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When we describe our moods, we often use "light steps" and "heavy steps". The relationship
between footsteps and human emotional states has been studied in emotion recognition today.

Using Kansei Design’s methodology, this study created "My Footprint," a wearable infor-
mation system that automatically records the wearer’s real-time location and plantar pressure.
The researcher used this device to aggregate and analyze user behavior through a geographic
information system. This study began with a detailed literature study. The roles played by
gait and location information in the recording and research were investigated separately.

Concerning many prior studies and various methodologies, this study proposes a design of
a recording device (including physical structure, electronic design, and procedures).

Using this equipment, a pilot experiment was conducted to record walking routes in a
defined environment. The researcher collected 30 path data in this experiment and plotted
them on a map.

The researchers proposed a Dual-task walking experiment with prescribed walking motives
based on the Pilon experiment results. And the subjective workload data of 7 study collabo-
rators were measured by the NASA-TLX method. Based on the combined analysis with the
measurement data of plantar pressure and path, it is possible to verify the specific performance
of this study’s measurement data in reflecting the subjects’ subjective perception changes.

From the results of the two experiments, the researchers concluded that the data recorded
by "My Footprint" can be linked to changes in the subjective perception of the wearer under
certain conditions. By rendering the data in a map layer, further location-based research on
visualizing Kansei can be facilitated.

The above is a summary of the research content included in this thesis.
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Chapter 1

Introduction

1.1 About this study

When we describe our moods, we often use "light steps" and "heavy steps".

There are many studies about the relationship between footsteps and human

emotional states in emotion recognition today. Because scholars Kale et al.,

2004 proposed that each person’s gait is a unique physiological indicator like

fingerprints. Especially in recent years, machine learning techniques have

been applied in the field of human recognition based on gait, for example,

self-esteem prediction has been accomplished by gait analysis in recent years

Sun et al., 2017. And the study of Bhattacharya et al., 2020 has built a very

well established neural network for emotional judgment by recognizing the

gait of walkers in animations.

Gait-related studies occupy a considerable place in both clinicopathology

and behavior-related research. However, much of the gait data obtained in

these studies are obtained actively in laboratory settings. People’s walking

characteristics are also altered under the influence of the Hawthorne effect

Adair, 1984. The need for wearable and environmental devices to collect data

when avoiding the Hawthorne effect was mentioned in the study of Muñoz

et al., 2020.
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Environmental devices have strong limitations when it comes to taking

gait information. It becomes very difficult and costly to arrange environ-

mental devices (e.g., depth cameras) that can readily capture time-series gait

information over a large site area. And similarly, when data collection is

performed in a daily life scenario, it is inevitable to deal with many people

mixed in the scene. Although cameras and other devices can rely on face

recognition and other ways to determine identity information, it is still diffi-

cult to efficiently track experiment participants in the crowd. With the help

of wearable devices, it is possible to obtain specific time series information

more accurately and completely.

On the other hand, behavioral analysis is also a popular direction based

on location information. The study of Yuan, Zheng, and Xie, 2012 then pro-

posed that location information can effectively distinguish the functional ar-

eas of cities. Not only cities, but also the location movement of people can be

an important basis for behavioral profiling. As stated by Kisilevich, Mans-

mann, and Keim, 2010, such data are being readily generated in large quanti-

ties with the rapid spread of location-based devices. Based on the spatial data

captured and stored by GIS (Fotheringham, Rogerson, and National Center

for Geographic Information & Analysis (U.S.), 2014), we can link location

information and people’s behavior more precisely.

In summary, this study aims to develop a scheme that can collect data

and perform behavioral and effective state correlation analysis with the help

of a wearable device. This scheme consists of an original device that can

continuously record gait data and GIS-based location trajectory information

as behavioral trait data for long periods in a non-laboratory environment,

and a method for analyzing the data taken by the device.
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1.1.1 Research Questions

The following research questions can be formulated for this study based on

the above research.

• "Is it possible to accomplish long-term recording of accurate gait data and

location information under synchronized time series by a lightweight wearable

device ?"

• "Whether location information traces within a specific area (e.g., campus) will

reflect the behavioral characteristics of the recorded person ?"

• "Whether the data recorded by the device can reflect changes in the wearer’s

gait and how such changes relate to behavioral characteristics ?"
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1.2 Research Features

In this study, an original design for a data logging device was developed and

experiments were conducted to test the device. During the device design

process, the authors were guided by the KANSEI DESIGN methodology and

theory, which is described in detail in the literature study section.

Specifically the device design of this study is characterized by high accu-

racy, long duration of operation, unmanned monitoring, and no dependence

on the Internet. The wearable nature of the device is utilized to minimize

the effect of the Hawthorne effect and thereby collect data on the wearer’s

activity in its natural state.
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1.3 Thesis Structure

Including this chapter, there are five chapters in the body of this paper. Each

chapter begins with a brief description of what is contained in that chapter

and a flowchart showing the location of that chapter in the text. The contents

of each chapter beginning with Chapter 2 are as follows.

• CHAPTER 2: consists of three subsections: research background, re-

search methodology, and KANSEI DESIGN. This section describes the

background of the study development and the current state of research

in the field. The research background section summarizes prior re-

search and related studies; the research methodology section presents

the relevant design methods and experimental measurement methods

used in this study. The last section introduces the KANSEI DESIGN

method as the guiding idea of this study.

• CHAPTER 3: consists of two subsections: device design and experimen-

tal design. This section details the specific technical details of the design

of the measurement device completed in this study. It describes how

the experiments were carried out to validate the research problem with

the help of the technical parameters of the device. The device design

section provides a complete overview of the development of the device

from 0 to 1 in terms of both hardware and software. The experimental

design section proposes more specific research hypotheses by consid-

ering the content of the study and designs experimental protocols to

verify the corresponding hypotheses.

• CHAPTER 4: consists of four subsections: experimental preparation,
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experimental content, experimental results, and discussion. This sec-

tion details the specific implementation details of the experiments con-

ducted in this study. The Experimental Preparation section describes

the ethical considerations of the experiment and the preparations made

for the experiment. The experimental content section details the par-

ticipants, the period of conduct, and the specific details of the imple-

mentation process. The results section presents the data obtained from

the experiment in both qualitative and quantitative terms. The final

discussion section explains the implications of the experimental results

and whether the experimental hypothesis was successfully tested.

• CHAPTER 5: consists of five subsections: device, experiments, limita-

tions, constructive conclusions, and future work. This section gives the

final discussion of the overall study. The device and experimental sec-

tions summarize the main points about these two sections reflected in

the conclusion. The limitations section explores the shortcomings of

this study. The constructive conclusion section reviews the entire re-

search history and explains the significance of the study conducted.

Finally, the future work section illustrates what this study can bring

to future researchers in the same field and suggests directions for im-

provement in the content of this study.

• APPENDIX: This section lists all the associated materials used in the

study. This includes and is not limited to questionnaires, etc.
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Chapter 2

Literature Research

2.1 Research Background

2.1.1 Emotional recognition of gait

In order to study human beings, human behavioral traits are often the ob-

ject of research attention by researchers. And among the many behavioral

characteristics, footsteps are valuable items to study (Nixon, Tan, and Chel-

lappa, 2006). Intuitively, footsteps seem to be a simple and mechanical be-

havioral process. However, footsteps are an action that contains a lot of

information generated and controlled by a complex human motor system

(Paas and Sweller, 2012). Similar to behaviors such as heartbeat, upper limb

movements, and gaze (Fabes, Eisenberg, and Eisenbud, 1993), they can be

simply perceived because they are mechanically and repeatedly produced

and are an indicator for studying human behavioral characteristics (Lord et

al., 2013). Because of the very significant body movement changes, vision can

observe footsteps simply and precisely (Harbourne and Stergiou, 2009). Also

the mechanical feedback from walking gives various emotional impressions

about the footsteps, such as the description of the lightness of the footsteps

(Tajadura-Jiménez et al., 2015) at the beginning of the article. In order to

characterize the behavior of footsteps correctly, researchers also data them in
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the form of stride length (Danion et al., 2003), stride frequency (Cavagna and

Franzetti, 1986), and left-right offset of footsteps (Tariq, Trivailo, and Simic,

2020). In a specific scenario, the change in human footsteps state can be ob-

tained by observing footsteps or foot movements (Patla and Vickers, 2003) as

a reference item to determine the state change. However, at the same time, it

is also difficult to restore (hau) human gait characteristics by measurement.

Although researchers (Zijlstra and Hof, 2003,Sabatini et al., 2005) have given

standard movements of footstep changes during walking, our usual walking

is accompanied by the influence of a large number of environmental factors

(Hartig et al., 2003). Also, as a large movement involving the whole body,

walking involves various changes in body information. It is increasingly dif-

ficult to meet the needs of people when studying footsteps by simple means

such as visual observation alone.

Machine learning, machine vision and gait research

As a remarkable action that is easy to quantify, walking has taken the lead as

a door knocker on the way to research with the help of artificial intelligence.

In recent years, research on mechanical learning methods (Horst et al., 2019)

combined with machine vision to classify people’s gait (Urtasun and Fua,

2004) has remained very popular. From the initial substitution of the hu-

man eye for walking observation, gait research has penetrated many areas

that would otherwise be difficult to reach by visual observation alone. With

the power of artificial intelligence (Connor and Ross, 2018), gait is an im-

portant reference in various studies (Roether et al., 2009,Venture et al., 2014)

that analyze human behavior and emotions. It has also been mentioned that

the human footsteps contain data on the characteristics of each individual
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(Sanderson et al., 2002), which is sufficient to enable individual human recog-

nition. Many studies have supported the idea that emotion recognition can

be performed through gait analysis. Also, as a common human action, gait

has been shown in many studies like the study done by Prakash, Kumar, and

Mittal, 2018 to play at least a reference data role in detecting and predict-

ing human emotions. The field remains a treasure of data worthy of deeper

exploration.

On the other hand, while great advances in computation and analysis

have advanced our interpretation of the information hidden in gait, there

has been little research to discuss how to obtain the data (Kinoshita, 1985).

Although we can "see" more accurately the changes in body posture dur-

ing walking with the help of machine vision, we still lack better measures

of walking behavior (Leslie et al., 2007). In fact, as walking is a highly tem-

porally correlated behavior (actions can be decomposed and analyzed in a

time-series, which is what many AI learners are doing or have done), a sys-

tematic measurement scheme with temporal correlation (Fritz and Lusardi,

2009) may be of great help in recovering human behavioral characteristics.



