u was added to a default motor command u ,
n DEF

362
initialized by presenting the desired outcome y∗
=
[
1 0

]T to
the inverse model and obtaining its output (uDEF = Wy∗). We
first obtained two 2D random variables from bivariate normal
distributions, one for the task-potent noise and the other for the
task-null noise, nTP and nTN respectively, both with a mean vector
f 0, and their covariance matrices were the identity matrix times
he variance in the task-potent space, σ 2

TP, for nTP and the variance
n the task-null space, σ 2

TN, for nTN, according to the combination
f the noise variance of the simulation. The motor command used
n the training of the forward model at that epoch was then
efined by:

= uDEF + un = uDEF + MT
TPnTP + MT

TNnTN, (35)

ts outcome y in the task space was measured, and the pair (u, y)
as used as a training sample for the forward model, with a

earning rate of 0.05.
After the training of the forward model, we implemented

ingle-epoch trainings of the inverse model under perturbations.
or each of the three perturbations of +30◦, −30◦, and 0◦, the
erturbation was added to the task outcome y(k) obtained from
he motor command generated by the inverse model when pre-
ented with the desired outcome y∗

=
[
1 0

]T , resulting in
he perturbed task outcome y(k)perturb. Learning of the inverse
odel then proceeded for one epoch by backpropagating the
rror y(k)perturb−y∗ through the forward model (acting as a sensi-
ivity derivative). After the single epoch of update, we measured
he task outcome y(k + 1) of the motor command generated
y the inverse model with the presentation of the same desired
utcome as before. Because the neural network is determinis-
ic, we only needed a single data point from each amount of
erturbation. Having obtained the change in angle between the
ask outcomes at trials k + 1 and k, ∆θ (k), with the function
θ (k) = atan2 (y (k) , y (k + 1)), and having the angle of each
erturbation θ (k)perturb, we then fit the following linear function
o the three data points from the three perturbations:

θ (k) = βTPθ (k)perturb , (36)

here βTP is the estimated learning rate obtained as a conse-
uence of the training of the forward model.
Our simulations varied the amount of variance in the task-

otent and task-null spaces of motor commands, σ 2
TP and σ 2

TN
espectively, among the nine possible values ranging from 0.0
o 0.4, at every 0.05, totaling 81 possible combinations of noise
ariances in both spaces. 20 simulations were conducted for
ach combination of variances. We then averaged the estimated
earning rates βTP across all simulations for each combination
f variances and compared them with the standard deviation of
he exploration noise used in the simulation in both task-potent
nd task-null spaces (σTP and σTI, respectively) (Fig. 8E–F). We
lso analyzed the test cost of the forward models throughout
raining (Fig. 9A) using a batch of 50 motor commands generated
rom a multivariate normal distribution with a mean vector of 0
nd a standard deviation of 0.5 in each of the 10 axes. We also
easured the projection of the forward models on both task-
otent and task-null spaces (Fig. 9B) for each combination of
ariances, using a similar procedure to that performed in the arm
eaching task simulations, but using the environment matrices
TP and MTN in place of matrices J

(
θ
)
and JN

(
θ
)
in Eq. (32)

and Eq. (33), respectively. In addition, we further compared the
estimated learning rates βTP of the inverse models with the pro-
jection of the forward models on the task-potent and task-null
spaces (Fig. 9C).
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Fig. 9. Results from the simulations of the task from Dal’Bello and Izawa (2021). (A) Test cost of the forward models across the training epochs for various
combinations of motor noise in the task-potent (colors) and task-null (rows) spaces of motor commands. (B) Projection of the forward models (at the end of training)
on both task-potent and task-null spaces, for various combinations of motor noise in the task-potent (x axis) and task-null (rows) spaces of motor commands. Error
bars represent one standard error. (C) Estimated error-based learning rates (z axis) of the inverse models trained by forward models with different amounts of
projection in the task-potent and task-null spaces (x and y axes), obtained by applying instantaneous perturbations in the task, similar to the method performed
n the experiment. The forward models depicted here are the same as those in (A) and (B). Colored surface calculated with multiple linear regression with an
nteraction term. Data from the simulations (larger black spheres) are connected to the data predicted by the regression (smaller gray spheres) with thin lines,
or better visualization. Lines, columns, and points in panels (A), (B), and (C), respectively, are averages across 20 simulations. TP: task-potent. TN: task-null. (For
nterpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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.5. EMG task

