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ABSTRACT: The copper-catalyzed [3 + 2] annulation of organic azides with (2,2-difluorovinyl)zinc chloride–TMEDA was 
achieved via C–F bond cleavage. Thus, a series of 1-substituted 4-fluorotriazoles were synthesized in high yields. In this reaction, 
the difluorovinylzinc complex functions as an easy-to-handle equivalent of fluoroacetylene (FC≡CH) to undergo cycloaddition with 
azides. This work offers a facile and practical method for the use of fluoroacetylene, which has been considered to be highly reac-
tive and difficult to handle and control for synthetic applications. 

The methods for chemical transformation of various types 
of fluorine-containing compounds have been developed to 
achieve considerable progress in pharmaceutical, agrochemi-
cal, and materials sciences.1,2 However, despite the synthetic 
utility of alkynes, the reactivities of fluoroalkynes that bear a 
fluorine substituent on the sp carbon remain unclear owing to 
their instability, difficult preparation, and difficult isolation. 
Among them, fluoroacetylene (FC≡CH), the second smallest 
alkyne, was first synthesized in 1959 via the pyrolysis of flu-
oromaleic anhydride at high temperature (650 °C) under vacu-
um (5–7 mmHg).3 However, the required harsh reaction condi-
tions hampered the synthetic versatility of this method. There-
after, a metalation–elimination protocol using fluorinated 
haloalkenes has been adopted for the synthesis of fluoroacety-
lene.4 Although this method enabled the in situ generation of 
gaseous fluoroacetylene in solution and its application to syn-
thetic use, its reactions are difficult to control because the 
metalated intermediates and produced fluoroacetylene are 
unstable. For example, Sauvêtre have reported the generation 
of fluoroacetylene via lithiation of 1,1-difluoroethylene 
(Scheme 1a).5 In this case, β-fluorine elimination from the 
intermediary 2,2-difluorovinyllithium proceeded at tempera-
ture above −80°C to afford fluoroacetylene.6 

Recently, we have developed 2,2-(difluorovinyl)zinc chlo-
ride–TMEDA (1) stabilized by the coordination of N,N,N',N'-
tetramethylethylenediamine (TMEDA), which serves as a 
difluorovinyl nucleophile in palladium- and copper-catalyzed 
couplings (Scheme 1b).7 We envisaged that the difluorovinyl-
zinc complex could also serve as an easy-to-handle equivalent 
of fluoroacetylene, which would be of considerable synthetic 
utility. Thus, we revisited fluoroacetylene chemistry8 and suc-
ceeded in constructing 4-fluorinated triazole rings by treating 

aryl, benzylic, allylic, and alkyl azides with difluorovinylzinc 
complex 1, where Huisgen-type [3 + 2] annulation9,10 occurred 
(Scheme 1c). 
 
Scheme 1. Fluoroacetylene and Its Equivalent 

 
 

First, we selected 4-(azidomethyl)biphenyl (2a) as a model 
compound for the examination of annulation with (difluorovi-
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nyl)zinc complex 1, which was prepared according to the re-
ported procedure7 via the deprotonation of 1,1-
difluoroethylene and subsequent transmetalation and ligation 
(Table 1). Although only a trace amount of annulated product 
was provided upon the reaction of 2a and 1 without a catalyst 
(Entry 1), the use of copper catalysts in 1,4-dioxane at room 
temperature efficiently afforded the corresponding [3 + 2] 
annulation product, 4-fluorotriazole 3a (Entries 2–7). Among 
copper catalysts screened, CuCl was determined to be a pro-
spective catalyst, which afforded 3a in 81% yield (Entry 7). 
To improve the yield of 3a, we screened ligands on CuCl. 
While phosphine ligands suppressed annulation (Entries 8 and 
9), nitrogen ligands were effective (Entries 10–13). Specifical-
ly, 1,10-phenanthroline improved the yield of 3a up to 86% 
(Entry 12). 

 

Table 1. Screening of Conditions for [3 + 2] Annulation of 2a 
with 1. 

 
entry [Cu] ligand 3a (yield %)a 

1 None – trace 
2 Cu2O – trace 
3 CuSO4 – 2 
4 CuOAc – 80 
5 CuI – 70 
6 CuBr – 78 
7 CuCl – 81 
8 CuCl PPh3

b 2 
9 CuCl dppe 14 

10 CuCl pyridineb 80 
11 CuCl 2,2'-bpy 83 
12 CuCl 1,10-phen 86 (83) 
13 CuCl 2,9-diMe-1,10-phen 84 

aYield was determined by 19F NMR spectroscopy using PhCF3 as an inter-
nal standard. Isolated yield was shown in parentheses. b30 mol %. 

 
 

Using the determined optimal conditions, the scope of re-
action with respect to azides 2 was investigated (Table 2). 
Benzylic azides 2b and 2c bearing methyl and methoxy groups 
on 4-positions successfully underwent copper-catalyzed [3 + 
2] annulation with 1 to afford corresponding 1-benzylic 4-
fluorotriazoles 3b and 3c in 87% and 69% yields, respectively. 
Because the vinyl group was tolerated under the conditions 
used, benzylic triazole 3d bearing a vinyl group was synthe-
sized in 81% yield. The annulation of benzylic azides 2e–2g 
bearing a chlorine substituent at para, meta, or ortho positions 
proceeded effectively regardless of the position of the substit-
uent, which led to corresponding triazoles 3h–3k in 82%, 84%, 
and 82% yields, respectively. Although the reactions of aryl 
azides 2h–2k required 2.5 equiv of (difluorovinyl)zinc com-

plex 1, triazoles 3h–3k bearing aryl ether, alkyl ether, ester, 
and amide moieties were obtained in good to high yields. Not 
only allylic azide 2l but also alkyl azide 2m participated in [3 
+ 2] annulation, which led to the synthesis of 1-allylated and 
1-alkylated 4-fluorotriazoles 3l and 3m in 81% and 75% 
yields, respectively. 
 

