Contents lists available at ScienceDirect

Stem Cell Research

journal homepage: www.elsevier.com/locate/scr

Lab Resource: Single Cell Line

Generation of a human induced pluripotent stem cell line derived from a patient with dilated cardiomyopathy carrying *LMNA* nonsense mutation

Yuzuno Shimoda^a, Nobuyuki Murakoshi^{a,*}, Haruka Mori^a, DongZhu Xu^a, Kazuko Tajiri^a, Yasuko Hemmi^b, Iori Sato^b, Michiya Noguchi^c, Yukio Nakamura^c, Yohei Hayashi^b, Masaki Ieda^a

^a Department of Cardiology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8575, Japan

^b iPS Cell Advanced Characterization and Development Team, BioResource Research Center, RIKEN, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan

^c Cell Engineering Division, BioResource Research Center, RIKEN, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan

ABSTRACT

Dilated cardiomyopathy (DCM) is a refractory heart disease characterized by dilation of the left ventricle and systolic dysfunction. *LMNA*, the gene encoding lamin A/C (a nuclear envelope protein), is the second leading causative gene associated with familial DCM. *LMNA*-related DCM is likely to develop severe heart failure, various types of arrhythmias, and poor prognosis. We established a human induced pluripotent stem cell line, derived from a patient with DCM carrying a nonsense mutation in *LMNA*. This line should be a useful resource for elucidating disease mechanisms and developing fundamental treatments for *LMNA*-related DCM.

1. Resource utility

This human induced pluripotent stem cell (hiPSC) line would contribute to elucidating how *LMNA* mutations induce dilated cardiomyopathy (DCM) and to the subsequent development of new therapies for it. In particular, iPSC-derived cardiomyocytes (iPSC-CMs) can be used to recapitulate *LMNA*-related DCM *in vitro*.

2. Resource table

Unique stem cell line identifier	BRCi021-A
Alternative name(s) of stem cell	hiPSC-TUH001
line	
Institution	Department of Cardiology, Faculty of Medicine,
	University of Tsukuba, Japan
Contact information of	Nobuyuki Murakoshi (n.murakoshi@md.tsuk
distributor	uba.ac.jp)
Type of cell line	iPSC
Origin	human
Additional origin info required	Age: 49, Sex: Male, Ethnicity: Japanese
for human ESC or iPSC	
Cell source	Peripheral blood mononuclear cells
Clonality	Clonal
Associated disease	Dilated cardiomyopathy
Gene/locus	LMNA/1q22
	Heterozygous LMNA c.801 T > A (p.Y267X)

(continued on next column)

COT	ntim	ied)	

Date archived/stock date	October 2020
Cell line repository/bank	University of Tsukuba, Japan / RIKEN
	BioResource Research Center (BRC), Japan
	https://hpscreg.eu/cell-line/BRCi021-A
Ethical approval	Approved by the Clinical Research Ethics Review
	Committee of University of Tsukuba Hospital
	(No. R02-078)

3. Resource details

DCM is an intractable myocardial disorder characterized by dilation of the left ventricle and low contractile force (Weintraub et al., 2017). DCM increases the risk of developing heart failure and arrhythmias, with the 5-year survival rate in patients with DCM being approximately 50%. Although some causative genes have been identified, the underlying mechanism of DCM pathogenesis remains largely elusive. Hence, fundamental therapies for DCM have not been developed, except heart transplantation.

LMNA is a gene that encodes lamin A/C, a nuclear envelope protein, and accounts for 10–15% of hereditary DCM. It is the second leading causative gene, after titin (*TTN*), in patients with familial DCM. DCM patients with *LMNA* mutations exhibit a poorer prognosis than those with *TTN* mutations (Tobita et al., 2018). In addition, truncating

* Corresponding author.

E-mail address: n.murakoshi@md.tsukuba.ac.jp (N. Murakoshi).

https://doi.org/10.1016/j.scr.2022.102793

Received 21 February 2022; Received in revised form 31 March 2022; Accepted 25 April 2022 Available online 27 April 2022

1873-5061/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Table 1

Characterization and validation.

