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Flat-band solutions in D-dimensional decorated diamond and pyrochlore lattices:
Reduction to molecular problem
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Flat-band models have been of particular interest from both fundamental aspects and realization in materials.
Beyond the canonical examples such as Lieb lattices and line graphs, a variety of tight-binding models are found
to possess flat bands. However, the analytical treatment of dispersion relations is limited, especially when there
are multiple flat bands with different energies. In this paper, we present how to determine flat-band energies and
wave functions in tight-binding models on decorated diamond and pyrochlore lattices in generic dimensions D �
2. For two and three dimensions, such lattice structures are relevant to various organic and inorganic materials,
and thus our method will be useful to analyze the band structures of these materials.
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I. INTRODUCTION

Singular dispersions in band structures are the source of a
variety of interesting phenomena in solid-state physics. One
of the representative examples is a linear dispersion around
the band crossing point, or the Dirac/Weyl point [1–3], which
gives rise to various intriguing transport [4–6] and mag-
netic [7–10] phenomena. As such, Dirac/Weyl fermions in
solids have been intensively pursued [1–3,11–13]. Another
example of singular dispersion is a flat band, which is a
completely dispersionless band in the entire Brillouin zone.
Studies of such band structure have been developed in various
aspects, such as ferromagnetism [14–20], superconductivity
[21–25], topological phenomena [26–42], and localization
phenomena [43–48].

So far, various tight-binding models with flat bands have
been explored [14,49–58], and many insights on the model
construction have been accumulated. It was also found that
some flat-band models have large sublattice degrees of free-
dom, resulting in multiple flat bands with different energies
[59–62]. In such models, it is not easy to obtain analytic
expressions of dispersion relations since the Hamiltonians in
momentum space are large matrices.

In this paper, we elucidate how to determine the flat-band
energies analytically in a class of tight-binding models which
can be obtained by decorating the bonds of a honeycomb
lattice (in two dimensions), a diamond lattice (in three di-
mensions), and their higher-dimensional analogs, D � 4; see
Fig. 1 for the schematic figure of the two-dimensional model.
Such lattice structures are of interest because they are known
to be realized in various organic-based materials, such as
graphene superstructures [63,64], α-graphyne [65–68], and
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metal-organic frameworks (MOFs) [68–71], as well as some
inorganic materials [72,73]. Recently, they were also dis-
cussed in the context of the square-root topological phases
[74,75]. We therefore expect that the determination of the
flat-band energies is useful for band structure analysis and
material design for these materials.

The key idea is to divide the Hamiltonian into two parts,
which we term “linkers” and “linkages.” Importantly, the
linkers and the linkages are not independent of each other
since they share sites. Nevertheless, the flat-band energies
can be obtained by solving the linkage Hamiltonian, and
the corresponding wave function can be found such that the
compatibility relations are respected on the shared sites. The
momentum-independence of the eigeneneries originate from
the fact that the linkage Hamiltonian can be regarded as that
for an isolated “molecule” [76]. We find that the flat-band
wave function of the D-dimensional decorated diamond lattice
is given by the product of the wave function of the linkage
and the flat-band wave function of D-dimensional pyrochlore
lattice. We also shed light on another interesting band struc-
ture often seen in this class of lattices, namely, a multiple
band touching at � point which occurs at specific choices
of parameters.

The analog of the method described in this paper was pre-
viously applied to two-dimensional decorated kagome lattice
[62], relevant to covalent organic frameworks (COFs) [60],
as well as the cyclicgraphdiyne [77], where carbon atoms
having different kinds of sp hybrid orbitals coexist and form
a crystal. Here we emphasize that this method yields not only
the energies of the flat bands but also their wave functions,
which was not addressed in the previous work. Therefore,
for completeness, we also explain the method for obtaining
flat-band energies and eigenstates for the D-dimensional dec-
orated pyrochlore lattice.
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FIG. 1. A schematic of generic decorated diamond lattices. For
clarity, we draw the case with D = 2. White dots stand for the
vertices of the original diamond lattice, and gray allows stand for the
lattice vectors. Blue ellipses and black dots denote decorated parts.
The schematics of linkers and linkages are also depicted. Note that
the black dots belong to both linkers and linkages.

In the following discussions in the main text, we impose
several assumptions (see Sec. II A) in order to retain the rele-
vance to real materials. However, from a theoretical point of
view, some of the assumptions can be relaxed. Such general-
izations are described in Sec. V as well as Appendix A.

II. FLAT-BAND SOLUTIONS FOR D-DIMENSIONAL
DECORATED DIAMOND LATTICES

In this section, we first describe the decorated diamond
model, which is the main focus of this paper. We then explain
how the flat-band energies and wave functions can be deter-
mined. The key idea is to employ a technique of mathematical
physics by which we can reduce the eigenvalue problem of
the Bloch Hamiltonian with a relatively large size to that of
the small molecule.

