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The propagation speed, shape, and stability of the rim generated by a liquid curtain
breakup are studied. In the experiment, a liquid curtain surrounded by a slot die,
edge guides, and the surface of a roller breaks at the contact point between the edge
guide and roller in a low-Weber-number range, and the rim propagates in the horizontal
direction. Except for the initial time, the rim is almost straight and has a nearly constant
propagation speed. For an Ohnesorge number much smaller than 1, unevenness occurs
on the rim and the droplets separate from it. When the Ohnesorge number is in the
order of unity, the rim becomes convex vertically downward, and the liquid lump flows
down. The shape, propagation speed, and surface stability of the rim are discussed by
analysing the equation proposed by Entov & Yarin (1984). It is shown that the volume
flow rate condition at the slot die exit is important to explain the propagation of the rim.
Additionally, in the initial stage of the curtain breakup, the Plateau–Rayleigh instability
causes unevenness on the rim surface, and after the rim reaches the slot die exit, the
Rayleigh–Taylor instability generates a liquid lump on the rim, which grows into droplets
when the Ohnesorge number is much less than 1.
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1. Introduction

Curtain coating is a technique used for depositing a liquid curtain on a moving solid
surface (substrate) (see Kistler 1985; Miyamoto & Katagiri 1997; Weinstein & Ruschak
2004). The liquid curtain in curtain coating is produced by flowing the liquid discharged
from the gap of the slot die to the edge guides on the left and right ends, and the
substrate, moving at a constant speed, is placed at the lower end of the liquid curtain,
and the liquid curtain is deposited on the substrate (see figure 1, where the substrate has
been removed from the roller). When the speed of the moving substrate increases, air
gets entrained to the liquid film on the substrate or the liquid curtain break-up occurs
from the edge guide. Hence, the prediction method of the liquid curtain behavior is the
subject of the research (for instance, Blake & Ruschak 1979; Liu et al. 2016, 2019). In
this study, we report the propagation of the rim of the liquid curtain due to the liquid
curtain breakup.

† Email address for correspondence: kyotoh@kz.tsukuba.ac.jp
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The liquid curtain volume flow rated from the slot die can be bridged to the edge
guides, and the liquid is transferred to the roller surface as shown in figure 1 (for
instance, Takagi 2010; Kyotoh et al. 2014; Liu et al. 2017). However, in the vicinity
of the contact between the edge guide and roller, the liquid curtain becomes thinner and
the mechanical vibrations of the roller influence the stability; hence, the liquid curtain
may become unstable and break up at the contact. The small hole at the beginning of
the breakup grows in the direction of the liquid curtain, a rim develops by absorbing the
liquid, and finally, the liquid curtain disappears between the edge guides. In this study,
the propagation speed, shape, and stability of the rim are observed experimentally and
evaluated using a theory to understand how to prevent the rupture of the liquid curtain
by investigating the factors governing the rim propagation.
The breakup of the liquid curtain was studied by Taylor and Culick, who expressed

its propagation speed as cs ≡
√
2σ/(ρH)，where ρ: liquid density, H: liquid curtain

thickness, σ: surface tension (see Taylor 1959; Culick 1960). The liquid pool at the
breakup boundary is refered as the rim, and its mass increases by absorbing the liquid in
the curtain as it propagates; however its propagation speed is nearly constant. The effect
of the liquid viscosity on the rim shape and propagation speed has been discussed (see
Brenner & Gueyffier 1999; Sünderhauf, Raszillier & Durst 2002; Savva & Bush 2009) i. e.
capillary waves appear behind the rim for small Ohnesorge numbers, the rim disappears
for large Ohnesorge numbers, and the viscosity has no influence on the propagation speed.
Entov & Yarin (1984) derived the equation of motion of the liquid curtain rim

considering viscosity and surface tension (see also Yarin 1993)．This equation describes
the motion of the fluid particles at the centerline of the rim in the Lagrangian coordinate
system and can be applied to the rim with an arbitrary shape in space; however, the
cross section of the rim is circular and the flow velocity inside it, is assumed to be
uniform. The condition in which the rim has a circular cross section is valid for the liquid
curtain with an Ohnesorge number roughly less than 1 (see Sünderhauf, Raszillier &
Durst 2002). Moreover, based on this equation, the stability of the line rim, whose radius
and flow velocity are a function of time, is expressed through the variable coefficient
ordinary differential equation (Roisman 2010; Agbaglah et al. 2013). They show that the
instability can be studied by determining the eigenvalues obtained under the assumption
that the variable coefficients of the disturbance equation are constant, i.e., frozen rim or
frozen parameter, and discussed the effects of liquid viscosity and surface tension on rim
stability. Roisman (2010) specifically calculated the moment of moment equation and
showed that the shear force in the rim cross section has a small effect on the stability of
the rim. In contrast, curtain coating requires analysis that takes gravity into consideration
because liquid in a curtain coating is transferred to the substrate by utilising the inertial
force of gravity.
In curtain coating, when the Weber number defined by We ≡ (U/cs)

2， U being the
flow velocity in the liquid curtain, was greater than 1, the equation of motion of the rim
associated with the breakup of the liquid curtain was derived, and the rim shape for the
steady state was obtained (Roche & Grand 2006). When the Weber number is smaller
than 1, the propagation speed of the rim exceeds the flow velocity in the liquid curtain,
causing the liquid curtain to disappear between the edge guides. However, it has been
experimentally shown that the viscosity of the liquid and the inertia of the rim enlarge
the coatable area in the coating window, and that the liquid curtain is stable even when
the Weber number is less than 1 (see Roche & Grand 2006; Karim et al. 2018; Marston
et al. 2014). Furthermore, in curtain coating, the liquid curtain is surrounded by slot die,
edge guides, and a roller, which also affect stability of the liquid curtain, for example,
the viscous boundary layer on the edge guides causes the instability (Karim et al. 2018),
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Figure 1. Liquid curtain formed in the area surrounded by slot die, edge guide, and roller.
(a) Schematic view of experimental device. (b) Front view of slot die, liquid-curtain, and roller.
Coater A : 6.0 cm wide slot and 0.3 mm wide slit， Coater B : 12.5 cm wide slot and 0.1 mm
wide slit． The right-hand picture shows the photograph of Coater B．

and the high viscous liquid curtain bridged between parallel needles suppresses the rim
growth (Chepushtanova 2007).
In this study, the liquid curtain breakup and rim propagation are studied experi-

mentally and theoretically. Here, the shear force considered by Entov & Yarin (1984);
Roisman (2010) is ignored, but the gravitational force is considered because it is crucial
for curtain coating. In §2, experiments are performed to observe the breakup of the liquid
curtain bridged by the rotating roller, and the shape and propagation speed of the rim
are measured. In §3, the equation of motion of the rim is analysed, and the shape and
propagation speed of the rim of the liquid curtain are obtained and compared with the
experimental values. In §4, the stability of the rim is theoretically evaluated and the
separation of the droplets from the rim is discussed from the linear stability analysis.
Finally, in §5, we discuss the shape, propagation speed, the stability of the rim, and show
the importance of the gravitational force on the liquid curtain rim.

2. Breakup of liquid curtain bridged to rotating roller

To examine the possibility of curtain coating at a low flow rate, that is, at a low-
Weber-number, a liquid curtain is disrupted by a stainless rod to cause the liquid curtain
breakup at the contact of the edge guide and roller, and this is photographed using a
high-speed video camera. The image is then analysed to measure the rim shape and
propagation speed. The experiment was performed using two types of slot dies (Coater
A: slit width 0.3 mm, slot width 6.0 cm, Coater B: slit width 0.1 mm, slot width 12.5
cm). In both cases, the drop height of the liquid curtain is 2.0 cm.
In the experiment with Coater A, a high-viscosity liquid was used as the working fluid,

and the droplets did not break away from the rim. In the experiment with Coater B, a
low-viscosity liquid was used, the Ohnesorge number was small, and the droplets broke
away from the rim.

2.1. Experimental set-up and method

In the experimental set-up shown in figure 1, a liquid curtain is generated by dis-
charging liquid from a slot die, bridging between the left and right edge guides, and
transferring the liquid to a rotating roller. In the experiment, two different coating dies
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Table 1. Liquid properties. W: Water, G: Glycerin, E: Ethanol

Coater Liquid Mixing ratio Viscosity Surface tension Density 　 Volume flow rate
(W：G：E) µ(cP) σ(dyn/cm) ρ(g/cm3) Q(cc/min)

Coater A Liquid 1 30:40:30 73 34 1.1 Q1:233, Q2:339
Liquid 2 25:50:25 113 46 1.1 Q1:233, Q2:339
Liquid 3 40:20:40 40 34 1.05 Q1:195, Q2:320

Coater B Liquid 4 100:00:00 1.0 73 1.0 Q0:636
Liquid 5 78:22:00 1.9 73 1.1 Q0:636
Liquid 6 95:00:05 1.0 57 1.0 Q0:636

are installed, i. e., Coater A with a width of 6.0 cm and a slit width of 300 µm and
Coater B with a width of 12.5 cm and a slit width of 100 µm, but the falling height of
the liquid curtain fixed at 2.0 cm. The working liquid is circulated by a diaphragm pump
(Tacmina TPL2M-028). A high-speed video camera (Photron Fastcam SA4) is installed
to photograph the liquid curtain from the front, and the video image is analysed during
the curtain breakup to measure the rim propagation speed and shape.

The working liquid used in this experiment is a mixture of water, glycerin, and
ethanol. The viscosity of the liquid µ and the surface tension σ, vary according to
the mixing ratio of the liquids (see table 1). This liquid is a Newtonian fluid, and the
dimensionless dominant parameters describing the physical properties are the Weber
number, Ohnesorge number, Reynolds number, Bond number and Froude number defined
by

We =
ρH0u0

2

2σ
, Oh =

µ√
ρσH0

, Re =
ρu0H0

µ
, Bo =

ρgH0
2

σ
, Fr =

u0√
gh
, (2.1)

where ρ is the density, H0 and u0 are the liquid curtain thickness and flow velocity at
the slot die exit, h is the distance from the slot die exit to the top of the roller and We
is the value at the slot die exit. It should be noted that we use half the liquid curtain
thickness as the length scale of the Weber number. We conducted experiments on the six
cases for Coater A and three cases for Coater B as presented in table 2.

CA and CB in table 2 represent Coater A and Coater B, L1 ∼ L6 are the liquids listed
in the table 1, and Q0, Q1, Q2 are volume flow rate listed in the table 1, for example CA-
L1-Q1 is the experiment with Coater A, liquid L1, and volume flow rate Q1. From table
2, the viscous stress of the liquid curtain is of the same order as the surface tension in
experiment CA, and the surface tension is dominant over the viscous stress in experiment
CB. In experiment CA, the liquid curtain coming out of the die accelerates, the thickness
decreases to approximately 0.5 times the slit width at the lower end of the liquid curtain,
and the Weber number becomes a value close to 1.