Classification	Test	Result	Data	
Morphology	Photography	Normal	Fig. 1, panel A	
Phenotype	Qualitative analysis (immunocytochemistry)	Positive for OCT3/4, NANOG, and SOX2	Fig. 1, panel B	
	Quantitative analysis (flow cytometry)	TRA-1–60: 92.3%,	Fig. 1, panel C	
		SSEA-4: 98.7%		
Genotype	Virtual karyotyping (KaryoStat Assay)	46XY	Fig. 1, panel E	
Identity STR analysis		10 loci tested; all matched respective donor	Available with	
		profile	authors	
Mutation analysis (IF	Sequencing and western blotting	c.801 T > A	Fig. 1, panel F and	
APPLICABLE)		p.Tyr267*	Fig. 1, panel G	
Microbiology and	Mycoplasma	Negative	Supplementary	
virology			Fig. 1	
Differentiation potential	Embryoid body formation	Expression of TUJ1 for ectodermal marker, SMA	Fig. 1, panel D	
		for mesodermal marker, and AFP for endodermal		
		marker		
List of recommended	Expression of these markers has to be demonstrated at mRNA (RT PCR)	Ectoderm: TUJ1,	Fig. 1, panel D	
germ layer markers	or protein (IF) levels, at least 2 markers need to be shown per germ	Mesoderm: SMA,		
	layer	Endoderm: AFP		
Donor screening	HIV 1 + 2 Hepatitis B, Hepatitis C	N/A	N/A	
(OPTIONAL)				
Genotype additional info	Blood group genotyping	N/A	N/A	
(OPTIONAL)	HLA tissue typing	N/A	N/A	

mutations in *LMNA* are associated with lower cardiac function and more severe symptoms, including malignant arrhythmia and cardiac conduction defects, than missense mutations in *LMNA* (Nishiuchi et al., 2017).

In this study, we established a DCM-specific hiPSC line from a 49year-old male patient with an LMNA-truncating mutation. We generated this hiPSC line from the patient's peripheral blood mononuclear cells (PBMCs) using an episomal vector mix for reprogramming. The generated hiPSC line showed self-renewal, pluripotency (Table 1), and typical embryonic stem cell (ESC)-like morphologies (Fig. 1A). The expression of self-renewal markers, including OCT3/4, NANOG, and SOX2, was confirmed via immunocytochemistry (Fig. 1B). Flow cytometric analysis revealed high expression levels of SSEA-4 and TRA-1-60 (Fig. 1C). Pluripotency of the line was assessed using an embryoid body (EB) formation assay. The spontaneously differentiated EBs contained positive cells for ectodermal (tubulin beta III, TUJ1), mesodermal (smooth muscle actin, SMA), and endodermal (alpha-fetoprotein, AFP) markers (Fig. 1D). The virtual karyotyping assay did not detect any copy number changes in the whole genome of this hiPSC line (Fig. 1E). To examine the persistence of episomal vectors used for hiPSC generation, the EBNA1 included in episomal vectors was quantified via quantitative polymerase chain reaction (PCR). This line was demonstrated to contain low copy numbers of EBNA1 in genomic DNA. We confirmed the presence of the mutation by identifying exon 4 of the LMNA gene via sequencing (Fig. 1F). The same nonsense mutation, c.801 T > A (p. Tyr267*), was identified in this hiPSC line as the donor blood sample. The cell line was authenticated by STR analysis, and no mycoplasma contamination was detected via PCR analysis (Supplementary Fig. 1). Finally, we differentiated hiPSCs into cardiomyocytes (hiPSC-CMs) and examined the expression level of lamin A/C via western blotting. Two specific bands of lamin A/C were detected in blots corresponding to hiPSC-CMs derived from healthy individuals; however, such bands were absent in blots corresponding to hiPSC-CMs derived from TUH001. (Fig. 1G). These results indicated that the generated hiPSC line possessed proper hiPSC characteristics with an LMNA nonsense mutation.

4. Materials and methods

4.1. Reprogramming of PBMC and hiPSC culture

PBMCs were isolated from 10 mL of whole blood of the patient using Ficoll-Paque Plus (GE Healthcare) and cultured in EBM-2 Endothelial Cell Growth Medium supplemented with EGM-2 MV Microvascular Endothelial SingleQuots Kit (Lonza) by incubating them at 37 °C with 5% CO₂. After a few passages, the cells were reprogrammed using Human iPS Cell Generation Episomal Vector Mix (TaKaRa) and Neon Transfection System (Thermo Fisher Scientific). The PBMC suspension (100 μ L, 1 \times 10⁷ cells/mL) was mixed with 3 μ L of episomal vector mix, and the following condition of electroporation was performed: pulse voltage 1650 V, pulse width 10 msec, and pulse number 3. The cells were seeded on a 6-well plate coated with iMatrix-511 (Matrixome) and cultured in StemFit AK02N medium (Ajinomoto) supplemented with 10 µM Y-27632 (FUJIFILM Wako). After two weeks, individual ESC-like colonies were picked and seeded into new wells. Cells were passaged every 5-7 days with 0.5x TrypLE Select (Thermo Fisher Scientific), and the medium was changed every other day from the day after the passage. HPS3386, which was derived from a healthy individual and provided by the Cell Engineering Division, RIKEN BioResource Research Center, was used as a control hiPSC line.