A. Model

Consider a diamond lattice in D dimensions with D � 2
[51,81–83]. The lattice vectors are given as [51]

a j = E j − ED+1, (1)

where j = 1, . . . , D and the vectors E1, . . . , ED+1 are the
vertices of the D simplex; see Fig. 2 for the schematics of

FIG. 2. Schematics of a j and E j of Eq. (1) for (a) two and
(b) three dimensions.

D = 2 and 3. We set the coordinates of two sublattices of
the D-dimensional diamond lattice (for D = 2, see the white
dots of Fig. 1) as

rA = 1

D + 1

D∑
j=1

a j (2)

and

rB = 0. (3)

Now, let us consider the decorated lattices of
D-dimensional diamonds, shown in Fig. 1. Namely, we
decorate the nearest-neighbor (NN) bonds of the diamond
lattices, obeying the following rules. (1) The sublattices A and
B of the original diamond lattice are, respectively, connected
to D + 1 sites with the same hoppings (red and green bonds
in Fig. 1). (2) The decorated objects are the same for all the
NN bonds of the diamond lattices [see Eq. (7) for details].

For later use, let us clarify some terminologies. (1) We
call a set of D + 2 sites, composed of one site placed on the
original diamond lattice and the other D + 1 sites connected
to that site, a “linker.” (2) We call a decorated part on each
edge of the diamond lattice a “linkage.” In other words, the
linkages are placed on the vertices of the line graph of the
diamond lattice. It is worth noting that the black dots in Fig. 1
belong to both a linker and a linkage.

On this class of lattices, we consider the following Hamil-
tonian in k space, which is in general written as a [(D + 1)q +
2]-dimensional matrix:

Hk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

UA txT
q txT

q · · · txT
q 0

txq H(1)
linkage Oq · · · Oq t ′eik·a1 yq

txq Oq H(2)
linkage

. . .
... t ′eik·a2 yq

...
...

. . .
. . . Oq

...

txq Oq · · · Oq H(D+1)
linkage t ′yq

0 t ′e−ik·a1 yT
q t ′e−ik·a2 yT

q · · · t ′yT
q UB

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4)

where xq and yq are q-component column vectors defined
as xq := (1, 0, . . . , 0)T and yq := (0, . . . , 1)T, respectively,
and Oq stands for the q × q zero matrix. The parameters
UA and UB are on-site potentials for sublattices A and B,
respectively; t and t ′ are, respectively, the transfer integrals

assigned on the bonds connecting the decorated part with the
sublattices A and B.

For later use, we define two (D + 1)-component row vec-
tors, ψ(1)† and ψ

(2)†
k , which have the forms

ψ(1)† = (1, 1, . . . , 1) (5a)
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and

ψ
(2)†
k = (e−ik·a1 , . . . , e−ik·aD , 1), (5b)

and the matrix composed of these two vectors [78]:

�
†
k =

(
ψ(1)†

ψ
(2)†
k

)
. (6)

The q × q matrix H( j)
linkage in Eq. (4) can be regarded as a

Hamiltonian of an isolated “molecule.” In the present case,
we assume that all the linkages have the same structure, i.e.,
the following holds:

H(1)
linkage = H(2)

linkage = · · · = H(D+1)
linkage = Hlinkage. (7)

B. Derivation of flat-band solution

This type of models possess multiple flat bands with dif-
ferent energies [63,68,72]. Remarkably, if the number of
decorated sites on each bond is q, there exist q flat bands
with different energies. More precisely, in the D-dimensional
model, each flat band has (D − 1)-fold degeneracy, thus the
number of flat bands is equal to (D − 1)q.

In general, analytic solutions of the dispersion relations
in this class of models are hard to obtain, since the size of
the Hamiltonian matrix is large. Nevertheless, we can ob-
tain the eigenvalues and eigenvectors of the flat bands as
follows. Let λlinker,k be a (D + 1)-component column vector,
which satisfies

�
†
kλlinker,k =

(
0
0

)
. (8)

As �
†
k is the 2 × (D + 1) matrix, there are D − 1 independent

solutions of λlinker,k. Only at the � point (i.e., k = 0), the rank
of �

†
k is reduced by one as ψ(1) = ψ

(2)
k holds, which results in

the increase of the number of solutions from D − 1 to D. We
note that λlinker,k corresponds to the flat-band eigenvector of
the D-dimensional pyrochlore lattice [51].

To find the flat-band solution, we employ a notion of “in-
tertwiner” [79,80]. Before going to the concrete problem, we
briefly address a generic argument. Let A and G be Hermitian
matrices with different sizes. It is known that A and G have
common eigenvalues if these matrices satisfy

AC = CG, (9)

with C being a nonsquare matrix. The matrix C is called the
“intertwiner.” A simple proof of this statement is as follows.
Let φ be an eigenvector of G with eigenvalue ε. Then, one
finds that Cφ is an eigenvector of A with eigenvalue ε (unless
φ belongs to the kernel of C), because

A(Cφ) = CGφ = ε(Cφ). (10)

Turning to the present model, we can explicitly con-
struct the intertwiner Ck, which is [(D + 1)q + 2] × q matrix
and satisfies

HkCk = CkHlinkage. (11)

Its form is given as

Ck =

⎛
⎜⎜⎜⎜⎝

0T
q

[λlinker,k]1Iq
...