Chapter 2. Literature Research 10

Gait research in clinical medicine

Gait has an important role in the behavioral sciences and the perception of

disease and health (Hausdorff, 2007). Instead, more emphasis was placed on

measuring and analyzing gait characteristics considered in terms of physi-

cal structure (Punt et al., 2017). In recent years attempts are being made to

reduce walking by a broader range of means (Davis et al., 1991). Among

the various human postures, including and not limited to walking, plantar

pressure characteristics are a silent characteristic quantity (Woollacott and

Shumway-Cook, 2002) that has provided important support for disease clas-

sification (Li et al., 2018) and body structure perception. Among them, with

the help of contact measurement devices, we have resolved plantar pressure

with a high degree of accuracy (Godi et al., 2014). Also there are obvious

mechanical reasons for human standing and stable walking with the help of

the foot arch (Jones, 1941). Numerous clinicopathological studies (Still and

Fowler, 1998) have also been active in using the reaction force between the

foot and the ground (i.e., plantar pressure) as an important reference data.

Numerous studies in this field have demonstrated the important role of this

ever-present physical quantity in the cognition of human behavior.

Gait and emotion

The roots of the gait produced by walking posture are the attempts of the

human body to control itself and perform stable and agile movements. And

in this process of control, the human motor system plays both an active and

passive expressive role (Cullen and Roy, 2004). Since our feet tend to be

outside our field of vision, the subconscious mind (Coutts, 1999) seems to

take a higher percentage of expression in its movements compared to the

upper body’s motor system. Also there have been studies (Elias, Bryden,
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and Bulman-Fleming, 1998) verifying that changes in the feet can completely

replace the hands in providing a basis for judgment in some specific brain

and behavioral science evaluations. In some studies like the one by Smith

and Lazarus, 1990, emotions have been defined as a combination of physi-

cal impairment, action tendencies and subjective feelings, which also coin-

cides with the related ideas of KANSEI DESIGN that will be mentioned later.

Human emotions arise for various reasons, but they affect human attention,

memory, and perception (Rolls, 2005). These effects are reflected in human

behavior. Compared to facial recognition studies like the work of Leeland,

2008, which often involve the expression of emotions, gait, because it is more

likely to be in a state that is not subjectively noticed, has been proposed

by many studies to reflect many unconscious emotional states (Sacco et al.,

2006). It has been verified in several studies similar to the work of Franěk

et al., 2018 that movement speed can significantly reflect the emotions of the

exerciser.

2.1.2 Geographic-International-System-based behavior study

Location intelligence-based trajectory analysis (“Location prediction on tra-

jectory data” 2018) and hot-spot map clustering (Lawson, 2010) have been

important research methods for classifying or identifying people’s behavior.

The study of hot-pot in cities is a very mature and relevant area (Louail et al.,

2015). In this field, researchers have established many clustering methods

to uncover points of interest in cities using location information and other

information based on time series. These points of interest can provide a ref-

erence to the population’s behavioral characteristics in a macro perspective

(Liu, Chen, and Liu, 2020).
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For these studies, location information is an essential information refer-

ence item. This project is often composed by time series of positioning data

and basic geographic information kept by GIS. It is possible to dynamically

analyze the state of people’s activities in various city functional areas with

the help of time series characteristics. Currently there are two directions to

obtain collocation information of specific objects, active and passive, one is to

passively mark the emergence of recorded objects using action recording sys-

tems with known locations such as fixed cameras, and the other is to obtain a

series of data including location and timing information in real time utilizing

GNSS positioning systems (Hofmann-Wellenhof, Lichtenegger, and Wasle,

2008) that can be carried. The GNSS positioning system will be described in

detail in the later section. With the increasing popularity of portable smart

terminals, such records containing location information are now of consid-

erable importance in environmental and spatial studies of specific regions.

At the same time, in areas where different functional areas are well defined,

a certain degree of back-propagation and behavior prediction can be made

based on the known regional functions and the positioning trajectories of the

users (Karatzoglou, Schnell, and Beigl, 2018).

2.1.3 Wearable device based data collection

Compared to laboratory environments, more emphasis is placed on record-

ing devices’ portability to obtain real-life user data (Vuorela et al., 2010). The

device design should also be considered systematically from a human factors

engineering perspective. The human loco-motor system is complex and frag-

ile (Schaal, Ijspeert, and Billard, 2003), and one or two disturbing factors may

cause a wide range of shifts and errors in the measured data. Meanwhile,

in the medical laboratory environment, many high-precision devices can be
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applied with little interference. On the other hand, Wearable carrying de-

vices face a more complex scenario, where reasonable performance intervals

and lower power consumption can provide a higher role for research records

than the mere pursuit of high accuracy (Starner, 2001). Among the many

studies related to the analysis of behavioral patterns, many researchers, rep-

resented by Williams, Davids, and Williams, 2005, have mentioned that the

reconstruction of behavioral research for human action is currently more de-

pendent on fundamental advances in motor behavior monitoring systems.

Large-volume, high-quality data sets also play a critical role in analy-

sis for research in machine learning and artificial intelligence. Considering

many wearable system applications, smart carrying devices in the market

today already carry many portable sensors to record user behavior data.

And at the same time, portable devices demonstrate advantages in blind

testing (Krafka et al., 2016). Subjects with low-interference measurements

performed by silent experimental devices may provide more realistic infor-

mation than those observed (Fotheringham, Rogerson, and National Center

for Geographic Information & Analysis (U.S.), 2014). This significant gap be-

tween gait studies, especially tests of basic characteristic quantities such as

gait speed in a laboratory setting and real life has been supported by many

studies such as the work of Loo et al., 2004. There is a more pronounced

Hawthorne effect in human gait. Therefore, considering the reliability and

applicability value of data collection, research in this area should strive for

methods closer to real-life environments.

In fact, in many studies, to simulate the daily life environment, methods

such as suggestive dual tasks are often used to reduce the subjects’ attention

to their gait during the experiment to obtain more accurate results. And this

consideration can be supported to the maximum extent by well-designed ex-

perimental equipment. This has been attempted so far by Xu et al., 2021, for
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example, by building an anthropomorphic environment assuming a good

depth camera. And for wearable portable devices, this aspect and the con-

tradiction in experimental cost should be most substantially alleviated.



Chapter 2. Literature Research 15

2.2 Research Methodology

This study concludes that a more evolved human motion monitoring system

based on non-invasive devices and wearable technology should be devel-

oped based on the above background. For this system to be useful in the

fields of gait analysis, urban hot-spot analysis, etc., this study was conducted

based on the following research methodology.

2.2.1 Global Navigation Satellite Systems

One of the main means of obtaining positioning information in outdoor con-

ditions mentioned in the previous section is often referred to as the GPS posi-

tioning system. Currently, GNSS systems have evolved into maturity, where

all major economies of the world have self developed and operated GNSS

systems (Hofmann-Wellenhof, Lichtenegger, and Wasle, 2008). These sys-

tems are developed for civilian use and can provide higher accuracy position-

ing measurements in normal surface environments. there are currently three

main categories of GNSS: global systems, regional systems, and augmen-

tation systems. Among them, the well-known navigation satellite systems

GPS (USA), GLONASS (Russia), GALILEO (EU) and BEIDOU (China) are

global systems that provide positioning information signals on a global scale

through a network of positioning satellites; regional systems represented by

QZSS (Japan) use satellites to provide positioning services to parts of the

Earth; and MSAS (Japan), the GNSS is a highly complex multi-system com-

bination system (Hofmann-Wellenhof, Lichtenegger, and Wasle, 2008. How-

ever, it is designed with a unified communication specification and open ser-

vice provision rules, which can open high precision positioning services for

ground users. Meanwhile, the widely popular multi-mode combined posi-

tioning system can reduce the limitations and errors of a single system by
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calling information from several different positioning systems for integrated

processing. Smartphone is its most typical application. Current smartphones

can provide high accuracy positioning at 1 meter level under good signal

condition.

NMEA-0183

This is a standard format developed by the National Marine Electronics Asso-

ciation for maritime electronics. It has become a standard protocol of RTCM

(Radio Technical Commission for Maritime services) for GNSS equipment

unification (Hong, Yang, and Lee, 2014). This format specifies the order in

which GNSS devices return data and what each piece of data contains. By

establishing a method for parsing the data under this protocol. The format

specifies that data is passed in the form of "$aaaccc,ddd,ddd,...,ddd*hh"

per frame, where "$aaaccc" indicates the start and data header, ddd is the

data, and hh is the checksum used to verify that the data in that frame is

correct. This format makes it possible to obtain latitude and longitude data

in ddmm.mmmm (degree minutes) format, altitude and accuracy data, and

to obtain timing from satellites in several formats. This study mainly uses

the latitude, longitude and time information obtained with the help of this

format.

2.2.2 Plantar pressure and Nyquist’s sampling theorem

Plantar pressure is a proxy for the reaction force applied to the foot surface

when it comes in contact with the ground. This force is mainly derived from

the effect of gravity. In order to test the change in force on a specific fixed

area (for a foot in motion, the shoe or the corresponding wearable device can

also be considered as relatively stationary), the most widespread practical
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method is currently used to calculate the force by measuring the change in

the resistance value of a variable resistance corresponding to the change in

the magnitude of the pressure (which is generally considered as correlated

within a certain interval), using the principle of the change in the resistance

value of some materials under pressure (Pan et al., 2014). magnitude. This

method was also used to measure the data in this study. The resistance value

is generally measured by the following schematic diagram, where the resis-

tance value is calculated by reading the change in the voltage value across

one of the resistors when the size of another fixed resistance and the input

voltage are known. The reading of this measurement is generally an analog

signal, which can be converted into an electronic signal that can be processed

by electronic devices using, for example, comparison with a reference volt-

age. This process is known as analog-to-digital conversion (Walden, 2008).

