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Bulk-edge correspondence in two-dimensional topological semimetals:
A transfer matrix study of antichiral edge modes
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We study edge modes in topological semimetals, which have an energy band structure of ordinary semimetals
but can be characterized by a Chern number. More specifically, we focus on a Qi-Wu-Zhang-type square-lattice
model and a Haldane-type honeycomb model, both of which exhibit antichiral edge modes whose wave packets
propagate in the same direction at both parallel edges of the strip. To obtain these analytical solutions of the
edge modes, we apply the transfer matrix method, which was developed in the previous work [Phys. Rev. B
101, 014442 (2020)]. As a result, we show that the bulk-edge correspondence is broken down for a certain range
of the model parameters. More precisely, when increasing the strength of a hopping amplitude of the Qi-Wu-
Zhang-type model, the edge modes abruptly disappear, although the nontrivial Chern number does not change.
In the Haldane-type model, for varying the model parameters, the edge modes do not necessarily disappear, and
the nontrivial Chern number does not change. However, the energy spectral flows of the edge modes from the

valence band to the conduction band are abruptly broken at a certain set of the model parameters.

DOI: 10.1103/PhysRevB.103.195310

I. INTRODUCTION

As is well known, in certain band insulators, gapless
modes can be found to be localized at a surface of the sam-
ple, although the bulk energy gap exists above the valence
band. Unfortunately, those surface states are often unstable
against perturbations, such as disorders of the surface, which
are inevitable in experiments. In contrast to those ordinary
band insulators, topological insulators (TIs) [1,2] are expected
to show the remarkable robustness of the boundary modes
against perturbations. This robustness is a consequence of the
topological nature of the insulators, which is characterized by
a topological invariant defined for the gapped ground state of
the bulk. The relation between the topological invariant of the
bulk and the boundary modes is known as the bulk-boundary
correspondence [3,4]. This also asserts that a nontrivial topo-
logical invariant implies the existence of a nontrivial boundary
mode. However, the bulk-boundary correspondence for dis-
ordered systems was mathematically justified only in a few
cases in one and two dimensions. (See, e.g., Refs. [5,6].)

It has been recognized that the hosts of the boundary states
are not necessarily insulating. Actually, semimetallic systems
can also possess boundary states [7—12]. Additionally, bound-
ary states under semimetallic band structures are also found
in a Floquet system [13]. On the other hand, Dirac and Weyl
semimetals [14—16] and nodal line semimetals [17,18] have
attracted considerable interest recently. In these systems, the
conduction and valence bands touch at some points or lines.
Clearly, the energy dispersions of these systems are totally
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different from those of ordinary semimetals. To definitely
distinguish these two types of energy dispersions, we recall
the following: In both band insulators and ordinary semimet-
als, the conduction and valence bands are separated on the
momentum space by a region where no electron states can
exist. An energy gap between the two bands can be found
in band insulators, while a range of energies in the conduc-
tion band overlaps with that in the valence band in ordinary
semimetals. In the present paper, we will focus on certain
topological semimetals that have the same type of energy
dispersion as those of the above ordinary semimetals, but they
can be characterized by a Chern number. In the following, we
will refer to generic semimetals that have the band structure of
the above-mentioned ordinary semimetals as semimetals for
short.

Among the phenomena occurring in semimetals, the emer-
gence of antichiral edge modes is one of the most interesting
phenomena [19]. The wave packets of the modes propa-
gate in the same direction at both parallel edges of the
strip geometry in two dimensions. Their realizations have
been investigated in many solid-state materials, e.g., transi-
tion metal dichalcogenides [19,20], exciton-polariton systems
[21], a graphene-superconductor junction [22], magnetic Sys-
tems [23], and twisted bilayer graphene [24]. Furthermore,
the antichiral edge modes are indeed observed in artificial
materials such as electric circuits [25] and the gyromagnetic
photonic crystals [26,27].

Despite these theoretical and experimental developments,
the bulk-boundary correspondence in semimetals has not been
understood sufficiently. This is in sharp contrast to TIs, where
the bulk-boundary correspondence has been well-established
through many examples, and rigorous proof is given for some
Altland-Zirnbauer classes [4,5,28,29]. If the emergence of
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edge modes in semimetals is a consequence of the topolog-
ical nature similar to that of TIs, then one can expect the
robustness of the edge modes against disorder and interac-
tions. More specifically, the following question arises: Does a
nontrivial topological number of valence bands in semimetals
guarantee the existence of edge modes? In the following, we
refer to semimetals that have a nontrivial topological number
as topological semimetals (TSMs).

In this paper, we address this issue by using the transfer
matrix method [6,9,30-42]. In general, the transfer matrix
method is applicable regardless of the phase of the bulk,
and thus it is suitable for studying the bulk-boundary corre-
spondence. Yet, the exact solution of the boundary modes is
accessible in only a few models. In this regard, in Ref. [42]
we developed the method to obtain the exact edge solutions of
arbitrary tight-binding models whose transfer matrix has the
form of a 4 x 4 matrix. By using this method, we study two
concrete examples of the TSMs in two dimensions, namely the
Qi-Wu-Zhang (QWZ) -type model [43] and the Haldane-type
model [44]. We find that the existence of the edge modes
is not necessarily guaranteed by the nontrivial topological
number, but it depends on the parameters of the model. This

The rest of this paper is organized as follows. The main
results of this paper are presented in Secs. II and III, where
we investigate the QWZ-type model and the Haldane-type
model, respectively. In these two sections, we first discuss
the bulk properties, and then we investigate the existence of
the edge mode. In Sec. IV, we present a summary of this
paper. In Appendix A, we review our method for obtaining
exact solutions of edge modes on the basis of the transfer
matrix method, which we have developed in Ref. [42]. In
Appendix B, we show the concrete expressions of the exact
solutions of the edge modes for the QWZ-type model and the
Haldane-type model.

