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Abstract. We study magnetic trajectories corresponding to contact magnetic fields in 3-
dimensional quasi-Sasakian manifolds. We show that they are slant curves, that is their
contact angles are constant. We prove that such magnetic curves are geodesics for a certain
linear connection for which all four structure tensor fields are parallel.

Introduction

From mathematical point of view, static magnetic fields on oriented Euclidean 3-space E3

are regarded as closed 2-forms. Based on this fundamental fact, we can introduce the notion
of magnetic field on arbitrary Riemannian manifolds. A magnetic field F on a Riemannian
manifold (M, g) is a closed 2-form. Denote by φ the endomorphism field metrically equivalent
to the magnetic field F , then the Lorentz equation (called sometimes also Newton equation)
is defined as ∇γ′γ′ = qφγ′. Here ∇ is the Levi-Civita connection of (M, g) and q is a constant.
Solutions to Lorentz equation are called magnetic curves with strength q. Thus, a magnetic
curve γ is a mathematical model of trajectory of a charged particle moving under the action
of the Lorentz force derived from the magnetic field F . Note that when F = 0, i.e., the
Lorentz force is null, then the trajectories are geodesics. In this manner we may regard the
magnetic curves as generalizations of geodesics.

Return to the original 3-dimensional situation, magnetic fields are identified with divergence
free vector fields. More precisely, on every oriented Riemannian 3-manifold (M, g), the space
Λ2(M) of all smooth 2-forms is identified with the space X(M) of all smooth vector fields via
the Hodge star operator and the volume form dvg. Under this identification, magnetic fields
are considered as divergence-free vector fields.

Moreover, if a divergence free vector field ξ is a unit vector field, then one can see that
(φ, ξ, η) is an almost contact structure on M compatible with the metric g. Here η is the
1-form dual to ξ. Hence, an oriented Riemannian 3-manifold (M, g) together with a magnetic
field F whose corresponding divergence free vector field is of unit length can be regarded as
an almost contact metric manifold with closed fundamental 2-form.

This observation motivates us to study Lorentz equations in almost contact metric manifolds
of arbitrary odd-dimension with closed fundamental 2-form.
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In our previous works, we have studied magnetic fields in Sasakian manifolds [4, 10] and
cosymplectic manifolds [5, 13, 15], respectively. Both Sasakian and cosymplectic manifolds
are particular cases of quasi-Sasakian manifolds. In two other papers [11, 14] we have stud-
ied magnetic curves in odd-dimensional Cartesian space R2n+1 equipped with non-Sasakian
quasi-Sasakian structure with n > 1. As we have seen before, 3-dimensional magnetic the-
ory is exceptional among odd-dimensional magnetic theory, we study magnetic curves in
3-dimensional quasi-Sasakian manifolds in this paper. From another point of view, the class
of quasi-Sasakian 3-manifolds contains important Riemannian 3-manifolds. In fact, all model
spaces of Thurston geometry except the space Sol3 and hyperbolic 3-space H3 admit homo-
geneous almost contact structures compatible with the corresponding metric. The resulting
homogeneous almost contact metric 3-manifolds are quasi-Sasakian.

This paper is organized as follows. After recalling, in Section 1, prerequisite knowledge on
almost contact geometry, we show, in Section 2, that every contact magnetic curve is a
slant curve, that is, a curve making constant angle with the trajectories of the characteristic
vector field. In Section 3, we study contact magnetic curves in quasi-Sasakian 3-manifolds,
in detail. As it is well known, magnetic trajectories in the Euclidean 3-space E3 are helices.
Furthermore, magnetic curves in Sasakian and cosymplectic manifolds of arbitrary dimension
are also helices. Remarkably, the magnetic curves in quasi-Sasakian manifolds are not, in
general, helices. We exhibit explicit examples of contact magnetic curves in a quasi-Sasakian
space which are not helices. In Section 4, we study magnetic curves under pseudo-conformal
deformations. In the last section, we define a family linear connections with respect to which
the four structure tensor fields are parallel and we call them the Okumura type connections.
We give some reinterpretation of magnetic curves, namely we prove that they are geodesic
for the Okumura type connections.

1. Almost contact metric manifolds

1.1. General settings. Let M be an odd-dimensional manifold. An almost contact structure
on M is a triplet of tensor fields (ϕ, ξ, η) where ϕ is an endomorphism field, ξ is a vector field,
η is a one form, respectively, such that

ϕ2 = −I + η ⊗ ξ, η(ξ) = 1.