[λlinker,k]D+1Iq

0T
q

⎞
⎟⎟⎟⎟⎠, (12)

where 0q stands for the q-component column zero vector, Iq

stands for the q × q identity matrix, and [λlinker,k] j is the jth
component of λlinker,k. Therefore the eigenvalues of Hlinkage

are also those of Hk. As Hlinkage is k-independent, the eigen-
values obtained as such naturally form flat bands. Equation
(11) also leads to the flat-band wave function. Let φlinkage,n be
a q-component vector, which is the nth eigenvector of Hlinkage.
It satisfies

Hlinkageφlinkage,n = εlinkage,nφlinkage,n (13)

with εlinkage,n being the eigenvalue. Then, the flat-band eigen-
vector ϕk,n, written as

ϕk,n =

⎛
⎜⎜⎜⎜⎝

ϕA,k,n

ϕ1,k,n
...

ϕ(D+1)q,k,n

ϕB,k,n

⎞
⎟⎟⎟⎟⎠, (14)

is given as

ϕk,n = 1

Nk
Ckφlinkage,n, (15)

where Nk is the normalization constant. More concretely, the
components of ϕk,n are given as

ϕA,k,n = ϕB,k,n = 0 (16)

and

ϕq( j−1)+m,k,n = 1

Nk
[λlinker,k] j[φlinkage,n]m (17)

with j = 1, . . . D + 1 and m = 1, . . . q. Equation (17) indi-
cates that the flat-band wave function of the D-dimensional
decorated diamond lattice is given by the product of the
linkage’s wave function and the flat-band wave function of
D-dimensional pyrochlore lattice.

In the next section, we elucidate how this construction
actually works by showing specific examples.

III. EXAMPLES

In this section, we demonstrate that the aforementioned
method works for decorated diamond lattices in D = 2, 3,
and 4. Although our formulation is applicable to generic types
of decoration patterns, we mainly focus on the model where
the chain-type structure is inserted between the neighboring
sites of the diamond lattices. (We present an example of the
non-chain-type decorating sites for D = 2; see Fig. 4.) The
motivation to focus on these models is that, for D = 2, 3,
they are known to be relevant to MOFs such as DCBP3Co2

and DCA3Co2 [71], α-graphyne [65–68], and TaS2 [72,73].
(DCBP and DCA stand for dicyanobiphenyl and dicyanoan-
thracene, respectively). As for D = 4, some recent works

035155-3



TOMONARI MIZOGUCHI et al. PHYSICAL REVIEW B 104, 035155 (2021)

FIG. 3. (a) A decorated honeycomb lattice with q sites on edges of hexagons. The lattice vectors are aDH
1 = ( 1

2 ,
√

3
2 ) and aDH

2 = (− 1
2 ,

√
3

2 ).
Schematics of the Hamiltonians of the chainlike molecules corresponding to (b) HDH

linkage and (c) H̃. The band structures for q = 3 for

(d) (t1, t2, t3, t4,UA,U1,U2,U3,UB) = (1, 1, 1, 1, 0, 0, 0, 0, 0), (e) (0.8,1,1,0.8,0,0.3,0.3,0.3,0), and (f) (
√

2
3 , 1, 1,

√
2
3 , 0, 0, 0, 0, 0). Red arrows

point to the flat bands, and the blue circles represent the triple band touchings. The coordinates of the high-symmetry points in the first Brillouin
zone are � = (0, 0), K = ( 4π

3 , 0), and M = (π, π√
3

).

addressed the four-dimensional diamond lattice [81–83] as
a canonical example of four-dimensional Dirac fermions on
lattice models. In this context, the decorated four-dimensional
diamond lattice is an interesting extension of it where Dirac
fermions and flat bands coexist.

A. Two dimensions: decorated honeycomb lattice

Consider a decorated honeycomb lattice model with q sites
on each edge of hexagons [Fig. 3(a)]. The specific form of the
Hamiltonian, HDH

k , is given by substituting t = t1, t ′ = tq+1,

FIG. 4. (a) A decorated honeycomb lattice with four decorating
sites, shaped in the rhombus, at each edge. (b) Schematic figure of
the four-site molecule whose eigenenergies are equal to the flat-
band energies. (c) The band structure for (t, t ′, t1, t2, t3, t4, t5, t6) =
(1, 0.9, 0.4, 0.5, 0.3, 0.6, 1.1, 0.7). The on-site potentials are zero.
Red arrows point to the flat bands.

and

HDH
linkage =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

U1 t2
t2 U2 t3

t3 U3
. . .

. . .
. . .