II. RESULT 1: QI-WU-ZHANG-TYPE MODEL

We first study the QWZ-type model [43]. The Hamilto-
nian is defined on a square lattice with L, x L, sites, and
the fermions considered here have spin degrees of freedom,
o = 1, 2. The Hamiltonian on a cylinder, where the open (pe-
riodic) boundary condition is imposed in the x (y) direction,
reads

H = Hy + Hsor, 1
indicates that the bulk-edge correspondence does not hold for Qwz 0 + Hsor M
the TSMs. where
|
Hy =1 Ze 1 Zm 120 C(e my.o Cletlm,o + (H.c.) —in Zz 1 Zm_ o Cz-e,m),nc(&mﬂ),a + (H.c.) (2a)
and
Li—1 Ly

Hsor = —iay Z Z Z T1]o J’C(g .o C+1,m),07

=1 m=1 0,0’

L1 L

Lx L)
(HC) — i Z Z Z[TZ]J,U/C&J")JC(Z,m-H),(r’

+ (H.c.)

{=1 m=1o0,0’

+a3 Z Z Z fS]a o C(( m)gc(H—l m),o’ r+ (H C. )"f' o3 Z Z Z[fS 0,0 C(( m), +Ct,m+1),07 '+ (H C. )

{=1 m=1 0,0’

L, Ly
+ Z Z Z moyol3 [‘53]a,(f’C-(I.g'm)qac(ﬁ,m),o” .

=1 m=1 0,0’

Here ¢ and m are the coordinates of the sites in the x and y
directions, respectively, and c( ), denotes the annihilation
operator of the fermion at the site (¢, m) with spin o. The
parameters t, t, o, (o =1,2,3), and mg are real, and 7,
(p = 1, 2, 3) stands for Pauli matrices. Note that only the term
Hsoy is often called the QWZ model. In fact, the topological
semimetal can be realized due to Hy, as we will show below.

A. Bulk properties

Before proceeding to the analysis of the edge modes, let
us summarize the bulk properties of the present model. We
impose the periodic boundary condition in both the x and y
directions, and we have the Fourier transform,

L, Ly

1 )
Z Z e—l(kXZ+kym)C([,m)y0 . (3)
A% LXLV =1 ¢=1

Then, the bulk Hamiltonian can be written as

Howz = Y Wi (ke, k) Howz ke, k)W(ke k). (4)
Ky ky

Clke k)0 =

{=1 m=1o0,0'

(2b)
[
where W(ky, ky) = (cik, k.15 C(kx,kl\‘),z)T and
Howz ke, ky) = Ro(ke, k)b + Rk ky) - T (5)
Here we have introduced
Ro(ky, ky) = 2t cos ky + 2t sin ky, (6a)
Ri(ky, ky) = 2a; sink,, (6b)
Ro(ky, ky) = 205 sink,, (6¢)
and
R3(ky, ky) = 2a3(mg + cos k, + cos ky). (6d)
The energy eigenvalues of the two bands are given by
Ex(ke, ky) = Rolks., ky) £ [R(kx, k). (7

Clearly, when |R(k,, ky)| is nonvanishing, the two bands are
separated by the forbidden region as mentioned in the In-
troduction. Let us consider the condition that the two bands
touch at some (k,, ky) in the Brillouin zone. For simplicity,
we assume o, # 0 for all p =1, 2, 3. Clearly, from Eq. (7),
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FIG. 1. The phase diagram of the QWZ-type model for (a) t; =
—03,,=—-03, 01 =a, =05and (b) 4, = —0.5, 6, = —1, a1 =
ay = 0.5. Black lines denote the BTL.

the condition implies |R(k,, k)| = O for some (k,, k,). From
Egs. (6b) and (6¢c), this occurs only at (k, k) = (0, 0),
(1, 0),(0, ), or (7, ). Further, from R;(k,, k;) = 0, one has
mg = —2 for (ky, k) = (0, 0), mo = 0 for (k, ky) = (7, 0) or
(0, ), and my = 2 for (ky, k) = (7w, 7).

J

B_ <2t2 sink, + 2a3(mg + cosky)

2iary sin k,

If the band touching does not occur, the topological Chern
number for the valence band is well-defined, and it is given as

[43,45]
1 dR(k) Rk
V= — dk/dkR(k) ()x (),(8)
4 - dky ok,
where R(k) = R(k)/|R(k)|.
In Fig. 1, we depict the phase diagram in as3-mg space.
We set the other parameters as ¢t; = —0.3, ©, = —0.3, and

o) = oy = 0.5 for panel (a), and t; = —0.5, t, = —1, and
a1 = ap = 0.5 for panel (b), for concreteness of the following
discussions. Here, the Chern number has been numerically
computed [46]. There appear four phases: TI, normal insulator
(NI), TSM, and normal semimetals (NSM). Here, when a
Chern number is vanishing, we have said that the phase is
normal, otherwise it is topological. Additionally, there exist
the band-touching lines (BTL), where the two bands touch at
some momenta. The lines are represented by the black lines,
=-2,0,2,and a3 = 0.

