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Bulk-edge correspondence with generalized chiral symmetry
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The bulk-edge correspondence in topological phases is extended to systems with the generalized chiral
symmetry, where the conventional chiral symmetry is broken. In such systems, we find that the edge state exhibits
an unconventional behavior in the presence of the symmetry breaking by the mass, which is explored explicitly
in the case of a deformed Su-Schrieffer-Heeger model. The localization length of the edge states diverges at a
certain critical mass, where the edge state touches the bulk band. The edge state is specified by an imaginary
wave vector that becomes real at the touching energy.

DOI: 10.1103/PhysRevB.103.205306

I. INTRODUCTION

Since the discovery of the topological insulators and su-
perconductors [1,2], topological states of matter has been one
of the central issues of the condensed matter physics. When
the bulk topological invariant has a nontrivial value, the topo-
logical edge states emerge at the edges or boundaries of the
system. This relationship between the bulk states and the edge
states has been the hallmark of the topological phases of mat-
ter, which is called the bulk-edge correspondence originally
introduced for the quantum Hall effect [3]. In classifying the
topological phases, the chiral symmetry has been one of the
important symmetries [4–7]. In particular, it has been shown
that the chiral symmetry protects the zero-energy edge states
at the boundary of the topological systems [8]. The concept
of the bulk-edge correspondence in chiral symmetric systems
has recently been extended to non-Hermitian systems [9,10].

Here in the present paper, we show that the bulk-edge
correspondence can be extended to systems respecting an
extension of the chiral symmetry, which we call the gener-
alized chiral symmetry [11–13]. This can be achieved by the
algebraic deformation of the chiral symmetric Hamiltonian in
which the generalized chiral symmetry, introduced originally
for the characterization of the tilted Dirac fermions in two
dimensions [14–20], is always preserved. The deformation
can be performed exactly in lattice models as well as in
continuum models. The key ingredient is that the number of
zero modes is an invariant of the deformation and this fact
has enabled us to extend the topological protection of the
doubling of the massless Dirac fermions on two-dimensional
lattice models, which is understood as a consequence of the
chiral symmetry [21–23], to the tilted Dirac fermions on a
lattice model respecting the generalized chiral symmetry [24].
In the deformed systems, we find that the edge state shows
an instability against the symmetry breaking by the mass.
This is in sharp contrast to the case with the conventional
chiral symmetry where the edge state is always robust against
the symmetry breaking by the mass. This unconventional

behavior of the edge state is explored in detail for the one-
dimensional Su-Schrieffer-Heeger model.

The one-dimensional Su-Schrieffer-Heeger (SSH) model
[25], introduced for analyzing the soliton state of poly-
acetylene, is a simple tight-binding model with a bond
alternation induced by the electron-lattice coupling. Funda-
mental physical phenomena such as topological excitations in
one dimension as well as the charge fractionalization associ-
ated with them [26–31] have been investigated based on the
SSH model. It has served further as a prototypical model for
illustrating the bulk-edge correspondence in the presence of
the chiral symmetry [8–10]. In the recent progress of the ex-
perimental technique, the SSH model itself has been realized
in an atom-optical system as well as in engineered atomic
chains where the topological state has been experimentally
confirmed [32–34].

The paper is organized as follows. We introduce, in Sec. II,
the general theoretical frame work for the generalized chiral
symmetry and the effect of the symmetry breaking by the
mass. In Sec. III, we explore the unusual bulk-edge corre-
spondence with the generalized chiral symmetry for deformed
Su-Schrieffer-Heeger models. Section IV is devoted to the
summary.

II. GENERAL FORMALISM

A. Generalized chiral symmetry

To discuss the bulk-edge correspondence in the topological
phases, we consider systems with edges or boundaries. The
algebraic deformation for generating a series of systems with
the generalized chiral symmetry can be generally applicable to
such systems with edges or boundaries [13]. The generalized
chiral symmetry exists when the Hamiltonian H satisfies

γ †Hγ = −H,

with γ 2 = 1, where the generalized chiral operator γ is not
necessarily Hermitian [11,12]. The generalized chiral sym-
metry is an extension of the conventional chiral symmetry
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since it reduces to the conventional one when the operator γ

is Hermitian. The generalized chiral symmetry can be defined
exactly for lattice Hamiltonians as well as for effective low-
energy Hamiltonians [13].

To be specific, we consider the case where the original
lattice Hamiltonian is bipartite. A bipartite Hamiltonian can
generally be expressed as

Hc =
(

O D
D† O

)
,

in a basis (�a1 , . . . , �aN , �b1 , . . . , �bN ) where �an (bn ) de-
notes the basis of the A (B) sublattice in the nth unit cell. Here
D is a N × N matrix and N denotes the number of unit cells
in the system. In this case, the conventional chiral operator is
given by

� =
(

IN O
O −IN

)
= σz ⊗ IN ,

since it satisfies the relation �Hc� = −Hc and �2 = 1. Here
IN stands for the N × N identity matrix. The series of lattice
Hamiltonians Hτ (q) respecting the generalized chiral sym-
metry can be generated from the chiral symmetric lattice
Hamiltonian Hc by the algebraic transformation as

Hτ (q) = Tτ (q)−1HcTτ (q)−1 (1)

with

Tτ (q) = exp(qτ · σ/2) ⊗ IN ,

where τ = (τx, τy, τz ) is a three-dimensional real and unit vec-
tor and σ = (σx, σy, σz ) are Pauli matrices. The parameter q is
assumed to be real and thus Tτ (q) is an Hermitian matrix with
det Tτ (q) = 1. We then define the generalized chiral operator
γ as

γ = Tτ (q)�Tτ (q)−1.