An (2n + 1)-dimensional manifold together with an almost contact structure is called an
almost contact manifold. A Riemannian metric g on an almost contact manifold (M,ϕ, ξ, η)
is said to be a compatible metric if it satisfies

g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y ). (1.1)

An almost contact structure together with a compatible metric is called an almost contact
metric structure. An (2n + 1)-dimensional manifold together with an almost contact metric
structure is called an almost contact metric manifold.

On an almost contact manifold M , we define a hyperplane field D by

D = {X ∈ TM | η(X) = 0}.

Here TM denotes the tangent bundle of M . A diffeomorphism f on an almost contact metric
manifold M is said to be a pseudo-conformal transformation if f∗g is a Riemannian metric
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on M and represented as

f∗g = ag + bη ⊗ η,

for some positive smooth function a and smooth function b such that a + b > 0. Clearly,
pseudo-conformal transformations are conformal on D, and hence, they preserve D.

In particular, if a diffeomorphism f satisfies

f∗g = ag + a(a− 1)η ⊗ η,

for some positive constant a, then f is a D-homothetic transformation in the sense of Tanno
[22].

One can see that on an almost contact metric 3-manifold (M,ϕ, ξ, η, g), another Riemannian
metric g̃ is compatible to (ϕ, ξ, η) if and only if there exists a smooth positive function σ such
that g̃ = σg + (1− σ)η ⊗ η (see [18]).

A plane section at a point p of an almost contact metric manifold is called a holomorphic
plane at p if it is invariant under ϕp. The sectional curvature function of holomorphic planes
is called the ϕ-holomorphic sectional curvature.

On the other hand, a plane section at p is said to be a ξ-section at p if it contains ξp.

The fundamental 2-form Φ of an almost contact metric manifold M is defined by

Φ(X,Y ) := g(X,ϕY ), X, Y ∈ X(M).

An almost contact metric manifold (M,ϕ, ξ, η, g) is called a contact metric manifold if

Φ = dη. (1.2)

The formula (1.2) implies that the one-form η is actually a contact form, namely η satisfies
η ∧ (dη)n 6= 0.

It should be remarked that every almost contact metric manifold is orientable. In fact, the
volume element of the associated metric coincides with (−1)nη ∧ Φn/(2nn!).

An almost contact manifold M is said to be of rank r = 2s, (s > 0) if (dη)s 6= 0 and
η ∧ (dη)s = 0, respectively of rank r = 2s+ 1 if η ∧ (dη)s 6= 0 and (dη)s+1 = 0. Thus, contact
metric manifolds are of rank 2n+ 1.

An almost contact manifold M is said to be normal if its normality tensor vanishes, that is
if [ϕ,ϕ] + 2dη ⊗ ξ = 0, where [ϕ,ϕ] is the Nijenhuis torsion of ϕ defined by

[ϕ,ϕ](X,Y ) = [ϕX,ϕY ]− ϕ[X,ϕY ]− ϕ[ϕX, Y ] + ϕ2[X,Y ],

for all X, Y ∈ X(M).

A normal almost contact metric manifold is said to be a quasi-Sasakian manifold if its fun-
damental 2-form Φ is closed [1]. In particular, a contact metric manifold is called a Sasakian
manifold if it is normal. By definition, Sasakian manifolds are quasi-Sasakian manifolds of
rank 2n+ 1.

Assumption. Through the rest of the paper we suppose that the manifold M has dimension
3, even that some formulas are valid for arbitrary dimension.
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1.2. Normal almost contact metric structures of type (α, β). For an arbitrary almost
contact metric 3-manifold M , we have:

(∇Xϕ)Y = g(ϕ∇Xξ, Y )ξ − η(Y )ϕ∇Xξ, (1.3)

where ∇ is the Levi-Civita connection on M .

Olszak showed in [18] that an almost contact metric 3-manifold M is normal if and only if
∇ξ ◦ ϕ = ϕ ◦ ∇ξ or, equivalently,

∇Xξ = −αϕX + β(X − η(X)ξ), X ∈ X(M), (1.4)

where α and β are the functions defined by

α =
1

2
trace (ϕ∇ξ), β =

1

2
trace (∇ξ) = div ξ. (1.5)

See also [12]. We call the pair (α, β) the type of a normal almost contact metric 3-manifold
M .

We note that the functions α and β defined by (1.5) are interchanged compared to the original
work of Olszak, but we have adopted the notations from Blair’s book [2].