The rotation speed of the roller is adjusted so that the liquid flow velocity reaching
the roller surface is almost the same as the roller peripheral speed. The Weber number
in table 2 is the value at the slot die exit, which then increases downstream. Conversely,
the Reynolds number does not change on the liquid curtain.
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Table 2. Experimental conditions

Experiment We Oh Re Bo Fr cH/u0

CA-L1-Q1 0.23 0.69 0.97 0.029 0.49 2.0
CA-L1-Q2 0.48 0.69 1.42 0.029 0.71 1.7
CA-L2-Q1 0.17 0.92 0.63 0.021 0.49 2.2
CA-L2-Q2 0.35 0.92 0.92 0.021 0.71 0.8
CA-L3-Q1 0.15 0.39 1.42 0.027 0.41 3.1
CA-L3-Q2 0.41 0.39 2.33 0.027 0.67 1.1

CB-L4-Q0 0.49 0.012 84.8 0.0013 1.9 0.90
CB-L5-Q0 0.54 0.021 49.1 0.0015 1.9 0.90
CB-L6-Q0 0.63 0.013 84.8 0.0017 1.9 0.57

The rightmost column in the table is the horizontal propagation speed cH of the rim described
by the bold yellow curve shown in figures 2 and 3． Also, CA and CB show the experiment by
Coater A and Coater B respectively， and L1∼L6 denotes Liquid 1∼Liquid 6 in table 1,
respectively．

2.2. Experimental results

In experiment CA, the breakup of the liquid curtain is caused by disrupting the lower
right end of the curtain using a stainless rod. In experiment CB, the liquid curtain
broke from the contact point between the left edge guide and roller. Because the Weber
number used in this paper is smaller than 1, the breakup propagates throughout the
liquid curtain. In the Coater A experiment, there was no detachment of droplets from
the rim. Conversely, in the Coater B experiment, the droplets detached from the rim
during the propagation. The results of these experiments are presented separately below.

2.2.1. Coater A experiment：no detachment of droplets from the rim．

A rim was generated from the lower right corner in figure 2. The liquid curtain was
photographed from the front at 500 fps by the high-speed video camera, and the shape
and surface of the rim were visualized by superimposing the rim images every 12/500 s.
The yellow line in figure 2 traces the centerline of the rim, and the diameter of the rim
can be observed when the electronic images of figure 2 are enlarged.

The rim acquires the liquid in the curtain and propagates vertically upward while
growing. Subsequently, the upper end of the rim reaches the slot die exit and propagates
toward the leftmost edge guide. Further, after the top of the rim reaches the slot die
exit, the liquid in the rim flows vertically downward along the rim (see Movie A). Similar
experiments were performed four times for each experimental case, but no significant
difference was observed in the rim shape.

The Weber numbers in the right and left columns in figure 2 are approximately 0.2
and 0.4, respectively. The propagation speed of the rim, represented by the bold yellow
line, is depicted in the last column of table 2. This value is roughly the same as that
calculated from (3.21), derived later in §3.2.2. In the left column in figure 2, the rim
centerline is convex downward and the centerline spacing is narrow, because the liquid
lump on the rim flows down and the horizontal propagation speed of the rim decreases.
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Figure 2. Front image of the rim propagation (Movie A). An image from the high-speed video
camera depicting the liquid curtain in the area surrounded by the left and right edge guides,
slot die exit and roller is shown superimposed every 12/500 s. The breakup occurs from the
contact point between the right edge guide and the roller. The yellow line in the figure depicts
the center line of the rim, and the CA in the title indicates that the experiment was performed
using Coater A. Additionally, L and Q in the title indicate the working liquid and flow rate,
respectively (see table 1).

2.2.2. Coater B experiment：detachment of droplets from the rim．

The slit width of Coater B is 0.1 mm and the pressure loss is high. Therefore, a low-
viscous liquid was used as the working fluid. Consequently, Re is approximately 80 and
Oh is approximately 0.01, that is, the influence of viscosity on the flow is much smaller
than that of the surface tension.
The liquid curtain was photographed from the front at 5000 fps by a high-speed video

camera, and the shape and surface of the rim were visualised by superimposing the images
every 12/500 s. The yellow line in figure 3 traces the center of the rim, and the diameter of
the rim can be determined from these images. Compared with the experimental results of
Coater A, the surface of the rim is not smooth in this experiment; a liquid lump is formed
on the rim, and the droplets are separated from the rim. In figure 3, three types of liquid
motions have been visualised. The first is the trajectory of the liquid making up the rim,
the second is the trajectory of the droplet detached from the rim, and the third is the
trajectory of the droplet that has fallen vertically downward from the slit of the slot die.
Because the droplet that is part of the second motion, has the same momentum as the
liquid making up the rim, its trajectory branches off to connect with the rim trajectory.
However, the droplet that is part of the third motion exhibits a vertical trajectory.
The image shown in figure 4 depicts the initial breakup process and rim surface

instability. The breakup starts from the contact point between the left edge guide and
roller, and propagates to the right through the edge guide and then the slit of slot die.
During the breakup, the rim acceleration is large because the rim mass is small, but as
the rim grows, the acceleration decreases and it moves at an almost constant speed over
time (see figure 3). Additionally, the dimensionless horizontal propagation speed of the
rim calculated for CB-L4, L5, and L6 from (3.21) is 1.0, 0.96 and 0.78, respectively, which
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Figure 3. Front image of the rim propagation (Movie B). An image of the high-speed video
camera depicting the liquid curtain in the area surrounded by the left and right edge guides, slot
die exit and roller is shown, superimposed every 12/500 s. The breakup occurs from the contact
point between the left edge guide and the roller. The yellow line in the figure depicts the center
line of the rim, and CB in the title indicates that the experiment was performed using Coater
B. In addition, L and Q in the title indicate the working liquid and flow rate, respectively (see
table 1).

Figure 4. Front image when the breakup occurs. Time lapse from the left to right, and the
images in experiment CB-L4, L5, and L6 are depicted at 2/500, 2/500 and 7/500-time intervals,
respectively. The breakup occurs at the lower part of the leftmost edge guide.

is consistent with the propagation speed of the rim presented in table 2. However, from
figure 3, the liquid separates from the rim in the form of droplets as the rim propagates,
and consequently, the rim radius remains constant on average.
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2.3. Discussions on rim shape and stability

The rim shape and flow velocity inside the rim are discussed separately when the upper
end of the rim is located on the edge guide and after it reaches the slot die. When the
upper end of the rim is located on the edge guide, the radius of the rim increases as the
rim propagates, and the liquid inside the rim moves vertically upward. In contrast, after
the upper end of the rim reaches the slot die exit, the liquid flowing out of the slot die
flows vertically downward along the rim due to the influence of gravity. Additionally, the
rim shape is significantly affected by the thickness of the liquid curtain near the edge
guide. Generally, the breakup speed near the edge guide is high (figure 4) because the
liquid curtain is extremely thin near the edge guide, and the rim shape becomes linear
as it propagates, as shown in figures 2 and 3. In experiment CB- L6, ethanol was mixed
in the working fluid, so it was considered that the edge guide had high wetability and
hence the breakup from the edge guide was suppressed, and therefore the rim slope from
the horizontal axis became small.

Regarding the stability of the rim, in experiment CA, no detachment of droplets from
the rim was observed (figure 2), and in experiment CB, unevenness appeared on the rim
surface and droplets separated from the rim (figure 2). If the occurrence of unevenness
on the rim is due to Plateau–Rayleigh instability, the wavelength of the unevenness is
approximately 4.5D for inviscid liquid (for example Drazin & Reid 1982), where D is the
diameter of the rim. However, in the experiment, according to figure 4, the wavelength
of the unevenness is approximately 1.5D at the initial stage of rim generation, and after
the rim reaches the slot die, the wavelength of the unevenness becomes longer and is
approximately 4D according to figure 3.

Gravity also has the influence of reducing the horizontal propagation speed of the
rim as the rim mass increases, causing the liquid in the rim to flow down. Additionally,
the generation of the liquid lump on the rim in experiment CA and the detachment of
the droplets from the rim in experiment CB, may have occurred from the influence of
gravity, that is, Rayleigh–Taylor instability (for example Drazin & Reid 1982). Because
this instability causes the mass of the rim to reduce, it might be possible to evaluate
the propagation speed of the rim from the force balance equation when the rim radius is
constant and gravity is ignored.

3. Liquid curtain rim shape

In this section, we analyse the governing equation of the rim of the liquid curtain based
on the equation proposed by Entov & Yarin (1984), but the shear force in the rim cross
section is ignored, as indicated by Roisman (2010), and gravitational force is included
because gravity becomes dominant as the rim increases mass, as it propagates. Here, we
also assume that the cross section of the rim is circular and its radius changes slowly
spatially along the centerline of the rim.

This equation, however, is the equation with the Lagrangian variable as the indepen-
dent one; hence, when analysing a flow with a fixed boundary, it is necessary to convert
it to the Eulerian coordinate, and consequently, the equation becomes too complicated.
Therefore, the objective of the analysis is selected step by step as follows.

• Find the rim shape, propagation speed, and radius when a circular breakup occurs
in the liquid curtain in the infinite region without gravity.
• Find the rim shape, propagation speed, and radius when a circular or elliptical

breakup occurs in the liquid curtain in the infinite region with gravity.
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Figure 5. Rim and coordinate system in the x−y plane．(a) Definition of the variables involved
in (3.2), (3.3). (b) Liquid curtain in the infinite region and the rim propagation from the point
source at (x, y) = (h, 0). Here, the position of the edge guide and roller surface are shown
together.

• Find the rim shape, propagation speed, and radius of the liquid curtain in the strip-
shaped region with fixed boundaries with gravity.

3.1. Governing equation for liquid curtain rims

The basic equation in the present study was derived by Entov & Yarin (1984), and
studied by Agbaglah et al. (2013); Roisman (2010), where the rim cross section is circular
and the flow within the rim cross section is uniform. We consider only the rim associated
with the breakup of the liquid curtain constrained in a vertical x− y plane as shown in
figure 5.
Let the position of the fluid particle in the center of the rim take x = X ≡

(X(t, ζ), Y (t, ζ)), where t is time, ζ is a Lagrangian variable, and τ and n are the unit
tangent and normal vector, respectively at the rim centerline in the following.

V =
∂X

∂t
, τ = λ−1 ∂X

∂ζ
, n = λ−1

(
−∂Y
∂ζ

,
∂X

∂ζ

)
, λ ≡

∣∣∣∣∂X∂ζ
∣∣∣∣, (3.1)

where V is the velocity of the fluid particle, and λ is the scale factor of the transformation
from the Lagrangian coordinate to the physical one. The connecting position between
the rim and the curtain is x = XS = X + Rn, where R is the radius of the rim.
The continuity equation and Newton’s second law with the fluid particle position as the
unknown variable and the Lagrangian variable as the independent variable, are given by
the following equations.