.5.1. Task summary
The final task we simulated was an experiment reported by

erger et al. (2013). In this experiment, participants used the
ctivity of 13 muscles in the arm and torso to control the di-
ection of a cursor on a screen. The mapping between muscle
ctivity and cursor direction was initially calculated by applying
ultiple linear regressions to the EMG signals recorded from the
3 muscles while participants generated forces in eight different
irections, obtaining the 2 × 13 linear mapping matrix H , with
363
each column representing the estimated force direction of each
muscle (Fig. 10A). The virtual force used to control the cursor was
then calculated as:

f = Hm, (37)

here f is the 2D virtual force, andm is the 13Dmuscle activation
ignal extracted from the EMG of the 13 muscles used in the
xperiment.
In addition to calculating the muscle activity to force mapping,

uscle synergies were obtained by applying nonnegative matrix
actorization to the initial dataset of muscle activity, resulting
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Fig. 10. Diagrams and results of the task from Berger et al. (2013). In their task, the surface EMG from 13 muscles was measured and a mapping between muscle
activation and hand force was calculated (matrix H), so that participants could control the direction of a cursor using this estimated force instead of the actual
force. During an initial force control task, non-negative matrix factorization was used on the EMG data to identify synergies for each participant (matrix W). Panels
to the left (A, B, E, F, I, J, M) are from the original experiment and were reproduced from Berger et al. (2013). Panels to the right (C, D, G, H, K, L, N) are from
our simulations. (A) EMG-to-force mapping matrix H from a representative participant in the experiment. Each arrow represents the estimated 2D force generated
by each muscle during its activation. (B) Muscle synergies matrix W from the participant shown in (A) mapped to 2D force vectors. (C) EMG-to-force mapping
matrix H used in all our simulations. (D) Muscle synergies matrix W for the EMG data from an inverse model trained to reach for targets using the muscles with
the EMG-to-force mapping H of (C). (E) Forces generated by each muscle after the application of a compatible surgery represented by the surgery matrix TC , for
the same participant shown in (A). (F) Muscle synergies mapped to force after the application of the compatible surgery shown in (E). (G) Forces generated by
each muscle in our simulations after the application of a compatible surgery. (H) Muscle synergies mapped to force in our simulations after the application of the
compatible surgery shown in (G). (I) Forces generated by each muscle after the application of an incompatible surgery represented by the surgery matrix TI , for
the same participant shown in (A). (J) Muscle synergies mapped to force after the application of the incompatible surgery shown in (I). (K) Forces generated by
each muscle in our simulations after the application of an incompatible surgery. (L) Muscle synergies mapped to force in our simulations after the application of
the incompatible surgery shown in (K). (M) Angular error between initial movement direction and target direction across participants in each block and for each
surgery, including force transformations (not analyzed in our simulations). Solid lines and shaded regions represent means and standard errors, respectively. (N)
Angular error between task outcome of the motor commands generated by the inverse models and targets throughout training, across both surgeries. Solid lines
and shaded regions represent means and standard errors across 20 simulations, where motor noise with a variance of 0.1 in the task potent space and of 0.05 in
the task-null space (the original task-potent and task-null spaces, during the baseline) was added to the motor commands used in the update of both forward and
inverse models simultaneously.

364
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n the 13 × s nonnegative matrix W , where s is the number of
ynergies calculated for that particular participant. Each column
n the W matrix represents the relative recruitment of each of
he 13 muscles by that specific synergy. A muscle activity vector
could then be partially reconstructed by the synergies as:

= Wc, (38)

here c is an s-D vector of synergy recruitment coefficients. In
conjunction with the muscle activity to force matrix H , each
synergy also has a force in the 2D task space (Fig. 10B).

The authors then investigated participants’ learning during the
application of a ‘‘virtual surgery’’, which changed the direction of
the forces generated by each muscle in the virtual environment.
Two types of surgery were defined based on the capacity of the
previously calculated synergies to span the entire task space:
in compatible surgeries, the muscle synergies still spanned the
entire task space (Fig. 10E, F); in incompatible surgeries, the syn-
ergies did not span the entire task space (Fig. 10I, J). The surgeries
were defined in terms of transformation matrices (T c for the
compatible surgery and T i for the incompatible surgery), which
multiplied H in Eq. (37), causing a rotation in the virtual force
generated by each muscle. The authors’ main finding was that the
learning (analyzed with, among other metrics, the angular error
between the initial movement direction and the target direction)
during compatible surgeries was faster than that during incom-
patible surgeries (Fig. 10M). In addition, synergies calculated from
participants at the end of the incompatible surgery phase were
different from those extracted before the surgeries, suggesting
that during the incompatible surgery the participants started to
form new synergies. The authors concluded that muscle syner-
gies were likely to act as control modules during the generation
of force, and that virtual surgeries which required a change in
the relationship between synergies/control modules and force
direction were learned faster than surgeries which required the
learning of new synergies/control modules, which was argued to
be a slower process.