Uq−1 tq
tq Uq

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(18)

into Eq. (4). (The matrix elements that are zero are left blank.)
The row vectors ψDH(1)† and ψ

DH(2)†
k are given as

ψDH(1)† = (1, 1, 1), (19)

ψ
DH(2)†
k = (e−ik·aDH

1 , e−ik·aDH
2 , 1). (20)

The vector λDH
linker,k is obtained as

λDH
linker,k =

⎛
⎝ 1 − e−ik·aDH

2

e−ik·aDH
1 − 1

e−ik·aDH
2 − e−ik·aDH

1

⎞
⎠. (21)

Then, the flat-band energies are equal to the eigenvalues of
HDH

linkage, and the corresponding wave functions are given in
the form of Eq. (17).

In Figs. 3(d)–3(f), we plot the band structures for q = 3
with several sets of parameters. In all cases, there are three
flat bands, whose energies are indeed equal to εlinkage,n.

It is also interesting to find that the triple band touching,
where the flat band penetrates the band touching point of
dispersive bands, occurs at � point in some cases [e.g., ε = 0
in Fig. 3(d)]. In what follows, we elucidate the condition for
the triple band touching, by explicitly derive the eigenenergies
at � point.

Before proceeding further, we remark that any of the flat
bands touches the dispersive band at � point regardless of the
parameters. This is because of the rank reduction of �

†
k , which

we have mentioned in Sec. II A. Therefore, from the above
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derivation of the flat-band energies, we have already obtained
2q eigenenergies out of 3q + 2 at � point, thus we need to
derive the remaining q + 2 eigenenergies.

For the derivation of the eigenenergies at � point, we
first point out that the remaining eigenstates have three-fold
rotational symmetries centered at A site and B site. Therefore
the wave function satisfies

ϕm = ϕm+q = ϕm+2q, (22)

for m = 1, . . . , q. Substituting (22) into the Schrödinger
equation, we find that it is reduced to the eigenvalue equation
of the following (q + 2) × (q + 2) matrix:

χ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

UA 3t1
t1 U1 t2

t2 U2
. . .

. . .
. . .

Uq tq+1

3tq+1 UB

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (23)

Clearly, X is a non-Hermitian matrix, since (1,2) and (2,1)
components are different and so are (q − 1, q) and (q, q − 1)
components. Nevertheless, all the eigenvalues of X are real,
since there exists a similarity transformation such that X is
transformed into the Hermitian matrix:

P−1XP = H̃, (24)

with P = diag(
√

3, 1, . . . , 1,
√

3) and

H̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

UA

√
3t1√

3t1 U1 t2

t2 U2
. . .

. . .
. . .

Uq

√
3tq+1√

3tq+1 UB

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (25)

Then, denoting the eigenvalues of H̃ as
ε

Disp.

n′ (t1, t2, t3, . . . , tq, tq+1;UA,U1,U2, . . .Uq,UB) with
n′ = 1, . . . , q + 2, we can write down the condition for
the triple band touching as

εlinkage,n(t2, t3, . . . , tq,U1,U2, . . .Uq)

= ε
Disp.

n′ (t1, t2, t3, . . . , tq, tq+1,UA,U1,U2, . . .Uq,UB),

(26)

for some n = 1, . . . , q and n′ = 1, . . . , q + 2. For the special
case when both Hlinkage and H̃ are chiral symmetric (i.e.,
UA = UB = U1 = · · · = Uq = 0), and q is an odd number,
both Hlinkage and H̃ have a zero eigenvalue, thus the triple
band touching at ε = 0 is guaranteed. Indeed, Fig. 3(d) is an
example of such a case. As a further interesting case, we show
an example where all of the flat bands exhibit the triple band
touching in Fig. 3(f). In fact, such a set of parameters can
be found by using the wisdom of the Dynkin diagrams; see
Appendix B for details.

Before closing this section, we present two additional ex-
amples beyond the model discussed so far. The first one is
the case where the decoration sites are not aligned in a chain,

FIG. 5. (a) Schematic figure of H′
k of Eq. (27). Blue dashed

arrows represent the complex hoppings. (b) Band structure for the
model of (a) with (t1, t2, t3, t4, λ) = (0.5, 0.7, 1.0, 0.5, 0.1). The on-
site potentials are zero. The numbers beside the bands indicate the
Chern numbers, which are calculated for the set of bands included in
the same shade. Red arrows point the flat bands.

as depicted in Fig. 4(a). Even in this case, the flat-band en-
ergies are obtained by solving the eigenvalue problem of the
“molecule” formed by the decorating sites [Fig. 4(b)]. Indeed,
we find four flat bands in Fig. 4(c), whose energies are equal
to those for Fig. 4(b).