Using (1.3) and (1.4) we note that the covariant derivative ∇ϕ of a normal almost contact
metric 3-manifold is given by

(∇Xϕ)Y = α(g(X,Y )ξ − η(Y )X) + β(g(ϕX, Y )ξ − η(Y )ϕX). (1.6)

Moreover, the functions α and β satisfy

2αβ + ξ(α) = 0.

This implies that, if α is a nonzero constant, then β = 0. In particular, a normal almost
contact metric 3-manifold is said to be

• cosymplectic (or coKähler) manifold if α = β = 0,
• α-Sasakian manifold if α is a nonzero constant and β = 0,
• β-Kenmotsu manifold if α = 0 and β is a nonzero constant.

1-Sasakian manifolds and 1-Kenmotsu manifolds are simply called Sasakian manifolds and
Kenmotsu manifolds, respectively. Sasakian manifolds of constant ϕ-holomorphic sectional
curvature are called Sasakian space forms. Note that an almost contact metric manifold of
dimension 2n+ 1 ≥ 3 is said to be a trans-Sasakian manifold if it satisfies (1.6).

1.3. Quasi-Sasakian 3-manifolds. Let M be a quasi-Sasakian 3-manifold. The following
statements hold true:

• rankM = 1 if and only if M is cosymplectic.
• There are no quasi-Sasakian 3-manifolds with rankM = 2 (cf. [1]).
• rankM = 3 if and only if η is a contact form on M .

Typical examples of cosymplectic 3-manifolds are the Euclidean 3-space E3 and the product
manifolds S2×R and H2×R. Magnetic curves in S2×R and H2×R have been studied in [13]
and [15], respectively. In other news, for contact magnetic curves in Sasakian space forms and
cosymplectic manifolds of arbitrary odd-dimension, we refer to [4, 10] and [5], respectively.
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Remark 1.1 (Thurston geometry). It should be remarked that all the eight model spaces
of Thurston geometry admit homogeneous almost contact structure naturally associated to
the metric. In particular, other than the model space Sol3 of solvegeometry, the naturally
associated almost contact structures are normal. As we have mentioned above, the space
form E3 and the product spaces S2 × R and H2 × R are cosymplectic. The unit 3-sphere S3,
the Heisenberg group Nil3 and the universal covering S̃L2R of the special linear group SL2R
equipped with the compatible normal contact metric structure are Sasakian space forms. In
particular Nil3 is identified with the Sasakian space form R3(−3). The hyperbolic 3-space H3

equipped with the compatible normal contact metric structure is a Kenmotsu manifold. The
space Sol3 equipped with a naturally associated almost contact structure is a non-Sasakian

contact metric 3-manifold. Thus, the six model spaces E3, S3, S2×R, H2×R, Nil3, S̃L2R are
quasi-Sasakian.

The following result is due to Olszak.

Proposition 1.1. ([18]) Let M be an almost contact metric 3-manifold. Then M is quasi-
Sasakian if and only if M satisfies

(∇Xϕ)Y = α
(
g(X,Y )ξ − η(Y )X

)
,

for some function α satisfying dα(ξ) = 0.

Compare this formula with (1.6). Thus quasi-Sasakian 3-manifolds are characterized as nor-
mal almost contact metric manifolds of type (α, 0) with ξ(α) = 0.

On a quasi-Sasakian 3-manifold, we have

∇Xξ = −αϕX.
Note that on a quasi-Sasakian manifold of arbitrary odd dimension, ξ is a Killing vector field,
especially, ∇ξξ = 0.

Olszak studied quasi-Sasakian 3-manifolds and obtained the following fundamental facts.

Proposition 1.2 ([17, 23]). Let M be a quasi-Sasakian 3-manifold satisfying ∇ξ = −αϕ and
σ a positive function on M satisfying dσ(ξ) = 0. Then M equipped with a new structure
(ϕσ, ξσ, ησ, gσ) defined by

ϕσ := ϕ, ξσ := εξ, ησ = εη, gσ := σg + (1− σ)η ⊗ η, ε = ±1,

is a quasi-Sasakian 3-manifold. The Levi-Civita connection ∇σ of gσ satisfies

∇σξσ = −ασϕσ,
with ασ = εα/σ. In particular, when M is Sasakian, the new quasi-Sasakian structure is
always of rank 3.

Proposition 1.3. ([17]) Let M be a quasi-Sasakian 3-manifold of rank 3 which satisfies

∇ξ = −αϕ. Assume that α has constant sign ε = ±1. Then the new structure (ϕ̃, ξ̃, η̃, g̃)
defined by

ϕ̃ := ϕ, ξ̃ := εξ, η̃ := εη, g̃ := σg + (1− σ)η ⊗ η, σ := εα > 0,

is Sasakian.