∂λA

∂t
+HSλS(uSn − VSn) = 0, (3.2)

ρA

{
∂V

∂t
+
∂2rG
∂t2

− g(0, 1)

}
−
(
2σnS + hSΠS · nS

)
(1− κR)

+ρ hS(uSn − VSn)(uS −VS)(1− κR)− λ−1 ∂F

∂ζ
= 0, (3.3)

where gravitational force is included but the shear force in the rim cross section is
ignored, compared with the work of Roisman (2010). Here，H and u are respectively
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the curtain thickness and velocity inside the curtain，the subscript “S” denotes the
value at the connecting position between the rim and the curtain, VS = ∂XS/∂t,
VSn = VS · nS , uSn = uS · nS , A = πR2，and κ is the curvature of the rim centerline
given by

κ = λ−3

(
∂X

∂ζ

∂2Y

∂ζ2
− ∂Y

∂ζ

∂2X

∂ζ2

)
. (3.4)

rG denotes the position of the center of gravity of the rim originating from the rim center,
given by

rG = −κIb
A
n, Ib = π

R4

4
, (3.5)

Π denotes the internal stresses of the liquid curtain:

Π(x, y, t) =


σ

2
∆H + 2µ∇ · u+ 2µ

∂ux
∂x

µ

(
∂uy
∂x

+
∂ux
∂y

)
µ

(
∂uy
∂x

+
∂ux
∂y

)
σ

2
∆H + 2µ∇ · u+ 2µ

∂uy
∂y

 . (3.6)

where u = (ux, uy)， ∆ and ∇ are respectively two-dimensional Laplacian and nabla，
and ΠS = Π(XS , YS , t)． Finally, F is the tension force along the centerline of the rim
which is given by

F = Pτ, (3.7)

P = σ A

[
R−1

{
1 +

(
∂R

λ∂ζ

)2}−1/2

+
∂

λ∂ζ

(
∂R

λ∂ζ

){
1 +

(
∂R

λ∂ζ

)2}−3/2
]

−6µAδ − µW, (3.8)

δ = −1

2

(
∂Vτ
λ∂ζ

− κVn

)
, W = hS(VSn − uSn)(1− κR), (3.9)

where Vτ is the τ -component of V, and µ δ and µW are respectively the viscous stresses
due to the extension of the rim and expansion of the rim cross-section caused by the
increase of the liquid volume supplied from the curtain.
To analyse the phenomena with fixed boundaries, the basic equations (3.2) and (3.3)

with the Lagrangian variable ζ, need to be transformed to the equations with the Eulerian
variable x. This variable transformation from ζ to x is given by

x = X(t, ζ(t, x)), y = η(t, x) = Y (t, ζ(t, x)), (3.10)

where ζ is the Lagrangian variable satisfying

∂ζ

∂t
+ U(t, x)

∂ζ

∂x
= 0. (3.11)

Differentiating the second expression in (3.10) with respect to t and considering (3.11)
lead to the kinematic boundary condition as follows:

∂η

∂t
= V (t, x)− U(t, x)

∂η

∂x
, (3.12)

where U = ∂X/∂t, V = ∂Y/∂t．
The variable transformation of (3.2) and (3.3) from (t, ζ) to (t, x) can be achieved

by the relations obtained from differentiating (3.10) with respect to t and x, where
(U, V, R, η) are the unknown functions. The equations after the change of variables,
however, are complicated and it is difficult to find well-posed boundary conditions,
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because the basic equations include the second derivative of t and the third derivative
of ζ. Therefore, in the next section, we first analyse the propagation of the rim of the
liquid curtain with uniform flow in the infinite region. Next, in §3.3, the equations with
the Eulerian coordinate is approximated and the propagation of the rim is analysed for
the flowing band-shaped liquid curtain.
In this paper, the length, velocity, and time scales are non-dimensionalized by the

curtain thickness H0, the flow velocity u0, and H0/u0, respectively. Unless otherwise
specified, physical quantities such as t, x, X, Y, R, ux, uy and η have been non-
dimensionalized in the following sections.

3.2. The shape of the rim generated from the breakup of the liquid curtain in the
infinite region

In this section, we analyse the rim propagation when the liquid curtain in the infinite
region breaks without considering the existence of the edge guides, roller, and slot die,
but consider the region where the liquid curtain exists as shown in figure 5 (b). First,
a solution without gravity is obtained, then the line rim with gravity is discussed, and
finally the rim propagation from the point source under gravity is numerically analysed.

3.2.1. Rim expanding from a point source without gravity

The solution of the circular rim without gravity is discussed in this section. This
solution can be applied for the initial stage of the curtain breakup because the mass of
the rim is small at the beginning of the breakup.
Let the axisymmetric solution of (3.2) and (3.3) be

X = h+X0(t)− r(t) cos ζθ, Y = r(t) sin ζθ, R = R0(t), (3.13)

where ζθ, 0 ⩽ ζθ ⩽ 2π, is the Lagrangian variable，h is the curtain height，x = h+X0(t)
denotes the center of the circular rim，and dX0/dt = 1 for uniform flow．Here，ζθ is
positive in the clockwise-direction. The elimination of ζθ from (3.13) leads to

y =
√
r(t)2 − (x− h−X0(t))2 (3.14)

which describes a circle．The substitution of (3.13) into (3.2) and (3.3) results in the
equations for r(t) and R0(t)．However, if the liquid curtain breaks from the point source
and the rim becomes a torus, the relationship between r(t) and R0(t) holds as follows:

π
{
R0(t) + r(t)

}2
= 2π2r(t)R0(t)

2, (3.15)

which is shown to satisfy the mass conservation law (3.2), and hence

R0(t) =
r(t)

{
1 +

√
2π r(t)

}
2π r(t)− 1

. (3.16)

Equation (3.16) is applicable when r(t) > R0(t), that is, R0(t) ⩾ 2/π noting that the
hole diameter of the cavity is zero when R0(t) = π/2 and r(t) = π/2. Lastly, the dynamic
equation (3.3) for the axisymmetric flow is[

πR0(t)
2
r(t)

{
4r(t)2 −R0(t)

2}
r′′(t) + 2πr(t)2R0(t)

3
R0

′′(t)

+
{
4r(t)3 + 4r(t)2R0(t) + 2πR0(t)

4}
r′(t)

2
+ 2r(t)2

{
2r(t) +R0(t)(2 + πR0(t))

}
R0

′(t)
2

+4r(t)
{
2r(t)2 + 2r(t)R0(t)− πR0(t)

3}
r′(t)R0

′(t)
]

−2
√
2Oh√
We

r(t)
[
{r(t) +R0(t)− 3πR0(t)

2}r′(t) + {r(t) +R0(t)}R0
′(t)

]
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− 2

We
r(t)2

[
2r(t)− (π − 2)R0(t)

]
= 0, (3.17)

which shows the equilibrium condition of the inertial force, viscous force, and surface
tension.
To find an asymptotic solution after the breakup has progressed sufficiently, the

substitution of (3.16) into (3.17), the variable transformation r′(t) = Vr(r(t)), and the
change of the variables from (t, r(t)) to (r, Vr(r)) lead to

r Vr(r)
dVr(r)

dt
+ 2Vr(r)

2 − 2

We
= 0, Vr(r) =

√
1

We

{
1−

(rI
r

)4(
1−WeVI

2
)}

(3.18)

which is satisfied for r ≫ 1, and the initial value is given as Vr(rI) = VI . Equation (3.18)

shows that Vr(r) = 1/
√
We and r(t) = t/

√
We for r → ∞, and hence, no viscous force

influence the final propagation of the rim (see Savva & Bush 2009)．

3.2.2. Rim in rectangular region without gravity

For the solution of the rim obtained in the previous section, the value in the rectangular
region 0 ⩽ x ⩽ h is discussed in the following.
The approximation of (3.14) for X0(t) ≫ h and r(t) ⩾ X0(t) leads to

y =
√
r(t)2 −X0(t)2 +

X0(t)√
r(t)2 −X0(t)2

(x− h), (3.19)

which means that the rim from the point source is linear in the rectangular region:
0 ⩽ x ⩽ h, y ≫ h, and the horizontal propagation speed cH and angle ψ between the
line rim and x-axis are given as follows:

cH =
d

dt

√
r(t)2 −X0(t)2, ψ = tan−1

(
X0(t)√

r(t)2 −X0(t)2

)
. (3.20)

Here, the limit t→ ∞ leads to the following equations.

cH =
√
(1−We)/We, ψ = tan−1

[√
We/(1−We)

]
. (3.21)

However, the propagation speed in the y direction at the initial stage of breaking
where the rim cannot be linearly approximated, is ∂y/∂t, which can be obtained by
differentiating (3.14) with respect to t. Additionally, the Lagrangian and Eulerian flow
velocities in the rim are respectively given by

∂X

∂t
=
dX0(t)

dt
− dr(t)

dt
cos ζθ,

∂Y

∂t
=
dr(t)

dt
sin ζθ, (3.22)

U =
dX0(t)

dt
− dr(t)

dt

x− h−X0(t)

−r(t)
, V =

dr(t)

dt

y

r(t)
. (3.23)

Equation (3.23) leads to U → 0 as t→ ∞ because r(t) → ∞ in the region 0 ⩽ x ⩽ h.
Summing up the above results, the horizontal propagation speed of the rim is given by

(3.21) when gravity is ignored or the mass of the rim is small, even though the boundary
conditions at the slot die, edge guides, and rollers have been ignored in the present
discussion.

3.2.3. Line rim solution with gravity

According to the experiment, the breakup that occurred from the contact point
between the edge guide and roller propagates in the horizontal direction while maintaining
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an almost linear shape after reaching the slot die exit. Therefore, the solution of the rim
with the following linear shape is given in the present section.

R = R0(t), X = ζℓ +Xc(t), Y = kX + Yc(t), (3.24)

where ζℓ, −∞ < ζℓ < ∞, is the Lagrangian variable, and k ≡ tanψ is a constant.
Substituting (3.24) into (3.2) and (3.3) and considering S0 ≫ 1 for the developed rim,
we obtain the approximated equations for the unknowns R0(t), Xc(t) and Yc(t) as follows:

dS0(t)

dt
=
k + Yc

′(t)√
1 + k2

,

dXc
′(t)

dt
=

Bo

2We
+

−k + kWe− kWeXc
′(t) +WeYc

′(t)−WeXc
′(t)Yc

′(t)

We
√
1 + k2 S0(t)

,

dYc
′(t)

dt
= −Bok

2We
+

1 + k2 − k2We− 2kWeYc
′(t)−WeYc

′(t)2

We
√
1 + k2 S0(t)

, (3.25)

where S0(t) is the area of the rim cross-section defined by S0(t) = πR0(t)
2
and “ ′ ”

denotes the time-derivative. In the present section, k is determined from the condition
U = dXc/dt = 0 for Bo = 0 as discussed in §3.2.2, which leads to

k = tanψ =

√
We

1−We
, (3.26)

where ψ is the angle between the rim centerline and the x-axis. For instance, equation
(3.26) leads to ψ = 29◦ for We = 0.23 in experiment CA-L1-Q1, and ψ = 44◦ for
We = 0.49 in experiment CB-L4-Q0. In this case, the exact solution of (3.25) is given as
follows:

S0(t) =
t(12−Bo t)

12
√
We

, Xc
′(t) =

Bo t{6(3−We)−Bo t}
6We(12−Bo t)

, Yc
′(t) =

6(1−We)−Bo t

6
√
We(1−We)

.