The second example is the Chern insulator on the deco-
rated honeycomb lattice. As we have seen, the flat band wave
functions have vanishing amplitudes on A and B. Therefore,
if one modifies the model such that the additional term acts
only on A and B, the model still hosts the exact flat band.
Keeping this in mind, we add the complex hopping among
the vertices of the honeycomb lattice to HDH

k , to make the
dispersive bands topological [see Fig. 5(a) for the schematic
figure]. Specifically, the additional term, H′

k, has the same
form as the Haldane model [84]:

H′
k = 2λMkdiag(1, 0, · · · , 0,−1) (27)

with Mk = sin k · aDH
1 − sin k · aDH

2 − sin k · (aDH
1 − aDH

2 ).
The band structure for a representative set of parameters with
q = 3 is shown in Fig. 5(b). We compute the Chern number
numerically by using the method of Ref. [85]. Clearly, the
exact flat bands survive and some of the dispersive bands
acquire the nontrivial Chern numbers. Further, some of the
flat bands have quadratic band touching with topologically
nontrivial dispersive bands. Similar band structure was seen
in the kagome-lattice model discussed in Ref. [40].

B. Three and four dimensions

The same method is applicable to the case of three- and
four-dimensional decorated honeycomb lattice with q sites on
each edge. In such models, the flat-band energies are given by
the eigenenergies of Hlinkage, regardless of the dimensionality.

Figures 6 and 7 show the resulting band structures for three
and four dimensions, respectively, with q = 3. For the coor-
dinates of the high-symmetry points in the four-dimensional
Brillouin zone, we follow Ref. [83]; see Appendix C. We note
that the degeneracy of each flat band is two (three) for D =
3 (D = 4). Correspondingly, the band touchings at � point
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FIG. 6. (a) A decorated diamond lattice with three sites on NN bonds of a diamond lattice. The lattice vectors are aDD
1 =

(0, 1
2 , 1

2 ), aDD
2 = ( 1

2 , 0, 1
2 ), and aDD

3 = ( 1
2 , 1

2 , 0). The band structures for (b) (t1, t2, t3, t4,UA,U1,U2,U3,UB) = (1, 1, 1, 1, 0, 0, 0, 0, 0),
(c) (0.8,1,1,0.8,0,0.3,0.3,0.3,0), and (d) ( 1√

2
, 1, 1, 1√

2
, 0, 0, 0, 0, 0). Red arrows point to the flat bands and the blue circle represents the

quadruple band touching. The coordinates of the high-symmetry points in the first Brillouin zone are � = (0, 0, 0), W = (π, 0, 2π ),
L = (π, π, π ), X = (0, 0, 2π ) and K = ( 3π

2 , 0, 3π

2 ).

denoted by the blue circles in Figs. 6 and 7 have (D + 1)-fold
degeneracy for the D-dimensional system.

IV. D-DIMENSIONAL DECORATED PYROCHLORE
LATTICES

In this section, we discuss yet another series of mul-
tiple flat-band systems, namely, D-dimensional decorated
pyrochlore lattices. For concreteness, we consider the three-
dimensional decorated pyrochlore model with one decorating
site between neighboring tetrahedra [Fig. 8(a)]. Extension
to generic dimensions and generic forms of decoration
is straightforward. (For instance, the result for the two-
dimensional analog is presented in the prior work [62].) We
note that this type of lattice structure, both in two and three di-
mensions, has various material realizations, mainly in organic
systems [60–62,77,86–88].

FIG. 7. The band structure of the decorated four-dimensional
diamond lattice with q = 3. The parameters are set as
(t1, t2, t3, t4,UA,U1,U2,U3,UB) = (1, 1, 1, 1, 0, 0, 0, 0, 0). Upper
and lower panels are for different high-symmetry lines. Red arrows
point to the flat bands, and blue circles represent the quintuple
band touchings.

We consider the lattice of Fig. 8(a). Three lattice
vectors are in common with the decorated diamond lattice.
The Hamiltonian is the 12 × 12 matrix given as

HDP
k =

⎛
⎜⎜⎜⎝
H̃DP

linkage Vk,(1,2) Vk,(1,3) Vk,(1,4)

Vk,(2,1) H̃DP
linkage Vk,(2,3) Vk,(2,4)

Vk,(3,1) Vk,(3,2) H̃DP
linkage Vk,(3,4)

Vk,(4,1) Vk,(4,2) Vk,(4,3) H̃DP
linkage

⎞
⎟⎟⎟⎠, (28)

where

H̃DP
linkage =

⎛
⎝0 t3 0

t3 0 t4
0 t4 0

⎞
⎠ (29)

and

Vk,(i, j) =
⎛
⎝t1 0 0

0 0 0
0 0 t2e−ik·(aDD

i −aDD
j )

⎞
⎠ (30)

with aDD
4 = (0, 0, 0).

To obtain the flat band solution, we again give the inter-
twiner explicitly. In the present model, we have

HDP
k Ck = CkHDP

linkage, (31)

where

Ck =

⎛
⎜⎝

[λlinker,k]1I3

[λlinker,k]2I3

[λlinker,k]3I3

[λlinker,k]4I3

⎞
⎟⎠ (32)

and

HDP
linkage = H̃DP

linkage +
⎛
⎝−t1 0 0

0 0 0
0 0 −t2

⎞
⎠

=
⎛
⎝−t1 t3 0

t3 0 t4
0 t4 −t2

⎞
⎠, (33)

where λlinker,k is the same as that for the decorated diamond
model. Note that the left-hand side of Eq. (31) becomes
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FIG. 8. (a) A decorated pyrochlore lattice with one decorated site between neighboring tetrahedra. (b) Schematic figure of the Hamil-
tonian of the chainlike molecule corresponding to HDP

linkage. (c) The band structure for (t1, t2, t3, t4) = (1, 0.5, 0.8, 0.7). Red arrows point to
the flat bands.