Therefore, every quasi-Sasakian 3-manifold of rank 3 is locally pseudo-conformal to a Sasakian
3-manifold.
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2. Slant curves

2.1. Let γ : I → (M3, g) be a Frenet curve parametrized by arc-length in a Riemannian
3-manifold M3 with Frenet frame field (T,N,B). Here T , N and B are the tangent, principal
normal and binormal vector fields, respectively. Denote by ∇ the Levi-Civita connection of
(M3, g). Then the Frenet frame satisfies the following Frenet-Serret equations:

∇TT = κN, ∇TN = −κT + τB, ∇TB = −τN,

where κ = |∇TT | and τ are the curvature and torsion of γ, respectively.

2.2. Let M = (M,ϕ, ξ, η, g) be an almost contact metric 3-manifold and γ(s) a smooth curve
in M parametrized by arclength. The contact angle of γ is defined as the angle θ(s) ∈ [0, π]
made by γ with the trajectories of ξ, that is we have

cos θ(s) = g(γ′(s), ξ).

The curve γ(s) in M is said to be a slant curve if the contact angle θ is constant. Slant curves
of contact angle π/2 are called (almost) Legendre curves or almost contact curves.

Now let M be a quasi-Sasakian 3-manifold. Then we have

Proposition 2.1. A non-geodesic Frenet curve γ is a slant curve on a quasi-Sasakian 3-
manifold if and only if γ satisfies

η(N) = 0,

where N is the principal normal to γ.

Proof. Direct computations lead to

d

ds
η(γ′) = g(∇γ′γ′, ξ) + g(γ′,∇γ′ξ) = g(κN, ξ) + g(γ′, αϕγ′) = κη(N).

This shows the required result. �

We suppose that γ is non-geodesic; then γ can not be an integral curve of ξ. Using (1.1) we
find an orthonormal frame field on the normal almost contact metric 3-manifold M along γ

e1 = T = γ′, e2 =
ϕγ′

sin θ
, e3 =

ξ − cos θγ′

sin θ
.

Hence, the characteristic vector field ξ decomposes as ξ = cos θe1 + sin θe3.

Then for a slant curve γ in a quasi-Sasakian 3-manifold M we have
∇γ′e1 = δ sin θ e2,

∇γ′e2 =− δ sin θ e1 + (α+ δ cos θ) e3,

∇γ′e3 = − (α+ δ cos θ) e2,

where δ = g(∇γ′γ′, ϕγ′)/ sin2 θ. Moreover, we also deduce that

∇γ′ξ = −α sin θ e2, κ = |δ| sin θ, τ = α+ δ cos θ.

For more information on slant curves, we refer to [9].
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3. Magnetic curves

3.1. Let (M, g) be a Riemannian manifold equipped with a closed 2-form F . The 2-form F
is referred as a magnetic field on M . The Lorentz force is an endomorphism field φ on M
associated to F via the metric g, i.e.,

g(φX, Y ) = F (X,Y ),

for all X and Y ∈ X(M). A regular curve γ is said to be a magnetic curve with respect to F
if it satisfies the Lorentz equation (also called the Newton equation):

∇γ′γ′ = qφγ′.

3.2. Now we consider an almost contact metric manifold M with closed fundamental 2-form.
Then we can consider magnetic curves with respect to the magnetic field −Φ. This magnetic
field −Φ is referred as to the contact magnetic field. The associated endomorphism field φ is
ϕ.

As we have mentioned in Introduction, 3-dimensional electromagnetic theory on manifolds
is rather special. On every oriented Riemannian 3-manifold (M, g) with volume form dvg,
the space of all closed 2-forms is identified with the space of divergence free vector fields, via
the Hodge star operator. Let us denote by V the divergence free vector field corresponding
to a magnetic field F on M . Assume that V is unitary; we define a quadruple of tensor
fields (ϕ, ξ, η, g) by ϕ = φ, ξ = V , η = g(V, ·); then one can see that (ϕ, ξ, η, g) is an almost
contact metric structure whose fundamental 2-form is closed. The contact magnetic field is
the original magnetic field F . This fact means that in the 3-dimensional electromagnetic
theory on manifolds, the contact magnetic fields constitute a nice class of magnetic fields.
Typical examples of almost contact metric 3-manifolds with closed fundamental 2-form are
quasi-Sasakian 3-manifolds.