4.2. Immunocytochemistry

Cells were fixed with 4% paraformaldehyde (FUJIFILM Wako) at passage number 5. They were permeabilized with 0.3% Triton X-100 (Sigma-Aldrich) in PBS and blocked with 1% bovine serum albumin (BSA; Sigma-Aldrich). SOX2, OCT-3/4, and NANOG were detected with a pluripotency marker kit (R&D systems, listed in Table 2).

4.3. Flow cytometry

HiPSCs were fixed and permeabilized using the Foxp3/transcription factor staining buffer set (Thermo Fisher Scientific) at passage number 9. They were then incubated with antibodies for 45 min on ice. The antibodies used in this study are listed in Table 2. The stained cells were analyzed using FACSVerse (BD) and FlowJo software (v.10.6.1, Tree Star).

4.4. In vitro differentiation assay

The *in vitro* differentiation assay was performed as described in our previous study (Kuramochi et al., 2021) at passage number 9. The germ markers used are listed in Table 2.

Fig. 1. The characterization of hiPSC line from a patient with LMNA-related dilated cardiomyopathy.

4.5. Differentiation of hiPSC-CMs

We modified the differentiation protocol, "GiWi method", (Lian et al., 2013) (Schemes in Supplementary Fig. 2 and Supplementary Table 1) for the differentiation of hiPSC-CM. In our protocol, the inhibitors, CHIR99021 (Sigma-Aldrich) and Wnt-C59 (Cayman Chemical), were used.

Table 2

	Antibodies used for immunocytochemistry/flow cytometry/western blotting					
	Antibody	Dilution	Company Cat #	RRID		
Pluripotency marker	Human Pluripotent Stem Cell 3-Color	1:10	R&D systems Cat# SC021	N/A		
	Immunocytochemistry Kit (NL557-conjugated Goat anti-Human SOX2,					
	NL637-conjugated Goat anti-Human OCT-3/4, and NL493-conjugated Goat anti-Human NANOG)					
Pluripotency marker	Vio488 anti-TRA-1-60	1:50	MiltenyiBiotec Cat# 130-106-872	RRID: AB_2654228		
Pluripotency marker	PE anti-human SSEA-4	1:50	BioLegend Cat#330405	RRID: AB_1089207		
Differentiation marker (ectoderm)	Mouse anti-TUJ1	1:250	R&D systems Cat# MAB1195	RRID: AB_357520		
Differentiation marker (mesoderm)	Mouse anti-SMA	1:250	R&D systems Cat# MAB1420	RRID: AB_262054		
Differentiation markers (endoderm)	Mouse anti-AFP	1:200	R&D systems Cat# MAB1368	RRID: AB_357658		
Western blotting of lamin A/C	Rabbit anti-lamin A/C	1:1,000	Abcam Cat# ab108922	RRID:		
C C				AB_10860619		
Western blotting of beta-actin	Mouse anti-beta-actin	1:1,000	Santa Cruz Biotechnology Cat# sc-	RRID: AB_2714189		
0			47778			
Secondary antibody for western blotting	Goat anti-rabbit IgG	1:10,000	Abcam Cat# ab6721	RRID: AB_955447		
Secondary antibody for western blotting	Horse anti-mouse IgG	1:10,000	Cell Signaling Technology Cat#	RRID: AB_330924		
			7076			
Secondary antibody for	Donkey anti-Mouse IgG Alexa Fluor 488	1:500	Thermo Fisher Scientific Cat# A-	RRID: AB_141607		
immunocytochemistry			21202			
	Primers					
	Target	Size of	Forward/reverse primer (5'-3')			
		band				
Episomal vector detection	EBNA1	542 bp	ATCAGGGCCAAGACATAGAGATG /			
			GCCAATGCAACTTGGACGTT			
Target mutation analysis/sequencing	LMNA Exon4	334 bp	GGCCTCCCAGGAACTAATTCTG /			
		-	CTCCCTGCCACCATCTGC			
Nested-PCR, 1st step PCR (MCGpF11/	Mycoplasma detection	350–850 bp	ACACCATGGGAG(C/T)TGGTAAT / C	CTTC(A/T)TCGACTT		
MCGpR1)			(C/T)CAGACCCAAGGCAT			
Nested-PCR, 2nd step PCR (R16–2/	Mycoplasma detection	200–750 bp	50 bp GTG(C/G)GG(A/C)TGGATCACCTCCT / GCATCCACCA(A/			
MCGpR21)			T)A(A/T)AC(C/T)CTT			

4.6. Western blotting

Proteins were extracted from hiPSC-CMs using PRO-PREP protein extraction solution (iNtRON Biotechnology). The proteins were loaded with Mini-PROTEAN TGX precast gels (4–20%, BIO-RAD) and transferred onto membranes using Trans-Blot Turbo PVDF transfer packs (BIO-RAD). The antibodies used for the detection of the respective proteins are listed in Table 2.