HDP
k Ck =

⎛
⎜⎜⎜⎝
H̃DP

linkage Vk,(1,2) Vk,(1,3) Vk,(1,4)

Vk,(2,1) H̃DP
linkage Vk,(2,3) Vk,(2,4)

Vk,(3,1) Vk,(3,2) H̃DP
linkage Vk,(3,4)

Vk,(4,1) Vk,(4,2) Vk,(4,3) H̃DP
linkage

⎞
⎟⎟⎟⎠

⎛
⎜⎝

[λlinker,k]1I3

[λlinker,k]2I3

[λlinker,k]3I3

[λlinker,k]4I3

⎞
⎟⎠

=

⎛
⎜⎜⎜⎝

[λlinker,k]1H̃DP
linkage + [λlinker,k]2Vk,(1,2) + [λlinker,k]3Vk,(1,3) + [λlinker,k]4Vk,(1,4)

[λlinker,k]2H̃DP
linkage + [λlinker,k]1Vk,(2,1) + [λlinker,k]3Vk,(2,3) + [λlinker,k]4Vk,(2,4)

[λlinker,k]3H̃DP
linkage + [λlinker,k]1Vk,(3,1) + [λlinker,k]2Vk,(3,2) + [λlinker,k]4Vk,(3,4)

[λlinker,k]4H̃DP
linkage + [λlinker,k]1Vk,(4,1) + [λlinker,k]2Vk,(4,2) + [λlinker,k]3Vk,(4,3)

⎞
⎟⎟⎟⎠. (34)

The jth column of the second line of Eq. (34) is

[λlinker,k] jH̃DP
linkage +

∑
j′ �= j

[λlinker,k] j′

⎛
⎝t1 0 0

0 0 0

0 0 t2e−ik·(aDD
j −aDD

j′ )

⎞
⎠

= [λlinker,k] j

⎡
⎣H̃DP

linkage +
⎛
⎝−t1 0 0

0 0 0
0 0 −t2

⎞
⎠

⎤
⎦ = [λlinker,k] jHDP

linkage, (35)

which is equal to the jth component of the right-hand side
of Eq. (32). The second line of Eq. (35) can be obtained by
using Eq. (8). Having Eq. (31) at hand, we again see that the
flat-band eigenenergies are equal to those of HDP

linkage, and that
the wave function of nth flat band is given as

ϕDP
3( j−1)+m,k,n = 1

Nk
[λlinker,k] j

[
φDP

linkage,n

]
m
, (36)

( j = 1, 2, 3, 4 and m = 1, 2, 3), where φDP
linkage,n is

the eigenvector of HDP
linkage corresponding to the nth eigen-

value. The corresponding molecule for HDP
linkage is depicted in

Fig. 8(b). Comparing H̃DP
linkage with HDP

linkage, one finds that the
on-site potentials, −t1 and −t2, are added at the end sites.

The band structure for a certain set of parameters is shown
in Fig. 8(c). We obtain three flat bands, each of which is
doubly degenerate. As we have discussed, their energies are
equal to the eigenvalues of HDP

linkage.

V. SUMMARY AND DISCUSSIONS

We have presented the method to determine the flat-band
energies and wave functions analytically in the decorated dia-
mond lattices in arbitrary dimensions. The key idea is to divide
the Hamiltonian into the linker part and the linkage part.
Namely, by using the intertwiner [Eq. (11)] which is com-
posed of the wave functions at the linker, we can reduce the
eigenvalue problem of k-dependent [(D + 1)q + 2] × [(D +
1)q + 2] matrix (Hk) to the k-independent q × q linkage
Hamiltonian (Hlinkage). Further, we also find that the flat-
band wave function of the D-dimensional decorated diamond
lattice is given by the product of the linkage wave func-
tion and the flat-band wave function for the D-dimensional
pyrochlore lattice.

We show the examples of the decorated honeycomb lattice
in two dimensions, the decorated diamond lattice in three
dimensions, and the decorated four-dimensional diamond
lattice, where each NN bond is decorated by the chain-
like structure. The condition for the multiple band touching
at � point is also addressed. Further, the same method is
applicable to the D-dimensional decorated pyrochlore lattices.
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FIG. 9. The examples of the generalizations of the
flat-band models on decorated honeycomb lattices. (a) Model
where two sites on each linkage are connected to a linker.
(b) Band structure for the model of (a). The parameters
are set as (t1, t2, t3, t4, t5, t6, t7,UA,U1,U2,U3,U4,UB) =
(0.8, 1, 1, 1, 0.8, 0.2, 0.2, 0, 0.3, 0.3, 0.3, 0.3, 0) (The definitions
of the above parameters follow those in Sec. III A). (c) Model
where the hoppings integrals on each linker are different.
(d) Band structure for the model of (c). The parameters
are set as (t1, t ′

1, t ′′
1 , t2, t3, t4, t ′

4, t ′′
4 ,UA,U1,U2,U3,UB) =

(0.8, 0.7, 0.6, 1, 1, 0.8, 0.9, 1, 0, 0.3, 0.3, 0.3, 0). (e) Model
where the linkages have the different structures from each other.
(f) Band structure for the model of (e). The hopping parameters are
set as (t1, t2, t3) = (0.8, 1, 0.4). The on-site potential is introduced
only at the sublattice 5 with the energy V = −1. Red arrows point to
the flat bands.