Since the processes of GPS data acquisition and analog-to-digital conver-

sion mentioned above require a certain amount of computation time, data

acquisition is usually performed at intervals, which leads to the existence of

a corresponding frequency of data acquisition, called the sampling rate. The

higher the sampling rate, the closer the acquired data is to the original charac-

teristics of the model. However, it is meaningless to exceed the high sampling

rate needed to restore data features, and for wearable carrying devices, the

sampling rate control can significantly optimize power consumption, etc. In

this study, the gait information desired to be restored is characterized by pe-

riodic changes during walking, and the optimization of the sampling rate for

periodic data can be based on the Nyquist Shannon sampling theorem (Far-

row et al., 2011). The theorem can be explained figuratively, we now need to

take a picture of a rotating wheel, if our photo interval is exactly an integer

multiple of the rotation time of one week, then we will record the photo at

the same position every time we take a photo, and the photo taken at this
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time is a stationary wheel. If we lower the sampling rate and take pictures at

half the rotation time, we can already know that the wheel is turning, but we

cannot determine the direction of its rotation. Putting this in the context of

sampling trigonometric functions, it can be understood that when sampling

at exactly half the frequency of the function, the results obtained by sampling

will be more severely distorted. In other cases, because the sampling rate and

the frequency of the original cycle "staggered" can restore the function’s true

characteristics.

A simple summary is that the periodic variation of the characteristic quan-

tity to be measured should be fully considered in the design phase of the

device, avoiding integer multiples and halves of the sampling rate of that

variation frequency. For the present study, it can be assumed that plantar

pressure characteristics vary with step frequency. The average human stride

rate has been given in relevant studies as generally 120 steps/min (2 Hz)

without significant gender bias. A sampling rate greater than 4 Hz should be

used as much as possible in the study.

2.2.3 Diary Study

In addition to the basic data analysis for the device, the research method in

this study mainly refers to the diary study method in user behavior research

(Janssens et al., 2018). A diary study is a qualitative data research method

used to collect behavioral activities and experiences of subjects. The results

of a log study consist of several logs reported by users according to a time

series.

The logging method is a mimicry of the observation method performed

in the field: it does not provide accurate data from field observations, but
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can be used as a reference data to provide results that approximate the ob-

servation method. It is a common method used in product usage research

and development testing. The method is used in this study mainly to sup-

plement the qualitative data that are not easily available in device measure-

ments. Also because the log method is also based on a time series (albeit

an approximation), the researcher considered the method to be a good fit

for this study during the experimental design. On the other hand, the log-

book method is more suitable for behavioral inquiry over long periods than

the time-sensitive questionnaire method. Also, because this study wanted

to avoid the effects of gait changes due to the Hopper effect, the researcher

would not make other observations of the collaborators during the logging

phase. The logbook study required the following phases: planning, prepara-

tion, recording, data collection and analysis. This process is also in line with

the experimental design idea.



Chapter 2. Literature Research 20

2.3 KANSEI DESIGN

The core device design and experimental design of this study and the core

idea of the study itself are based on the methods and theories related to KAN-

SEI DESIGN (Lee, Harada, and Stappers, 2002). This is a combination of a

difficult-to-translate Japanese word and "design". It is sometimes referred to

as affective design in the relevant research field. As mentioned in the defini-

tion of emotion in the previous section. I believe that the meaning that the

definer intended to express is the very core of emotionality. The concept is

not just a proximate term for subjective emotion. The field often expects to

invoke the inclusion of sensitivity, subjectivity, feeling, and emotional expres-

sion as a collection for studying human behavior (Lee, Harada, and Stappers,

2002). Subjective emotion is only one dimension of this complex concept.

KANSEI DESIGN also plays an essential role in the growing opportunities

for humans to learn more about themselves through sensing and wearable

technologies that are currently evolving.

Human sensibility is not a simple concept that a single physical quantity

can quantify but requires the creation of complex multidimensional mod-

els that invoke a variety of physical means to assess it. This idea coincides

with today’s academic field conducting in-depth studies of behavior with

methods such as machine learning. Moreover, the gentle KANSEI DESIGN

approach guided the researchers through this study.
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Chapter 3

Research Methodology

This study experiments and explores the hypothesis of the study by develop-

ing a wearable device in the form of a record of the daily actions of the exper-

imental subjects. The research device consists of several electronic modules

and a housing that can be fixed to a shoe, and this section will be divided

into two sections to introduce the research device used in this study and the

experimental design of the experiment conducted through the device.

3.1 Device Design

The device developed in this research, named "MY FOOTPRINT", comprises

several circuit modules connected to an MCU and partially built into a 3D

printed housing. The research expects MY FOOTPRINT to track the wearer’s

path while walking and collect data on walking characteristics. The required

features are automated GPS logging, guaranteed plantar pressure variation

measurement accuracy, and calibration of the above two data during long

time measurements. This section will present the device’s design from both

hardware and software perspectives. Also,MY FOOTPRINT underwent sev-

eral iterations during the development process, and a brief description of the

iterations in the device design will be presented at the end of this section.
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3.1.1 Hardware Design

An exploded component diagram containing all the constituent components

of My Footprint is shown in the figure 3.1. These components include: (1)

MCU; (2)-a/(2)-b GNSS module; (3) pressure sensing module; (4) data stor-

age module; (5)-a/(5)-b/(5)-c power management module; (6)-a/(6)-b/(6)-c

switch and indicator module; and (7)-a/(7)-b/(7)-c housing. The next section

describes each component in detail.

FIGURE 3.1: Picture of all device components

• (1) MCU. The final solution for the study device uses the Raspberry

Pico as the main control unit. This MCU is characterized by its analog-

to-digital converter, low power consumption, and high performance

(high frequency sampling). By connecting the corresponding pins and

components on the MCU and connecting the circuit, the device will au-

tomatically run and record the program written by the implementation.
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• (2) GNSS module. The GNSS module consists of a a-circuit element

and an b-antenna, which receives a series of positioning-related data

and sends them to the MCU through the communication between the

antenna and the satellite. In this study, the input in this format is pro-

cessed by the MCU, and the three values of longitude, latitude and time

are returned after parsing the statements. The module has a maximum

data refresh rate of 4Hz. Inside buildings, the GPS loses signal due to

the blockage of buildings. After the first power-up in the open air, the

module takes about 27 seconds to connect to the satellite (cold start). It

takes about 1 second to re-establish the connection to the satellite (hot

start) while remaining powered on.

• (3) Pressure sensing module. This module consists of a custom thin

film pressure sensor, a pressure sensing array consisting of three sens-

ing regions. The sensing zones of the thin-film sensor are essentially

variable resistors that change with pressure. In the device’s hardware

design, a fixed resistor is connected in series with each sensing zone

and connected separately to the analog-to-digital converter built into

the MCU. The surface pressure of the sensor is derived by measuring

the change in resistance and fitting it to the standard curve of this sen-

sor. The sampling rate of the module depends on the performance of

the analog-to-digital converter, and in My Footprint more than 5hz can

be achieved. The module is secured in the wearer’s shoe by an insole

with an adhesive surface and is connected to the device body by a cable.

• (4) Data storage module. This module consists of a MicroSD card reader

module and an encrypted 16GB MicroSD memory card, where the MCU

reads and integrates the data measured by the GPS module and the

pressure sensing module and writes it to the memory card as a .log file.
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The data can be retrieved by reading the memory card after the unit is

recovered. Each time the unit is switched on and off a new data file is

created and named with a time stamp.

• (5) Power management module. My Footprint’s power management

module consists of a a-2000 mAh Li-ion battery, a b-charging element

and a c-voltage transformer. The charging element comes with a USB-

TypeC port to access 5V power and manage the charging and discharg-

ing of the Li-ion battery. The voltage converter stabilizes the 3.7v-4.2v

voltage provided by the discharged Li-ion battery to power all device

components. This voltage is also used as a reference voltage for the

analog-to-digital converter. After actual testing, the output voltage of

the variable voltage element is stabilized at 3.99V when the device is

operating.

• (6) Switch and indication module. This module consists of a-mechanical

switch, b-run indicator LED, and c-low battery indicator LED. The me-

chanical switch directly controls the opening and closing of the output

circuit of the variable voltage element in the power management mod-

ule. When the switch is disconnected, the voltage transformer stops

supplying power to the device components, leaving the device in a

shutdown state, and when My Footprint starts running, the run indica-

tor LED is lit and blinks at a certain frequency controlled by the MCU.

When the built-in lithium battery is in low battery condition, the low

battery indicator LED will be lit.

• (7)My Footprint’s housing consists of the 3D-printed a-fixing clip, b-

plastic housing and c-insole. The clip and the plastic shell can be con-

nected by plugging together to form a box-like structure in which most

of the electronic components of the device are contained. The clips hold
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the box to the outer side of the shoe. The insole has a glued bottom

surface, which allows the membrane pressure sensor to be fixed to the

bottom surface of the shoe.

The device is connected for the electronic components, as shown in the

component diagram 3.2 and the circuit diagram 3.3. The antenna of the GNSS

module is directly connected to the part, and the GNSS component is con-

nected to the output of the variable voltage component for power supply and

the GPIO12 and GPIO13 (two UART0 communication IOs) interfaces of the

MCU for serial communication data exchange. The pressure sensing mod-

ule is connected to the varactor output for power supply and connected to

the MCU’s three analog-to-digital converter interfaces GPIO26, GPIO27 and

GPIO28 in series with a 4.7kΩ resistor respectively. SPI data exchange. The

three components of the power management module are connected, and the

output of the variable voltage component supplies power to the other com-

ponents and the MCU, while the low battery signal interface of the charging

module is connected to GPIO4 of the MCU to provide signal input in case of

low battery. The run indicator and low battery indicator LED are connected

to GPIO1 and GPIO2 of MCU for control respectively.

After assembling the above components, the total weight of the device is

about 150g. The box-shaped part of the shell measures about 70mm x 45mm

x 25mm, and the longest part of the pressure sensor is about 195mm and the

widest part is about 70mm, which can correspond to different sizes of insoles

(Japanese standard 21cm for women and 30.5cm for men) depending on the

size of the wearer’s shoes. In a fully charged state, My Footprint’s 2000 mAh

battery can keep the device running for over 6 hours of continuous power-

on operation (fluctuating depending on how many times the GPS module

is reconnected, but usually over 360 minutes). A few key components are
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FIGURE 3.2: Figure of connection of all components

explained in detail here.