Our interpretation of Berger et al.’s (2013) findings focused on
which motor command spaces are explored during the learning
of a new sensitivity derivative for each virtual surgery. From
our Predictions 1 and 3, we believe that the reason participants
adapted to the compatible virtual surgery faster was that their
motor exploration occurred mostly in the dimensions explained
by the synergies, which still span the entire task-potent space in
the compatible surgery, whereas in the incompatible surgery, in
which non-synergy motor commands are now part of the task-
potent space, exploration of this new task-potent space is smaller,
resulting in slower learning.

2.5.2. Simulations
For the simulations of this experiment, instead of training the

forward model and then analyzing the training of the inverse
model, as in the simulations of the two previous studies, we
decided to train both forward and inverse models simultaneously,
similarly to the procedure used in simulation 2 of the simple
linear motor task, which we believe is more similar to the way
in which motor commands would be generated in a biological
system. We also sought to confirm whether a neural network
architecture that better replicates the property of directional
tuning observed in neurons of the motor system (Georgopoulos
et al., 1986) was able to replicate the results of the experiment.
To that end, we used neural networks with radial basis functions
(Thoroughman & Shadmehr, 2000) in both our forward and in-
verse models. In the case of the inverse models, whose inputs
are 2D desired outcomes, we defined 17 basis functions for each
of the two axes of the inputs, so that for a desired outcome
y∗

=
[
y y

]T , the output of the kth basis function on the first
1 2 i

365
axis of the desired outcome is given by:

gk (y1) = exp
(

−
(y1 − ck)2

2σ 2

)
, (39)

here ck is the center of the radial basis function in that axis and
σ is the standard deviation of the basis function, and equivalently
for the second axis of the desired outcome, totaling a 34D output
of this basis function layer. This layer is then followed by a
sigmoidal layer, whose weights are then modified with training.
The sigmoidal layer limits the output of the network to 13D (the
number of muscles used in the task), and to be between 0 and
1, as was the muscle activity recorded from the EMG during the
experiment. The basis function centers were uniformly spread in
a region between −2 and +2, with σ = 0.175. Similarly, in the
orward models, we defined 16 basis functions for each axis of
heir input, in this case, a 13D motor command, resulting in a
3 × 16 radial basis function layer output, which is then followed
y a linear layer which reduces the dimension of the output to 2D,
he same as the task space. In the forward models, the centers of
he basis functions were uniformly spread in a region between
0.5 and +1.5 (covering the region from 0 to 1 of the motor
ommands), with σ = 0.1.
We defined an initial mapping between muscle activation and

irtual force H with the force generated by the 13 muscles being
venly spread around the task space (Fig. 10C). Then, we initially
rained the inverse model for 200 epochs, with a learning rate of
.01, and using the true sensitivity derivative during the update,
o that the inverse models at the beginning of the virtual surg-
ries had a low error. For this phase of training, we used a batch
f 20 desired outcomes, uniformly distributed along a circle with
adius 1.5 around the origin of the task space. After this training,
e then trained the forward model for 500 epochs with a learning
ate of 0.1, using as targets 500 motor commands obtained from
multivariate uniform distribution with limits between 0 and 1.
After this initial training, we calculated synergy coefficients

f the motor commands generated by the inverse model, using
grid of 121 points as desired outcomes, uniformly spanning

he region between −1.5 and +1.5 in both axes of the task
pace. We then used these synergy coefficients to calculate the
ransformation matrices T c and T i for the compatible (Fig. 10G,
) and incompatible (Fig. 10K, L) virtual surgeries, respectively,
sing the same methods as were used in the original experiment.
ur criterion to define if a pair of surgeries were valid or not was
ased on whether both surgeries generated similar test costs for
oth inverse and forward models trained earlier. In addition, a
inimum average absolute error of 20◦ in the motor commands
enerated by the inverse models during both surgeries, using
ight targets uniformly distributed along a circle with a radius
f 1.5 as desired outcomes, was a necessary condition for the
alidity of the surgeries. For the test cost of the inverse model, we
sed a batch of 20 desired outcomes, uniformly distributed along
circle with a radius of 1.5 around the origin of the task space,
s was used during the initial training. For the test cost of the
nverse model, we used the same test batch of motor commands
sed as a test in the initial training.
With the surgeries defined, both forward and inverse models

ere trained for 250 epochs simultaneously under the two virtual
urgeries, and with different combinations of exploration noise
ariance in task-potent and task-null spaces, with task-potent
nd task-null referring to the original, unperturbed environment.
he addition of exploration noise was performed in a similar
ay as in simulation 2 of the simple linear motor task. At each
raining epoch, one target out of eight possible targets (uniformly
istributed along a circle with a radius of 1.5) was selected,
nd a motor command m̄ was obtained using the target as the
nput of the inverse model. Having calculated orthonormal basis
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TP and MTN for the original task-potent and task-null spaces,
espectively, with MTP being 2 × 13 and MTN being 11 × 13,
we obtained two random variables from multivariate normal
distributions, one for the task-potent noise (2D, the dimension
of the task space) and the other for the task-null noise (11D, the
dimension of the null space), nTP and nTN respectively, both with
a mean vector of 0. Their covariance matrices were the identity
matrix (2 × 2 for the task-potent noise and 11 × 11 for the task-
null noise) times the variance in the task-potent space, σ 2