B. Edge modes

We now turn to the exact solution of the edge modes under
the open boundary condition in the x direction. The details
of the method are presented in Appendix A, and we use the
notation used there.

The exact form of the dispersion relation is presented in
Appendix B 1. To check whether the bulk-edge correspon-
dence holds, we discuss the conditions for the existence of
the edge solutions. Let us focus on the left edge modes. The
existence of the edge solution can be examined by analyzing
the eigenvalues of the transfer matrix 7, i.e., A; and A, given
by Egs. (A23a) and (A23b), respectively. They must satisfy
[X1] < 1 and |X;| < | simultaneously. These two conditions
for the two eigenvalues guarantee that the edge solutions will
decay exponentially in the bulk region.

In the present model, the matrices A and B, of which the
transfer matrix T consists [Eq. (A13)], are given by

_(ht a3 —ioy
A= ( —ioy fH — C(3) ®)
and
—2ioy sink,
2ty sin ky — 2a3(mg + cos ky)>' 10)

We write u for the eigenvalue of A~'A", and 5 for that of A~'(EL, — B). As shown in Egs. (A23a) and (A23b), the two
eigenvalues, A; and A, are written in terms of u and n. We also have relations u = A;A; and n = A; + A,. Since |A{] < 1

and |Ap| < 1, u must satisfy |u| =

[X1A2] < 1. From Eq. (9), one obtains

+ 1 12 —a? —a? 2ot —o3)
ATAT = — (1 3 1 . 11
;12_a3+a1 (21a1(t1+a3) tf—a%—oe% (an
Then, u is given by
1
Ut = [ — o — af £ 2| ]/} — 2] (12)

2 2
1 —Ol3+0l1

From Eq. (12) one can easily show that, when ||| > |as3],
|| = 1. This implies no edge solutions for |¢| > |a3| from

(

the above observations. Combining this fact and the phase
diagram of Fig. 1, we find that the emergence of the edge
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FIG. 2. The band structures for the QWZ-type model on a cylinder with (¢, 72, a1, o2, a3, mp) = (a) (—0.5,—1,0.5,0.5,0.7, —1.5) and
(b) (—0.5,—-1,0.5,0.5,0.3, —1.5). Note that both of these panels are for the TSM phase. Red solid lines are obtained by the numerical
diagonalization for L, = 32, and blue and green broken lines are the exact solutions for the left and right edge modes, respectively.

modes in the TSM phase depends on the parameter. This
means that the nonvanishing Chern number for the TSM is not
sufficient for the existence of the edge modes. Therefore, the
bulk-edge correspondence is broken down in the TSM phase,
because the TSM is realized even when |t;| > |a3|. Mean-
while, the TI is realized only when |f]| < |a3]| is satisfied,
meaning the validity of the bulk-edge correspondence for the
TL

To ensure that the above discussion holds, we plot the
dispersion under the open (periodic) boundary condition in the
x (y) direction in Fig. 2. Here we set the parameters such that
the TSM is realized, and we examine the case with |a3|/|t;]| >
1 [Fig. 2(a)] and |asl|/|t;] < 1 [Fig. 2(b)]. The red lines are
obtained by numerical diagonalization for a finite-size system,
and the blue and green lines are the exact results for the left
and right edge modes, respectively. Clearly, the former has
the edge solutions with antichiral dispersion around k, = 0,
while the latter does not. This result coincides with the above
discussion.

To better understand the situation of the breakdown, we
examine the relation between the overlapping of the two en-
ergy bands and the disappearance of the edge modes. From
Figs. 2(a) and 2(b), we can see the following: The edge modes
always exist when the upper and lower bands are separated
by the forbidden region, whereas they disappear immediately
when the two bands touch at the single point k, = 0. These
numerical computations show that the separation of the two
bands is essential for the existence of the edge modes. To
confirm this expectation, we want to introduce the separa-
tion parameter A between the upper and lower bands. As is
well known, an essential spectrum of self-adjoint operators is
invariant under compact perturbations, hence the energy spec-
trum of the extended states does not depend on the boundary
condition in the x direction in the present systems. By relying
on this fact, we can use the energy spectrum of the bands,
which is obtained under the periodic boundary condition in
both the x and y directions, instead of that under the open
boundary condition in the x direction. We define the separa-
tion parameter A between the upper and lower bands by

A := ming {min{E} (ky, ky)|ky € [-7, 7]}
—max{E_(ky, ky) ks € [—m, 7]}}. (13)

When A is strictly positive, the two bands are separated by
the forbidden region [cf. Fig. 2(a)]. Meanwhile, A can take
strictly negative values. Then, the two bands significantly
overlap on some range of k, [cf. Fig. 2(b)]. Clearly, the neg-
ative values of A have no meaning for the open boundary
condition in the x direction.

In the present QWZ-type model, the minimum value A
is realized at k, = 0. For A = 0, the two bands touch at the
single point k, = 0. We plot A as a function of a3/|t;] in
Fig. 3. (For the other parameters, see the caption of Fig. 3.)
We indeed see that A is strictly positive (i.e., the two bands
are separated by the forbidden region) for |a3|/|t;| > 1, where
the edge modes exist. Meanwhile, the two bands overlap
for |a3|/|t1| < 1, where the edge modes are absent. Thus,
the breakdown of the bulk-edge correspondence occurs when
the upper and lower bands overlap on some range of k, in
the TSM.