There, the tetrahedral parts of the original Hamiltonian turn
into the on-site potential at the edges of the linkage Hamilto-
nian.

As mentioned in Sec. I, several extensions of our method
are possible, as listed below.

(i) We assume that each linkage is connected to a linker
through one of the sites. However, this method can be used
even when each linkage is connected to a linker with more
than two sites [for an example, see Fig. 9(a)]. This is because
the relation Eq. (11) for the intertwiner of Eq. (12) holds even
in this case.

(ii) We assume that all the hopping integrals in each linker
are the same. This condition can be relaxed, i.e., the hopping
integrals in each linker can be different [for an example,
see Fig. 9(c)].

(iii) We assume that all the linkages have the same struc-
ture [Eq. (7)]. However, our construction of the flat bands
works even when linkages have different structures, as long
as the linkages have common eigenenergies [76]. For instance,
the numbers of sites consisting of the linkages can be different
from each other [see Fig. 9(e)].

(iv) Finally, the lattices structures are not limited to the
decorated diamond lattices. In fact, the method works in,
e.g., the decorated square lattices (i.e., the generalized Lieb
lattices) [76]. In this regard, the Lieb-lattice-based materials
are also in the scope of application of this method [89–91].
Although the comprehensive descriptions about the general-
izations are beyond the scope of this paper, we show some of
the results of the generalized models in Appendix A.

To conclude, there are a number of materials with deco-
rated honeycomb, diamond, and pyrochlore lattice structures,
especially for organic materials. We hope that our method to
determine flat-band energies and wave functions is useful for
band structure analysis and material design.

Note added. Recently, we became aware of the related
works [92,93] where the flat bands of the decorated honey-
comb model are discussed.
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APPENDIX A: EXAMPLES OF THE EXTENDED MODELS

In this Appendix, we show two examples where the as-
sumptions described in Sec. II are relaxed. Here we focus on
the case of D = 2.

The first model is depicted in Fig. 9(a) (we set q = 4),
where two sites on each linkage are connected to a linker.
Specifically, the second-neighbor hoppings t6 and t7 are in-
cluded in addition to the NN hoppings. The band structure for
a representative set of parameters is shown in Fig. 9(b). We
see that there exist four exact flat bands. In fact, the flat-band
energies and eigenvectors are given in exactly the same forms
as described in the main text since Eq. (11) for the intertwiner
of Eq. (12) holds even in this case. Therefore the flat bands are
not affected by the inclusion of the second-neighbor hoppings
of this kind.

The second model is depicted in Fig. 9(c) (we set q = 3),
where the hopping integrals in each linker are different from
each other. For instance, the linker including sublattice A con-
tains three different hoppings, t1, t ′

1, and t ′′
1 . The band structure

for a representative set of parameters is shown in Fig. 9(d).
We see three exact flat bands. In fact, the flat bands can be
obtained by replacing λlinker,k in the intertwiner of Eq. (12)
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(a)

(c)

(b)

FIG. 10. The Dynkin diagram of (a) AL and the extended Dynkin
diagram of (b) D̂L . (c) Schematic figure of the chain plus two isolated
sites equivalent to D̂L under the change of the basis. The single lines
denote the bonds with the hopping being unity, while the double lines
denote the bonds with the hopping being

√
2.

with λ̃linker,k, which satisfies
(

t ′
1 t ′′

1 t1
t ′
4e−ik·aDH

1 t ′′
4 e−ik·aDH

2 t4

)
λ̃linker,k =

(
0
0

)
. (A1)

The third model is depicted in Fig. 9(e), where the linkages
are not the same. Specifically, two of three linkages around A
have q = 2, whereas the other has q = 1. Only for the linkage
of q = 1, we introduce the on-site potential V so that all three
linkages have a common eigenenergy. The band structure for
a representative set of parameters is shown in Fig. 9(f). We see
that there is an exact flat band, whose energy is the same as
the common eigenenergy of the linkages.

APPENDIX B: SPECIFIC CASES WITH TRIPLE BAND
TOUCHING

In this Appendix, we elucidate that the condition for
the triple band touching at � point in the decorated hon-
eycomb model can be found exactly for the special case.
Specifically, we restrict ourselves to the case where UA =
UB = U1 = · · · = Uq = 0, t2 = · · · = tq = 1, and t1 = tq+1 =
t̃ . The aim here is to determine t̃ such that all of the q flat
bands are involved in triple band touching at � point, as
shown in Fig. 3(f).