3.3. In the following we investigate contact magnetic curves on quasi-Sasakian 3-dimensional
manifolds.

Let γ be a normal magnetic trajectory in a quasi-Sasakian 3-manifold M with respect to the
Lorentz force qϕ. Namely, γ is parametrized by the arclength and it satisfies

∇γ′γ′ = q ϕγ′. (3.1)

The first fundamental result is the following one.

Proposition 3.1. Every normal contact magnetic curve on a quasi-Sasakian 3-manifold is
a slant curve.

Proof. The contact angle θ is constant along γ. In fact,

d

ds
cos θ =

d

ds
g(γ′, ξ) = g(∇γ′γ′, ξ) + g(γ′,∇γ′ξ)

= g(qϕγ′, ξ) + g(γ′,−αϕγ′) = 0.

�

Remark 3.1. The previous result can be proved in a general setting; we just need ξ to be a
Killing vector field.



8 J. INOGUCHI, M. I. MUNTEANU, AND A. I. NISTOR

Proof. Because of (3.1), then along γ the following holds:

d

ds
g(γ′, ξ) = g(∇γ′γ′, ξ) + g(γ′,∇γ′ξ) = qg(ϕγ′, ξ) = 0.

It follows that γ is a slant curve. �

3.4. On an arbitrary oriented Riemannian 3-manifold one can canonically define a cross
product × of two vector fields X,Y ∈ X(M) as follows:

g(X × Y, Z) = dvg(X,Y, Z), for any Z ∈ X(M),

where dvg denotes the volume form defined by g. When M is an almost contact metric
3-manifold, the cross product is given by the formula

X × Y = g(ϕX, Y )ξ − η(Y )ϕX + η(X)ϕY.

Note that for a unitary vector field X orthogonal to ξ, the basis {X,ϕX, ξ} is considered to
be positively oriented. Then we have

ξ × γ′ = ϕγ′.

Take the Frenet frame field (T,N,B) along γ. By definition T = γ′. Hence, the magnetic
equation is written as

∇γ′γ′ = qξ × γ′ = κN. (3.2)

Consequently, we get

κ2 = q2g(ξ × γ′, ξ × γ′) = q2
[
g(ξ, ξ)g(γ′, γ′)− g(γ′, ξ)2

]
= q2 sin2 θ.

Thus γ has constant curvature κ = |q| sin θ. Assume that γ is a non-geodesic normal magnetic
curve; then from (3.2) we have

N =
q

κ
ϕγ′. (3.3)

Next, the binormal vector field B is obtained from the formula

B = γ′ ×N = γ′ ×
{ q
κ

(ξ × γ′)
}

=
q

κ
(ξ − cos θγ′). (3.4)

The covariant derivative of the binormal may be computed as

∇γ′B =
q

κ
∇γ′(ξ − cos θγ′) = − q

κ
(α+ q cos θ)ϕγ′.

Comparing this with

∇γ′B = −τN = −τq
κ
ϕγ′,

we obtain the expression of the torsion of γ, that is

τ = α+ q cos θ.
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3.5. Recall that a magnetic curve in a Sasakian (respectively a cosymplectic) manifold is a
helix. Unlike these situations, a magnetic curve on a quasi-Sasakian 3-manifold is not, in
general, a helix.

In order to sustain this remark, let us consider the following quasi-Sasakian 3-manifold intro-
duced by We lyczko in [24]. Let M = {(x, y, z) ∈ R3 | x > 0} be a half space. We equip M
with a Riemannian metric g defined by

g = x2(dx2 + dy2) + η ⊗ η, where η = dz + 2xdy.

Then we can take a global orthonormal frame field

e1 =
1

x

∂

∂x
, e2 =

1

x

∂

∂y
− 2

∂

∂z
, e3 =

∂

∂z
.

The Lie brackets satisfy

[e1, e2] = − 1

x2
e2 −

2

x2
e3, [e2, e3] = [e3, e1] = 0.

Define an endomorphism field ϕ by

ϕe1 = e2, ϕe2 = −e1, ϕe3 = 0

and put ξ = e3. Then (ϕ, ξ, η, g) is an almost contact metric structure on M . One can check
that the following relation holds on (M,ϕ, ξ, η, g):

∇Xξ =
1

x2
ϕX,

where ∇ is the Levi-Civita connection of g. Thus, M is a quasi-Sasakian manifold with
α = −1/x2 < 0. The eigenvalues of the Ricci operator are

− 1

x4
, − 2

x4
,

3

x4
.

Hence, M is scalar flat.