(3.27)
It should be noted that equation (3.27) is applicable for 0 < t < 12/Bo because of S0(t) >
0, and satisfies Yc

′ > 0 for t < tcr ≡ 6(1 −We)/Bo. In this study, we consider the rim
propagating to the positive y-direction, i.e., Yc

′ > 0, then t < tcr and R0(t) < R0(tcr) ≡
Rcr. Here, we confirm that the exact solution (3.27) of the approximate equation (3.25)
takes a close enough value to the numerical solution of (3.16) and (3.17) when t ≫ 1.
Moreover, the effect of viscosity does not appear in the line rim because the governing
equation of the line rim does not involve the Ohnesorge number.

3.2.4. Numerical solution of the rim generated from circular or elliptical breakup with
gravity

The solution of the rim of the liquid curtain in the infinite region with gravity is
numerically obtained in this section, and the propagation of the rim in the region of the
curtain 0 ⩽ x ⩽ h is discussed.
The derivatives with respect to ζθ in the governing equations (3.2) and (3.3) are

discretised by the central finite difference scheme with quadratic accuracy, and the time
evolution equations for the unknown functions at the nodes are numerically solved. Here,
the rim is spatially periodic in the circumferential direction, i.e., 0 ⩽ ζθ ⩽ 2π. The initial
value for the circular breakup is given by (3.13) where t is put to tI satisfying R0(tI) = 1.
For the elliptical breakup, the semi-major and semi-minor radii of the ellipse are set to
the liquid curtain height h and h/5 respectively, and the initial radius of the rim is given
by R0 when the radius r of the circular breakup becomes h/5.
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Figure 6. Rim shape and horizontal propagation speed (We = 0.49, Oh = 0.012, Bo = 0.0013)．
Figures (a) and (b) show the rim shape every 12/500 s. Figures (c) and (d) are the horizontal
propagation velocities shown in figures (a) and (b), the black solid line: cH at the slot die exit
(x = 0)，the gray solid line: cH at the roller surface (x = h), the red solid line: cH of (3.27), the
red dot-dashed line: cH of (3.21).

Figures 6(a) and (b) show the numerical results of the propagation of the circular and
elliptical rims centered on x = h and y = 0 in the rectangular region 0 ⩽ x ⩽ h, y ⩾ 0
for the parameters in experiment CB-L4-Q0. Compared with figure 4, the deceleration
due to gravity of the rim is remarkable in this simulation, and the initial shape of the
rim significantly affects the rim propagation. It should be noted that the calculation is
performed for the liquid curtain in the infinite region, and the existence of the edge guide,
slot die, and roller have not been considered.

Figures 6(c) and (d) show the horizontal velocities as a function of y at x = 0 and h
depicted from figures 6(a) and (b). The red line in the figure is the analytical solution
Yc

′(t) of (3.27), and the red chain line is the solution of (3.21) where gravity is ignored.
The rim propagation speed at the slot die exit (x = 0) is larger at the initial time because
the rim touches the slot die exit. However, for the breakup starting from the elliptical
shape, the propagation speed on the roller surface becomes larger.

From these results, the propagation speed of the rim is significantly affected by the
initial shape of the rim, and the analytical solution of the approximate equation (3.27)
can roughly estimate the propagation speed of the rim in the presence of gravity. We
also confirmed that the rim shape slightly changed even if the viscosity was varied from
µ = 0.01cP to 1cP.

The same calculation is performed for the parameters in experiment CA-L1-Q1, where
the rim with the circular initial value moves vertically downward before reaching the slot
die because the influence of gravity on the rim is more pronounced owing to the large
liquid curtain thickness.

As mentioned above, the long-term propagation of the rim in the present experiments
cannot be explained from the rim in the liquid curtain in the infinite region. In the
next section, we analyse the breakup of the liquid curtain in the band-shaped region
0 ⩽ x ⩽ h.
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3.3. Shape of the rim due to the breakup of the liquid curtain in the band-shaped region

The problem with predicting the experimental results from the solution of the liquid
curtain in the infinite region is that the infinite liquid curtain above the rim causes the
mass of the rim to increase, and hence gravity slows down the propagation speed of the
rim, which begins to fall vertically downward (see §3.2.4). However, in the experiment,
the volume flow rate flowing from the slot die to the rim is specified, hence the horizontal
propagation speed is almost constant. Therefore, in this section, we perform an analysis
in which the volume flow rate constraint is given as the boundary condition at the slot
die exit.
To obtain conditions on fixed boundaries, it is necessary to convert the basic equations

(3.2) and (3.3) to the Eulerian coordinate. As mentioned in §3.1, the variable transfor-
mation makes the equation too long and complicated, and the method of obtaining the
boundary conditions of the equation, including the third-order derivative for the spatial
variable, is undecided. Therefore, in this section, assuming that the derivatives higher
than the second order of the variables ψ(t, x), i.e., tanψ = ∂η/∂x, R(t, x), U(t, x) and
V (t, x) with respect to x are negligible, the following quasi-linear time evolution equations
for ψ, R, U and V , are used as the basic equation in this section.

∂

∂t
X+M

∂

∂x
X = f , X = t(ψ, R, U, V ). (3.28)

Here, M and f are the coefficient matrix of the x−derivative and the external force,
respectively. Consequently, M and f become the functions of ψ, R, U , and V (see
Appendix A). The first component in (3.28) is the x-derivative of (3.12), and the other
components are (3.2) and (3.3). Moreover, to avoid the complexity of the equation,
the spatial differentiation of the flow velocity in the liquid curtain u is ignored, and
the approximate expressions uS ≈ u and HS ≈ H for h ≫ R are used; however, the
dependence of the spatial variable x on u and H is retained. Although (3.28) does not
include η(t, x) explicitly, η(t, x) is determined from the kinematic condition equation
(3.12) and ∂η/∂x = tanψ by

η(t, x) = ηI0 +

∫ x

0

tanψ(t, xI) dxI +

∫ t

0

(V (tI , x)− U(tI , x) tanψ(tI , x) dtI , (3.29)

where ηI0 = η(0, 0).
Next, the numerical calculations, along with the boundary and initial conditions are

discussed. After the upper end of the rim reaches the slot die exit, the flow in the rim is
assumed to be determined from up- to downstream because U(t, 0) > 0. The numerical
method is to discretise the x-derivative of X in equation (3.28) by the upwind finite
difference scheme, and to solve the resultant ordinary differential equations numerically,
where the value of X at each node is the unknown variable. The boundary condition at
the upstream end is the volume flow rate of the liquid flowing into the rim from the slot
die exit which is assumed to be proportional to the rim diameter, and is given as follows:

RU = χ
2

π
or

∂

∂t
(RU) = 0, at x = 0 (3.30)

where χ is the non-dimensional fitting parameter with order unity. The time evolution of
R at x = 0 is determined by the second equation of (3.30), and that of ψ, U, V at x = 0
is given by equation (3.28). Additionally, the values at the calculation points outside the
boundary are extrapolated in this study.
The rim drawn in the bold yellow line in figures 2 and 3 are used as the initial rim for

the present numerical simulation. Here, ψ = ψ0 + (ψh − ψ0)x/h, R = RM , ∂η/∂t = ηt0
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Figure 7. Time evolution of rim shape (calculation results for experiment CA). Equation (3.28)
was solved under the boundary condition (3.30) and the rim shape was plotted every 12/500 s.
The initial value of the rim shape is given by the yellow thick line of figure 2. In the figure, the
black line shows the value when the liquid curtain accelerates due to gravity and the curtain
becomes thinner in the falling direction. The green dotted line shows the value when the curtain
does not accelerate and the thickness is constant.

and U = 2χ/(πRM ), where ψ0, ψh, RM , and ηt0 are estimated from the high speed
camera images, and V is determined to satisfy equation (3.12).
Figures 7 and 8 show the simulation results for the experiments by Coater A and Coater

B by setting χ = 2. In these figures, the solid black and green dotted line show the cases
for the free fall: ux =

√
1 +Box/We, uy = 0 and the uniform flow: ux = 1, uy = 0,

respectively. The average propagation speed explains the experimental results, the rim
radius does not increase monotonically with propagation (see figure 9), and the rim
propagates until the liquid curtain disappears from the region sandwiched by the edge
guides. Additionally, the propagation speed of the rim is not constant, for example, it
accelerates after decelerating. This is because the Rayleigh–Taylor instability causes a
large mass to flow vertically downward (see figure 9). This Rayleigh–Taylor instability is
observed in CA-L1-Q2, CA-L2-Q2, and CA-L3-Q2 in figure 2.
In the experiment, the rim slope increases as the rim propagates; in other words, the

horizontal propagation speed on the roller surface is greater than that on the slot die
exit. Conversely, it decreases in the present simulations. However, for the rim of the liquid
curtain in the infinite region, the slope increases as the rim propagates, exhibiting the
same tendency as in the experiment (see figure 6).
Comparing the initial rim shape in the uniform flow and the free fall, the slope from

the vertical line in the uniform flow becomes larger than that in the free fall as shown
in figure 7; hence, the value in the uniform flow approaches the experimental one at the
initial time. Although the slope of the rim in the uniform flow decreases at the later time,
it means that the initial condition is influential to the rim propagation. In experiment
CB, Fr is large, the influence of the gravity acceleration of the liquid curtain is small,
and there is no big difference in the rim shape between the black solid line and the green
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Figure 8. Time evolution of the rim shape (calculation results for experiment CB). Equation
(3.28) was solved under the boundary condition (3.30) and the rim shape was plotted every
12/500 s. The initial value of the rim shape is given by the thick yellow line of figure 3. In the
figure, the black line shows the value when the liquid curtain accelerates because of gravity and
the curtain becomes thinner in the falling direction. The green dotted line shows the value when
the curtain does not accelerate and the thickness is constant.
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Figure 9. Time evolution of the rim radius shown in figures 7 and 8. From the left, the results
of the numerical simulation for CA-L1-Q1, CA-L1-Q2, and CB-L4-Q0 are shown, respectively.
The initial condition was R = const., and the rim shape was plotted every 12/500 s. In the
figure, time elapses in the order of black, blue, red, orange, green, and purple solid lines.

dotted line in figure 8. However, the rim in the experiment is considered to accelerate
faster than the results of this simulation because the liquid is separated from the rim as
droplets.
Next, the undecided parameter χ included in the boundary condition of (3.30) is

explained. In this simulation, χ has been set to 2, but in case of χ ⪅ 2, the upwind
difference scheme becomes unstable and the solution cannot be found. In case of χ ⪆ 2,
the propagation speed of the rim becomes smaller and the average propagation speed
deviates from the experimental value. As described above, there are unclear points in the
initial and boundary conditions, and future studies are required.



18 Harumichi Kyotoh, Genki Sekine & Md Roknujjaman

Figure 9 shows the time evolution of the rim radius in the simulation of CA-L1-Q1,
CA-L1-Q2, and CB-L4-Q0. If the initial value of the rim radius is given uniformly in
space, then it changes rapidly. In this simulation, the initial value of the calculation is
obtained from the experimental value of the rim in the propagated state. Hence, the
initial value should be determined so that the time change rate of the rim radius at the
initial stage, becomes small. However, it was difficult to improve the accuracy of the
initial value because it was estimated from the image.