III. RESULT 2: HALDANE-TYPE MODEL

We next study the Haldane-type model [44]. The Hamilto-
nian on a cylinder geometry with the zigzag edge reads

Hyaldane = Hnn + Haww, (14)

No edge mode

“245-1-050 05 1 15 2
az /|t
FIG.3. The gap A of Eq. (13) as a function of

a3/|t|. The other parameters are set as (f1,f, o, 0p, My) =
(=0.5,—1,0.5,0.5, —1.5). The black dashed line denotes A = 0.
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where
L, L L,—1 Ly
Hanny =1 Z Z[C(Tz,m),wc(l»m)ﬁ + C(szm)’WC((,nHl),B + H.c)l+1 Z Z[C&,mlWC(KJrl,m),B + (H.c.)] (15)
(=1 m=1 (=1 m=1
and
L. Ly
Hxnw = Z Z [tzeiq)cz-g_m),gc(e,mﬂ),B + l3€i¢/C&,m)ywc(z,mﬂ).w] + (H.c.)
=1 m=1
L.—1 Ly
+ Z Z [fzei¢63e+1,m>,36<e,m>,3 + t3ei¢/cfe+1,m),wC(é,m).W] + (H.c.)
(=1 m=1
L,—1 Ly
+ Z Z (126 ¢{y ) pCEs 1118 + 13 €y weier1monw] + (Heeo). (16)

=1 m=1

Here the subscripts B and W denote the sublattice degrees of
freedoms, as shown in Fig. 4. The parameters 7, t,, and t3 are
transfer integrals taken to be real, and ¢ and ¢’ are the phase
factors for the next-nearest-neighbor hoppings. The model
is the same as Haldane’s original model when #, = #; and
¢’ = —¢. As is well known, the chiral edge modes appear
since the bulk Chern number takes £1, manifesting the topo-
logically nontrivial nature [44]. On the other hand, it was
pointed out in Ref. [19] that the antichiral edge modes appear
when#, = #; and ¢’ = ¢.

A. Bulk properties

Similarly to the QWZ-type model, we first summarize the
bulk properties. Imposing the periodic boundary condition in
both x and y directions and performing the Fourier transfor-
mation, the Hamiltonian of Eq. (14) can be written as

H=Y" Wk, kyYH (ke k) Wk, ky).
(ky ky)

a7

©)

. — U
. S . tzeﬂ'qb
SRS [,3(371@/

FIG. 4. Schematic figure of the Haldane-type model on a cylin-
der. The dots indicate the periodic boundary condition in the vertical
direction.

{
where W(ky, ky) = (C(k, k)),B: C k)W) > and H(ky, ky) is the
2 x 2 matrix written as

H(ke, ky) = Rolke, k)l + Rk, k) - T (18)

with
Ro(ky, ky) = BRe[e@k) 4 (i@ Hh) | o6 thiko)]
+13Re[ef@ K 4 (0 Hh) | i@ Hhk)] (19a)
Ry (ky, ky) = t1(1 + cos ky + cos ky), (19b)
Ro(ky, ky) = ti(sink, + sinky,), (19¢)
and
R3(ky, ky) = tzRe[ei("’_k") + Oth) 4 ei(¢+k"_ky)]
_,3Re[ei<¢>/—kx> 1 i@tk 4 ei(¢/+k»_ky)]. (19d)
The band touching between the conduction and valence bands
occurs when |R(ky, k,)| = 0 is satisfied at some momenta. In

fact, Ry (ky, ky) = Ry(kx, ky) = 0 is satisfied at two momenta,

ki := (—27”, ZT”) and k, := (&£, —27”), which correspond to
K’ and K points in the conventional notation for the high
symmetry points in the first Brillouin zone of the honeycomb
lattices, respectively. Thus, the condition of the band touching
is dictated by R3(k;) = 0 or R3(k;) = 0; the former is written

as
3 3J3
—E(lz cos¢ —t3c08¢’) — T\/_(tz sing —t3sin¢’) =0,

(20)

while the latter is written as

—%(tz cos¢ —tzcos ') + %g(tz sing — t3sing’) = 0.
21

If the band touching does not occur at any momenta, the Chern
number of Eq. (8) is well-defined.

In Fig. 5, we draw t3/f,-¢' phase diagrams of the present
model, fixing t, = 0.2, ¢ = 7 for Fig. 5(a), and 7, = 0.5,
¢ = 7 for Fig. 5(b). Note that the band-touching curves, given
by the solutions of either (20) or (21), are denoted by black
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FIG. 5. The phase diagram of the Haldane-type model for
@t =1,n=02,and¢p=Fand(b)t, =1,1, =0.5,and ¢ = 7.
Black triangles represent the band touching cases where |R| becomes
0 in some k, i.e., the solutions of either Eq. (20) or Eq. (21), obtained
numerically.

triangles. We find that, for both Figs. 5(a) and 5(b), the TSM
phases appear on the parameter space.

B. Edge modes

Let us turn to the analysis of the edge modes. The exact
dispersion relation is obtained for any parameters, and we
present it in Appendix B 2. Here, we show some results in
Fig. 6; we plot the dispersion relation of the Hamiltonian of
Eq. (14) obtained by the numerical diagonalization (red lines)
and the exact solutions for the left (blue broken lines) and right
(green broken lines) edge modes with some representative
values of the parameters.