Let us study the magnetic curves in We lyczko’s space. The magnetic equation (3.1) of
We lyczko’s space is a system of three second order differential equations, that is

ẋ2

x
− 5ẏ2

x
− 2ẏż

x2
+ ẍ = −qẏ,

6ẋẏ

x
+

2ẋż

x2
+ ÿ = qẋ,

−10ẋẏ − 4ẋż

x
+ ẍ = −2qxẋ.

(3.5)

We denoted by dot (·) the derivative with respect to the arclength parameter s.

From Proposition 3.1 we know that η(γ̇) = cos θ, where θ is the constant contact angle.
Hence, we have

ż + 2xẏ = cos θ. (3.6)

As the curve γ is parametrized by arclength, we also have

x2(ẋ2 + ẏ2) = sin2 θ.
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Therefore, there exists a (smooth) function u (depending on s) such that{
ẋ = 1

x sin θ cosu(s),

ẏ = 1
x sin θ sinu(s).

Hence, when u is known, the x-coordinate may be found from the equation

x(s)2 = c0 + 2 sin θ

∫ s

0
cosu(t)dt, (3.7)

where c0 is a positive constant. Then, from (3.6), we get

z(s) = z0 + s cos θ − 2 sin θ

∫ s

0
sinu(t)dt, z0 ∈ R.

Finally, we compute y:

y(s) = y0 + sin θ

∫ s

0

sinu(t)

x(t)
dt, y0 ∈ R.

The key point is to obtain u.

From (3.5), when sin θ 6= 0, we have

sinu(s)
[
2 cos θ + sin θ sinu(s) + x2(s)

(
− q + u̇(s)

)]
= 0,

cosu(s)
[
2 cos θ + sin θ sinu(s) + x2(s)

(
− q + u̇(s)

)]
= 0.

Combining with (3.7) we deduce that u is a solution of the following integro-differential
equation:

2 cos θ + sin θ sinu(s) +
(
− q + u̇(s)

)[
c0 + 2 sin θ

∫ s

0
cosu(t)dt

]
= 0.

Thus, in general, normal magnetic curves in We lyczko space are not helices. In fact, the
torsion τ = −1/x(s)2 + q cos θ is non-constant.

In the sequel we investigate a particular example u = u0 (constant).

On one hand we have
x(s)2 = c0 + 2s sin θ cosu0.

On the other hand, the following equation must be satisfied:

2 cos θ + sin θ sinu0 − q(c0 + 2s sin θ cosu0) = 0, for all s.

As q sin θ 6= 0, we should have cosu0 = 0 and therefore

2 cos θ + ε sin θ − qc0 = 0, ε = ±1.

This implies x(s) =
√
c0, y(s) = y0 + ε sin θ√c0 s, z(s) = z0 + (cos θ − 2ε sin θ)s. Thus, along this

magnetic curve, α is constant. Hence, this magnetic curve is a helix.

For θ = π
2 , that is γ is a Legendre magnetic curve, and for ε = 1, we obtain

γ(s) =

(
√
c0, y0 +

s
√
c0
, z0 − 2s

)
.

Its strength is q = 1
c0

. This magnetic curve is a helix with κ = τ = 1/c0 > 0.

For more examples of non-Sasakian quasi-Sasakian 3-manifolds, see [19]. In addition, in [19],
Olszak constructed explicit examples of conformally flat quasi-Sasakian 3-manifolds.
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4. Pseudo-conformal deformations

Let M = (M,ϕ, ξ, η, g) be a quasi-Sasakian 3-manifold. Consider the pseudo-conformally
deformed structure

ϕ̃ := ϕ, ξ̃ := ε ξ, η̃ := εη, g̃ = σg + (1− σ)η ⊗ η, ε = ±1,

where σ is a positive smooth function satisfying dσ(ξ) = 0. The resulting almost contact
metric 3-manifold is still a quasi-Sasakian 3-manifold.

Take an arclength parametrized curve γ(s) in (M, g). Then its velocity vector field γ′(s)
satisfies

g̃(γ′(s), γ′(s)) = cos2 θ(s) + σ(γ(s)) sin2 θ(s),

where θ is the contact angle, that is cos θ = η(γ′(s)). Obviously, the property “arclength
parametrized” is not preserved under the pseudo-conformal deformation, while the property
to be “Legendre” is.

In the following we study the behavior of magnetic curves under pseudo-conformal deforma-
tion.