It is straightforward to see that γ 2 = 1 and γ †Hτ (q)γ =
−Hτ (q). The Hamiltonians deformed by the transformation
(1) therefore always respect the generalized chiral symme-
try. This hyperbolic transformation has the same form as the
Lorentz boost (Appendix A).

Inversely, if we require the generalized chiral symmetry for
a lattice model with the bipartite structure, it has been shown
that the lattice model can be transformed back to a chiral
symmetric lattice model [24]. For the case of 2 × 2 matrices,
a matrix γ2 satisfying γ 2

2 = 1 can be expressed in the form

γ2 = exp(qn1 · σ/2)(n0 · σ) exp(−qn1 · σ/2),

where n0 and n1 are real vectors with n2
0 = n2

1 = 1 and
n0 · n1 = 0. The generalized chiral operator γs can thus be
expressed generally in the real space as

γs = γ2 ⊗ IN = Sn1 (q)�′Sn1 (q)−1

with

Sn1 (q) = exp(qn1 · σ/2) ⊗ IN , �′ = (n0 · σ ) ⊗ IN .

When the Hamiltonian H respects the generalized chiral
symmetry as γ †

s Hγs = −H , we can then define an inverse

transformation as

H ′
c = Sn(q)HSn(q). (2)

It is then verified that H ′
c is indeed chiral symmetric, because

it satisfies the relation �′H ′
c�

′ = −H ′
c with �′ = (n0 · σ) and

(�′)2 = 1.
It should be noted that the number of zero-energy states is

an invariant of the transformation and its inverse. If we have a
zero-energy state ψ0, for instance, of the original Hamiltonian
Hc, namely, Hcψ0 = 0, then it is easy to see that the state
defined by Tτ (q)ψ0 is also a zero-energy state of Hτ (q) since
Hτ (q)[Tτ (q)ψ0] = Tτ (q)−1Hcψ0 = 0. Taking into account
that det Tτ (q) = 1, we can safely conclude that the number
of zero-energy states is an invariant of the deformation.

If the original system Hc is topologically nontrivial, we
have the topological edge states at the open boundary of the
system, which are the zero-energy states because of the chiral
symmetry. It is to be remarked, however, that the energy of
the edge state localized at the boundary becomes exactly zero
only in the thermodynamic limit (N → ∞) where the mixing
between edge states at both boundaries becomes negligible.
In a conventional approach, therefore, a semi-infinite system
with one boundary has been considered to define the edge
states as the zero-energy states. Here in the present paper, we
adopt an alternative approach to define the edge states based
on the exact zero-energy states for a finite system (N < ∞).

Instead of a semi-infinite system, we consider simply a
finite system (N < 0) having the left and the right boundaries
at both ends of the system. To define the edge state, for
example, at the left boundary, we first modify the Hamilto-
nian at the right end of the system so that there exist exact
zero-energy states even for a finite N . This can be achieved
rather easily as we demonstrate for the SSH model in Sec. III.
We then take the thermodynamic limit N → ∞ where one of
the zero modes becomes the edge state at the left boundary.
It is to be noted that, in the thermodynamic limit, the local
modification of the Hamiltonian in the vicinity of one end of
the system should be negligible for the edge state localized
at the other end. Though this approach gives the same result
as the conventional one, it has an advantage that we can
safely assume the existence of the exact zero-energy states
even in the present real-space formalism where the system is
described by a large but finite-size matrix.

In numerical analyses for finite systems, the deviation of
the energy of the edge state from zero should be exponentially
small and thus can be negligible when the system size (N) is
much larger than the localization length of the edge state.

Since the deformation preserves the number of zero modes,
the number of edge states is also an invariant of the deforma-
tion. This clearly suggests that the bulk topological invariant
should also be preserved within the present deformation. This
property of the deformation also leads to the fact that if
the original chiral symmetric model has an energy gap in
the bulk spectrum, it remains open and never closes in any
deformed models with arbitrary q. Note that because of the
chiral symmetry, if the gap exists, it should be open symmet-
rically around zero energy (E = 0) in the original model. In
the deformed Hamiltonian generated by the transformation
(1), the zero-energy states should never appear in the bulk
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spectrum and the positive/negative energy states should re-
main positive/negative for any q.

B. Symmetry breaking

Let us discuss the effect of the symmetry breaking by the
mass term

Hm = m�.

To be specific, we assume m is positive. We find that the
robustness of the edge states against the mass term for q �= 0
turns out to be quite different from that for q = 0. To see
this, it is instructive to revisit the robustness of the edge state
for q = 0. In this case, the Hamiltonian is chiral symmetric
for m = 0, and therefore the zero-energy edge states can be
expressed as an eigenstate of the chiral operator. This leads
to the fact that the energies of the edge states are exactly
given by Eedge(m) = ±m and the corresponding eigenstates
are independent of m. The edge state localized at the boundary
therefore never disappears for any value of m.