We can see that the antichiral edge modes exist in Fig. 6(a),
while they do not in Fig. 6(b). Strictly speaking, in Fig. 6(b)
there are very tiny regions (k, ~ =£0.367, highlighted by the
black ellipses) where only the left edge modes survive. How-
ever, the tiny edge modes do not have an antichiral dispersion,
nor do they exhibit the spectral flow. Here, the spectral flow
means that an edge mode energetically connects conduction
and valence bands. In this sense, these results indicate that the

breakdown of the bulk-edge correspondence occurs also in the
Haldane-type model. Although we want to discuss the relation
between the breakdown and the overlapping of the bands, we
have been unable to find a simple criterion for the existence
of the antichiral edge modes in the Haldane-type model, in
contrast to the QWZ-type model. Of course, Figs. 6(a) and
6(b) also show that the spectral flow is abruptly broken at
the boundary of some parameter region which contains the
values of the parameters in Fig. 6(b). To investigate the be-
havior of A of Eq. (13) near the critical region, we introduce
a family of the parameter sets t,(k), t,(k), 13(k), P(x), ¢ (k)
with an additional parameter « € [0, 1] that linearly interpo-
lates between the two sets tq, f, t3, ¢, ¢’ in Figs. 6(a) and
6(b). Clearly, a value of k hits a set of the critical values
of the parameters. To check the existence of the edge mode,
we calculate the eigenvalue A(k;“i") of the transfer matrix
[see Eq. (A14) for its definition]. Here, k;“i“ stands for the
momentum k, for which the minimum value A is realized.
In the following, we will treat only the left edge mode,
and we write A = )»(k;“i“), dropping the k;,“i“ dependence of
A(k;‘li“).

We recall the following: (i) If the absolute values of two
eigenvalues, A; and A,, of the transfer matrix are both smaller
than 1, then the left edge mode exists. Otherwise, it does
not exist. (ii) There are two types of pairs, {A], 2]} and
{A7, A}, of the eigenvalues (see Appendix B 2 for the de-
tails). However, {1]", 1} does not satisfy the above condition
(1). Therefore, it is enough to consider {A|, A} }. Figure 7
shows the x dependence of A and that of max{[A{], |A; [}. We
see that A is positive (i.e., the two bands do not overlap) for
k < 0.4, where max{|A[|, A7} is smaller than 1, and thus
the edge mode exists. On the other hand, for x ~ 0.4, the
band overlapping occurs, and the edge mode disappears at
k;““‘ since one of |[A{| and |A; | is greater than or equal to 1.
(These values of A | and |A; | have no meaning because the
present transfer matrix method is not applicable to extended
states.) This implies that the spectral flow is broken near k;ni“.
Therefore, the critical value of x at which the spectral flow
is abruptly broken coincides with the other critical value at
which the two bands touch at the single point k;“i“ within
the numerical precision. We also stress that in the case of
the Haldane-type model, the edge modes do not necessarily
disappear even beyond the transition point, in contrast to the
QWZ-type model. However, the spectral flow from the lower
band to the upper band disappears, similarly to the QWZ-type
model.

Next, we discuss the nature of the edge modes. In Fig. 6(a),
we see that the left and right edge modes have the same
sign of the group velocities, meaning that the antichiral edge
modes are realized. Interestingly, they also appear in the nor-
mal semimetal as shown in Fig. 6(c). Moreover, Fig. 6(d)
shows that the edge modes in the trivial insulator exhibit an
antichiral-like dispersion around k, = 7. Nevertheless, there
is a crucial difference between trivial and nontrivial cases,
i.e., the spectral flow occurs in Fig. 6(a) while it does not
in Figs. 6(c) and 6(d). Additionally, for the band-touching
case that we will address in Fig. 8 of Appendix B 2 c, the
edge modes connect two gapless points in the bulk, which is
reminiscent of graphene under the zigzag edge.
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-0.5 0.0 . 1.0
ky/m

FIG. 6. The band structures for the Haldane-type model on a cylinder with (t1,%,4,¢,¢) = (a) (1,0.2,0.08, %, %),

(b) (1,0.5,04, %, 7),(c) (1,0.2,0.2, 7 37y, and (d) (1, 0.2, 0.38, 7

» 3 » 30 5

0). Note that panels (a) and (b) are for the TSM, (c) is for the normal

semimetal, and (d) is for the normal insulator. Red solid lines are obtained by the numerical diagonalization of H(k,) for L, = 32, and blue and
green broken lines are the exact solutions for the left and right edge modes, respectively. The black ellipses in panel (b) highlight the regions

where the left edge mode exists.

IV. SUMMARY

We have investigated the bulk-edge correspondence in
topological semimetals (TSMs) in which the Chern number
can be defined by using the valence-band structure because
the valence and conduction bands are separated by the for-
bidden region on the momentum space. By relying on the
transfer matrix method, we have derived the exact solutions

No spectral flow

o
o
[$)]
{1 21| D[ e

“0 02 04 06 08 1
K

FIG. 7. The green line is A of Eq. (13) (the left vertical axis).
The blue line is the maximum of {|A] |, |A; |} (the right vertical axis).
The black dashed line denotes A = O for the left vertical axis. The
jump of the blue line at ¥ ~ 0.2 is due to the difference between the
two values of k™", which give the minimum values A of the band
separation. Since the present transfer matrix method is not applicable
to extended states, we do not plot A for k;“i“, which gives an extended
state in the yellow region.