To this aim, we employ the wisdom of the eigenvalues of
the adjacency matrices of the Dynkin diagrams (or A-D-E
lattices). Specifically, for the present purpose, we consider the
A type [Fig. 10(a)], which is nothing but the open chain, and
the D̂ type [Fig. 10(b)], which has double branches at both
ends. It is known [94,95] that the eigenvalues of the adjacency
matrix of AL are given as

εAL = 2 cos
jπ

L + 1
( j = 1, . . . , L), (B1)

while those of D̂L are given as

εD̂L = 0, 2 cos
jπ

L − 2
( j = 0, . . . , L − 2). (B2)

From Eqs. (B1) and (B2), we see that all of the eigenvalues
for AL are included in the set of the eigenvalues of D̂L+3. We
note that this fact can also be derived by explicitly giving the
intertwiner between the adjacency matrices for these graphs.
Namely, the following relation holds:

HD̂L+3
CL = CLHAL , (B3)

with

(CL )i j = δi,1δ j,1 + δi, j+1 − δi, j+3 − δi,L+4δ j,L

(i = 1, . . . , L + 4, j = 1, . . . , L), (B4)

where HD̂L+3
and HAL stand for the adjacency matrices of D̂L+3

and AL, respectively.
Further, as for D̂L, by changing the basis as |1̃〉 = 1√

2
[|1〉 +

|2〉], |2̃〉 = 1√
2
[|1〉 − |2〉], |L̃〉 = 1√

2
[|L〉 + |L + 1〉], | ˜L + 1〉 =

1√
2
[|L〉 − |L + 1〉], and |�̃〉 = |�〉 (� = 3, . . . , L − 1), where

|�〉 denotes the state localized at the �th site in the original
graph, one can see that the hopping problem on the graph
D̂L is equivalent to that on the (L − 1)-site chain where the
hoppings on the both of the ends are modulated from 1 to

√
2

[see the double lines in Fig. 10(c)].
Combining these facts, we find the following. All of the

eigenenergies of the q-site chain with the NN hopping being 1
are included in the set of the eigenenergies of the q + 2-site
chain where the hoppings are

√
2 on the both of the ends

and 1 otherwise. Turning to our original problem, we find
that the multiple triple band touchings can be found by setting√

3t̃ = √
2, which leads to t̃ =

√
2
3 . This is indeed the parame-

ters employed for Fig. 3(f) (for q = 3). It is to be stressed that
the condition for t̃ obtained here is regardless of q. In fact,
for q = 2, the multiple triple band touchings were found in
Ref. [68] for the same parameter choice. We also note that, for
D-dimensional systems, the multiple band touchings whose

degeneracy is D + 1 can be found for t̃ =
√

2
D+1 . An example

of D = 3 is shown in Fig. 6(d).

APPENDIX C: HIGH-SYMMETRY POINTS OF THE FIRST
BRILLOUIN ZONE IN THE FOUR-DIMENSIONAL

DIAMOND LATTICE

The four lattice vectors of the four-dimensional diamond
lattice are

a4DD
1 =

(√
5

4
,

√
5

4
,

√
5

4
,

5

4

)
, (C1)

a4DD
2 =

(√
5

4
,−

√
5

4
,−

√
5

4
,

5

4

)
, (C2)

a4DD
3 =

(
−

√
5

4
,−

√
5

4
,

√
5

4
,

5

4

)
, (C3)
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and

a4DD
4 =

(
−

√
5

4
,

√
5

4
,−

√
5

4
,

5

4

)
. (C4)

For the coordinates of the high-symmetry points in the first
Brillouin zone in the four-dimensional diamond lattice, we
follow Ref. [83]:

� = (0, 0, 0, 0), (C5)

γ1 =
(

0, 0, 0,−4π

5

)
, (C6)

γ2 =
(

2π√
5
, 0, 0,−2π

5

)
, (C7)

L1 =
(

4π

5
√

5
,− 4π

5
√

5
,

4π

5
√

5
,−4π

5

)
, (C8)

L2 =
(

2π√
5
,− 2π

5
√

5
,

2π

5
√

5
,−2π

5

)
, (C9)

L3 =
(

4π

5
√

5
,

4π

5
√

5
,

4π

5
√

5
,−4π

5

)
, (C10)

W1 =
(

8π

5
√

5
, 0,

4π

5
√

5
,−4π

5

)
, (C11)

K1 =
(

6π

5
√

5
, 0,

6π

5
√

5
,−4π

5

)
, (C12)

X1 =
(

8π

5
√

5
, 0, 0,−4π

5

)
, (C13)

U1 =
(

8π

5
√

5
,− 2π

5
√

5
,

2π

5
√

5
,−4π

5

)
, (C14)

U2 =
(

8π

5
√

5
,

2π

5
√

5
,

2π

5
√

5
,−4π

5

)
. (C15)
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