For deformed systems (q �= 0), the behavior of the edge
states in the presence of the mass term is qualitatively dif-
ferent. Let us recall the general theoretical framework [13]
for the energy eigenvalues of deformed systems with the
generalized chiral symmetry. To discuss systems with open
boundaries, we proceed to the real-space representation in a
basis (�a1 , . . . , �aN , �b1 , . . . , �bN ). The deformed Hamilto-
nian in the presence of the mass term is then defined by

H (m)
τ (q) = Tτ (q)−1(Hc + m�)Tτ (q)−1.

Since the operator Tτ (q) with τ = (0, 0, 1) induces no
changes for Hc, we confine ourselves to the case τ =
(cos θ, sin θ, 0). We then have

H (m)
τ (q) = Hτ (q) + m�

since we have a relation �Tτ (q) = Tτ (−q)�. Eigenvalue
equations are given by

H (m)
τ (q)ψ (m)

E = Eψ
(m)
E ,

where E depends on m. Multiplying H (m)
τ (−q) = H (m)

τ (q) +
I2 ⊗ (eiθD + e−iθ D†) sinh q, we have [13]

H (m)
τ (−q)H (m)

τ (q)ψ (m)
E

= Tτ (q)
(
H2

c + m2
)
Tτ (q)−1ψ

(m)
E

= E [E + I2 ⊗ (eiθ D + e−iθ D†) sinh q]ψ (m)
E ,

which leads to[
H2

c − I2 ⊗ E (eiθ D + e−iθ D†) sinh q + m2
]
	

(m)
E = E2	

(m)
E

with 	
(m)
E = Tτ (q)−1ψ

(m)
E . Completing the square, we have

{
[Hc(q, E )]2 + m2

R

}
	

(m)
E = E2	

(m)
E

with

Hc(q, E ) =
(

O D(q, E )
D†(q, E ) O

)
,

D(q, E ) ≡ 1

cosh q
(D − e−iθ E sinh q)

and mR ≡ m/ cosh q. We have therefore generally E2 � m2
R.

The condition under which the eigenstate with an eigenvalue
E = mR in the form

ψ
(m)
E=mR

= Tτ (q)

(
φm

+
0

)
(3)

exists, is given by [13]

(D† − mReiθ sinh q)φm
+ = 0. (4)

For the eigenstate ψE=−mR with the energy E = −mR in the
form

ψ
(m)
E=−mR

= Tτ (q)

(
0

φm
−

)
, (5)

the condition is similarly given by

(D + mRe−iθ sinh q)φm
− = 0. (6)

Note that the eigenstate ψ
(m)
E=±mR

, if it exists, is also the eigen-
state of the generalized chiral operator γ with the eigenvalue
±1 and reduces to the eigenstate of the conventional chiral
operator � in the limit as q → 0.

The state ψ
(m)
E=±mR

with the energy ±mR is apparently a
candidate for the edge state of the topological system because
it is connected to the zero mode in the bulk gap in the limit
as m → 0. We therefore look for an eigenstate with E = ±mR

with the form ψ
(m)
E=±mR

decaying exponentially from one end of
the system to the other. To discuss such a state localized at one
end of the system, it is allowed to modify the original Hamilto-
nian locally at the other end of the system, since the amplitude
of the state is exponentially small there and the effect of the
modification should be negligible in the thermodynamic limit.
The modification to obtain, for instance, an exact eigenstate
ψ

(m)
E=mR

is performed so that the above condition (4) is satisfied
by a nonzero solution φm

+ even for a finite system. This can be
achieved, practically, by a modification that reduces the rank
of the matrix (D† − mReiθ sinh q) from N to N − 1. Though
such a modification certainly depends on the details of the
Hamiltonian, it is realized generally as long as it is composed
of local operators. With this modification, we can construct
an exact eigenstate ψ

(m)
E=±mR

decaying exponentially from one
end to the other even for a finite N , with which we define the
edge state in the limit as N → ∞.

Exponentially decaying states can be understood as plane
waves with complex wave numbers. If we adopt the expres-
sion φm

±[ j] = eikr j um
±, j (k) with um

±, j (k) = um
±, j+α (k) where r j

denotes the spatial coordinate of the site j, which is assumed
to increase from left to right, and α is the number of the A (B)
site in the unit cell. The condition (4) for the state ψ

(m)
E=mR

then
can be expressed as

[d†(k) − mReiθ sinh q]um
+(k) = 0,

where d (k) is a complex matrix in the Hamiltonian expressed
in the momentum space as

Hc(k) =
(

0 d (k)
d†(k) 0

)
,

and um
+(k) = t [um

+,1(k), . . . , um
+,α (k)]. Note that

d (k) is a matrix for a multiband system
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(α > 1). The wave number k is therefore
determined by

det[d (k)† − mRe−iθ sinh q] = 0.

Similarly, for the state ψ
(m)
E=−mR

, the condition (6) becomes
[d (k) + mRe−iθ sinh q]um

−(k) = 0. The momentum k is then
determined by det[d (k) + mRe−iθ sinh q] = 0.

When the above equations have a solution with a wave
number k with a nonzero imaginary part, Im(k) �= 0, the so-
lution is an exponentially decaying (diverging) state which
corresponds to the edge state localized at the left (right)
boundary of a semi-infinite system. The imaginary part of k
must be positive (negative) for an edge state localized at the
left (right) boundary, so that the edge states are normalizable.
In general, the behavior of the imaginary part of k as a func-
tion of the mass m determines the instability of the edge state.
If Im(k) becomes zero at a certain value mc of the mass, the
edge state at m = mc is no longer localized at one boundary
of the system and is expected to become a bulk state.