Raspberry Pi Pico

As the controller used in My Footprint, this component is an MCU product

developed by the Raspberry Pi Foundation. It is equipped with an RP2040

microcontroller, which contains a dual-core Arm Cortex M0+ that can run

at 133MHz. This provides it with strong computing performance. My Foot-

print uses these pins for UART communication, SPI communication, PWM

control, and data input and output. Also, Pico comes with four 12-bit analog-

to-digital converters (one for the on-board temperature detector and three

for reading analog signal sources via IO connections), and it is through these

high-precision, fast-response analog-to-digital converters that the device achieves

higher accuracy measurements of plantar pressure characteristics. In addi-

tion, the Pico contains a high precision built-in timer. Although it cannot
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FIGURE 3.3: Figure of circuit schematic

save time data after a power failure, it can measure the time elapsed since

the device was turned on with nanosecond accuracy. Using this feature only

requires an initial time to be provided to function as a real-time clock.

GNSS Module (GY-GPSV3-M8T)

My Footprint’s original design was tested with a GNSS module that only

received GPS signals (KKHMF NEO6M MV2), but the accuracy of the data

was difficult to achieve with a single satellite system. The average accuracy

data provided by the official 24-hour test in the dual-system calibration mode
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is 2.0 meters. Also high precision timing data (outdoor clear error less than

or equal to 20 nanoseconds, indoor less than or equal to 500 nanoseconds)

can be received by the satellite. This device uses this data to time the MCU

to obtain high-precision synchronized time data.

Membrane Pressure Sensor (FS-INS-3Z-V2)

The sensor is a three-sensing area thin-film sensor customized to the sen-

sor manufacturer. The sensor consists of a circuit composed of pressure-

sensitive material and a flexible conductive material printed between my-

lar films. When pressure is applied, the circuit is turned on and the sensing

zone formed by the pressure-sensitive material is equivalent to a variable re-

sistance that is turned on. The size of the resistance decreases as the force

increases. The resistance value varies from approximately 1kΩ to 10kΩ in

the on condition of the circuit. After physical testing in the early stages of

the device design and fabrication, the variation curve resembles a hyperbolic

function, and the resistance magnitude Ro and the force magnitude F can be

roughly fitted to the equation

Ro =
11672714
(F + 1773)

, (F ̸= −1773, R2 > 0.99) (3.1)

The sensor can respond to the force change with less than 1ms, and the force

feedback within 0.1-30kg is tested to be more accurate. Also, the mylar film

is waterproof and dustproof to protect the sensor and adapt it to the environ-

ment in shoes.

3.1.2 Software Design

This section describes the software development in this study based on the

hardware in the previous section. The software is divided into two parts:
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data collection and data processing. Where the data collection software runs

on the device. The main purpose is to obtain the measurement data of each

component and record it in a data file. The data processing software visual-

izes the data by reading the saved data files and organizing and analyzing

them.

One of the data collection programs is written through MicroPython. The

figure shows that the program consists of a-main program; b-GNSS driver;

c-SD storage driver above three modules. Among them, the main program

contains several data processing and control related modules. The GNSS

driver uses the open source NMEA format interpreter MicropyGPS, which

can parse the data statements obtained from the GNSS module by the MCU

through UART communication and extract the data values from them. The

SD storage driver defines how the MCU connects to the storage module via

SPI communication and reads and writes data to the SD card. The source

code for all programs in this section is available in the Appendix section.

Next, the main program is explained in some detail.

• Since MicroPython inherits the modular programming feature of Python,

the main program consists of several sub-modules. It consists of a-

GNSS data formatting module, b-pressure sensor driver module, c-

timing module, d-data logging module, and e-main loop. The a GNSS

data formatting module parses the data and retains the latitude, longi-

tude and time data by calling methods from the GNSS driver, and gen-

erates format-specific timestamps and timing data. And b The pressure

sensor driver module is divided into two functions. The first function

defines how the MCU reads readings from a specified analog-to-digital

converter and converts them into pressure readings. The second func-

tion improves the accuracy of the measurement by calling the above
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method to take three measurements within 30ms and averaging them

to output the final pressure reading. The third module, the timing mod-

ule, calls the time data obtained by formatting the GNSS data and as-

signs it to the memory of the MCU as the initial time. This can be used

to calibrate the MCU’s timer and achieve the effect of a real-time clock.

The module that calls the above method to get the data, format it and

write it to the data file (*.log) is the d data logging module. (Data for-

mat: sequence number, time since last data (ms), time stamp, pressure

1, pressure 2, pressure 3, longitude, latitude, sequence number + E)

• As for the e-main program cycle, here is a simple explanation combined

with the flow chart: light up the LED and check the battery level after

power on; define the basic IO attributes and initialization parameters

required by each module; initialize the main variables for saving data;

execute self-test, self-test by checking the GNSS data, when the data is

empty, it means the GNSS component has not been started yet, con-

tinue the cycle of self-test and flashing LED prompt; end the self-test

after normal output of latitude, longitude and time data, write the time

data into memory by calling the timing method to set the initial time,

start the timer; get the time stamp from the real-time clock, load the SD

card as the main working directory, create the log file, write the first

line containing the start time of the log in the log file; enter the logging

loop, call the data logging module every 60ms to write A record (be-

cause the three pressure sensors take 90ms to read, so the ideal interval

for each record should be about 150ms), and call the PWM incremental

(decremental) control LED brightness, while each cycle detects a low

battery signal input. The operation indicator LED should show a grad-

ual brightening and dimming breathing effect as the cycle progresses.
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Also if low battery, the low battery indicator LED will light up.

• About running and stopping the program. For the Raspberry Pi pico,

when the main program is saved as "main.py" in the onboard Flash

storage, it will run automatically when the power is turned on. Each

program module is stored in the Pico’s onboard Flash memory (2MB)

in this device. Toggling the mechanical switch connects the Pico to the

voltage transformer and turns on the power. The Pico will boot up and

automatically begin executing the main program from scratch. Since

the data file will be opened and closed each time the data is recorded,

the data file will not be affected by either an unexpected power failure

or a shutdown. And after reboot will start recording from a new data

file.

• Data processing. The log data file saved can be obtained by reading the

SD memory card mounted on the device. The file is a simple text file

that can be read line by line by the program to obtain the data. For the

pressure sensing data, it should constitute a series of three data divided

roughly by 150ms (in practice, the actual measurement is done at inter-

vals of about 160ms, up to 200ms, according to the item "time since last

data (ms)"). The device’s sampling rate is greater than 5 Hz for each de-

tection zone, and this sampling rate can satisfy the Nyquist’s sampling

theorem mentioned above concerning the normal human walking fre-

quency (about 2 Hz), i.e., it can restore the mechanical characteristics

of walking more completely. In the final experimental machine of My

Footprint (two machines), the three data are named "L" (left front), "R"

(right front) and "D" (back). They correspond to the sensing area of the

specified location. The data are two floating-point numbers accurate to

the sixth decimal place for latitude and longitude, corresponding to a
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realistic accuracy of about 1 meter. The time stamp defines the exact

time to the second of each data for pressure sensing and location. The

time to milliseconds can be obtained by adding the "time from previous

data (ms)" term. By parsing the time and latitude and longitude data,

it can be converted into a common GPS data format called "GPS eX-

change Format" and used to plot the recorded trajectory. By assigning

pressure-sensitive data values to the position points at the correspond-

ing time points (since My Footprint’s GPS position refresh is designed

to be 1Hz, each position data corresponds to 5-6 pressure-sensitive data

with the same time stamp), the pressure-sensitive and position data can

be synchronized using the time stamp as a reference.

3.1.3 Design Iterations

My Footprint underwent several iterations during the design process, and

the larger parameter changes and their corresponding justifications are listed

here.

• The original design of this device used a thin-film sensor with multiple

sensing zones. It was replaced with three separate sensors for power

consumption and simplification reasons. The resolution of the plan-

tar pressure data is therefore reduced. However, the three indepen-

dent sensors are difficult to fix and can change position depending on

the wearer. For the sake of stability and comparability of experimen-

tal data, a customized solution of three detection zones combined into

one sensor was adopted. The experimental design was also adapted for

data acquisition and analysis based on three detection zones.
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• This is because GNSS elements do not work indoors. The device’s origi-

nal design considered the use of wireless positioning elements to main-

tain the positioning performance indoors. Due to power consumption

and privacy and security concerns. In the data processing, the GNSS el-

ement returns "no signal" data when entering a building, which is used

to determine the "break point" of the data, and the location point of the

background map to determine which building the wearer has entered.

• The Pico can automatically convert a wider range of inputs to 3.3V out-

puts. The original design used the Pico’s own 3.3 volt output port as

a direct reference voltage for the three analog-to-digital converters to

power the pressure sensing module. In the actual test, it was found that

the voltage of this output port dropped significantly with the increase

of access to appliances, and became more unstable with the change of

temperature and other environmental factors, which greatly affected

the accuracy of the pressure sensor. In addition, the load on the out-

put also affected the performance of the MCU calculation. Therefore, a

variable voltage element was added to stabilize the output voltage in

the final design.
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3.2 Experimental design

In order to answer the research questions mentioned in the research objec-

tives, this study hopes to conduct wearing experiments with My Footprint.

The device automatically collects plantar pressure and position data based

on a time series after wearing. Based on these data, gait characteristics data

can be calculated and analyzed. At the same time, the sequence of position

information changes can constitute the movement trajectory of the wearer.

This study expects to experimentally verify the correlation between action

trajectory and gait characteristic data. This section will start with the exper-

imental hypothesis obtained from the research question and prior studies,

explain the expected data for the experimental verification of the hypothesis,

and introduce the corresponding methods. Finally, the complete experimen-

tal procedure will be summarized.

3.2.1 Experimental hypothesis and expectations

The following experimental hypotheses can be formulated based on the three

experimental questions posed in the experimental content and the relevant

interpretation of literature studies and device design.

• H1: My Footprint can correctly and consistently acquire plantar pres-

sure characteristic data and location information while walking in out-

door conditions.

• H2: When H1 holds, the data collected by My Footprint can be relevant

to reflect changes in behavior.

– H2.1: Changes in location information can be correlated to reflect

changes in behavior.
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• H3: When H1 holds, the data collected by My Footprint can reflect the

relationship between gait feature information and location data.

– H3.1: The position data can reflect the change in plantar pressure

characteristics during walking.

– H3.2: The step length/step frequency characteristics calculated

from the time series data of plantar pressure can reflect the rela-

tionship with the position data.