TP, for nTP
and the variance in the task-null space, σ 2

TN, for nTN, according to
the combination of noise variance of the simulation. The noisy
motor command m used in the training of both forward and
inverse models was then defined as:

m = m̄ + mn = m̄ + MT
TPnTP + MT

TNnTN. (40)

Then, as was performed in simulation 2 of the simple linear
motor task, m was used as a training motor command for the
forward model, and at the same epoch, the inverse model was
also updated, with the error used in the update calculated with
the selected target and the outcome of the motor command m,
under the virtual surgery being simulated. The learning rates of
this training under the virtual surgeries were 0.02 for both in-
verse and forward models, and there were 20 repetitions of each
combination of noise variance in the task-potent and task-null
spaces, with nine combinations in total, with the noise variance
in one space varying between 0, 0.05, and 0.1. After training under
the virtual surgeries, we trained both the forward and inverse
models again with the virtual surgeries removed, with the same
parameters as before, for 200 epochs.

To analyze the training of both forward and inverse models
under the different combinations of exploration noise in the orig-
inal task-potent and task-null spaces, under both compatible and
incompatible virtual surgeries, we calculated the average absolute
angle error of the motor commands generated by the inverse
model to eight targets uniformly distributed in a circle with a
radius of 1.5 (Fig. 10N). We also compared the test cost of both the
forward and inverse models calculated during the training under
the virtual surgeries across all combinations of noise variance in
the original task-potent and task-null spaces (Fig. 11).

3. Results

3.1. Simple linear motor task

In simulation 1 of the simple linear motor task, where the
training of both forward and inverse models happened simulta-
neously, the results revealed that a non-zero exploration noise
in the entire motor command space enabled the forward model
to converge to the correct solution (Fig. 4A) (our Prediction 4),
with a larger amount of noise leading to a faster convergence
(our Prediction 3). In addition, we found that exploration noise
only in the original task-potent space, which became the task-
null space, only contributed to reducing the task-null component
of the forward model, and exploration noise only in the original
task-null space, which became the task-potent space, contributed
to bringing the task-potent component of the forward model to
its correct value of 1, as was predicted in our earlier analyses of
the update equations. The results revealed that whenever there
was no exploration in one of the motor command spaces, the
forward model’s test cost did not fully decrease during training
(Fig. 4B). In terms of its function as a sensitivity derivative, when
the forward model maintained a significant task-null component
(while its task-potent component converges to the correct value),
such as when there was no task-null exploration, we can see that,
while the inverse model was updated towards a correct solution

(Fig. 4C) (our Prediction 1), this update was slower than when
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the forward model’s task-null component was smaller (Fig. 4D)
(our Prediction 2). This occurred because of the limitation in
the amplitude of the motor correction signal used in the update
of the inverse model. As described above, with such limitations
it is desirable to reduce the task-null component of the motor
correction to maximize the task-potent component, enabling a
faster update of the inverse model. The update of the inverse
model also fails when there is no exploration in the task-potent
(original task-null) space, because the forward model has a zero
task-potent component.

In simulation 2, both forward and inverse models were up-
dated simultaneously, but this time the motor command used to
train the forward model was generated by the inverse model, and
exploration noise was added to this motor command at every
epoch. The results revealed that, even with no task-null space
(original task-potent space) exploration, the forward model still
reduced its task-null component (Fig. 5A), although greater explo-
ration noise led to a faster reduction of this component (Fig. 5B).
This is because the motor command generated by the inverse
model had a non-zero task-null (original task-potent) component,
therefore enabling the update of the forward model in the task-
null space. Its task-potent component, however, only updated
with non-zero task-potent (originally task-null) exploration noise
(Fig. 5A, Fig. 5B) with a larger amount of exploration leading to a
faster update, also enabling the appropriate update of the inverse
model (Fig. 5C, D).

In summary, the simulations of this simple linear motor task
exhibited many of the features that were found previously by
analyzing the inverse and forward models’ update equations.
Such features included: (1) the update of the forward model
occurred in the direction of the motor command used to train
it; (2) exploring the entire motor command space enabled the
complete training of the forward model, with the reduction of
its task-null component leading to a faster update of the inverse
model; and (3) the amount of exploration noise influenced the
speed of the training.

3.2. Arm reaching task

In our simulations of the arm reaching task reported by
Singh et al. (2016), we observed a similar reduction of task
error during the visuomotor adaptation phase (Fig. 6F) compared
with the experimental results (Fig. 6C), as well as a similar
aftereffect when the visuomotor perturbation was removed. We
also replicated Singh et al.’s (2016) main finding of a positive
correlation between task-null variability and estimated learning
rate during the visuomotor adaptation phase (Fig. 6G) and a
non-significant correlation between task-potent variability and
learning rate (Fig. 6H).