As we shall see in the following, for the case of the
one-dimensional SSH model with α = 1, these eigenstates
ψE=±mR are indeed the edge states exponentially localized at
the boundaries of the system in the presence of the mass term,
where the sign of the imaginary part of the wave number deter-
mines the position of the edge state (left or right boundaries).
It is clearly demonstrated that they merge into the bulk band
and disappear at a certain critical mass where the imaginary
part of the wave vector k becomes exactly zero.

III. DEFORMED SSH MODEL

A. Topological invariant and edge states

Here we consider deformations of the one-dimensional
SSH model [25], which is described by the Hamiltonian

HSSH =
∑

n

ta†
nbn + t ′a†

n+1bn + H.c.,

where an (bn) denotes the annihilation operator of an electron
on the sublattice A (B) in the nth unit cell (Fig. 1). This Hamil-
tonian respects the chiral symmetry and can be expressed as

HSSH =
(

0 D
D† 0

)

in the basis (�a1 , . . . , �aN , �b1 , . . . , �bN ) where the nonzero
matrix elements of the off-diagonal matrix D are given by
Di,i = t for i = 1, . . . , N and Di+1,i = t ′ for i = 1, . . . , N −
1. The symmetry breaking mass term is defined by

Hm = m� = m
N∑

n=1

(a†
nan − b†

nbn).

A B A A AB B B

t t’ t t’

unit cell

FIG. 1. The SSH model in real space. The transfer integral in
the unit cell is denoted by t and that between the unit cells is
denoted by t ′.

In the momentum space, the bulk Hamiltonian with the mass
term can be expressed as

HSSH(k) + mσz =
(

m d (k)
d∗(k) −m

)
,

with d (k) = t + t ′e−ik . Here we adopt the lattice constant
as a unit of length. The bulk energy dispersion is therefore
given by

E (k) = ±
√

|d (k)|2 + m2.

For m = 0, this model becomes topologically nontrivial when
t ′ > t exhibiting topological edge states at E = 0 if the system
has open boundaries, while it is trivial when t ′ < t having no
edge state at the open boundary [7,8]. In the presence of the
mass, the wave function of the edge states remains the same
as that for m = 0 while their energies become ±m. The edge
state with the conventional chiral symmetry therefore never
goes into the bulk band since E (k)2 > m2 as long as |d (k)| >

0, nor disappears at a certain finite value of the mass because
the wave function itself is independent of m.

The deformed SSH model is defined by the algebraic trans-
formation

Hτ (q) = Tτ (q)−1HSSHTτ (q)−1

with τ = (cos θ, sin θ, 0), which can be represented generally
as [13]

Hτ (q) = − sinh q

2
(eiθD + e−iθ D†) ⊗ I2 +

(
O Dq

D†
q O

)

with

Dq ≡ D cosh2 q

2
+ e−2iθ D† sinh2 q

2
.

The present deformation of the Hamiltonian in real space
can be applied to systems with boundaries. The deformation
preserves the number of zero-energy states and therefore pre-
serves the number of edge states of the topological phase in
the original SSH model. The deformed system is thus topo-
logically nontrivial and has edge states for the case of t ′ > t .

This can be confirmed by evaluating the bulk topological
invariant in the system with the translational invariance. In
such a system, the deformed Hamiltonian can be given in the
momentum space as

Hτ (q) = − sinh q Re[eiθ d (k)]I2 +
(

0 dq,θ (k)
d∗

q,θ (k) 0

)

with dq,θ (k) = e−iθ {Re[eiθ d (k)] cosh q + i Im[eiθ d (k)]}
where Re (Im)[z] stands for the real (imaginary) part of a
complex number z. With this expression, it is straightforward
to verify that the winding number, which is the topological
invariant of the topological phase of the SSH model [5,8], is
indeed an invariant of the deformation (see Appendix B). In
real space, the deformed system can be realized as a ladder
system with the next-nearest neighbor transfer integrals which
exhibits various types of band structure including a flatband
as well as an indirect band gap (Appendix C).

Now let us discuss the symmetry breaking in the deformed
systems. The deformed SSH model with the mass term is
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given by

H (m)
τ (q) ≡ Tτ (q)−1(HSSH + m�)Tτ (q)−1 = Hτ (q) + m�.

To discuss the edge states, we consider a finite system with
N unit cells having an A site at its left boundary (Fig. 1) and
examine whether the state with the form ψ

(m)
E=mR

can describe
the edge state at the left boundary decaying exponentially
toward the right [Im(k) > 0]. For the SSH model, condition
(4) can be written explicitly as

(t − mReiθ sinh q)φm
+[n] + t ′φm

+[n + 1] = 0,

for n = 1, 2, . . . , N − 1, with

(t − mReiθ sinh q)φm
+[N] = 0 (7)

at the right boundary. Here the element of the nth unit cell is
denoted by φm

+[n] so that φm
+ = t (φm

+[1], φm
+[2], . . . , φm

+[N]).
The index n for the nth unit cell is assumed to increase from
left to right where the unit cell at the left boundary is denoted
by n = 1. For a finite N , no physical solution is allowed due
to condition (7), suggesting that the edge state having exactly
the energy E = mR does not exist in a finite system.