Table 2. Synthesis of 1-Substituted 4-Fluorotriazoles 3.a 

 
aIsolated yield. b1 (2.5 equiv) was used. c1 (2.5 equiv), CuCl (30 mol %), 
and 1,10-phen (30 mol %) were used. 

 
We assumed that the [3 + 2] annulation began with 

transmetalation between (difluorovinyl)zinc complex 1 and the 
copper(I) salt, which probably generated (difluorovinyl)copper 
A (Scheme 2, path a). Fokin advocated a mechanism involving 
two copper components for the Huisgen reaction of azides 
with terminal alkynes.10 In his mechanism, the two copper 
components initially activate the alkyne moiety and then pro-
mote the formation of intermediary metalacycles in an oxida-
tive cyclization-like manner. Thus, the in situ-generated 
(difluorovinyl)copper A would undergo the oxidative cycliza-
tion–reductive elimination sequence with the aid of another 
copper, followed by β-fluorine elimination to afford 3. There 
remains another possible pathway involving fluoroacetylene B 
generated via β-fluorine elimination at an early stage. The 
protonation of triazolyl copper C probably proceeds with B as 
the final step (Scheme 2, path b). 
 
Scheme 2. Plausible Reaction Mechanisms 
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To gain mechanistic insight, a competition experiment was 
conducted using deuterated (triisopropylsilyl)acetylene 5-d 
(D/H = 99/1). The treatment of azide 2a with (difluorovi-
nyl)zinc complex 1 in the presence of the copper catalyst and 
5-d afforded fluorinated triazole 3a (D/H = <1/>99) derived 
from 1, and nonfluorinated triazole 6 (D/H = 24/76) derived 
from 5-d; 5-deuterated 3a was not observed (Scheme 3). If the 
annulation of 2a with 1 involves the protonation step (from C 
to 3), a substantial H/D scrambling would be observed via 
deuteration with 5-d. Thus, this result suggests that the [3 + 2] 
annulation of azides 2 with (difluorovinyl)zinc complex 1 
probably does not proceed via the generation of fluoroacety-
lene B. 

 
Scheme 3. Competition Experiment Using Deuterated Acety-
lene 5-d 

 
 

In addition, the reaction of fluoroacetylene B, prepared via 
the lithiation of 1,1-difluoroethylene (4) followed by β-
fluorine elimination,5,6 was examined. After the treatment of 4 
with sec-BuLi at −100 °C, the reaction mixture was kept at 
−60 °C for 2 h, and then the temperature was increased to 
room temperature (Scheme 4). After stirring at room tempera-
ture for another 30 min, fluoroacetylene B was obtained as a 
THF–ether solution but only in 26% yield, which was charac-
terized by 19F NMR spectroscopy (δ −17.8 ppm relative to 
C6F6, singlet).11 Additionally, when the obtained fluoroacety-
lene B in solution was treated with azide 2a in the presence of 
the copper catalyst, triazole 3a was obtained but only in 71% 
isolated yield (Scheme 4). Although this reaction apparently 

proceeds via the [3 + 2] annulation of azides 2 with B, the 
efficiency of the entire reaction remains quite low (<20% from 
4) and not practical. Moreover, the decrease in yield (71%) 
compared to 86% (Table 1, Entry 12) supports the fluoroacety-
lene-free mechanism in the [3 + 2] annulation of 2 with 1 
(Scheme 2, path a). 
 
Scheme 4. Generation of Fluoroacetylene B and Its Reaction 
with Azide 2a 

 
 

Further chemical transformations of triazoles 3 were exam-
ined. Because triazole rings are known to serve as a directing 
group,12 the constructed fluorotriazole rings were applied to 
promote the rhodium-catalyzed C–H bond activation of a ben-
zene ring on triazole nitrogen according to the annulation us-
ing pyrazole derivatives reported by Miura and Satoh (Scheme 
5).13 In the presence of [Cp*RhCl2]2 as a catalyst and 
Cu(OAc)2·H2O as an oxidant, the [5 + 2] annulation of 1-
benzylated 4-fluorotriazole 3a with diarylacetylene 7 effec-
tively proceeded via domino C–H bond activation to afford 
azepine derivative 8a in 57% yield. Similarly, 1-arylated 4-
fluorotriazole 3i underwent [4 + 2] annulation under the same 
conditions to afford pyridine derivative 8i in 87% yield. Thus, 
fluorine-containing tricyclic compounds were readily synthe-
sized by the combination of the copper-catalyzed [3 + 2] annu-
lation and rhodium-catalyzed [5 + 2]/[4 + 2] annulation. 
 
Scheme 5. Annulation of Triazoles 3 with Alkyne 7 via the 
Rhodium-Catalyzed Domino C–H Bond Activation 

 
 

In summary, we achieved the copper-catalyzed [3 + 2] an-
nulation of azides with (2,2-difluorovinyl)zinc chloride–
TMEDA. We offer a facile and practical method for the use of 
a fluoroacetylene equivalent, which has been considered to be 
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highly reactive and difficult to handle and control for synthetic 
applications. Of note, the protocol provides an efficient 
method for the synthesis of 4-fluorotriazoles bearing a wide 
variety of substituents on the 1-position as promising candi-
dates for pharmaceuticals and agrochemicals, which are diffi-
cult to prepare by conventional methods.14,15 
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