of the antichiral edge modes for the QWZ-type model and
the Haldane-type model. In both of the two models, we have
found that the nonvanishing Chern number does not neces-
sarily lead to the emergence of the antichiral edge modes.
In fact, it depends on the model parameters, meaning that
the bulk-edge correspondence is broken down in these TSMs.
The intuitive explanation of the bulk-edge correspondence is
as follows: A nonvanishing Chern number is a consequence
of a nontrivial topological structure of the wave functions of
the valence band. Therefore, one can expect that, when an
open boundary condition is imposed, the wave functions at
the edges of the sample exhibit a peculiar behavior. This is
nothing but the emergence of chiral or antichiral edge modes.
However, surprisingly, there appears to be no antichiral edge
mode for some parameters, although the Chern number is non-
vanishing. We have also found that the vanishing of the edge
modes is associated with the overlapping between the upper
and lower bands in TSMs. Actually, the overlapping obstructs
the spectral flow from the lower band to the upper band such
that the flow does not touch either of the bands along the
way. On the other hand, in the system with no open boundary,
the Chern number is well-defined on the two-dimensional
momentum space, where the upper and lower bands are still
separated by some forbidden region. These give an explana-
tion of the breakdown of the bulk-edge correspondence.

As for the Haldane-type model, we have found that the
antichiral edge modes can appear in not only the TSM phases
but also the trivial phases. However, it is only in the TSM

195310-7



TOMONARI MIZOGUCHI AND TOHRU KOMA

PHYSICAL REVIEW B 103, 195310 (2021)

phases that the antichiral edge modes exhibit the spectral flow
which connects the valence and conduction bands.

ACKNOWLEDGMENTS

The authors are grateful to the anonymous referee for the
helpful comment on the relation between the vanishing of the
edge modes and the overlapping between the bands. T.M. is
supported by the JSPS KAKENHI, Grants No. JP17H06138
and No. JP20K14371, Japan.

APPENDIX A: REVIEW OF THE METHOD TO OBTAIN
EXACT EDGE SOLUTIONS

In this Appendix, we review the transfer matrix method
[42] to obtain exact solutions of edge modes. As we have em-
phasized, this method is applicable to generic lattice models
whose transfer matrix is given as a 4 x 4 matrix.

For concreteness, let us focus on the two-dimensional
models. Namely, we consider a lattice model on a cylinder,
where an open boundary condition and a periodic boundary
condition are imposed, in the x and y directions, respectively.
Annihilation operators of fermions on each unit cell are ex-
pressed by a two-component vector:

Cee,m),1
|\ = ’ y
(Em) <C(€,m),2>
where the indices 1 and 2 denote internal degrees of freedom.
Consider a tight-binding Hamiltonian:

(AD)

L, Ly
H=Y" 3" W hm.em¥en, (A2)
,0=1 mm'=1
where ]:\l(g!m),(ggmf) is a2 x 2 matrix satisfying
hamy,omy =0 if [ —0']>2, (A3)

and L, (L,) is the number of unit cells along the x (y) direction.
Due to the periodic boundary condition in the y direction,
we can perform the Fourier transformation in the y direction:

L,
1 » —ikym
C(,ky,a = —F Ze ky Ct,m),a (A4)
\/ITV m=1
with o = 1, 2. The inverse Fourier transformation is
1 "
Ci,m)y,a = e ymcé,ky,a- (AS)
NS
Substituting Eq. (A5) into Eq. (A2), we have
H=Y) % Wk)HEk)oVolk), (A6
Az
where
C
Wolky) = (cf*k}*J), (A7)
£,ky,2

and [H(ky)]¢,e is a2 x 2 matrix that can be written in general
as

[H(k)e,o = B(ky)8e.0 + Alky)Se0—1 + AT (ky)3¢,041. (AB)

Let [a"(ky)]" be the left edge mode, which is written as

Lx
[a“(k)]" = Wi(ky) - @, (ky)

=1

(A9)

with the amplitudes ¢, (k,). This operator [aL(ky)]T satisfies

the commutation relation
[H, [a"(k)]"] = E (ky)[a" (k)] (A10)

where E(k,) is the eigenenergy of the edge mode. Then,
substituting Eqs. (A8) and (A9) into Eq. (A10), we have

APy 1 (k) + AT (k)py_y (ky) + Blky) @, (Ky)
= E(k,)@, (k). (A1)

In the following, we assume detA(k,) # 0. When detA(k,) =
0, we choose the model parameters to satisfy detA(k,) # O,
and we take the limit detA(k,) — O by varying the parameters
after all the calculations are done. Equation (A11) can also be

written as
@opi(ky)) _ @ (ky)
< @, (ky) ) B T(ky)("”fl(ky))

where the transfer matrix 7 (k) is given by

T(ky) = <A1<ky)[E(kIy2)12 — B(ky)] —A‘(ké)A*(ky))’

(A12)

(A13)

with the 2 x 2 identity matrix I.