We then perform a modification of HSSH at the right bound-
ary of the system to define a modified Hamiltonian H̃+

SSH as

H̃+
SSH = HSSH + {(mRe−iθ sinh q − t )a†

N bN + H.c.},
so that the coefficient of φm

+[N] in (7) vanishes. This modifi-
cation is nothing but the replacement of the local Hamiltonian
{ta†

N bN + H.c.} with {(mRe−iθ sinh q)a†
N bN + H.c.} at the N th

unit cell. With this modification at the right boundary, the
(N, N ) element of the matrix D̃ defined as

H̃+
SSH =

(
O D̃
D̃† O

)

becomes D̃N,N = (mRe−iθ sinh q), while other elements of D̃
are the same as D. Note that the modification affects only the
(N, N ) element of the matrix D. It is then easy to verify that
the rank of the matrix [D̃† − mReiθ sinh q] is reduced to N − 1
and hence the nonzero solution with the energy mR can exist
even for a finite N . More explicitly, the equations become

(t − mReiθ sinh q)φ̃m
+[n] + t ′φ̃m

+[n + 1] = 0,

for n = 1, . . . , N − 1, with which the eigenstate ψ̃
(m)
E=mR

with
the energy E = mR for H̃+

SSH is given by

ψ̃
(m)
E=mR

= T (q)

(
φ̃m

+
0

)
.

Note that the equations for φ̃m
+ are exactly the same as those

for φm
+ except the condition (7).

For the modified system, we can construct a nonzero
solution decaying (diverging) exponentially from the left
boundary to the bulk even for a finite system as φ̃m

+[n] ∝
(−1)n−1rn−1

+ with

r+ ≡ t − mReiθ sinh q

t ′ .

Note that the energy of the state is exactly given by mR

even for a finite system. We then consider the thermodynamic
limit as N → ∞, where the state is normalizable and decay-
ing exponentially as long as |r+| < 1 is satisfied. It is again

remarked that, in the limit as N → ∞, the effect of the mod-
ification at the right end of the system should be negligible
for the edge state localized at the left boundary. We therefore
remove the tilde in the notations and arrive at the solution for
the edge state at the left boundary

ψ
(m)
E=mR

=
(

ψm
+,A

ψm
+,B

)

with

ψm
+,A[n] = (−1)n−1C+ cosh(q/2)rn−1

+ ,

ψm
+,B[n] = (−1)n−1C+eiθ sinh(q/2)rn−1

+ ,

where ψm
+,A (B)[n] denotes the element of ψm

+,A (B) at the unit
cell specified by the index n and

C+ =
(

1 − |r+|2
cosh q

)1/2

is a normalization constant. This normalizable eigenstate re-
duces to the conventional edge state at the left end of the
system in the limit as q → 0 which resides only on the A
sublattice.

The present approach to define the edge state also indicates
that the state ψ

(m)
E=mR

with the energy mR is inappropriate for
the edge state at the right boundary, which should decay
exponentially from right to left [Im(k) < 0]. Apparently, con-
dition (7) cannot be removed by the local modification of the
Hamiltonian at the left end of the system. We are therefore
unable to construct a nonzero solution decaying from the right
boundary to the left by assuming the form ψ

(m)
E=mR

, suggesting
that the state with the energy mR does not exist in the regime
Im(k) < 0.

To consider the edge states at the right boundary decaying
exponentially toward the bulk, we examine the state ψ

(m)
E=−mR

having the energy −mR. With our choice of the unit cell, we
have a B site at the right boundary. In such a case, condition (6)
for the eigenstate ψ

(m)
E=−mR

can be written, using the elements
of φm

− = t (φm
−[1], . . . , φm

−[N]), as

(t + mRe−iθ sinh q)φm
−[n] + t ′φm

−[n − 1] = 0,

for n = 2, . . . , N with

(t + mRe−iθ sinh q)φm
−[1] = 0 (8)

at the left boundary. A nonzero solution is again prohibited by
condition (8) for a finite system (N < ∞).

We then consider again a similar local modification of the
Hamiltonian at the opposite (left) end of the system so that
the coefficient of φm

−[1] in condition (8) becomes zero. It is
achieved by modifying the local Hamiltonian in the first cell
(n = 1) at the left end of the system as

H̃−
SSH = HSSH − {(mRe−iθ sinh q + t )a†

1b1 + H.c.}.
If we write the eigenstate ψ̃

(m)
E=−mR

of the modified Hamilto-
nian H̃−

SSH with the energy −mR as

ψ̃
(m)
E=−mR

= T (q)

(
0

φ̃m
−

)
,
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the equations for φ̃m
− becomes

(t + mRe−iθ sinh q)φ̃m
−[n] + t ′φ̃m

−[n − 1] = 0,

for n = 2, . . . , N , which are exactly the same as those for φm
−

except the condition (8).
We are then able to construct a solution that decays

exponentially from the right edge to the bulk as φm
−[n] ∝

(−1)N−nrN−n
− with

r− ≡ t + mRe−iθ sinh q

t ′ ,

which is normalizable in the limit as N → ∞ provided that
|r−| < 1. The edge state at the right boundary is thus given by

ψ
(m)
E=−mR

=
(

ψm
−,A

ψm
−,B

)

with

ψm
−,A[n] = (−1)N−nC− cosh(q/2)rN−n

− ,

ψm
−,B[n] = (−1)N−nC−eiθ sinh(q/2)rN−n

− .

Here ψm
−,A(B)[n] denotes the element of ψm

−,A(B) at the nth unit
cell and

C− =
(

1 − |r−|2
cosh q

)1/2

is again a normalization constant. This solution reduces to the
conventional edge state at the right boundary in the limit as
q → 0 which resides only on the B sublattice.