The Levi-Civita connection ∇̃ of g̃ is related to the Levi-Civita connection ∇ of g by

∇̃XY = ∇XY +
1

2σ

{
dσ(X)(Y − η(Y )ξ) + dσ(Y )(X − η(X)ξ)

}
(4.1)

− 1

2σ

{
g(X,Y )− η(X)η(Y )

}
grad σ

− α(1− σ)

σ
{η(X)ϕY + η(Y )ϕX} .

Remark 4.1. From this relation we get

∇̃Xξ = −α
σ
ϕX.

When α has constant sign, if we choose σ = εα, we have ∇̃X ξ̃ = −ϕX. So, the new structure

(ϕ, ξ̃, η̃, g̃) is really Sasakian.

Take a normal contact magnetic curve γ(s) in (M, g) satisfying ∇γ′γ′ = qϕγ′. Then we have

∇̃γ′γ′ = qϕγ′ +
σ′

σ
(γ′ − cos θξ)− sin2 θ

2σ
grad σ

∣∣
γ
− 2α(1− σ)

σ
cos θ ϕγ′. (4.2)

Here σ′ denotes the derivative d
dsσ(γ(s)). Thus, “contact magnetic” is not preserved. Even

if every quasi-Sasakian 3-manifold of rank 3 are locally pseudo-conformal to Sasakian 3-
manifolds, contact magnetic curves are not invariant under the deformation. Thus, the study
of contact magnetic curves in quasi-Sasakian 3-manifolds does not reduce to that of Sasakian
3-manifolds. In other words, study of contact magnetic curves in quasi-Sasakian 3-manifolds
has its own interest.

Assume that γ is non-geodesic, i.e., κ 6= 0 and q 6= 0, then from (3.3) and (3.4), the unit
normal N and the binormal B are related to ϕγ′ and ξ by

ϕγ′ =
κ

q
N, ξ =

κ

q
B + cos θT.
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We rewrite the formula (4.2) as

∇̃γ′γ′ =
σ′ sin2 θ

σ
T +

{
q − 2α(1− σ) cos θ

σ

}
ϕγ′ − κσ′ cos θ

qσ
B − sin2 θ

2σ
grad σ

∣∣
γ
.

Next we have

g(grad σ, T ) = σ′,

κg(grad σ,B) = qg(grad σ, ξ − cos θγ′) = −q cos θσ′.

Hence, if both the σ and α are constant along γ, then γ is also magnetic with respect to the
new metric g̃. For a Legendre magnetic curve γ(s), we have

∇̃γ′γ′ = qϕγ′ +
σ′

σ
γ′ − 1

2σ
grad σ

∣∣
γ
.

Thus, under the assumption “σ′ = α′ = 0”, γ is also a Legendre magnetic curve with the
same strength with respect to g̃.

For example, let us consider the pseudo-conformal deformation of We lyczko’s space with
σ = 1/x2 and ε = −1. The resulting Sasakian manifold is the Sasakian space form R3(−3)
with the metric

dx2 + dy2 + (dz + 2xdy)2.

Thus the Legendre magnetic helix in We lyczko’s space corresponds to Legendre magnetic helix
in the Sasakian space form R3(−3) under this pseudo-conformal deformation. For Legendre
magnetic curves in R3(−3), we refer to [4].

In fact, we have obtained a more general result:

Proposition 4.1. Let M be an almost contact metric manifold satisfying ∇ξ = −αϕ for
some function α with ξ(α) = 0. Take a positive smooth function a and smooth function b
such that g̃ = ag + bη ⊗ η is a Riemannian metric. Assume that da(ξ) = db(ξ) = 0 and a+ b

is a non-zero constant. Then the Levi-Civita connection ∇̃ of g̃ is

∇̃XY = ∇XY +
1

2a
{da(X)Y + db(Y )X)− g(X,Y )grad a}

+
1

2a
{(db(X)η(Y ) + db(Y )η(X))ξ − η(X)η(Y )grad b}

− αb

a
{η(X)ϕY + η(Y )ϕX} .

In particular, if we assume that a is a constant and choosing b = a(a − 1), then the g̃ is a
D-homothetic deformation of g. The Levi-Civita connection is

∇̃XY = ∇XY + (1− a)α {η(X)ϕY + η(Y )ϕX} .
Next, if we assume that a = σ > 0 is a positive smooth function and setting b = 1− σ, then
we obtain (4.1).

5. Magnetic curves and Okumura type connection

5.1. In his paper [16], Okumura defined a class of linear connections on a Sasakian manifold
(M,ϕ, ξ, η, g) in such a way that g, η, ξ and ϕ are covariant constant. Such a connection was
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called a (ϕ, η, g) connection in [16]. Using the same idea, we can define a (ϕ, η, g) connection
on a quasi-Sasakian 3-manifold (M,ϕ, ξ, η, g).