Finally, the instability of the Plateau–Rayleigh observed in the experiment (figure 3) is
not expressed by equation (3.28) because the basic equation (3.28) involves only the first-
order derivative with respect to x. The formation of droplets from the rim is discussed
in the next section.

4. Stability of the circular and line rims

Figures 3 and 4 show the rim surface becomes uneven after the breakup and the
droplets separate from the rim. The wavelength of this unevenness is approximately
the rim diameter at the beginning of the breakup, and becomes several times the rim
diameter as the rim propagates. Conversely, in experiment CA as shown in figure 2, the
rim is smooth and no unevenness is observed. In this section, we explain the occurrence
of unevenness on the rim surface by analysing the stability of the rim of the liquid curtain
in the infinite region.

The target range of flow in the stability analysis is shown in figure 10(a), which is
divided into two parts, i.e., the initial and developed stages. The former and latter
mainstreams are respectively given by the solutions of the rim developed from the circular
breakup (§3.2.4) and the line rim (§3.2.3). In this section, we discuss the stability for the
flow with the values of We, Oh and Bo shown in figure 10, and explain the physical
phenomena observed in experiments CA-L1-Q1 and CB-L4-Q0.

Figure 10(b) shows the radius R of the rim at the initial stage of the breakup discussed
in §3.2. The minimum value of the rim radius is R0(t) = π/2, the radius of the rim center
line is r0(t) = π/2, and the hole diameter of the breakup is zero at this time. Subsequently,
when the rim radius is, for example R = 2, the curvature of the rim centerline becomes
1/r ≈ 1/20 according to (3.16), which can be ignored compared to the curvature of the
rim cross section. From the above discussions, the stability analysis is divided into the
following three steps.

• Linear stability analysis of a circular rim at the time of the breakup of a liquid
curtain in the infinite region without gravity (R ⩾ π/2).
• Numerical analysis of the disturbance on the circular rim when a circular breakup

occurs in the liquid curtain in the infinite region with gravity.
• Numerical analysis of the disturbance on the line rim when a straight breakup occurs

in a liquid curtain in an infinite region with gravity.

4.1. Disturbance in Lagrangian coordinate

In the linear stability analysis, the perturbation equation is derived from the basic
equation and is analysed to obtain the time evolution of the disturbance. Here, the
present basic equations (3.2) and (3.3) are described by the Lagrangian variable as an
independent variable; therefore, we discuss the relationship between the stability analysis
of the equations in the Eulerian and Lagrangian notations. Setting the flow velocity at the
Eulerian fixed coordinates as U(t, x), the Euler-Lagrange relation and solution including
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 i

Figure 10. Time evolution of the shape and radius of the rim. (a) Schematic diagram of a
circular rim in the initial stage and a line rim in the developed stage. (b) Time evolution of
the rim radius in the initial stage of a uniform liquid curtain in the infinite region. Each curve
corresponds to the rim shape shown in (a). Here, ζθ = 0 and π are respectively the upper and
lower ends of the rim.

the disturbance are respectively expressed as

∂X

∂t
= U(t,X), X = X0(t, ζℓ) + ϵXf (t, ζℓ), U = U0(t, x) + ϵ Uf (t, x). (4.1)

The first order equation of ϵ in the Euler-Lagrange relation leads to the following relation
between Uf (t, X0) and Xf (t, ζℓ) as follows:

∂Xf

∂t
=
∂U0

∂x
(t,X0)Xf + Uf (t, X0). (4.2)

Substitution of the line rim solution X0 = ζℓ +Xc(t) into the zeroth order the Euler-
Lagrange relation leads to U0(t, x) = Xc

′(t), and putting the solution in Lagrangian
coordinate by Xf = ℜ[AX(t) ei αℓζℓ ], then (4.2) leads to the solution of the disturbance
equation in the Eulerian coordinate as follows:

Uf (t, x) = ℜ
[
AX

′(t) ei αℓ(x−Xc(t))
]
, (4.3)

where αℓ is the wavenumber in the rim length-direction and we use the relation x =
ζℓ + Xc(t). Equation (4.3) shows that the instability of the Lagrangian mainflow leads
to that of the Eulerian one for the line rim noting that Xc(t) is a real function. This
argument holds true for the circular rim with a uniform rim radius. However, in the case
that the mainstream U0 depends on x, these instabilities do not match.

4.2. Linear stability of the rim generated by the breakup of a point source

In this section, we discuss the stability of the rim generated from the breakup of a point
source in the uniform liquid curtain in the infinite region. Here, for the sake of simplicity,
the initial disturbance is given only to the rim radius R, not to the rim centerline (X, Y ).

4.2.1. Linear stability of the circular rim without gravity

The linear stability of the circular rim without gravity is considered, and the change in
instability with the increase of the rim radius as a function of time, is discussed. When
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Figure 11. Time evolution of the disturbance on the circular rim without gravity. The amplitude
of the disturbance with wavenumber αθ is shown as a function of R0(t). The upper and lower
figures show the results respectively for We = 0.23 and Oh = 0.69, in experiment LA-L1-Q1 and
We = 0.49 and Oh = 0.012 in experiment LB-L4-Q0. Here, the vertical axis is the disturbance
amplitude normalised by the rim radius R0(t), the horizontal axis is the rim radius R0(t), and
the disturbances of αθ = 10, 20, 30 and 40 are respectively indicated by black, blue, red, and
orange lines. (a) Rapid attenuation from the initial value, (b) Amplification of each wavenumber
component.

gravity is ignored, the main stream is given by (3.16) and (3.17), and the solutions,
including the disturbance, are set to the following equations.

R = R0(t) + ϵRf (t, ζθ),

X = h+X0(t)− r(t) cos ζθ + ϵXf (t, ζθ), Y = r(t) sin ζθ + ϵYf (t, ζθ). (4.4)

Substituting the above equations into the governing equations (3.2) and (3.3) and taking
the first-order term of ϵ, the linear disturbance equations are obtained and its solutions
are given as follows:

Rf = AR(t) cos(αθζθ),

Xf = An(t) cos((αθ − 1)ζθ) +Ap(t) cos((αθ + 1)ζθ),

Yf = An(t) sin((αθ − 1)ζθ)−Ap(t) sin((αθ + 1)ζθ), (4.5)

where αθ is the circumferential wavenumber of the circular rim and the symmetrical
disturbance with respect to the x-axis is considered. The reason why Xf and Yf are
given by the linear sum of the wavenumber components αθ − 1 and αθ + 1 in the above
equations, is that the disturbances in the x and y-directions are respectively given by
Xf ∝ rf cos ζθ and Yf ∝ rf sin ζθ, according to the coordinate transformation, where the
radial disturbance of the rim centerline rf is proportional to cos(αθζθ).
The initial value of the main stream is the value at the moment when the breakup
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occurs: R0(0) = 2/π, R0
′(0) = 0, and the initial conditions of the linear disturbance

equations are given by AR(0) = 1, An(0) = Ap(0) = 0 and An
′(0) = Ap

′(0) = 0.

Figure 11(a, b) shows the solution of the linear disturbance equation for a given
circumferential wavenumber αθ. Here, the horizontal axis is the rim radius R0(t) instead
of the time t, and the vertical axis is |AR|/R0(t), i.e., the absolute value of the disturbance
amplitude normalised by the rim radius. Figure 11(a) depicts an enlarged waveform of
the spike around R(0) = 2/π in figure 11(b).

The upper and lower parts of figure 11 describe the amplitude of the disturbance in
We = 0.23, Oh = 0.69, and Bo = 0 for experiment LA-L1-Q1 and in We = 0.49, Oh =
0.012, and Bo = 0 for experiment LB-L4-Q0. For the top figure, the disturbance is
rapidly attenuated at the moment of breaking and then amplified, but it decays again
after passing R0(t) ≈ 2. However, for the bottom figure, the high-frequency vibration
appears at the moment of breaking, and it is rapidly attenuated and then amplified.
The value of R0(t), giving the maximum amplitude of the disturbance, increases with
αθ; these values are given by (αθ, R0(t)) = (10, 1.5), (20, 3.5), (30, 4.5) and (40, 6.0),
which lead to the wavelength of the most unstable mode by 0.6, 2.1, 2.5 and 3.1mm,
respectively, and which is calculated from αℓ = αθ/r(t) and (3.16). This low wavenumber
shift accompanying the propagation of the rim, qualitatively explains the rim unevenness
shown in figure 4. Because Bo = 0 in this section, the disturbance amplification that
appears here is due to the Plateau–Rayleigh instability.

Summing up the above results, the disturbance is attenuated while vibrating at a high
frequency at the initial stage of the occurrence of the breakup, and then amplified and
attenuated again as the rim radius increases. Additionally, the rim diameter at which the
maximum disturbance occurs differs depending on the wave number in the circumferential
direction.

4.2.2. Frozen flow stability analysis without gravity for R ⩾ π/2

To observe the behavior of the small disturbance near R0(t) = 2/π and the am-
plification of the wavenumber mode in 1 ⩽ R(t) ⩽ 10, we assume the exponential
solution, exp(st), for the solution of the linear disturbance equation discussed in §4.2.1,
by considering the coefficient of the unknown functions in this equation to be a constant
(frozen flow stability analysis). Consequently, the eigenvalue s becomes a solution of
the fifth-order algebraic equation, and it depends parametrically on t and αθ. Here,
we discuss the case where We = 0.49, Oh = 0.012, and Bo = 0. Solving this algebraic
equation numerically yields one real eigenvalue (s ⩾ 0) and two sets of complex conjugate
eigenvalues. One conjugate eigenvalue whose real part is negative (see figure 12(a))
explains the numerical results in figure 11(a) where high-frequency vibration occurs at
the initial time and decays rapidly. The real part of the other conjugate eigenvalue,
which is designated by sr, is positive and depends parametrically on αθ and t. Hence,
the disturbance amplitude is evaluated by the following WKB approximation.

AR(t) ∝ exp

[∫ t

tI

sr(αθ, tI)dtI

]
≡ AWKB(t). (4.6)

Figure 12(b) shows the normalised amplitude AWKB(t)/R0(t) for αθ = 10, 20, 30, and 40
as a function of R0(t) in the case of We = 0.49, Oh = 0.012, and Bo = 0. The amplitudes
of the modes with αθ = 20 and 30 attain the maximum at R0(t) ≃ 6 and 9, respectively.
Comparing these rim radii with the numerical results shown in figure 11 (b), they give
similar tendencies although the values here are greater.
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Figure 12. Eigenvalue s calculated from the frozen stability analysis of the circular rim for
We = 0.19, Oh = 0.013, and Bo = 0. The solution of the eigenvalue equation leads to one real
and two sets of complex conjugate eigenvalues. (a) The real and imaginary parts of the eigenvalue
where the real part is negative at t = 0, as a function of the circumferential wavenumber αθ. (b)
Amplitude calculated by substituting the eigenvalues whose real part is positive into equation
(4.6)．

4.2.3. Numerical calculation of the disturbance propagation on the circular rim with
gravity

In the absence of gravity, the disturbance on the rim oscillates over time, the rim
remains circular and expands in the radial direction, where eventually, the disturbance
disappears as the rim radius increases. In this section, when gravity is considered, the
propagation of the disturbance on the rim is evaluated by numerical calculation, where
the rim radius increases non-uniformly along the circumferential direction.
We give the initial values of the rim centerline, radius, and velocities by the following

equations using the rim solution from (3.13).