It is also noted that the state ψ
(m)
E=−mR

with the energy −mR

cannot describe the edge state at the left boundary decaying
from left to right [Im(k) > 0], because we cannot remove
condition (8) by a local modification of the Hamiltonian at
the right boundary.

The eigenstates with energies E = ±mR are therefore in-
deed the edge states exponentially localized at the boundaries
of the deformed system. These edge states exist only when
the mass is smaller than the critical mass m±

c determined by
|r±| = 1 so that condition |r±| < 1 is satisfied for m < m±

c .
It is to be noted that |r+| and |r−| can be different, which

means that the robustness of the edge state with the energy
E = mR and that with E = −mR can be different for a de-
formed system. As we shall see in the following, the edge
state merges into the bulk band at a point where |r+| (|r−|)
becomes unity.

Here we explicitly construct the edge state based on the
boundary condition and its normalizability in a semi-infinite
system. We note that the edge states with generic bound-
ary conditions have been discussed for continuum models
[35–37].

B. Bulk versus edge states

As shown above, the edge state exhibits an instability at
|r±| = 1. This condition can be understood as the point where
the wave number of the plane-wave solution with the energy
±mR becomes real, which means that the edge state becomes
one of the bulk states exactly at this point. This is the reason
why the edge state merges into the bulk band at |r±| = 1.

If we adopt the form φm
±[n] = eiknu(k), the conditions (4)

and (6) for the states ψ
(m)
E=±mR

are expressed as

(t + t ′e±ik ) ∓ mRe±iθ sinh q = 0.

For q = 0, this reduces to t + t ′e±ik = 0 and the wave number
k is k = ∓i ln(−t/t ′). In the topological phase (t ′ > t ), the
imaginary part of k is positive [Im(k) > 0] for the state ψ

(m)
E=mR

which corresponds to an exponentially decaying state at the
left boundary. For the state ψ

(m)
E=−mR

, we have Im(k) < 0 which
means that the state is exponentially decaying from right to
left at the right boundary. Note that the wave number is always
complex independent of m, which means that the edge state
never merges into the bulk band.

For q �= 0, on the other hand, the wave number k of the
states with E = ±mR is given as

e±ik = − t ∓ mRe±iθ sinh q

t ′ ,

and hence we have e±ik = −r±. The requirement that |r±| = 1
is therefore equivalent to the condition that the wave vector
k is real. At this point, the sign of the imaginary part of the
wave number k changes from positive (negative) to negative
(positive) for the state ψ

(m)
E=mR

(ψ (m)
E=−mR

), as the mass is in-

creased. Since the state ψ
(m)
E=mR

(ψ (m)
E=−mR

) exists only as the left
(right) edge state, it is normalizable and therefore exists only
when the imaginary part of the wave number Im(k) is positive
(negative). In the deformed system, therefore, the edge states

FIG. 2. Energy eigenvalues for a system in the case of θ = 0 with
the symmetry breaking term m�. The numerical results for a finite
system with 200 unit cells having two open boundaries at each end of
the system are shown. The parameters are assumed to be t/t0 = 0.65,
t ′/t0 = 1.35, and q = 1.0. The bulk states in the Bloch bands are
plotted by black symbols while the two edge states with the energy
±mR in the bulk gap are plotted by red (−mR) and blue (+mR) lines.
It is clearly seen that the edge state at the left end (blue line) exists
in the range 0 < m < (t ′ + t )/ tanh q and merges into the bulk band
at m+

c = (t ′ + t )/ tanh q ≈ 2.6t0. The edge state at the right end (red
line), on the other hand, merges into the bulk band at m−

c = (t ′ −
t )/ tanh q ≈ 0.9t0.
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FIG. 3. Energy eigenvalues for a system in the case of θ = π/2
with the symmetry breaking term m�. The numerical results for
a finite system with 200 unit cells having two open boundaries at
each end of the system is shown. The parameters are assumed to be
t/t0 = 0.65, t ′/t0 = 1.35, and q = 1.0. The bulk states in the Bloch
bands are plotted by black symbols while the two edge states with
the energy ±mR are plotted by red (−mR) and blue (+mR) lines. It
is clearly seen that both the edge states (blue and red lines) exist in
the range 0 < m <

√
t ′2 − t2/ tanh q and merges into the bulk band

at m+
c = m−

c = √
t ′2 − t2/ tanh q ≈ 1.55t0.

disappear at the critical mass m±
c where the imaginary part of

k vanishes, and becomes a bulk state there, which does not
happen in the conventional chiral symmetric systems.

C. Numerical results

To confirm the analytical results, we perform numerical
calculations in systems with boundaries. First, we consider
the case of θ = 0, where the time-reversal symmetry (TRS) is
preserved [13]. In this case, the edge state with E = mR exists
as long as

|t − m tanh q| < |t ′|,
while the edge state with E = −mR exists when

|t + m tanh q| < |t ′|.

A

B

t
1

t
3

t
3

t
2

t
4

FIG. 4. The deformed SSH model with τ = x̂ in real space.
Thick solid lines (black), thin solid lines (black), dotted lines (red),
and dashed lines (blue) represent hopping amplitudes t1, t2, t3, and t4,
respectively.