• H4: When H2 and H3 hold, the data collected by My Footprint can

reflect the relationship between characteristic gait information and be-

havioral characteristics.
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For H1, it is easy to know a certain physical pattern of human position

movement and plantar pressure changes during walking. The recorded re-

sults should be consistent with the prescribed route when walking a pre-

scribed route with My Footprint. For the plantar pressure data, since the

pressure sensors have been calibrated during the design and production of

the device, and the human walking process regularly applies pressure to the

three measurement points, the measurement data should also reflect this reg-

ularity. The measurement data in the standing stationary state should not

show the data fluctuation of walking state.

For H2, the data collected by My Footprint should be classifiable and an-

alyzable in the time series if it reflects behavioral changes. Specifically, for

H2.1, the location data should be linked to form a time-series-based trajec-

tory, and the different trajectory intervals should reflect significant differ-

ences in the classification of the wearer’s behavior.

For H3, there should be at least one feature quantity associated with the

classification of location information or trajectory information if the relation-

ship can be reflected. Specifically for H3.1, the change in plantar pressure

values (at least one of the three measurement points) should be associated

with location information; and for H3.2, the calculated stride length/step

frequency feature should be associated with location information. If there

is more than one correlation term, a three-dimensional evaluation criterion

based on all correlation terms should be established.

For H4, a judgment indicator reflecting behavioral change (associated

with measurement data) can be established according to H2, and a judg-

ment indicator of gait characteristic information can be established according

to H3. The two indicators are tested for the correlation between behavioral

change and gait characteristic information.
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3.2.2 Experimental method

• For the inspection of H1 . To verify the correct data acquisition by

the device, a task can be set to follow a prescribed route and check

whether the output data matches the characteristics in the prescribed

route. The prescribed route should contain straight-line walking, turn-

ing, and stopping items that can check the accuracy of the positioning

data. The walk-stop-walk transition should also check the sensing con-

dition of the pressure sensor. Since the device has been quantitatively

calibrated during the assembly and commissioning phase, the output

data visualization (trajectory map and pressure waveform graph) here

is a qualitative check that the device is acquiring the required data cor-

rectly.

• For the test of H2 . In order to check the correlation, it is first neces-

sary to obtain the relevant benchmarks of behavioral change. Because

the data collected by My Footprint are time-series, the behavioral logs

of the experimental collaborators can be collected separately. The rela-

tionship between the relevant data and behavioral change can be deter-

mined qualitatively by cross-referencing in the log study method. Since

the source data are discrete quantitative data and behaviors are often

continuous, they can be transformed into category data by intercepting

a time segment and classifying it for easy comparison. Specifically for

testing H2.1, by intercepting the location trajectory and converting it

into qualitative data according to the "start-end", and then comparing

it with the behavior log according to the time series, if the qualitative

data of the trajectory can be classified and it is proved that the two are

not unrelated, then H2.1 holds.
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• For the test of H3. In order to test the correlation, the corresponding

judgment index should be established from the data acquired by My

Footprint. It is known that the data of pressure changes over time in

three sensing areas (left front, right front and back) are collected, from

which the number of steps in the specified time interval can be obtained

(the number of peaks in the three sensing areas is averaged), and this

data can be further processed to obtain the step frequency. At the same

time, according to the position data recorded under the synchronized

time series, the total distance moved can be calculated, and using this

distance, the step length in the specified time interval can be calcu-

lated. Also, for plantar pressure data, the average of the eligible peaks

in a time interval can be used as an evaluation criterion for the "force

level" of walking during the interval. If a standard segment of data is

collected that reflects the characteristics of a normal walking gait, and

other records are compared to it, other records can be classified. As-

suming that the criteria of "exertion" and "speed" are used, the records

with walking speed exceeding the standard data obtained from the po-

sition data and time series can be classified as "fast" and vice versa as

"slow". As for the "degree of exertion", if the average peak in the record

is greater than the standard data, we can classify it as "heavy", and vice

versa, we can classify it as "light", so that we can get four different gait

categories (fast-heavy, fast-light, slow-heavy, slow-light). On this ba-

sis, we can continue to create "high frequency", "low frequency", "large

step" and "small step" classification indicators Further refinement of the

classification. H3 can be verified by performing correlation tests with

the same classified location data records after establishing the judgment

indicators.
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• For the test of H4. After testing H2 and H3 by the above method and

holding, H4 naturally holds because there is a correlation between two

of the three.

3.2.3 Experimental procedure

After selecting the experimental method based on the above experimental

hypothesis and related expectations, a set of experiments with three stages

was designed in this study. The collaborators of the experiment were re-

quired to complete the corresponding experimental phases according to the

researcher’s instructions. Thirty collaborators were recruited for this experi-

ment.

Preparation Stage

In the preparation phase, the main components were the description of the

experiment, the selection of participants, the dressing exercise, and Task 1:

prescribed route walking.

• The researcher will explain the experiment to the research collaborator

based on the experimental instructions in the experimental description

section. The explanation includes the entire procedure of the experi-

ment and how to operate the device. After listening to and understand-

ing the instructions, the investigator will sign a consent form indicating

his or her willingness to participate in the experiment.

• Participants were screened after completing the experimental descrip-

tion using a screening questionnaire, a pre-designed evaluation scale

consisting of three single-choice questions. Collaborators completed

the questionnaire using a tablet prepared by the researcher. The five
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answer options for each of these questions were ranked in order of de-

gree, and respondents were asked to select the one they felt best fit

their situation. The purpose of this scale was to screen out participants

who were unfit to wear My Footprint and to terminate the experiment

in time to avoid any safety hazards or invalid participation. The ex-

periment should be terminated immediately when the answer to any

question was received [5]. In other cases, the researcher will decide to

continue the experiment in the field. After completing the participant

screening, the next step was taken.

• During the proper exercise, the researcher showed the collaborator how

to use the device and how to stop it and informed the collaborator of

the meaning of the LED signal. The participant selects an appropriate

size adhesive insole. After confirming that the participant’s shoe will

hold the My Footprint properly, the researcher helps the participant

attach the pressure sensor to the adhesive insole at the designated lo-

cation. The My Footprint clip was used to secure the box-like structure

to the outside of the shoe. After the researcher visually determined

that the device was stable, he instructed the collaborator to wear the

shoe. The collaborator then turned on the power and performed walk-

ing, standing, running, and jumping exercises as required by the re-

searcher, taking a 30-second break after completing more than one set

of activities before repeating the next set, for a total of three groups. The

collaborators were asked to check whether the device interfered with

their normal movement during the exercise and to adjust the position

of the box-like structure of the device appropriately. The researcher

also needed to check any unexpected power disconnections or restarts

during the training. The experiment terminated if the collaborator felt
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that the average movement was hindered at the end of the activity or

if the investigator felt that the device was acting abnormally. Once the

exercise was completed, the participant left the initial location and pro-

ceeded to the next step outside.

• When performing Task 1: Prescribed Route Walking, the collabora-

tor is considered to have adapted to the actions of the wearing device

through the practice phase. After arriving at the designated outdoor

location, the power restarts My Footprint and waits for the signal in-

dicating that the GNSS is working properly to come on. After the sig-

nal appeared, the researcher explained the prescribed route to the col-

laborator. The prescribed route: In this experiment, it was designed

to go from the entrance of the building where the experiment started

to the main entrance of the supermarket Kasumi, about 100 meters

away, and wait for 10 seconds (silent count to 10) before returning to

the same location as the entrance of the starting point. After the col-

laborators indicated that they understood the route instructions, they

were asked to take a deep breath, count silently to 50 (to calm their

emotions and post-exercise signs), and then walk. The researcher was

required to record the completion time of the prescribed route using a

stopwatch and mark the 10-second interval in which to stop in the stop-

watch record. After returning to the initial location to finish the route,

the researcher stopped the stopwatch and instructed the collaborator to

power off the device and remove the SD memory card. The researcher

reads the data from the memory card and obtains the data record for

Task 1. The SD card is then placed back into My Footprint, and the re-

searcher checks the data from Task 1 and continues the experiment if

there are no abnormalities.
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After completing all the above steps, the preparation phase is considered

over. This phase takes about 20 minutes.

Experimentation Stage

The main task included was Task 2: Record the experiment during the Ex-

periment Phase.

• After the preparation phase, the collaborator can turn My Footprint on

again and leave the initial location. my Footprint is considered the start

of the experiment phase when it is turned on again. The collaborator

needs to complete Task 2: Record the Experiment during this phase.

The specific part of the task is to wear My Footprint for daily activi-

ties. The recording phase lasts for more than 5 hours and can be ended

or postponed at any time if the collaborator wishes. However, only

experimental phases lasting 60 minutes or more are considered valid.

The duration of the experiment is calculated based on the total time My

Footprint is on, and data within 300 minutes is considered valid. Data

longer than 300 minutes cannot be used because of the drop in output

voltage caused by the long working hours of the battery. No definite

time is specified for the end of the phase, but data that crosses a natural

day (until 24:00 pm) is also considered invalid. In order to obtain nat-

ural data, the first and last 30 minutes of the valid data (the time band

that "leaving the initial location" and "returning to the initial location"

may contain) are also not used in the data analysis. The return of the

collaborator to the initial location and the unloading and return of the

My Footprint with its power off was considered the end of Task 2 and

the experimental phase.
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There are no restrictions on how and what the collaborators can do during

this phase. This phase took more than 60 minutes if the data were valid,

ideally 300 minutes.

Closing Stage

When collaborators return My Footprint, the experiment is considered to

have entered the closing phase. This phase consists of four steps: data re-

covery, collaborator grouping, presentation of results, and log recall.

• The researcher took out the device’s memory card after getting the re-

cycled My Footprint and put the device in the recycling place to wait

for processing. After reading the recorded data stored in the memory

card, the number of data files can be used to determine whether the de-

vice was turned off or restarted during the recording process. All data

files are processed to obtain the total length of recording, and if the total

length is greater than 60 minutes, it is saved as valid data. If the total

length exceeds 300 minutes, the 300 minutes of records starting from

the initial record is cropped and saved as valid records.

• In this experiment, all participating collaborators were divided into

three groups, A, B, and C, for a controlled experiment (10 from each

group based on a planned population of 30). Group A was used as the

reference group and skipped the presentation step after data collection

was completed; Group B was the map presentation group and Group

C was the location data presentation group, and collaborators in these

two groups proceeded to the next step.