X|t=0 = h− rI(RI) cos ζθ, Y |t=0 = rI(RI) sin ζθ, R = RI
(
1 + η(ζθ)

)
,

dX

dt

∣∣∣
t=0

= 1− 1√
We

cos ζθ,
dY

dt

∣∣∣
t=0

=
1√
We

sin ζθ, (4.7)

where RI and rI are the initial values of R and r, respectively, and η(ζθ) is the disturbance
of the rim radius. The radial velocity of the breakup is given by the asymptotic solution
of (3.18), and the rim radius rI is determined from the conservation of mass equation
(3.16) given by

rI(RI) = −RI + πRI
2 +RI

√
πRI(πRI − 2). (4.8)

The initial value of the disturbance amplitude of the rim radius is given by a small
quantity as follows:

η(ζθ) = 0.0001 cos ζθ, (4.9)

and the numerical calculation is performed for ζθ = 10, 20, 30 and 40．
Figure 13 shows the absolute value of the disturbance amplitude for each wavenumber

component as a function of the rim mean radius R̄(t) defined by (Rmax(t)+Rmin(t))/2.
The basic equation in this section is non-linear, but it is confirmed that the disturbance
amplitude is extremely small and the given disturbance wavenumber is predominant.
The calculation result shows the amplification in the linear stage. At the initial time,
the disturbance oscillates with high frequency and attenuates for all wave numbers.
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Figure 13. Time evolution of disturbances on the rim generated by the breakup of a point
source with gravity for various initial wavenumbers αθ. The left and right-hand figures show the
results for We = 0.23, Oh = 0.69, and Bo = 0.029 and We = 0.49, Oh = 0.012, and Bo = 0.013,
respectively. The vertical axis shows |AR|/R̄(t), and the horizontal axis shows the rim mean
radius R̄(t).

Subsequently, low-frequency oscillations appear, and the disturbance amplitude increases
monotonically. However, the disturbance amplitude for We = 0.23, Oh = 0.69, and
Bo = 0.029 is approximately 0.2 times that of We = 0.49, Oh = 0.012, and Bo = 0.013,
but the process of the initial attenuation, amplification, and monotonous increase of the
disturbance is similar. The former oscillations and the latter monotonic increase of the
disturbance amplitude in figure 13 are respectively caused by the breakup of the circular
rim and the Rayleigh–Taylor instabilities. This is because these oscillations do not appear
for the instability of the line rim, as indicated later in the figure15(a), and comparison
between figures 11(b) and 13 shows that the latter monotonic increase of the disturbance
amplitude is from the effect of gravity, which is the Rayleigh–Taylor instability.
As the breakup radius increases, the rim length-direction wavenumber of the initial

given circumferential wavenumber decreases in inverse proportion to the breakup radius,
the method of decomposing the disturbance into the circumferential wavenumber com-
ponent and obtaining the time evolution of the amplitude, has a limit in its application
when the breakup radius becomes large. However, as the breakup radius increases, the
instability depending on the curvature of the rim centerline decreases, so the instability
of the rim after the breakup progresses and is discussed by considering if the rim as a
local straight line is possible.

4.3. Stability of the line rim

We evaluate the stability of the line rim introduced in §3.2.3. The main stream of this
solution is put to (R0(t), X0(t, ζℓ), Y0(t, ζℓ)) and the solution with the disturbance is
given as follows:

R = R0(t) + ϵAR(t)e
iαℓ ζℓ ,

X = X0(t, ζℓ) + ϵAX(t)eiαℓζℓ , Y = Y0(t, ζℓ) + ϵAY (t)e
iαℓ ζℓ . (4.10)

Substituting the above equations into (3.2) and (3.3), and taking the first-order terms
of ϵ, we obtain the linear disturbance equations. In this section, we first analyse the
stability of the rim for a small disturbance with the frozen stability analysis, and then
find the numerical solution of the linear disturbance equations with variable coefficients.
Finally, the direct numerical calculation of (3.2) and (3.3) is performed for the line rim
with initial disturbances.
The variable ζℓ is briefly explained in the following. Considering two fluid particles
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Figure 14. Eigenvalue of the most unstable mode calculated from the frozen stability analysis
of the line rim for We = 0.49, Oh = 0.012, Bo = 0.0013, and Rcr = 27.7. (a) Wavenumber,
(b) amplification exponent, and (c) celerity．The black dots in the figure are values when αℓ

is real, whereas the open circles are the real part of the absolutely unstable wavenumber, the
amplification factor sM r, and wave celerity cM evaluated by αℓ r and sM i.

denoted by ζℓ and ζℓ+dζℓ in the Lagrangian coordinate, then the distance between these
two fluid particles in the Eulerian coordinate is calculated from equation (3.24) and is

given by dζℓ
√
1 + k2. Therefore, the wavelength in the Eulerian coordinate is equal to√

1 + k2 ×(the wavelength in the Lagrangian coordinate).

4.3.1. Frozen flow stability analysis

Substituting (4.10) into the rim governing equations (3.2) and (3.3), and taking the
first-order term for ϵ, the linear disturbance equations are obtained. Because the linear
disturbance equations are the ordinary differential equations with variable coefficients
for t, it is difficult to solve them analytically. Therefore, we assume the exponential
solution exp(st) and discuss the stability by determining the eigenvalue s as in §4.2. The
eigenvalue equation is the fifth order algebraic equation of s, and the eigenvalue with
the maximum amplification exponent among the five eigenvalues is put to sM . Here, sM
depends parametrically on t, but as in the previous section, we will discuss the stability by
considering sM to be a function of R0(t) instead of t. For spatially periodic disturbances,
the wave number and amplification exponent giving the maximum amplification of the
disturbance for real αℓ and R0(t), are obtained and the linear stability is discussed.
However, in the amplification of the localised disturbance, the wave number and rim
radius are analytically connected to the complex region, and the value at the saddle
point of sM in the complex plane (αℓ, R0(t)), determines the absolute instability (for
example Chomaz 2005).
Figure 14 shows the most unstable wavenumber, amplification exponent and wave

celerity for fixed values of R0(t) and Bo = 0.0013, We = 0.49, and Oh = 0.012. The
black dots in the figure denote the real value αℓ that maximises sM r = ℜ[sM ] and the
corresponding value of sM r at that time t, i.e., R = R0(t). The open circles in the figure
show the real part of αℓ which satisfies ∂sM/∂αℓ = 0, to decide the absolute or convective
instability and the corresponding value of sM r. Figure 14(b) shows that disturbances on
the line rim are absolutely unstable in the Lagrangian coordinate because sM r > 0 for
R0(t) ⩾ 5 at the saddle point on the complex plane. In the same analysis, the saddle
point satisfying ∂sM/∂αℓ = ∂sM/∂R0 = 0 is obtained as R0(t) = Rab = 9.4+0.64 i, αℓ =
αab = 0.071−0.013 i, sM = sab = 0.0042−0.0017 i. Here, the subscript “ab” represents the
absolute instability. As described above, according to the linear global stability analysis,
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Figure 15. Numerical solutions of the linear disturbance equation for the line rim．The
perturbation equation based on (4.10) is solved numerically. (a) The absolute value of the
normalized disturbance amplitude |AR|/R0(t) as a function of R0(t) for Bo = 0.0013, We = 0.49,
and Oh = 0.012．(b, c, d) R0(t) vs. |AR|/R0(t). Sensitivity analysis by changing one of the
parameters in (a), i.e., (b) Bo → Bo/6, (c) We → We/2, (d) Oh → 50Oh.

the instability is excited at R0 ≈ 8.9, and the wavenumber and angular frequency at
which the growth rate is the maximum, are αℓ ≈ 0.071 and sM i = ℑ[sM ] ≈ −0.017.

4.3.2. Numerical solution of the linear disturbance equation

The asymptotic analysis in §4.3.1 can be applied under the condition where the variable
coefficient of the linear disturbance equation changes slower than the time change of the
solution. To verify the validity of this condition and to evaluate the physical factors
of the rim instability, we solve the linear disturbance equation numerically for αℓ =
0.02, 0.04, 0.06, 0.08, and 0.10 referring to figure 14(a). Here, the initial value of the
numerical solution is given by AR(0) = 1, AX(0) = AY (0) = 0 and AX

′(0) = AY
′(0) = 0.

Figure 15(a) shows the absolute value of the normalized disturbance amplitude
|AR|/R0(t) as a function of R0(t) for Bo = 0.0013, We = 0.49, and Oh = 0.012, and
for αℓ = 0.02 ∼ 0.10．Figures 15(b, c) and (d) show the results of the sensitivity
analysis by changing one of the parameters in (a) to Bo → Bo/6 (g → g/6) in (b),
We → We/2 (Q0 → Q0/2) in (c) and Oh → 50Oh (µ → 50µ) in (d). From these
figures, the disturbance amplitude is clearly smaller in figure 15(b), and therefore the
instabilities shown in figures 14 and 15 are considered to be due to the Rayleigh–Taylor
instability. Additionally, the effects of viscosity and surface tension are prominent on the
high wavenumber side, i.e., for αℓ ⪆ 0.06.
Next, we compare the results of figures 14 and 15(a). Figure 15(a) shows that the

disturbance amplitude changes from a decrease to an increase at R0(t) ≈ 10, and the
wavenumber at which the amplification exponent, i.e., the slope of the curve, takes the
maximum near R0(t) = 10 at αℓ = 0.04 ∼ 0.06, and near R0(t) ∼ 25 at αℓ = 0.04. Figure
14 shows that the disturbance decays for R0(t) < 5, the absolute instability occurs at
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R0(t) = 9.4, the corresponding wavenumber is given by αℓ ∼ 0.07, and the maximum
amplification at R0(t) ∼ 25 occurs at αℓ = 0.4. From the above, the results from the
frozen stability analysis are consistent with the numerical solution.
The actual wavelength is estimated from the wavenumber αℓ = 0.04 which gives the

maximum amplification exponent as equal to 2π/(0.04
√
1−We) × H0 ≈ 2.2 cm. This

prediction is valid because approximately two lumps have been observed on one rim in
figure 3.