For the case where t , t ′(> t ), and m are positive, these condi-
tions lead to the fact that for 0 < m tanh q < t ′ − t the edge
states at both boundaries (left and right) exist in the gap while
for t ′ − t < m tanh q < t + t ′ only the edge state at the left
boundary can exist in the gap. The critical masses m±

c over
which the edge state merges into the bulk band are given
by m+

c = (t + t ′)/ tanh q and m−
c = (t ′ − t )/ tanh q. This can

be clearly seen in Fig. 2 where the energy spectra for the
deformed system Hx̂

q + m� with open boundaries are shown.
Next, we consider the case of θ = π/2, where the time-

reversal symmetry is broken. The critical mass m±
c is then

given by m+
c = m−

c = √
t ′2 − t2/ tanh q, and therefore both

edge states exist only when the condition m < m±
c is satisfied

(Fig. 3). In this case, the energy spectra are symmetric with
respect to E = 0. Note that in both cases, no eigenstate with
the energy E = ±mR exists for m > m±

c .

IV. SUMMARY

We have shown that the bulk-edge correspondence in topo-
logical phases can be extended to the systems without the
conventional chiral symmetry but respecting the generalized
chiral symmetry. Systems respecting the generalized chiral
symmetry are generated by the algebraic deformation which
preserves the bulk topological invariants of the original chiral
symmetric system as well as the zero-energy edge states at the
boundaries. We have explored the bulk-edge correspondence
in a deformed Su-Schrieffer-Heeger model in one dimension.
We have found interestingly that the edge states in a deformed
system with generalized chiral symmetry exhibit an instability
when the symmetry is broken by the mass. The edge state
disappears at a certain critical value of the mass, where it
touches to the bulk band and becomes a bulk state with a
real wave number, which never happens for the conventional
chiral symmetric systems. The present analysis suggests that
in the bulk-edge correspondence with the generalized chi-
ral symmetry, the edge states are adiabatically connected to
the bulk states by modifying the strength of the symmetry
breaking.
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APPENDIX A: DEFORMATION AND LORENTZ BOOST

The present deformation has the same hyperbolic form as
the Lorentz boost [38–41]. To see the relationship between
them, we consider the two-dimensional massless Dirac elec-
trons described by the effective Hamiltonian H = vF (σx px +
σy py). Then the Schrödinger equation becomes(

ih̄
∂

∂t
− H

)
ψ = 0.

This can be reduced to, in the real-space representation,

(∂0 + σx∂x + σy∂y)ψ = 0,

where ∂0 = ∂
∂x0

, ∂x = ∂
∂x , and ∂y = ∂

∂y with x0 = vFt . We
then consider a Lorentz boost for the frame moving in the
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FIG. 5. Energy dispersions Ex̂
q,± of the deformed SSH model for (a) q = 0, (b) q = 0.3, (c) q = tanh−1(t/t ′) ≈ 0.524, and (d) q = 0.8.

Because of the time-reversal symmetry, we have Ex̂
q,±(k) = Ex̂

q,±(−k). Here we assume t = t0 − δt , t ′ = t0 + δt with δt/t0 = 0.35 so that the
original SSH model is topologically nontrivial. The lattice constant of the corresponding lattice is denoted by a. A flatband appears for the
case of (c). For q > tanh−1(t/t ′), the band gap becomes indirect (d).

x direction with a velocity v. The coordinates (x′
0, x′, y′) in

such a frame are given by

(
x′

0
x′

)
=

(
cosh q − sinh q

− sinh q cosh q

)(
x0

x

)
, y′ = y,

FIG. 6. Energy eigenvalues for a finite system with 200 unit
cells having two open boundaries at each end of the system. The
parameters are assumed to be t/t0 = 0.65 and t ′/t0 = 1.35. The bulk
states in the Bloch bands are plotted by black symbols while the two
edge states at E = 0, located either the left or the right ends of the
system, are plotted by red symbols.

where the parameter q is given by tanh q = v
c with the speed

of light c. In this frame, the Schrödinger equation becomes

exp(qσx/2)[∂ ′
0 + σx∂

′
x + σy∂

′
y] exp(qσx/2)ψ = 0,

with which we arrive at [∂ ′
0 + σx∂

′
x + σy∂

′
y]ψ ′ = 0 with ψ ′ =

eqσx/2ψ , where ∂ ′
0 = ∂

∂x′
0
, ∂ ′

x = ∂
∂x′ , and ∂ ′

y = ∂
∂y′ . The present

deformation for the operator [∂0 + σx∂x + σy∂y] therefore cor-
responds to the Lorentz boost with tanh q = v/c.

APPENDIX B: WINDING NUMBER OF DEFORMED
SYSTEMS

Here we consider the deformation

Hτ (q) = Tτ (q)−1HSSHTτ (q)−1,

A

B

h
3h

2

h
1

h
4 h

3

FIG. 7. The SSH model deformed by σy in real space. Thick
solid lines (black), thin solid lines (black), dotted lines (red), and
dashed lines (blue) represent hopping amplitudes h1, h2, h3, and h4,
respectively. The hopping h3 becomes imaginary while the others are
real.
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FIG. 8. Examples of the energy dispersion Eŷ
q,±(k) for q = 1.0. The critical case (a) t/t ′ = 1.0 and the topological cases (b) t/t0 = 0.65

and t ′/t0 = 1.35 are presented. Although the time-reversal symmetry is broken, we have a relation Eŷ
q,±(k) = Eŷ

−q,±(−k) = Eŷ
q,∓(−k).