In the following, we abbreviate T'(k,) as T', similarly A =
A(ky), B = B(ky), and E = E(k,). To obtain the solution of
@,, let us consider the eigenvalue problem of 7. We write
(¥, ¥,)T for the eigenvector of the transfer matrix 7', and
A for the eigenvalue. Here, ¥, and ¥, are two-component
vectors to be determined. Then, the eigenvalue equation can
be written as

T(wl) _ <A-1[E12 —~ Bly, —A“A%)

v, v
— ("
=(%)

We will construct the solutions of (A12) by using the eigen-
vectors of 7. From the second row of Eq. (A14), we have
¥, = Ay¥,. Substituting this into the first row, we have

ATYEL — Bz, — A7TIATY, = A%y, (A15)

If A = 0, then one has ¥, = 0 and A"'ATy, = 0. These imply
(¥, ¥,)" = 0. Thus, one has A # 0. Using Eq. (A15) and its
Hermitian conjugate, it can be found that the four solutions of
the eigenvalue equation of 7" are given as [32,42]

1 1

T x )\'27 %
AN

(A14)

AL, (A16)
Let us consider the left edge mode for which the eigenvalue A
must satisfy 0 < |A| < 1 because ¢, — 0 as £ — oo. There-
fore, from (A16), we want to find the two eigenvalues, A; and
Az, which satisfy 0 < |A;| < 1,7 = 1, 2. Namely, the left edge
mode is constructed by the two eigenvectors of 7' with the
eigenvalues A; and X,.
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Using ¥, = Ay, we write (A, X;, X;) for the eigenvector
of T with the eigenvalue A;, j = 1,2. Then, the left edge
mode satisfying Eq. (A12) can be written as

Do\ = gt (MX) o gt (PeXe Al7
(W—l) 11()(1 Tk X2 )’ A7)

where d; and d, are coefficients. These two coefficients can
be determined by taking into account the Dirichlet boundary
condition at the left edge, i.e., ¢, = 0. This leads to

dix, +dax, =0. (A18)

The key observation is that, to obtain the nontrivial solution
(i.e., the solution other than d; = d, = 0), two vectors x; and
X» have to be parallel to each other, i.e., x; = Cx, holds,
with C being the constant. Setting C = 1 and substituting this
relation into Eq. (A15), one has

ATNEL = Bhx, —AT'ATX =2 (A19)
and
ATNEL = Blox, —AT'ATX =03 (A20)
By further subtracting (A20) from (A19), one has
ATNEL =B)(h =) = (A = ). (A2D)

In the following, we assume A; # A,. If necessary, we take the
limit A; — X, — 0 from A; # A,. Equation (A21) indicates
that x, is the eigenvector of A~'(EL, — B) with the eigenvalue
A1 + Az if A} # A,. Further, combining this fact and (A19), we
find that yx, is the eigenvector of A~!A" with the eigenvalue
A1Xo. This is crucial because A=A is a 2 x 2 matrix which
does not contain the unknown energy eigenvalue E, thus its
eigenvalues and eigenvectors can always be obtained exactly,
without assigning any special conditions.

To proceed further with the analysis, let u; (j =1, 2) be
the eigenvector of A~'A" whose eigenvalue is ;. Then, the
energy eigenvalue E can be determined so that u ; becomes the
eigenvector of A~'(EI, — B) as well. This can be achieved by
solving a linear equation with respect to E:

[, LA EL — Byl = [u;1i[A""(EL — B)u;l,, (A22)

where [- - - ]; stands for the /th component of the vector. Then,
the remaining task is to check whether the decaying solution
exists or not. Let n; be the eigenvalue of A~ (EL, — B) whose
eigenvector is u;. Then, using n; = A + A2 and p; = AjA,
we have

2
A= ?’ + Tj — 1 (A23a)
and
2
)Lé = ?j — Zj — ;. (A23b)

The conditions |A| < 1 and |A,| < 1 must be satisfied simul-
taneously for the existence of the solution.

So far, we have explained the derivation of the left edge
mode. The same method can be applied to derive the right
edge mode, as we outline below. Similarly to Eq. (A12), the

eigenvalue equation can be written as

D Pe+1
with
T = ((AT)l(ib -B _(A;)1A>. (A25)

Using the two eigenvectors X; of T with the eigenvalue J»
j =1, 2, the right edge mode can be written as

<W1> _ Jlez—li-i—l()‘ljh) +gzi§x—e+1<)~g5(z>, (A26)

P X1 X2

with the coefficients d; and d», where the eigenvalues x i
satisfy |)~»j| < 1, j =1, 2. This solution is set to satisfy the
Dirichlet boundary condition at the right edge, i.e., ¢, ,; = 0.
Then, following the same procedure as that for the left edge
mode, we can find the exact solution of the right edge mode
by setting E so that the simultaneous eigenvector of (AT)~'A
and (A")"!(EL, — B) exists, and the resulting A, and 1, satisfy
|11, |A2] < 1. We note that (AT)™'A = (A~'A")~! holds, so
these two matrices have common eigenvectors, u;, and the
corresponding eigenvalues are Mi/

APPENDIX B: EXACT SOLUTIONS OF THE EDGE MODES

In this Appendix, we describe the derivation of the exact
solutions of the edge modes for the QWZ-type model and the
Haldane-type model.

1. Qi-Wu-Zhang-type model
a. Left edge mode

In this model, the eigenvalues of A'A" are given in
Eq. (12). The corresponding eigenvectors are

i () — az)
= Loyl Jo2 — 2 )

Using (B1), we can solve Eq. (A22), and we have

B1)

EL = —2mgt; — 2t) cosky + 21, sink,

ap,/a3 — 1} sink,

o3

+ 2sgn(oy) (B2)
From Eq. (B2), it is clear that the eigenenergy becomes
complex-valued when |o3| < |f], i.e., the solution does not
exist in this region, which coincides with the discussion in the
main text.