4.3.3. Numerical calculation of the disturbance propagation on the line rim

In the linear stability analysis, the interaction between wavenumbers does not occur,
and even if the rim radius R changes, the wavenumber of disturbance αℓ does not change.
However, the wavenumber that maximises the linear amplification factor depends on the
rim radius, and it is considered that the interaction among wave numbers affects the
development of the disturbance during the propagation process. Therefore, we perform
numerical calculations of the nonlinear basic equations (3.2) and (3.3) to evaluate the
time evolution of disturbances consisting of a large number of wavenumber modes at
the initial time. The initial value of the numerical calculation is given by adding the
disturbance to the solution of the line rim equations (3.24) and (3.27) as follows:

R|t=0 = R0(tI) +Rf (ζℓ), X|t=0 = ζℓ +Xc(tI), Y |t=0 = k
(
ζℓ +Xc(tI)

)
+ Yc(tI),

X ′|t=0 = Xc
′(tI), Y

′|t=0 = kXc
′(tI) + Yc

′(tI). (4.11)

The disturbanceRf (ζℓ) is given by the following equation so as to include many wavenum-
ber components.

Rf (ζℓ)

RI
=
ϵR
nL

nL∑
m=1

cos

(
mαℓI
nL

ζℓ + ϕm

)
. (4.12)

Here, ϵR and nL denote the amplitude and the number of spatial modes of the distur-
bance, respectively, and the parameter tI included in the initial condition (4.11) is given
so that R0(tI) = RI is satisfied, where RI is the rim radius at t = 0, and αℓI is given to
include the most unstable wavenumber. Additionally, the calculation area is 0 ⩽ ζℓ < L,
L is nL times the disturbance wavelength 2π/αℓI (0 ⩽ ζℓ ⩽ L). The phase ϕm ∈ [0, 2π) is
a random variable that follows a Gaussian distribution. The reason why ϵR is divided by
the number of modes nL in (4.12) is to avoid an increase in the amplitude of Rf (ζℓ)/RI
when the stochastically generated phases are close to each other.
Figure 16 shows the time evolution of the wavenumber spectrum for nL = 20, ϵR =

0.01. From (4.12), the minimum and maximum values of the wavenumber included at t =
0 are αℓI/nL and αℓI , respectively. Hence, the waveform with the maximum wavenumber
was divided into 32 in this numerical calculation. The left and right figures of figure 16
are the solutions for We = 0.23, Oh = 0.69, Bo = 0.029, αI = 0.2, and RI = 2 and
We = 0.49, Oh = 0.012, Bo = 0.0013, αI = 0.1, and RI = 5, respectively. The value of
ϵR is the same in both cases, and the initial spectrum shown by the black line is flat
regardless of the wavenumber.
The wavenumber αℓM that gives the maximum amplitude decreases as the rim radius

R0(t) increases, and αℓM = 0.12 for We = 0.23, Oh = 0.69, and Bo = 0.029, whereas
αℓM = 0.05 forWe = 0.49, Oh = 0.012 and Bo = 0.0013 at R0(t) ≈ Rcr. Hence, the actual
wavelength that gives the maximum growth rate is evaluated from 2π/(αℓ

√
1−We)×H0

by approximately 1.8 cm for both experiments CA-L1-Q1 and CB-L4-Q0.
Comparing the maximum amplitude of the spectrum, the amplification rate in the

parameters of experiment CA-L1-Q1 is smaller than that of experiment CB-L4-Q0, and
the former value remains small even if the rim radius reaches the critical value Rcr,
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Figure 16. Time evolution of the wavenumber spectrum of the disturbance on the line
rim. In the figure, black, blue, red, orange, green, and purple lines are the values at
t = 0, 0.2tf , 0.4tf , 0.6tf , 0.8tf , and tf , respectively. The left and right figures show the
spectrum for We = 0.23, Oh = 0.69, Bo = 0.029, R0(0) = 2, and R0(tf ) = 7 and
We = 0.49, Oh = 0.012, Bo = 0.0013, R0(0) = 5, and R0(tf ) = 25, respectively, where tf is
the time when R0(tf ) = 7 or R0(tf ) = 25 is satisfied.

whereas in the latter case, the nonlinearity appears and the slope of the rim surface also
increases.

5. Discussions and conclusions

We conducted experiments and theoretical analysis in curtain coating on the propa-
gation of the rim which was generated by the breakup of the liquid curtain occurring
at the contact between the edge guide and roller, and discussed the shape, propagation
speed, and stability of the rim at the low Weber number range. The governing equation
in the present study is based on Entov’s equation (Entov & Yarin 1984), and ignoring
the shear force in the rim cross section, but considers the gravitational force.
At first, we solved the governing equation in the infinite region, and predicted the

shape and propagation speed of the rim observed in this experiment. Consequently, it
was found that the rim did not propagate horizontally when gravity was considered, and
the experimental results could not be predicted from the rim of the liquid curtain in
the infinite region (see figure 6). Therefore, by converting the governing equation in the
Lagrangian coordinate to that in the Eulerian one, deriving a quasi-linear differential
equation involving only the first-order derivatives from the converted equation, and
finding a solution that satisfies the volume flow rate boundary condition at the slot
die exit, the propagation speed of the rim can be roughly explained (see figures 7, 8).
For the stability of the rim, the experiments were performed when the Ohnesorge

number was much smaller than 1 and on the order of unity. When the Ohnesorge number
was much smaller than 1, unevenness appeared on the rim surface and the droplets
separated from the rim (see figure 3), whereas on the order of unity, the centerline of the
rim became convex downward vertically and the liquid lump flowed down through the
rim although it did not generate droplets (see figure 2).
To explain the experimental results, the stability of the circular and line rims was

examined by the numerical solution of the linear disturbance equation and eigenvalues
based on the frozen stability analysis. From the stability analysis of the circular rim
without gravity, the unevenness on the rim that appears in the initial stage of the
breakup in experiment CB-L4-Q0 is due to the Plateau–Rayleigh instability, whereas
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the amplification factor of the disturbance on the rim decreases sharply as the rim radius
increases for the dimensionless parameters in experiment CA-L1-Q1, where the clear
unevenness was not observed (see figure 11).
Additionally, in the presence of gravity, the Rayleigh–Taylor instability appears after

the Plateau–Rayleigh instability appears on the circular rim at the initial stage of the
breakup, and the disturbance amplitude increases monotonically without oscillations (see
figures 13 and 15). Moreover, from the stability analysis of the line rim with gravity, the
wavenumber of the most unstable mode decreased as the rim radius increased, and the
wavelength of this wavenumber was approximately 1.8 cm both for the rim with a radius
of 2.1mm in experiment CA-L1-Q1 and 2.5mm in experiment CB-L4-Q0.
At the developed stage of the curtain breakup, when the Oh number is much smaller

than 1, the droplets separate from the rim and the propagation speed of the rim is almost
constant, whereas when the order of the Oh number is 1, the liquid lump flows down on
the rim and the propagation speed of the rim decreases. Frozen stability analyses is
useful to predict the wavelength of the most unstable mode and to verify the validity of
numerical analysis, but cannot distinguish between the Plateau–Rayleigh and Rayleigh–
Taylor instabilities.

Supplementary data. Supplementary material and movies are available at
https://doi.org/****** /jfm.2022.
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Appendix A. Approximation to the quasi-linear equation

The basic equations (3.2) and (3.3) are time evolution equations for the rim radius
and the velocity of the fluid particle in the Lagrangian coordinate system. The variable
transformation (3.10) gives the equations for the dependent variables (ψ,R,U, V ) in
the Eulerian coordinate system (t, x), which have high-order nonlinearity and contain
high-order derivatives with respect to t and x. According to the present experimental
results, after the upper end of the rim reaches the slot die exit, the rim propagates while
maintaining an almost linear shape (see figures 2 and 3), and hence we assume that
differentiations of (ψ,R,U, V ) with respect to x are small, i.e., O(∂n/∂xn) = ϵn, where n
is an integer and ϵ indicates the size of the value, and derive the approximate equations
where only the 0-th and first derivatives of these dependent variables with respect to t
and x are considered.
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In this appendix, in order to express the formula concisely, the derivative is expressed
by the subscripts as follows: ∂f/∂x = f,x, ∂f/∂t = f,t, ∂

2f/∂t∂x = f,tx, ∂
2f/∂t2 =

f,tt, . . . , etc. Moreover, we assume that the curtain stream velocity ux and thickness H
are weakly dependent on x so that their x derivatives are ignored, and to avoid confusion,
the value for liquid curtain is written by ux ≡ û and H ≡ Ĥ. Furthermore, to make the
physical meaning clear, the following dimensionless density, surface tension coefficient,
viscosity coefficient, and gravitational acceleration are respectively introduced in the
present manipulations by

ρ̃ = 1, σ̃ =
Oh

2We
, µ̃ =

√
OhWe

2
, g̃ =

BoOh

2We
. (A 1)

At first we derive the quasi-linear equations for ψ andR respectively from the kinematic
condition (3.12) and the law of conservation of mass (3.2), and secondly use these results
to obtain the quasi-linear equations for U and V from the equations of motion (3.3).
First, differentiating (3.12) with respect to x and considering ∂η/∂x ≡ tanψ, then the

time evolution equation of ψ is given as follows:

ψ,t + U ψ,x + U,x cosψ sinψ − V,x cos
2 ψ = 0. (A 2)

The above equation yields O(ψ,t) = ϵ because ψ,t is represented by the linear superposi-
tion of the x-derivative of the dependent variables. Next, the variable transformation of
(3.10) on the continuity equation (3.2) leads to

4
{
Ĥ −R(2π + Ĥ ψ,x cosψ)

}
R,t cosψ − 4πR2 ψ,t sinψ

−4R
[
πRU sinψ + Ĥ{(û− U) sinψ + V cosψ} cos2 ψ

]
ψ,x

−4πR2 U,x cosψ + 4Ĥ
{
(û− U) sinψ + V cosψ

}
cosψ +O(ϵ2) = 0, (A 3)

where O(R,t) = 1 has been considered. Similarly, the equations of motion (3.3) in
the Eulerian coordinate system are respectively given for the x and y-directions in the
following. Approximate equation of motion for the x-direction is

ρ̃

[
πR2(U,t + UU,x − g̃) + Ĥ(−1 + 2R,x sinψ)U

2 sinψ

−Ĥ
{
û sinψ + V cosψ + (û cos2 ψ − V cosψ sinψ)R,x +R,t

}
(û+R,t sinψ)

+
ĤU

2

{
4û sinψ + û(−1 + 3 cos 2ψ)R,x + 2V (1− 2R,x sinψ) cosψ

+(3− cos 2ψ)(1−R,x sinψ)R,t

}
+ ĤR

{
(û− U) sinψ + V cosψ +R,t

}
×
{
−ψ,t + (û− 2U +R,t sinψ)ψ,x

}
cosψ +

πR2

4
(RR,tt +R,t

2)ψ,x sin 2ψ

]
+σ̃

[
2 sinψ + (π − 2)(−R,x cosψ +Rψ,x sinψ) cosψ

]
+ µ̃Ĥ

[{
(û− U) cos 2ψ

+U − V sin 2ψ −R,t sinψ
}
ψ,x + ψ,t +R,tx cosψ

]
cosψ +O(ϵ2) = 0, (A 4)

and that for the y-direction is

ρ̃

[
πR2V,t −

Ĥ

4

{
U(−5 cosψ + cos 3ψ)R,x + 2U(sin 2ψ + 2Rψ,x sin

3 ψ)