with τ = (cos θ, sin θ, 0), which yields in the momentum
space

Hτ (q) = − sinh q Re[eiθ d (k)]I2 +
(

0 dq,θ (k)
d∗

q,θ (k) 0

)
,

where dq,θ (k) = e−iθ {Re[eiθ d (k)] cosh q + i Im[eiθd (k)]}
with d (k) = t + t ′e−ik and I2 stands for the 2 × 2 identity
matrix. The energy eigenvalues are given by

E τ
q,± = − sinh q Re[eiθ d (k)] ±

√
|dq,θ (k)|2,

and the corresponding eigenstates |ψτ
±〉 with Hτ (q)|ψτ

±〉 =
E τ

q,±|ψτ
±〉 are given by

|ψτ
±〉 = 1√

2

(±α∗
τ

1

)
, α∗

τ = dq,θ (k)

|dq,θ (k)| .

The Q matrix [7] is therefore given by

Q = |ψτ
+〉〈ψτ

+| − |ψτ
−〉〈ψτ

−| =
(

0 α∗
τ

ατ 0

)
.

The winding number w can then be defined by

w = i

2π

∫
BZ

dατ α−1
τ .

This winding number becomes nonzero when the trajectory
of dq,θ (k) in the complex plane encircles the origin when k
moves from 0 to 2π . For q = 0, dq,θ (k) becomes d (k) and it
encircles the origin when t ′ > t [7,8]. In the present deformed
systems with q �= 0, dq,θ (k) is simply scaled by a factor cosh q
in the direction determined by θ and hence the winding num-
ber is the same as d (k). The winding number is therefore an
invariant of the present deformation, with which we conclude
that the topological phase in the deformed systems is always
given by t ′ > t and the bulk-edge correspondence is valid
independent of q.

APPENDIX C: DEFORMED SSH MODELS
WITH/WITHOUT TIME-REVERSAL SYMMETRY

Here we show typical cases of deformed SSH models
with/without the time-reversal symmetry. When we assume
τ = x̂ = (1, 0, 0), the deformed SSH model

Hx̂(q) = exp(−qσx/2)HSSH exp(−qσx/2)

respects the time-reversal symmetry. In this case, a next-
nearest neighbor and a third-nearest neighbor transfer inte-
grals as well as a uniform energy shift emerge in the deformed
Hamiltonian in the real space, which is equivalent to a ladder
Hamiltonian described by

Hx̂
q =

∑
n

ε(a†
nan + b†

nbn) +
∑

n

t1a†
nbn + t2a†

n+1bn

+ t3(a†
n+1an + b†

n+1bn) + t4a†
n−1bn + H.c.,

where ε = −t sinh q, t1 = t cosh q, t2 = t ′(cosh q + 1)/2,
t3 = −t ′(sinh q)/2, and t4 = t ′(cosh q − 1)/2 (Fig. 4).

In this series of deformed topological SSH models, we find
at q = tanh−1(t/t ′) that the deformed model has a flatband.
Note that this flatband model appears only when the original
SSH model is topologically nontrivial (t ′ > t). In fact, for the
case tanh q = t/t ′, we have

Ex̂
q,+ =

√
t ′2 − t2, Ex̂

q,− = −(t ′2 + t2) − 2tt ′ cos k√
t ′2 − t2

,

and hence the energy of the flatband is
√

t ′2 − t2. In Fig. 5, we
show examples of the energy dispersions of the deformed SSH

FIG. 9. Energy eigenvalues for a finite system with 200 unit
cells having two open boundaries at each end of the system. The
parameters are assumed to be t/t0 = 0.65 and t ′/t0 = 1.35. The bulk
states in the Bloch bands are plotted by black symbols while the two
edge states at E = 0 are plotted by red symbols.
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model, where the energy bands become asymmetric for q �= 0.
Models generated by the present deformation are, however,
topologically nontrivial for any q. The energy gap, which can
be indirect [Fig. 5(d)], never closes in the deformation.

The bulk-edge correspondence in the present models can
be confirmed by the appearance of the edge states when the
system has open boundaries. We show in Fig. 6 the energy
eigenvalues of a finite system with open boundaries at each
end of the system. It is clearly seen that the edge states exist
exactly at zero energy throughout the deformation.

Next, we consider the models with τ = ŷ = (0, 1, 0) as

Hŷ(q) = exp(−qσy/2)HSSH exp(−qσy/2),

where the time-reversal invariance is broken for q �= 0. In the
real space, the Hamiltonian can be written again in a ladder

system as (Fig. 7)

Hŷ
q =

∑
n

h1a†
nbn + h2a†

n+1bn

+ h3(a†
n+1an + b†

n+1bn) + h4a†
n−1bn + H.c.,

where h1 = t , h2 = t ′(cosh q + 1)/2, h3 = −it ′(sinh q)/2,
and h4 = −t ′(cosh q − 1)/2. Because of the breaking of the
time-reversal invariance, the hopping t ′

3 becomes imaginary.
Examples of the dispersion relations for the deformed sys-

tems are shown in Fig. 8, where Eŷ
q,±(k) �= Eŷ

q,±(−k) due to
the breaking of the time-reversal invariance.

The appearance of the edge states at E = 0 for an open
system is also confirmed for t ′ > t . In Fig. 9, we show the
energy eigenvalues of an open system with 200 unit cells,
where the spectra are symmetric with respect to E = 0. The
edge states at E = 0 again exist for any value of q.
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