By analyzing the forward model test cost during its training
(Fig. 7A), before its usage as a sensitivity derivative for the inverse
models during the visuomotor adaptation and postadaptation
phases, we found an effect of the amount of task-null variability
on the speed of the decrease of the test cost (Prediction 3), but no
clear effect of the amount of task-potent variability. This finding is
likely to have been caused by the initial conditions of the forward
models, which were initialized with large task-potent and task-
null components. Under these initial conditions, the task-potent
component of the forward models was correct and did not need
to be updated. The results revealed that, after the 50 epochs
of training, the projection of the forward models on the task-
potent space was largely the same across all combinations of
noise variance (Fig. 7B). However, their projection on the task-
null space became smaller as the task-null exploration increased,
reflecting the effects of the amount of task-null noise on the

speed of the update before the forward models were fully trained.
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the forward model, and using the same motor command) for various combinations of motor noise in the original task-potent (colors) and task-null (rows) spaces of
motor commands. (D) Difference of inverse model test cost between the last and first epochs of training, for all combinations of motor noise. Results for simulations
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Ultimately, the projection of the forward models on the task-
ull space, which was shown to be related to task-null variability,
as a large effect on the learning rate of the inverse models during
he visuomotor adaptation phase (Fig. 7C), with less projection
eading to a higher learning rate. This is because the limitation
n the motor correction obtained from the sensitivity derivatives,
ith a smaller task-null component of the forward model leading
o a larger task-potent component of the motor correction, re-
ulted in an overall faster update of the inverse model (Prediction
).

.3. Hand gesture task

In our simulations of the hand gesture task reported by
al’Bello and Izawa (2021), the results revealed that the amount
f task-potent and task-null variability used to train the forward
odels had a significant effect on the estimated learning rate
367
alculated from the inverse models during the single-trial per-
urbations (Fig. 8E, F). These results are similar to the findings
eported in the original experiment (Fig. 8C, D). The decrease
f the forward models’ test cost during training was faster with
larger amount of exploration, in both task-potent and task-
ull spaces (Fig. 9A). This is likely to be because of the initial
onditions of the forward models in the simulations: being a
e novo learning task, we assumed that the learners had no
nitial knowledge of which motor commands are task-potent and
ask-null, and therefore we initialized the simulations’ forward
odels with small task-potent and task-null components. The

orward models then benefitted from both task-potent explo-
ation, which increased their projection on the task-potent space,
nd from task-null exploration, which decreased their projec-
ion in the task-null space (Fig. 9B) (Prediction 4). Because of
he limitation in the amplitude of the motor correction gener-
ted by the forward models (acting as sensitivity derivatives),
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he estimated learning rate of the inverse models during the
ingle-trial adaptation had a positive correlation with the forward
odels’ projection in the task-potent space, and a negative corre-

ation with the forward models’ projection in the task-null space
Fig. 9C).

.4. EMG task

In our simulations of the experiment reported by Berger et al.
2013), in which both forward and inverse models were trained
imultaneously, the graph of the change in angular error over
raining in the two virtual surgeries in the original experiment
as replicated well (Fig. 10M), with a combination of variances
f 0.1 in the original task-potent space and of 0.05 in the orig-
nal task-null space of motor commands (Fig. 10N). The angular
rror for the inverse models trained decreased faster in the com-
atible virtual surgery compared with that in the incompatible
urgery. In addition, there was a larger after-effect during the first
lock after the compatible surgery, compared with that after the
ncompatible surgery.

When analyzing the test cost of the forward models during
he training under the compatible surgery (Fig. 11A), we can see
hat, when no task-null exploration is added, more exploration
n the original task-potent space leads to a faster decrease in the
est cost, and to a larger decrease at the end of training (Fig. 11B).
owever, in the presence of exploration in the original task-null
pace, the amount of task-potent space exploration does not seem
o have an effect on either the speed or the amount of decrease
n the test cost. The results revealed that, in all cases, the inverse
odels’ test cost decreased substantially (Fig. 11C). However, this
ecrease appears faster, and larger, for smaller amounts of task-
otent exploration (Fig. 11D). This is more evident when there is
non-zero task-null exploration. We believe that this is caused
y the addition of motor noise to the motor command generated
y the inverse model during training. In the simulations with no
ask-null exploration, this negative effect of task-potent noise is
lleviated by the faster training of the forward model (Fig. 11A,
), used in the inverse models’ update as a sensitivity derivative.
Under the incompatible surgery, when no task-null explo-