• In the display of results step, a map of the data recording area is dis-

played for collaborators classified as group B. Collaborators classified
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as group C are displayed with their valid data portion of the location

data constituting the action track on the map of the recording area. The

next log recall step is performed simultaneously with the presentation.

• Collaborators were required to complete a log recall survey. This sur-

vey was a pre-designed questionnaire consisting of three main ques-

tions and three supporting questions. The collaborators completed the

questionnaire using a tablet prepared by the researcher. The first main

question asked the collaborators to recall and write a log of their activi-

ties during the recording experiment in the form of "time-place-action-

mood" as much as possible. The second and third questions were two

simplified five-item Likert scales that asked the collaborators to rate

the ease of recalling the activity log and the supporting role of the pre-

sented results in the recall process. Answers were given on a scale from

1 to 5. To calculate the score, the answers were scored on a scale of -2

to 2 and the scores of the two outcomes were summed to obtain a scale

value for evaluating the strength of the supporting role. For group A

collaborators, the score is fixed at 0. For groups B and C collaborators,

the score is a quantitative figure ranging from -4 to 4.

After completing the above three phases, a complete experimental cycle

is considered to be completed. The investigator should archive the recovered

data of the cycle according to the collaborator number and keep it for data

analysis. At the same time, the My Footprint is disinfected and cleaned, and

then the sensor is re-tested and calibrated for the next use.
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3.2.4 Ethical Considerations

The Ethics Review Committee of the Faculty of Arts, University of Tsukuba

on October 13, 2021, reviewed this experiment, and the specific results can

be found in the document. All collaborators of the experiment received a

complete description of the experiment and signed a collaborative consent

form at the beginning of the experiment. In addition, the collaborators were

allowed to stop the experiment at any time on their own during the long

recording time. The experimental set-up was designed with full privacy in

mind and was recognized by the ethical review.
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Chapter 4

Experiment

4.1 Experiment preparation

Before the experiment, the investigators continued to The final design of the

My Footprint device was completed in October 2021. The researcher built

two experimental machines according to the final plan in the same month. To

test the form of the data collected by the device and its reliability under pro-

longed operation, the researchers conducted a Pilot experiment consisting of

two tasks. This experiment examined the accuracy of the device’s positioning

data through task 1: prescribed route walking, and task 2: recording experi-

ment, which ran the machine for an extended period to examine the changes

in recorded data over time. The different forms of the two tasks in this Pilot

experiment were also used to determine the overall effect of "motivation" on

the wearer’s data feedback during walking.

4.1.1 Dual-task walking experiment

After the pilot experiment, an experiment with prescribed walking routes

was designed to determine further the role of "motivation" in the overall

walking behavior and the correlation between the data collected by the de-

vice and subjective Kansei performance. In this experiment, participants
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wore the device and completed four walking route tasks prescribed by the

researcher. A NASA-TLX scale was administered after each task to obtain

the facilitator’s subjective assessment of the task load. Based on a compar-

ison of the scale data with the recorded data, an attempt was made to find

items in the recorded information associated with this subjective rating and

their specific correlations. The experimental task consisted of four walking

routes of approximate length, two of which were pure walking routes that

did not include the execution of the task (the facilitator was asked to wait

10 seconds when reaching the turnaround point) and two of which had dif-

ferent kinds of motivational designs for the task. Other task execution se-

quences were used to avoid bias in the experimental results caused by the

series of tasks. The specific tasks are shown in the figure. After the research

collaborators completed each task, the collaborators were asked to complete

the NASA-TLX scale for the route they had just taken and to rest. After one

experimental cycle, each collaborator provided four sets of data results. The

first set (fixed as a simple route task without a task) was used as the practice

set, leaving the remaining three sets available for analysis and comparison.

To further uncover possible associations with Kansei in the experimental re-

sults, the experimental design used a logical task (memorizing the names of

books), which primarily invokes intellectual memory capacity, and a Kansei

task (picking a favorite drink), which mainly relies on subjective judgments

and habits, in a controlled manner.

4.2 Experiment implementation

The specific experimental arrangements considered the weather factors and

avoided the periods when rain caused changes in pavement characteristics.

Also, no sudden rainfall occurred during the experiment. It can be assumed
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that each collaborator experimented with approximate pavement conditions.

The experimental data collection was restricted to the central and southern

sections of the University of Tsukuba campus. The specific areas can be

found on the campus map provided by the university.

There were some unexpected circumstances in the actual recording ex-

periment. In the original design, the GNSS system would stop working im-

mediately when the signal was lost indoors, and the "breakpoint" where the

signal was lost could be used to identify and mark the building where the

wearer was located during the data analysis. However, in the experiment,

the collaborator received a weak GNSS signal near the window and the en-

trance/exit of the building, and even occasionally inside the building, and

triggered the data recording of the device. In this case, the recorded data

points deviated significantly from the actual location (similar to the "drift"

phenomenon of smartphone GPS positioning when the signal is poor). Since

the device algorithm does not filter for such cases, these deviations are also

recorded as accurate data. This had a significant impact on the overall exper-

imental recording results. The school also has areas where there are several

buildings connected in a complex, and students often choose to move around

inside the buildings instead of from outdoors daily. This further increased

the amount of complex data. Since the problem arose from the underlying

mechanism of the GNSS module, it could not be improved in a short period.

After all, experiments were completed, the researchers screened the result-

ing data several times, removing the vast majority of the unanalyzable data

through manual program and trajectory visualization methods. The problem

also resulted in data from inside the building not being available for analysis.

In the dual-task walking experiment, the route was designed to avoid go-

ing through areas with many buildings. The collaborators were also allowed

to carry a smartphone with a GPS location record during the experiment.
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The recording results of the smartphone were compared with those of the

device and corrected for the data around the buildings (in the case of this

experiment: after entering the target library and supermarket).

FIGURE 4.1: Calibration is performed by comparing the smart-
phone’s level measurement results with the device’s data.

For the collected data, a point-to-point comparison was performed (since

the nominal accuracy of the device is greater than that of the smartphone, the

average value per second was used for the calculation). For the in-building

scenario, a correction was made when the device’s data showed a signifi-

cant offset. An example of the calibration is shown in the table4.1, where

the error between all measured data points and the results recorded by the

smartphone was less than 0.5 m (the nominal accuracy of the smartphone is

1 m).
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TABLE 4.1: Example of GPS calibration

Descriptive Analysis
Items N of samples Min Max Mean Std. Deviation Median

Diff.longitude (measurement - smartphone) 5970 -2.060 2.630 0.423 0.594 0.140
Diff.latitude (measurement - smartphone) 5970 -3.350 1.830 -0.538 0.680 -0.140

4.3 Experiment results

4.3.1 Overall results

First, for the overall recording results. None of the experimental procedures

of the Pilot experiment required stopping the recording and interrupting the

experiment. The overall evaluation device run time for the experiment was

approximately 288 minutes, closer to the five hours in the design. From the

beginning to the end of the experiment, the investigator received no feedback

or comments about the device interfering with daily movement, causing fa-

tigue, injury, or discomfort.

Eight collaborators were called to participate in the prescribed route walk

experiment and completed the defined task. One of the collaborators mis-

understood the route during the practice route, but the rest of the data were

recorded typically.

4.3.2 Task 1: prescribed route walking

This project measured walking data of a fixed route by wearing a device. A

total of 30 valid experimental data were obtained. The project’s experimental

design required approximately 300 meters of walking, which was expected

to be completed in 3 to 5 minutes. In the actual experiment, the average walk-

ing distance of the 30 experimental records was 287.798 (in meters, where the

maximum value = 315.09 and the minimum value = 269.14). The median dis-

tance traveled was 286.690, with a standard deviation of 10.999. As for the

overall time spent on the route, the average time spent for the 30 samples
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was 231.101 (in seconds, where the maximum value = 280.036, the minimum

value = 171.456, and the median value = 232.582). The standard deviation of

the time spent was relatively large, reaching 32.498. affected by this data, the

calculated walking speed (mean = 1.322 meters per second, standard devia-

tion = 0.186, median = 1.309) of the average number of pressure records in the

sensing area (mean = 1091.47, standard deviation = 155.713, median = 1090)

also produced a large standard deviation . In addition to the fixed route, the

collaborators were asked to stand at a designated location for 10 seconds.

The mental math of the collaborators determined these ten seconds, and the

final stopping time averaged 9.278 seconds (maximum = 12.231, minimum =

6.799, standard deviation = 1.504).

In addition to the conventional results above, this experiment also pro-

vided 30 path records. These 30 records were a sequence of quantitative data

based on a time series consisting of longitude, latitude, and three plantar

pressure zone readings. The recording was performed in the researcher’s

line of sight throughout. The Hopper effect could be examined by sampling

the walking portion of that segment of the data and the equivalent length of

the recording experiment (which required being on foot), respectively, and

then analyzing the entire sequence of recordings or other segments of the

data. Here 4.2, a partial data sample of the path data trajectory visualization

and pressure data left by the 30 paths.

4.3.3 Task 2: Recording experiments

A total of 30 recorded data were intercepted in this project by continuous

recording by the device and following the rules designed by the research

methodology. The standard data length in the design was 300 minutes, and
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FIGURE 4.2: Plotting of all route tracing results in Task 1

the data content included data from the localization point and the three pres-

sure zones. Because of the abnormal data caused by the abnormal opera-

tion of the indoor positioning device during the experiment, the data for this

project were collated at the time of use, as described in the Data Processing

subsection.

4.3.4 Dual-task walking experiment

For the task design, four task routes of approximately 150 m were designed

for this project, and there were no areas requiring extensive walking at the

task site. A total of 32 paths4.3 and their corresponding plantar pressure data

were collected as experimental results and 32 responses to the NASA-TLX
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scale4.2. The experimental results corresponding to each subject are detailed

in the Appendix.