4.7. Mycoplasma tests

Mycoplasma tests, comprising DNA fluorescence staining and nested PCR, were performed as described in our previous study (Kuramochi et al., 2021). The cells were tested at passage number 9. The primers used are listed in Table 2.

4.8. Karyotyping

Genomic DNA was extracted from hiPSCs using the QIAamp DNA tissue kit (Qiagen) at passage number 5. KaryoStat assay arrays (Thermo Fisher Scientific) were used to detect copy number variation (CNV) in the whole genome, as described our previous study (Kuramochi et al., 2021).

4.9. STR analysis

Genomic DNA was extracted from hiPSCs and from the patient's blood samples using the QIAamp DNA blood midi kit (Qiagen) at passage number 5. They were subjected to STR analysis using the Gene-Print10 system (Promega).

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

This study was supported in part by grants from the Acceleration Program for Intractable Diseases Research utilizing Disease-specific iPS cells, a Research Center Network for Realization of Regenerative Medicine, Japan Agency for Medical Research and Development (AMED), to Y.H. [21bm0804027h0002]. There is no financial relationship with the work of this manuscript. We would like to express our sincere gratitude to all our coworkers and collaborators of Kumiko Omori for their administrative support.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.scr.2022.102793.

References

Kuramochi, Y., Awaya, T., Matsuo-Takasaki, M., Takami, M., An, Y., Li, J., Hemmi, Y., Wakabayashi, T., Arai, Y., Inoue, J., Noguchi, M., Nakamura, Y., Asaka, I., Akimoto, K., Saito, M.K., Hayashi, Y., 2021. Generation of two human induced pluripotent stem cell lines derived from two X-linked adrenoleukodystrophy patients with *ABCD1* mutations. Stem Cell Res. 53, 102337 https://doi.org/10.1016/j. scr.2021.102337.

Lian, X., Zhang, J., Azarin, S.M., Zhu, K., Hazeltine, L.B., Bao, X., Hsiao, C., Kamp, T.J., Palecek, S.P., 2013. Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/β-catenin signaling under fully defined conditions. Nat. Protoc. 8 (1), 162–175. https://doi.org/10.1038/nprot.2012.150.

Y. Shimoda et al.

- Nishiuchi, S., Makiyama, T., Aiba, T., Nakajima, K., Hirose, S., Kohjitani, H., Yamamoto, Y., Harita, T., Hayano, M., Wuriyanghai, Y., Chen, J., Sasaki, K., Yagihara, N., Ishikawa, T., Onoue, K., Murakoshi, N., Watanabe, I., Ohkubo, K., Watanabe, H., Ohno, S., Doi, T., Shizuta, S., Minamino, T., Saito, Y., Oginosawa, Y., Nogami, A., Aonuma, K., Kusano, K., Makita, N., Shimizu, W., Horie, M., Kimura, T., 2017. Gene-based risk stratification for cardiac disorders in *LMNA* mutation carriers. Circ. Cardiovasc. Genet. 10 (6), e001603 https://doi.org/10.1161/ CIRCGENETICS.116.001603.
- Tobita, T., Nomura, S., Fujita, T., Morita, H., Asano, Y., Onoue, K., Ito, M., Imai, Y., Suzuki, A., Ko, T., Satoh, M., Fujita, K., Naito, A.T., Furutani, Y., Toko, H., Harada, M., Amiya, E., Hatano, M., Takimoto, E., Shiga, T., Nakanishi, Y., Sakata, Y., Ono, M., Saito, Y., Takashima, S., Hagiwara, N., Aburatani, H., Komuro, I., 2018. Genetic basis of cardiomyopathy and the genotypes involved in prognosis and left ventricular reverse remodeling. Sci. Rep. 8 (1), 1998. https://doi.org/10.1038/ s41598-018-20114-9.
- Weintraub, R.G., Semsarian, C., Macdonald, P., 2017. Dilated cardiomyopathy. Lancet 390 (10092), 400–414. https://doi.org/10.1016/S0140-6736(16)31713-5.