ation was added, the forward model was not trained well, in
ontrast with the simulations with non-zero task-null exploration
Fig. 11A). This result is in accord with the finding that the
nverse model’s test cost during training did not decrease under
his condition (Fig. 11C), and actually increased over training
Fig. 11D). With the addition of task-null exploration noise, the
orward models’ test cost decreased substantially, enabling the
ubsequent decrease of the inverse models’ test cost.
We believe that the absence of task-null exploration leading

o the failure of the training of both forward and inverse models
as caused by the incompatible virtual surgery requiring motor
ommands which were not explored in the absence of task-null
xploration. The incompatible surgery was formulated as requir-
ng the usage of motor commands that were not encoded by the
ynergies initially used in the task. In our simulations, the motor
ommands generated by the inverse model, with exploration
oise added to update the forward model, could be considered
o be mainly composed of the synergies calculated previously.
ecause the synergies exhibited a substantial intersection with
he task-potent space, the new environment thus required the
sage of motor commands that were in the original task-null
pace. Although the synergies exhibited an intersection with the
riginal task-null space, this intersection was relatively small
because our synergies encompassed a 4D subspace of motor
ommands, and our task-potent space was 2D, the intersection
etween the synergy space and the task-null space was a 2D
ubspace) compared with the entire task-null space, and did not
368
encompass the necessary motor commands during the incompat-
ible surgery, by its definition. Therefore, these motor commands
were not explored, and the learning of the forward model failed.
This situation is similar to that in simulation 2 of the simple linear
motor task (Fig. 5), in which, even though the motor command
generated by the inverse model alone, without the addition of
exploration noise, reduced the forward model’s task-null compo-
nent, its training ultimately failed because task-potent (original
task-null) motor commands were not explored.

In summary, the current results revealed that, in the incom-
patible surgeries used in this experiment, exploration of the orig-
inal task-null space was essential for the appropriate training of
a forward model, which, when used as a sensitivity derivative,
enabled the training of the inverse model and the subsequent
reduction of task error.

4. Discussion

In the simulations presented in the current study, we repro-
duced many of the results reported in three previous experiments
in a range of motor tasks. We initially mathematically derived
some of the properties of our proposed learning mechanism,
including the characteristic that, under the assumption that the
neural representation of a motor correction signal has a limited
amplitude, the exploration of the entire motor command space
leads to the convergence of a sensitivity derivative (represented
here by a forward model) to a solution that enables the efficient
training of an inverse model to generate motor commands in
a novel motor task. This prediction was confirmed with sim-
ulations of a simple linear motor task. Our proposed learning
mechanism was shown to replicate well the relationship between
task-potent and task-null variabilities with the estimated learning
rate observed in a de novo hand gesture task (Dal’Bello & Izawa,
2021). In an arm reaching task (Singh et al., 2016), the results
showed that when the sensitivity derivative’s projection in the
task-null space was inversely related to the amount of task-null
variability, a significant correlation was observed between task-
null variability and estimated learning rate under a visuomotor
perturbation. In an EMG task (Berger et al., 2013), the simulation
results revealed that, when motor exploration was constrained
to the originally recruited synergies, the learning of a controller
(and of a sensitivity derivative) in an incompatible virtual surgery,
which required the usage of motor commands not encoded by
previously recruited synergies, was severely limited. Thus, these
results provide evidence that the proposed learning mechanism
might be implemented in the human brain and used during motor
learning.

4.1. Elucidating the role of motor exploration on error-based de novo
learning

Our proposed learning mechanism bridges the gaps between
motor exploration (Sternad, 2018), redundancy solving (Bern-
stein, 1967) and error-based learning (Shadmehr et al., 2010).
Traditional motor adaptation experiments do not account for the
redundancy present at the various levels of the human body,
from joints to muscles, to neurons. In such redundant systems,
sensitivity derivatives must be known to enable transformation of
task errors into appropriate motor corrections (Abdelghani et al.,
2008; Hadjiosif et al., 2021). However, in de novo learning tasks,
there is no prior knowledge of which motor commands affect the
task and which do not. Although reinforcement learning enables
learning in de novo redundant systems through exploration, it
has difficulty scaling for systems with more degrees of freedom
(Dal’Bello & Izawa, 2021; Sutton & Barto, 2018). Motor explo-
ration, of the entire motor command space, may be essential in
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Table 1
Phenomena studied in different papers.

Paper Phenomena of interest

Role of motor exploration Error-based learning Learning sensitivity derivative Redundancy

Hadjiosif et al. (2021) ✖ ✔ ✔ ✖

Hirashima and Oya (2016) ✔ ✔ ✖ ✔

Kawato and Gomi (1992) ✖ ✔ ✖ ✔

Pierella et al. (2019) ✖ ✔ ✔ ✔

Rolf and Steil (2014) ✔ ✖ ✖ ✔

Sternad (2018) ✔ ✖ ✖ ✔

Current paper ✔ ✔ ✔ ✔
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the learning of an appropriate sensitivity derivative, enabling the
successful transformation of task errors into motor commands
and thus the learning, in an error-based way, of a new controller
for the task.