FIGURE 4.3: Plotting of all route tracing results in Dual-task
walking experiment

4.3.5 Data processing - Pilot experiment

Data organization is required for the collected positioning information and

pressure sensing data. First, the positioning information can be qualitatively
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TABLE 4.2: Statistical results of TLX scale

Subtotal
Items Collaborator No. Total

01 02 03 04 05 06 07
MD 38.750 2.500 16.250 25.000 45.000 42.500 40.000 30.000
PD 12.500 3.750 10.000 18.750 55.000 46.250 53.750 28.571
TD 10.000 3.750 51.250 42.500 52.500 50.000 55.000 37.857

Perf. 2.500 2.500 0.000 10.000 62.500 25.000 65.000 23.929
Effort 31.250 5.000 21.250 8.750 48.750 46.250 50.000 30.179
Frus. 28.750 1.250 10.000 0.000 23.750 32.500 30.000 18.036

visualized in the map with the time stamp to visualize the positioning infor-

mation trajectory. Among them, the positioning information of item 2 needs

to be processed in segments because of the very long duration it contains. In

the original design, the data can be classified based on the device’s loss of

GNSS signal when the wearer enters or leaves the building. However, in the

actual experiment, this determination point is very unreliable because of the

GNSS hardware problem mentioned earlier. Therefore, the data from Task

2 were sorted manually, and a total of 52 pieces of valid data that could de-

termine the starting and ending points were screened and truncated. The

results of the trajectory visualization of the 52 path data are shown here 4.4.

As for the mechanical sensing information, there is no complete mecha-

nism for classifying specific movements in this study, which makes it impos-

sible to distinguish the different movements of the wearer in the measured

data, although the data of Task 1 can clearly distinguish between "walking"

and "standing" data. Here, the pressure sensing data corresponding to the 52

path trajectories were analyzed as the pressure change pattern during "walk-

ing."

At the same time, the total amount of pressure sensing data is vast, and

each data needs to be pre-processed during the analysis to be analyzed ef-

fectively. In general, the valid primary data that can be calculated from this
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FIGURE 4.4: Plotting of organized route tracing results in Task2

data include "number of steps" and "plantar pressure intensity."

The number of steps is calculated by first standardizing a sensing data

series, i.e., the pressure data above the threshold is recorded as 1. Otherwise,

it is recorded as 0. After standardization, we can solve the number of times

the corresponding sensing point touches the ground according to this data

series. Because of the location characteristics of the sensing area, here we av-

erage the calculation results obtained from the front two areas, which can be

considered as the number of times the front of the foot touches the ground.
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This value is then averaged with the corresponding results of the rear sens-

ing zone to obtain the number of sensing times within a time series, i.e., the

measured value of the number of steps.

As for the plantar pressure strength, after repeated tests, the accurate

range of the pressure sensor used in this experiment is about 0-20 kg. At this

time, the data will be normalized, the results above 20 kg are normalized to

20 kg, the threshold value in the step count calculation is taken, and the data

below the threshold value is recorded as 0. At this time, the corresponding

average plantar pressure data can be calculated for each of the three sensing

points within a time series.

The data of task 1 is taken as an example, and the step count, forefoot

pressure, and heel pressure of 30 samples can be obtained after processing.

The average number of steps was 195.8, with a standard deviation of 20.054.

The average forefoot pressure was 6.54 kg with a standard deviation of 0.706.

The average heel pressure was 3.70 kg with a standard deviation of 0.508.

4.3.6 Data processing - Dual-task walking experiment

The data collected for each collaborator contains four large data series (data

pairs containing both the collected data and the questionnaire scale data).

To make these sequences analyzable, the researcher must extract the corre-

sponding characteristic quantities. In the case of the NASA-TLX scale, the re-

searcher performed no weight calculation in the data processing because the

experimental purpose was not to evaluate workload according to weights.

Still, the scores of the corresponding items were extracted directly from the

scale for simple analysis. For the recorded data, the plantar pressure data

series can be removed from the data according to the previously described

method. After processing, the "number of steps," "average plantar pressure"
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(left, right, and back), "walking speed," "completion time," etc., can be ob-

tained for each task route. Time to completion" and other evaluation indi-

cators. Using the location data, these indicators can be further subdivided,

and the task route includes three nodes: "departure," "execution," and "re-

turn." The departure and return can be grouped using the location data, and

the grouping can be compared to analyze the collaborators’ status changes

before and after the task is performed.
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Chapter 5

Conclusion

5.1 Discussion

5.1.1 Pilot experiment

The results obtained in this experiment have been presented in the experi-

mental section with qualitative data and their visualization. Based on the

experimental results, the parameters "number of steps" and "plantar pres-

sure" were calculated to evaluate the relevant characteristics of walking. For

Task 1, due to the similar length of the route, the researcher summarized the

following table of statistical data.

TABLE 5.1: Descriptive Analysis Result of Task 1

Descriptive Analysis

Items N of samples Min Max Mean Std. Deviation Median
Walking Distance 30 269.140 315.090 287.798 10.999 286.690
Total Time 30 182.278 291.717 231.101 32.498 232.582
Walking Time 30 171.456 280.036 221.823 31.873 222.298
Waiting Time 30 6.799 12.231 9.278 1.504 9.425
Number of Records
(Pressure) 30 860.000 1394.000 1091.467 155.713 1090.000

At the same time, for some of the extracted routes in Task 2, the researcher

visualized them using heat maps5.1.

After visualization, the researcher noticed that the heat map distribution

of pressure showed different characteristics in different paths. After reading
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FIGURE 5.1: Heat map plotting of results in Task2

the data, it was found that the distribution could be significantly different

under the influence of significantly different motives such as "going to the

cafeteria" and "going to the library" 5.2.

Therefore, the researcher proposed the hypothesis:

H5. The recorded data of My Footprint can reflect the walking character-

istics driven by different motives.

For the pre-existing experimental hypothesis, the investigators concluded

that for H1, the experimental results from Task 1 showed that the record-

ing results were consistent with the prescribed route when walking the pre-

scribed route wearing My Footprint. As for the plantar pressure data, the

variation of the data in the three pressure zones showed a regularity of fluc-

tuation in each step. The measurement data in the standing still condition

showed flat and straight data characteristics. It can be assumed that the My

Footprint recordings can reflect the natural movement state.
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FIGURE 5.2: Heat map plotting of "go to library" and "go to
cafeteria" results in Task2

For H2, according to the experimental results of task 2 and task 1, we

can draw different trajectory images and obtain the pressure sensing data of

the time series. Each trajectory record has its corresponding pressure change

information. Specifically for H2.1, we can obtain 52 different path trajectories

by task 2, and these path trajectories reflect the differences in the wearer’s

actions.

For H3 and H4, specifically for H3.1, we tried to establish an evaluation

criterion of "number of steps" and "average plantar pressure" through the

results of task 1. Each trajectory could calculate its corresponding value and

reflect the association between the average value of plantar pressure and The
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relationship between the average plantar pressure value and the trajectory.

However, further analysis and more experimental data are needed to verify

the relationship.

Therefore, the researcher believes that, through the experiment, H1 and

H2 are more fully validated, which is sufficient to show that the design de-

vice of this experiment can meet the data recording needs related to gait and

position information recording. H3 and H4 are partially validated. Quali-

tative data can evaluate the correlation between trajectory data and plantar

pressure, but the specific correlation characteristics need further experimen-

tal verification.

The study requires further motivation-specific driven experiments to fur-

ther validate H3, H4, and H5.

5.1.2 Dual-task walking experiment

Through the data mentioned above processing method, the researcher an-

alyzed the data of each collaborator in terms of "collected data" and "scale

data." The data can be grouped in several different ways. First, do the "sub-

jective scores" and "recorded data" change depending on the "different tasks"?

Since the experiment was conducted in a broken order, it is possible to ignore

the effect of the order of conduct to consider whether there is an intuitive dif-

ference in the results between task 1 (library) and task 2 (supermarket). To

visualize the data, we can create a heat map of the task in progress by combin-

ing the position data with evaluation benchmarks such as "plantar pressure"

and "speed." One of the heat maps based on the change of plantar pressure is

shown in Fig5.3.

Second, is there a link between "recorded data" and "subjective scores"?

By comparing the scores on each TLX scale with each recorded data indicator,
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TABLE 5.2: Table of subjective scale scores and plantar pressure
results obtained according to task grouping

Subtotal
Items Task Total

1 2 3 4
TLX-MD 35.714 48.571 15.714 20.000 30.000
TLX-PD 20.714 30.714 33.571 29.286 28.571
TLX-TD 30.714 40.714 40.000 40.000 37.857

Pressure-R 11964.985 12497.596 14125.592 14215.154 13200.831
Pressure-L 12462.517 12911.825 14683.312 14607.460 13666.279
Pressure-D 12917.961 13364.268 15137.022 15131.972 14137.805

Pressure-Avg 12448.488 12924.563 14648.642 14651.529 13668.305

it was possible to consider whether any recorded data reflected changes in

the subjective perceptions of the collaborators.

By correlating the "subjective scores" and "plantar pressure data" as quan-

titative data, we can obtain the following results5.4.

It can be seen that the correlation coefficients between MD (mental de-

mand score) and R (right side pressure), L (left side pressure), D (bottom

pressure), and Pre-Avg (mean pressure) are not significant. The correlation

coefficient values are -0.064, -0.106, -0.096, and -0.089, all of which are close to

0. The p-values are all more significant than The correlation coefficients were

-0.064, -0.106, -0.096, -0.089, all close to 0, and all p-values were more signif-

icant than 0.05, implying no correlation between MD and R, L, D, Pre-Avg.

The correlation coefficients were 0.649, 0.640, 0.675, and 0.661, and all of them

were greater than 0, implying a positive correlation between PD (physical de-

mand score) and R, L, D, and Pre-Avg. TD (temporary demand score) and R,

L, D, and Pre-Avg all showed significant correlation with coefficient values

of 0.544, 0.504, 0.468, 0.511, and all correlation coefficient values were greater

than 0, implying a positive correlation between TD and R, L, D, Pre-Avg.

It is easy to see that the plantar pressure in the measured data changed

with the task. And at the same time, the subjective workload perception of
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the collaborators through the TLX feedback also varied depending on the

task. By comparing the physical and temporary load scores with the plan-

tar pressure measurements in the TLX results, it can be concluded that the

changes in the measured plantar pressure data under the conditions of this

experiment may be correlated with the subjective perception of physical load

(corresponding to the perception of "fatigue").