−4ûR,x cos
3 ψ − 2û sin 2ψ(1−Rψ,x cosψ) + 2V R,x cosψ sin 2ψ
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−2V (3 + cos 2ψ)(1−Rψ,x cosψ)
}
R,t + Ĥ(1−Rψ,x cosψ)R,t

2 cosψ

+R
{
πRU sec2 ψ − Ĥ(û− U) sin2 ψ − ĤV sinψ cosψ

}
ψ,t − ĤRR,tψ,t sinψ

+ĤV 2(1−R,x sinψ −Rψ,x cosψ) cosψ + ĤV
{
ûR,x cos

2 ψ − U(sinψ −R,x)

+û(1−Rψ,x cosψ) sinψ
}
+ πR2U(U,x tanψ + Uψ,x sec

2 ψ)

+ĤU(û− U)R,x cosψ sinψ + ĤRU(U − û)ψ,x sin
2 ψ

−πR
2

2
(RR,tt +R,t

2)ψ,x cos
2 ψ

]
− σ̃

[
2 cosψ + (π − 2)R,x sinψ cosψ

+(π − 2)Rψ,x cos
2 ψ

]
+ µ̃

[
Ĥ

2

{
2R,t cos

2 ψ + 2û cosψ sin 2ψ + 2V cosψ cos 2ψ

+U(sinψ − sin 3ψ)
}
+ Ĥ(ψ,t +R,tx cosψ) sinψ

]
+O(ϵ2) = 0, (A 5)

where O(U,t) = 1 and O(V,t) = 1 have been considered, noting that O(R,t) = 1,
O(U,t) = 1 and O(V,t) = 1 are consistent with the basic equations (3.2) and (3.3). Because
(A 2)-(A 5) are not linear for variables (ψ,t, R,t, U,t, V,t) and (ψ,x, R,x, U,x, V,x), further
approximations to obtain the time evolution form is performed in the next step.

In order to obtain the quasi-linear equations for the dependent variables (ψ, R, U, V )
from (A2)−(A 5), their time evolution form is expressed as

ψ,t = Fψ0 + Fψ1, R,t = FR0 + FR1, U,t = FU0 + FU1, V,t = FV 0 + FV 1, (A 6)

where (Fψ0, FR0, FU0, FV 0) is the O(1)-function of the variables ψ, R, U , and V only,
and (Fψ1, FR1, FU1, FV 1) is the linear function of the variables ψ,x, R,x, U,x, and V,x,
which has the order of ϵ. Approximation (A 6) is possible because the basic equations
(3.2) and (3.3) are a time-evolution equation of (R(t, ζ), X(t, ζ), Y (t, ζ)) and we consider
the terms up to the first-order derivative with respect to x in the present calculations.
In order to obtain (Fψ0, FR0, FU0, FV 0) explicitly, all the x-derivatives in (A 2)−(A 5)
are put to 0, i.e., taking O(1) terms only, and the resulting linear algebraic equations for
unknowns (Fψ0, FR0, FU0, FV 0) are solved as follows:

Fψ0 = 0, (A 7)

FR0 =
Ĥ(−û+ U) sinψ − ĤV cosψ

Ĥ − 2πR
, (A 8)

FU0 =
1

πρ̃R2(Ĥ − 2πR)2

[
πρ̃g̃R2(Ĥ − 2πR)2 − πρ̃ĤRV (Ĥ − 4πR)(û− U) cosψ

+πρ̃Ĥ2RV (−û− U) cos 3ψ − π

2
ρ̃Ĥ2R

{
(û− U)2 − V 2

}
sin 3ψ

−2σ̃Ĥ2 sinψ + 4π2R2
{
−2σ̃ + ρ̃Ĥû2 + ρ̃ĤU(U − 2û)

}
sinψ

+
πĤR

2

{
16σ̃ − ρ̃Ĥû2 + ρ̃Ĥ(2ûU − U2 + V 2)

}
sinψ

]
, (A 9)

FV 0 =
1

πρ̃R2(Ĥ − 2πR)2

[
−2πρ̃ĤRV (Ĥ cos 2ψ + 2πR)(û− U) sinψ

+πĤR
{
−8σ̃ − ρ̃Ĥû2(1− cos 2ψ)− 2ρ̃ĤU(U − 2û) sin2 ψ

}
cosψ



Liquid-curtain breakup 31

+2σ̃(Ĥ2 + 4π2R2) cosψ + πρ̃ĤRV 2(−4πR cosψ + Ĥ sinψ sin 2ψ)

]
. (A 10)

Furthermore, solving (A 2) and (A 3) for unknowns ψ,t and R,t algebraically, the O(ϵ)-
terms of these solution lead to (Fψ 1, FR 1) as follows:

Fψ 1 = −Uψ,x − U,x cosψ sinψ + V,x cos
2 ψ, (A 11)

FR 1 = −
2πĤR2

{
(û− U) sinψ + V cosψ

}
cosψ

(Ĥ − 2πR)2
ψ,x

−Ĥû cos
2 ψ − 2πRU + Ĥ(U sinψ − V cosψ) sinψ

Ĥ − 2πR
R,x

+
πR2 cos2 ψ

Ĥ − 2πR
U,x +

πR2 sin 2ψ

2(Ĥ − 2πR)
V,x. (A 12)

Next, we will explain how to find (FU 1, FV 1). Noting that the time derivative terms
contained in the equations (A 4) and (A 5) are U,t, V,t, ψ,t, R,t, R,tx, and R,tt, the second-
order derivative terms R,tx and R,tt must be represented by only the first-order derivative
terms, that is achieved by differentiating R,t = FR0 +FR1 respectively with respect to x
and t as follows:

R,tx =
∂FR0

∂ψ
ψ,x +

∂FR0

∂R
R,x +

∂FR0

∂U
U,x +

∂FR0

∂V
V,x +O(ϵ2), (A 13)

R,tt =
∂FR0

∂ψ
ψ,t +

∂FR0

∂R
R,t +

∂FR0

∂U
U,t +

∂FR0

∂V
V,t

+
∂FR1

∂ψ,x
ψ,xt +

∂FR1

∂R,x
R,xt +

∂FR1

∂U,x
U,xt +

∂FR1

∂V,x
V,xt +O(ϵ2)

=
∂FR0

∂ψ
Fψ1 +

∂FR0

∂R
(FR0 + FR1) +

∂FR0

∂U
(FU0 + FU1) +

∂FR0

∂V
(FV 0 + FV 1)

+
∂FR1

∂R,x

(
∂FR0

∂ψ
ψ,x +

∂FR0

∂R
R,x +

∂FR0

∂U
U,x +

∂FR0

∂V
V,x

)
+
∂FR1

∂U,x

(
∂FU0

∂ψ
ψ,x +

∂FU0

∂R
R,x +

∂FU0

∂U
U,x +

∂FU0

∂V
V,x

)
+
∂FR1

∂V,x

(
∂FV 0

∂ψ
ψ,x +

∂FV 0

∂R
R,x +

∂FV 0

∂U
U,x +

∂FV 0

∂V
V,x

)
+O(ϵ2), (A 14)

where O(ψ,xt) = ϵ2 has been applied. By substituting (A 13) and (A 14) into (A 4) and
(A 5), and taking O(ϵ) terms from these equations, the resulting linear algebraic equations
for (FU1, FV 1) are solved analytically and their solution is given as follows:.

FU1 = − 1

πρ̂R2

[
πρ̂RUU,x + 2ρ̂H̃R,xU

2 sin2 ψ − (π − 2)σ̂(R,x cosψ −Rψ,x sinψ) cosψ

+µ̂H̃
{
Fψ1 + Uψ,x +

∂FR0

∂R
R,x cosψ +

∂FR0

∂U
U,x cosψ

+
∂FR0

∂V
V,x cosψ +

∂FR0

∂ψ
ψ,x cosψ + (ũ− U)ψ,x cos 2ψ

−(FR0 + 2V cosψ)ψ,x sinψ
}
cosψ + ρ̂H̃R

{
FR0 + V cosψ + (ũ− U) sinψ

}
×
{
−Fψ1 + (ũ− 2U + FR0 sinψ)ψ,x

}
cosψ − ρ̂H̃

2
U
{
FR1(cos 2ψ − 3) + ũR,x
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+(3FR0 + 4V cosψ)R,x sinψ − (3ũ+ FR0 sinψ − FR1)R,x cos 2ψ
}

−ρ̂H̃
{
FR1(FR0 + V cosψ + ũ sinψ) sinψ + (ũ+ FR0 sinψ)

×(FR1 + ũR,x cos
2 ψ − V R,x sinψ cosψ)

}
+
πρ̂

4
R2(FR0

2 +RFR0
∂FR0

∂R
+RFU0

∂FR0

∂U
+RFV 0

∂FR0

∂V
)ψ,x sin 2ψ

]
, (A 15)

FV 1 = − 1

2πρ̂R2

[
2πρ̂R2UU,x tanψ + ρ̂H̃FR1V (3 + cos 2ψ) + 2ρ̂H̃UV R,x

+2πρ̂R2U(Fψ1 + Uψx) sec
2 ψ − 2(π − 2)σ̂(Rψ,x cosψ +R,x sinψ) cosψ

+2µ̂H̃
{
(Fψ1 − Uψ,x cos 2ψ) sinψ + (FR0 + 2ũ sinψ)ψ,x cos

2 ψ

+V ψ,x cos 2ψ cosψ +
∂FR0

∂ψ
ψ,x sinψ cosψ +

∂FR0

∂R
R,x sinψ cosψ

+
∂FR0

∂U
U,x sinψ cosψ +

∂FR0

∂V
V,x sinψ cosψ

}
+ρ̂H̃FR0(4FR1 − 2RFψ1 tanψ + 3UR,x − 3RV ψ,x) cosψ

−2ρ̂H̃
{
R(FR0

2 + V 2)ψ,x + (UFR1 +RV Fψ1) tanψ + (U2 + V 2)R,x tanψ − ũV R,x

−ũ(FR1 + UR,x −RV ψ,x) tanψ −R(Fψ1 + Uψ,x)(U − ũ) tan2 ψ
}
cos2 ψ

−ρ̂H̃FR0

{
UR,x +RV ψ,x − 2ũR,x +R(2ũ− V tanψ + 2U tan2 ψ)ψ,x tanψ

+2V R,x tanψ − UR,x tan
2 ψ

}
cos3 ψ

−πρ̃R2
(
FR0

2 +RFR0
∂FR0

∂R
+RFU0

∂FR0

∂U
+RFV 0

∂FR0

∂V

)
ψ,x cos

2 ψ

]
. (A 16)

Substituion of (A 7)-(A 12) into (A 15) and (A 16) gives the explicit form of FU1

and FV 1, which are the linear functions of the x-derivative of (ψ, R, U, V ). Therefore,
quasi-linear equations (A 6) are written in the matrix form indicated by (3.28), i.e.,
t(Fψ0, FR0, FU0, FV 0) = f and t(Fψ1, FR1, FU1, FV 1) = −M ∂X/∂x , where the super-
script ’t’ denotes the transpose of the matrix. In this paper, these symbolic calculations
were performed using Wolfram Mathematica.
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