A recent study using an EMG control task provided evidence
n line with our proposed learning mechanism (Barradas et al.,
020). In that study, it was reported that motor commands that
ere not encoded by muscle synergies had a significant influence
n task performance under an incompatible surgery (Barradas
t al., 2020), with the amount of change in the angle of the
rtificial force generated by each muscle being related to how
asy or difficult the virtual surgery was to learn. We believe that
hese results are in line with the current findings, which revealed
hat learning under incompatible virtual surgery depended on the
xploration of motor commands not encoded by the previously
dentified synergies. In addition, larger changes in the direction
f the artificial force of the muscles would be expected to require
larger update of the sensitivity derivative, therefore leading

o more difficult learning. These results further confirm our hy-
othesis that motor exploration is essential in the learning of
sensitivity derivative for a new skill, which then enables the

earning of a new controller for the motor task.
Our proposed mechanism relies on a limitation in the am-

litude of a motor correction signal represented in the brain to
xplain how task-null variability correlates with the estimated
earning rate of the controller in certain motor tasks. A similar
echnique has been used in the field of machine learning to
void the problem of exploding gradients encountered in recur-
ent neural networks (Pascanu et al., 2013). We believe that the
ikely encoding of such motor correction via the firing rate of a
opulation of neurons (Dayan & Abbott, 2001) naturally limits the
mplitude of such signals because of biological constraints, such
s a limit to the firing rate of neurons. Such a limitation has been
bserved in traditional motor adaptation experiments in humans,
here it is common for not all of the error to be corrected in a
ingle trial. Because such experiments often do not account for
he redundancy of the human body, it remains to be seen whether
uch a limitation is also present in task-null motor corrections.

.2. Other works do not examine the role of motor exploration on
earning a sensitivity derivative for redundant error-based learning

Our research investigates the role of motor exploration on
he learning of a sensitivity derivative to be used in the training
f an inverse model in redundant motor tasks. Some previous
orks have suggested that sensitivity derivatives are innate and
nown (Hirashima & Oya, 2016; Kawato & Gomi, 1992). While
he learning of sensitivity derivatives has been investigated in
he past (Hadjiosif et al., 2021), including in redundant contexts
369
(Pierella et al., 2019), the role of motor exploration (Sternad,
2018) in this learning has not been extensively studied.

Approaches for training a controller that rely on exploration
noise but not on an internal model of a sensitivity derivative have
been proposed in previous studies (Reinhart, 2017; Rolf & Steil,
2014). These approaches consist of using the current controller
to generate a motor command u to the desired task outcome
y∗, adding exploratory noise ϵ to the motor command, observing
ts outcome y in the task, and finally using the outcome–motor
ommand pair (y, u + ϵ) as a training sample for the controller,
ith convergence to an appropriate solution guaranteed when
he entire motor command space is explored (Rolf & Steil, 2014).
lthough such approaches lead to the successful training of a
ontroller, they do not replicate some features of error-based
daptation observed in human experiments. When the controller
s composed of motor primitives (Thoroughman & Shadmehr,
000), this learning approach would be expected to cause a
hange in the motor command generated for the noisy desired
utcome y, but not for the original desired outcome y∗. Although
eneralization of movement errors across the task space has
een shown in humans, it peaks at the original desired task
utcome (Thoroughman & Shadmehr, 2000). We believe that
ur proposed framework replicates the error-based adaptation
bserved in humans well, while also incorporating the effect of
xploration on motor learning in redundant contexts. A summary
f a comparison of our work with previous works can be seen in
able 1.

.3. Possible implementation of sensitivity derivatives in the
erebello–thalamo–cortical pathway

Regarding the case in which sensitivity derivatives are not rep-
esented in forward models, we believe that they are likely rep-
esented at the cerebello–thalamo–cortical (CTC) pathway, con-
ecting the cerebellum to the motor cortex via the thalamus
Aumann, 2002). Previous studies suggest that the integrity of the
TC pathway is related to the capacity to adapt to movement
rrors (Chen et al., 2006), but is not crucial for the execution
f already learned movements (Fabre-Thorpe & Levesque, 1991).
n our framework, assuming that sensory prediction errors are
omputed in the cerebellum (Shadmehr et al., 2010), these errors
ight be relayed to the CTC pathway, which would transform