5.2 Discussion of the results combined with Kan-

sei

5.2.1 Interpretation of subjective perception scores

During data analysis, the researcher noticed a strong correlation between

some of the scores on the TLX scale and the collected data. At the same

time, there were regular variations depending on the task. The first is Phys-

ical Demand (PD), which intuitively represents the perceived physical load

of the task on the collaborator. (In other words, "fatigue") In the design of

the four tasks, the round-trip distances were intentionally designed to be ap-

proximately equal in length. It means that the objective physical loads of

the four tasks should be similar. The differences in subjective ratings can be

considered as feedback from the "fatigue" of the collaborators. Since the ex-

periment was conducted consecutively, the problem that the later tasks were

more likely to produce fatigue inevitably arose, so the tasks were released in

a disordered manner.

Next is Temporal Demand (TD). Similar to the interpretation of PD, TD

can be interpreted as a "sense of urgency," which in this experiment is the

degree of urgency to complete the task felt in the process of moving.
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TABLE 5.3: ANOVA analysis of TLX results according to task
classification

ANOVA
Task (Mean±Std. Deviation) F p

1 (n=7) 2 (n=7) 3 (n=7) 4 (n=7)
PD 20.71±12.72 30.71±23.88 33.57±28.97 29.29±26.84 0.374 0.772
TD 30.71±21.30 40.71±26.68 40.00±24.66 40.00±28.28 0.248 0.862
MD 35.71±23.70 48.57±27.65 15.71±9.76 20.00±22.55 3.297 0.038*
Perf. 27.86±33.77 25.00±29.86 21.43±26.57 21.43±27.19 0.078 0.971

Effort 27.86±16.55 45.71±25.24 18.57±19.30 28.57±30.37 1.625 0.210
Frus. 12.14±11.85 31.43±31.05 11.43±9.45 17.14±22.89 1.405 0.266
* p<0.05 ** p<0.01

From the above discussion, we found that if there is a correlation between

the collected data (in the previous case, mean plantar pressure) and the above

subjective scores, it may be possible to describe the "fatigue" and "urgency"

of the collaborators through the data.

So do these scores vary by the task? The researchers conducted an ANOVA

analysis of TLX results according to task classification. The results were as

follows5.3.

It can be found that using ANOVA analysis to investigate the differences

of Task for PD, TD, MD, Perf., Effort, Frus. for a total of 6 items, it can be seen

from the above table that the different Task samples do not show significant

(p>0.05) for PD, TD, Perf. All of them show consistency and no difference.

In addition, 1 item of the Task sample showed significance for MD (p<0.05),

meaning there is a difference between Task samples for MD.

5.2.2 Discussion of the correlation between recorded data and

subjective scores

The above discussion has led us to two interpretations of the experimental

results: 1. there is a significant association between mean plantar pressure

and the results of PD and TD scores; 2. there is no significant difference in
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TABLE 5.4: Linear regression analysis of PD score and mean
plantar pressure

Parameter Estimates (n=28)
Unstandardized Coefficients Standardized Coefficients t p VIF R² Adj R² F

B Std. Error Beta
Constant -119.773 33.154 - -3.613 0.001** - 0.438 0.416 F (1,26)=20.225,p=0.000
Pre-Avg 0.011 0.002 0.661 4.497 0.000** 1.000
Dependent Variable: PD
D-W: 1.533
* p<0.05 ** p<0.01

TABLE 5.5: Linear regression analysis of TD score and mean
plantar pressure

Parameter Estimates (n=28)
Unstandardized Coefficients Standardized Coefficients t p VIF R² Adj R² F

B Std. Error Beta
Constant -82.644 39.969 - -2.068 0.049* - 0.261 0.233 F (1,26)=9.182,p=0.005
Pre-Avg 0.009 0.003 0.511 3.030 0.005** 1.000
Dependent Variable: TD
D-W: 1.570
* p<0.05 ** p<0.01

the results of PD and TD scores with task change. In order to further under-

stand the association between the measured data and subjective scores, the

researcher needed to analyze the specific type of association that existed be-

tween them. The investigators performed a linear regression analysis of the

mean plantar pressure and PD and TD scores for each task, with the follow-

ing results 5.4 and 5.5.

It can be seen that linear regression analysis was performed with Pre-Avg

(mean plantar pressure) as the independent variable and PD as the depen-

dent variable. From the table above, the model equation is PD = -119.773

+ 0.011*Pre-Avg, and the model R-squared value is 0.438, which means that

Pre-Avg can explain 43.8% of the variation in PD. The F-test of the model

found that the model passed the F-test (F=20.225, p=0.000<0.05), which means

that Pre-Avg must have an effective relationship with PD, and the final spe-

cific analysis shows that.

The regression coefficient of Pre-Avg is 0.011 (t=4.497, p=0.000<0.01), which

means that Pre-Avg will have a significant positive effect relationship on PD.

Summarizing the analysis, it is clear that the mean plantar pressure will have

a significant positive effect relationship on PD.
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Similarly, a linear regression analysis with Pre-Avg as the independent

variable and TD as the dependent variable showed that the model equation

was TD = -82.644 + 0.009*Pre-Avg with a model R-squared value of 0.261,

implying that Pre-Avg explained 26.1% of the variation in TD. The F-test of

the model found that the model passed the F-test (F=9.182, p=0.005<0.05),

which means that Pre-Avg must have an impact relationship on TD, and the

final specific analysis shows that.

The value of the regression coefficient of Pre-Avg is 0.009 (t=3.030, p=0.005<0.01),

which means that Pre-Avg will have a significant positive effect relationship

on TD. To summarize the analysis, it is clear that mean plantar pressure will

have a significant positive effect relationship on TD.

By summarizing the results of these two analyses, it can be concluded that

the mean plantar pressure measurements reflect a significant relationship be-

tween PD and TD and a positive linear relationship. Further, in conjunction

with the interpretation of the meaning of the scores in the previous section,

we can conclude that the mean plantar pressure measurements can reflect

the collaborators’ perception of "fatigue" and "urgency." The higher the mean

plantar pressure over a distance, the more intense the physical fatigue and

urgency felt by the collaborator.

5.2.3 Visualization of analysis results and their application

From the above analysis, we found that the average plantar pressure, as a

characteristic quantity extracted from gait characteristics, can reflect the "fa-

tigue" and "urgency" during a certain period of movement. This means that

if plantar pressure is used as a reference item in a heat map, we can create

a map that allows us to understand and quantify human feelings changes
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without using subjective evaluation tools. This seems to be a triumphant re-

turn to the concept of the "Kansei map" expected by the researcher. As an

example, a new interpretation of the previously obtained heat map5.3 using

mean plantar pressure as an indicator is possible: the closer the path to red

(high heat), the higher the mean plantar pressure, which means that the col-

laborator is experiencing a stronger sense of fatigue and urgency, while the

path closer to green (low heat) indicates a more relaxed mental state of the

collaborator.

With this analysis, researchers see the potential for more behavioral traits

to reflect Kansei in humans. Although it is not possible at this time to show

that mean plantar pressure data can be correlated with more emotional ex-

pressions. However, as in the example completed in this study with the TLX

scale and gait characteristics, it is likely achievable to continuously portray

subjective affective shifts in humans by creating a subjective scale for con-

trolled analysis, ultimately drawing out a characteristic amount of behav-

ioral traits as an indicator. With similar recording and visualization tools,

researchers can more intuitively determine and understand at which point

in time and at which location such changes occur.

5.3 Performance of the device

In the present experiment, the device operated stably for all 30 collaborators.

The recording conditions set by the experimental design were satisfied. Due

to the limitations of the GNSS part of the design, the device still needs further

improvement in recording the position trajectory in the natural environment.

In addition, the acquired raw data need to go through a more complicated

pre-processing before they can be used. Future design improvements should
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enhance the automatic processing performance of the device in terms of data

output.

5.4 Limitations

The design and experiments of this study reflect several limitations, which

also impact the experimental results, and are described here under the fol-

lowing headings.

• The design of the experimental device is still relatively bulky, reaching

150 grams. Although no feedback was received from the collaborators

in the actual experiment about the negative feeling of the device being

bulky, it is believed that the design could be further optimized to reduce

weight and volume.

• Problems with the GNSS module in operation were encountered during

the experiments, and the researchers believe that such problems stem

from inadequate module testing during the design process.

• The data analysis and processing of the experiments did not create a

more specific mathematical model to give more accurate results. Since

the initial concept of this study was to complete a complete evaluation

of the relationship between changes in position information and gait,

however, due to time and various condition constraints, only the design

and evaluation of the device was completed in this study.
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FIGURE 5.3: Heat map of the change in "plantar pressure" char-
acteristics during mission execution
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FIGURE 5.4: Results of the correlation analysis between plantar
pressure data and TLX scores
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5.5 Constructive conclusions

This study verified the feasibility of a set of device designs experimentally.

The constructive conclusions of the study include the following.

• The device provides a means to obtain data for experiments related to

gait analysis in natural environments by recording information in real-

time and continuously.

• In the experiment, the researcher tried to establish a "step count"-"plantar

pressure" evaluation criterion corresponding to the action trajectory

through the collected experimental results. This evaluation criterion

can be used to reference other studies in the same field.

• The study reaffirms the insights of KANSEI DESIGN regarding the defi-

nition of Kansei by combining the appropriate methods of KANSEI DE-

SIGN for the analysis of human behavior data, which reflects the signif-

icance of obtaining behavior data by various means in action research.
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Appendix A

Diary recall questionnaire
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FIGURE A.1: Collaborator screening questionnaire
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Appendix B

Diary recall questionnaire
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FIGURE B.1: Diary recall questionnaire -01
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FIGURE B.2: Diary recall questionnaire -02
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Appendix C

Ethics Review Document
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FIGURE C.1: Ethics Review Document
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Appendix D

Dual-task walking experiment

スタート地点から出発し、スーパー「カスミ」
の飲み物コーナーで好きな飲み物を購入して、
スタート地点に戻る。

スタート地点から出発し、「体芸図書館」
の指定本棚で本の名前とその本の冊数を記憶し、
スタート地点に戻る。

スタート地点

スタート地点
スーパー「カスミ」

体芸図書館

FIGURE D.1: Dual-task walking experiment - Task1
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スタート地点から出発し、
指定地点で10秒間程度静止して、
スタート地点に戻る。

スタート地点

指定地点

スタート地点から出発し、
指定地点で10秒間程度静止して、
スタート地点に戻る。

スタート地点

指定地点

FIGURE D.2: Dual-task walking experiment - Task2
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Appendix E

NASA-TLX Scale

FIGURE E.1: Dual-task walking experiment - NASA-TLX
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