To further determine the condition for the existence of the
edge solution, we calculate the eigenvalues of A~'[ET — B].
After some algebra, we have

Pr ¥ 0y
oy (os — tl)(ozl2 — oz% + tlz)

Nt = (B3)

with

Py = ai(az — t)[(as — 1) (—EX + 2a3mg + 203 cos k)
+ 2(ajop + a3ty — tity) sin ky] (B4a)
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d . *
an e = 7 (B11b)
Qs = /o2 — t?|ay|lor (EL + 203mg + 203 cos ky) ;
) ) —_ (Bllc)
— 23 — 10y + 1) sinky ], (B4b) “=x
Using (12) and (B3), we can obtain )ﬁ and )ﬁ; for & =+, and
and the edge solutions are obtained if |)f| < 1 and |A§| <1 B = i (B11d)
are satisfied for either £ = 4+ or & = —. Y
b. Right edge mode The eigenvalues of A~'A" are
The right edge modes can be obtained in the same manner L= e’ +e” —ap
as the left edge mode. Here we summarize the results. First, 2
the dispersion relation is given as - - - -
P g \/(6101 _ 6192)2 + Ol2ﬁ2 _ 20[/3(6’01 + 6102)
ER =EL. (BS) + 5 . (B12)
Second, the eigenvalues of (A")™'[ET — B] are and the corresponding eigenvectors are
Prt 0y
e = B6 — o
T 061(0!3—[1)(0[%—06%4'1‘12) ( ) s = </Li—610]>. (B13)
with The dispersion relation of the left edge mode can be de-
5 R termined by solving the linear equation of Eq. (A22), and the
Py = ooz — 1)les = h)(—Ey + 2a3mo + 203 cosky) resulting dispersion relation is
—2(ayan — aztr + 1) Sin ky] (B7a)
L= G (B14)
and TR
Ou = \Jai — 2oy [ (ER + 2a3mg + 203 cos ky) with
+2(ca3 — axt; — aitr) sinky]. (B7b) Fi =X —Y)a(us — %) — 10 (B15a)
Then, the edge solution can be found if )ﬁ and ):g satisfy and
X5 < land 35| < 1 for either & = =—. ‘
|A;] < 1and [A;] < 1 for either § = 4 or & Gi = 1,627 + (XW —YZ)oc(ui _elgl)
2. Haldane-type model +a’XV* — oc(//,i — eiel)tlv — YV(;/,i — eiel)
a. Left edge mode (B15b)
For this model, the explicit forms of A and B are Further, the eigenvalue of Al (E+I — B) can be obtained
A= (f S) ®8) ‘
‘ AT EL - Busly _ Es—7Z  V(ps—e™)
and = (=], T X aX
B= (Z V) (B9) (B16)
A\ W)
We can then derive kf and )\f by using Eqgs. (A23a) and
where (A23b). If |A| < 1and |A5] < 1 are satisfied for either & = +
X —¢ [e‘i¢ n ei(¢_kv)] (B10a) or¢§ = —, we adopt E¢ as the dispersion of the left edge mode.
=0 s
Y=1 [e_iqy + ei(d’,_k’)], (B10b) b. Right edge mode
Z =21 cos(¢p + ky), (B10c) The right edge mode can be obtained in the same manner
_ , as the left edge mode, so we summarize only the results as
W = 2t3c08(¢" + ky), (B10d) follows: First, the dispersion relation of the right edge mode
and is given as
— —ikyy G
V=nl+e) (B10e) ER = o (B17)
For later use, we further introduce another four Fy
with
(Blla) Fr =aX* = Y*) (s — ) + 11 (s — e""l)2 (B18a)

variables:
eigl — }(_*
X
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and

Gy = ’X*'V* +a(X*W —Y*Z +1,V*) (s — )

— (V= W)(ps — "), (B18b)
Second, the eigenvalues of (A*)_1 (E+I — B) are
. YHER-Z)4nV*
Nt = T O%
YV +t(ER —W — e
h WER Wl =)
aX*Y*

The solution can be found if 5 and % satisfy |X5| < 1 and
|%5] < 1 for either £ = + or & = —.

¢. Dispersion relations for some model parameters

Although the dispersion relations of Egs. (B14) and (B17)
are exact for generic parameters, their forms are fairly com-
plicated. Nevertheless, the simple forms of the dispersion
relations can be obtained for some special model parameters.

First, for the original Haldane model with ¢ = /2, ¢’ =
—m /2, and f, = 13, the dispersion relations of the left edge
mode and of the right edge mode are given as

6|11t sink,
\/tf + 81‘22(1 — cosky)

. (B20)

EY(k) = —ER(k,) = —

Note that this result was already obtained under a certain
ansatz in Ref. [37].

Second, for the Colomés-Franz model with ¢ = ¢’ and
t, = t3, the dispersion relations of the left edge mode and of
the right edge mode are

EL(ky) = ER(ky) = —2t, cos ¢(2 + cos k) — 61, sin ¢ sin k,,.

(B21)
(a)4
4
-1.0 -0.5 0.0 0.5 1.0
ky/m
FIG. 8. Dispersions relations for (t1, b, 13,9, ¢") =

(@ (1,0.2,0.2,7,—%) (i.e., the Haldane model with ¢ = 7)

and (b) (1,0.2,0.2, 3, ) (i.e., the Colomés-Franz model). The
colors of the lines indicate the same meaning as those in Fig. 6.

It is worth noting that £ (k,) does not depend on ¢, unlike the
case of the Haldane model.

The comparison with the numerical results and the present
exact solutions is shown in Fig. 8, where we see good
agreement.
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