he errors into motor correction signals, which are then relayed
o the motor cortex to change the cortical synapses responsible
or the generation of movement. In the execution of already
earned movements, there would likely be very few sensory pre-
iction errors. Thus, the CTC pathway would not be crucial in
he generation of movements in a feedforward way. There is
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lso evidence that the amount of connectivity between the mo-
or cortex and cerebellum, partially through the CTC pathway,
s related to residual motor output in chronic stroke patients
Schulz et al., 2015), suggesting its role in the learning of a
ew controller. In cases of stroke where the death of neurons
auses a change in the relationship between neuronal activation
nd motor task outcome, the sensitivity derivative would likely
eed to be learned again, similar to what we propose is a core
eature of a de novo learning task. The CTC pathway has also
een reported to exhibit plasticity during motor learning (Biane
t al., 2016) and sensorimotor learning (Audette et al., 2019), even
fter the so-called critical period of motor recovery in stroke (Yu
t al., 2012). These findings suggest that, if the CTC pathway has
he function of sensitivity derivative during motor learning, it
ould be updated with training. Although additional experimental
onfirmation of this possibility is required, the CTC pathway is a
easonable candidate for a neural pathway in which a sensitivity
erivative could be implemented in the human brain.

.4. Implications on the acquisition of new motor skills and in reha-
ilitation

Our findings suggest that motor exploration is a key factor in
he learning of new skills. It has been suggested that the basal
anglia, which are thought to be responsible in the regulation of
ovement variability (Ölveczky et al., 2005; Pekny et al., 2015),
lay an important role in de novo motor learning (Gutierrez-
arralda et al., 2013; Krakauer et al., 2019). During the acquisition
f new motor skills, such as when learning to use a new BMI
Sadtler et al., 2014; Sussillo et al., 2016), or in settings where
he relationship between neural activation and task outcome
hanges considerably, such as in stroke rehabilitation (Krakauer &
armichael, 2017), it might be beneficial for participants learning
he task to increase their motor variability, at least during the
nitial acquisition of a sensitivity derivative appropriate for the
ask. Although this suggestion is not new (Sternad, 2018), in the
urrent study we tested a mechanism that explains in detail how
uch an increase in variability could be useful for the motor
ystem to learn a new task. Knowledge of this motor learning
echanism could be useful in the development of new, more
fficient training strategies for users of BMIs and for rehabilitation
herapies for stroke patients in the future.

.5. Limitations

The derivation of our predictions about our proposed learn-
ng system rely on the assumption that both task environment,
nverse model, and forward model are linear systems. We tried
o compensate for this limitation by testing our approach in
onlinear tasks, such as the arm-reaching task from Singh et al.
2016), where we also used nonlinear activation functions in the
nverse models, and we also used radial basis functions for both
nverse and forward models in our simulations of the EMG task
rom Berger et al. (2013).

Another limitation is in our representation of sensitivity
erivatives as an error backpropagation through a forward model.
ince so little is known about how sensitivity derivatives are
mplemented in the brain, we opted to represent them in a way
n which they have been studied in the past (Jordan & Rumelhart,
992; Pierella et al., 2019), even though it is still unknown
hether such backpropagation operation is implemented in the
rain (Lillicrap et al., 2020). In the future we plan to test other
rchitectures for the sensitivity derivatives, such as feedforward
eural networks which receive as input the task error and the
otor command and output the motor corrections, which are

hen used in the training of the inverse models. Further studies
370
into the possible role of the CTC pathway as a sensitivity deriva-
tive might also elucidate the best architecture to use for such
function in simulations.

Another limitation in our study is in not allowing for online,
feedback-driven movement corrections to be made. There is ev-
idence that feedforward and feedback control mechanisms are
learned separately in de novo tasks (Kasuga et al., 2015), which
might suggest that they possess separate underlying learning
processes. Variables such as the presence or not of online visual
feedback have shown to differentially influence the extent to
which feedforward and feedback learning processes are recruited
(Batcho et al., 2016). Further studies could help elucidate the
interaction between the learning of the feedforward and feed-
back components of motor control, and whether the learning
of the feedback control mechanism also benefits from motor
exploration, and if so, in what way.

5. Conclusion

We proposed a motor learning mechanism by which motor
exploration is used to train a sensitivity derivative that enables
the subsequent learning of a controller in a novel motor task.
We analyzed the basic properties of our proposed learning mech-
anism with equations. The results of simulations revealed that
the proposed learning mechanism was able to reproduce many
of the properties observed in various motor learning tasks. These
findings suggest that a similar learning mechanism might be
implemented in the human brain.

Our proposed learning mechanism provides insights regard-
ing the optimal learning strategy in de novo tasks. The results
indicated that motor exploration is a major factor in the learn-
ing of a new motor skill in situations where there is no prior
knowledge of which motor commands should be used in the task.
Although further confirmation through additional experiments
is required, the current findings suggest that motor exploration
should be encouraged during the learning of a new skill. Thus, the
current findings indicate a potentially valuable future direction
for the development of new therapies in the context of motor
rehabilitation.
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