Let us consider the following (1, 2)-type tensor field P on M :

P (X,Y ) = a η(X)ϕY + b η(Y )ϕX + c Φ(X,Y )ξ,

where a, b and c are smooth functions on M which shall be determined such that the con-
nection defined by

∇XY = ∇XY + P (X,Y ), (5.1)

is a (ϕ, η, g) connection.

Equation (5.1) yields{
(∇Xg)(Y,Z) = (c− b)

[
η(Y )Φ(X,Z) + η(Z)Φ(X,Y )

]
,

∇Xξ = ∇Xξ + bϕX,

for every X, Y tangent to M . From the assumption that ξ and g are parallel with respect to
the connection ∇̄, we immediately obtain

b = c = α.

It can be easily proved that ∇η = 0 and ∇ϕ = 0.

We can state the following result:

Theorem 5.1. Let (M,ϕ, ξ, η, g) be a quasi-Sasakian 3-manifold. For any function a on M ,
define a linear connection ∇ by setting

∇XY = ∇XY + a η(X)ϕY + α
(
η(Y )ϕX + Φ(X,Y )ξ

)
, (5.2)

for all X, Y tangent to M . Then the tensor fields g, η, ξ and ϕ are parallel with respect to
∇.

We will call this connection the Okumura type connection.

Remark 5.1. In fact, this connection exists when M belongs to the wider class of almost
contact metric manifolds. See [6, Theorem 8.2].

5.2. Inspired by the Ikawa’s paper [7] we would like to study the properties of magnetic
curves on M with respect to the Okumura type connection ∇.

Let γ be a normal magnetic curve on M with strength q, where q ∈ R, that is the curve γ is
parametrized by the arclength and its velocity fulfills the Lorentz equation

∇γ′γ′ = qϕγ′.

As we have already proved, every magnetic curve in a quasi-Sasakian 3-manifold is slant, that
is the contact angle θ is constant.

Equation (5.2) leads to
∇XX = ∇XX + (a+ α)η(X)ϕX,

for any X tangent to M . If we consider X = γ′ and the covariant derivative along γ induced
by ∇ we obtain

∇γ′γ′ =
[
q + (a+ α) cos θ

]
ϕγ′.

Hence we obtain the following.
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Proposition 5.1. (i) Any Legendre magnetic curve satisfies the analogue of the Lorentz
equation when Okumura type connection is considered with arbitrary function a.

(ii) Any magnetic curve γ satisfies the analogue of the Lorentz equation for the Okumura type
connection

¯̄∇XY = ∇XY + α
(
η(Y )ϕX − η(X)ϕY + Φ(X,Y )ξ

)
.

In particular, any geodesic of M is also geodesic for the Okumura type connection ¯̄∇.

Note that when M is cosymplectic, the connection ¯̄∇ is nothing but the Levi-Civita connec-
tion.

We obtain the following reinterpretation of non-Legendrian contact magnetic curves in quasi-
Sasakian 3-manifolds with constant α. Note that under this assumption, M is α-Sasakian or
cosymplectic.

Theorem 5.2. Let M be a quasi-Sasakian manifold whose structure function α is constant
and γ a non-Legendre magnetic curve with strength q. Then γ is a geodesic for the Okumura
type connection

∇̇XY = ¯̄∇XY −
q

cos θ
η(X)ϕY.

Remark 5.2. Conformally flat quasi-Sasakian 3-manifolds with constant α are classified by
Olszak [19, Theorem 3.6] as follows:

Theorem. Let M be a quasi-Sasakian 3-manifold. Then the following four statements are
equivalent:

(1) M is locally symmetric;
(2) M is conformally flat and its scalar curvature is constant;
(3) M is conformally flat and its structure function α is constant;
(4) (a) M is a cosymplectic manifold which is locally a product of the real line R and a

two dimensional Kähler space of constant Gaussian curvature, or
(b) M is of constant positive curvature and its structure can be obtained by a homo-

thetic deformation of a Sasakian structure. In this case M is α-Sasakian.

Let us observe that when M is cosymplectic, non-Legendre magnetic curves are geodesic for
the Okumura type connection

∇̇XY = ∇XY −
q

cos θ
η(X)ϕY.

In order to prove a converse of Theorem 5.2, let us give the following useful assertion.

Lemma 5.1. Let γ be a unit speed curve in a quasi-Sasakian 3-manifold which is a geodesic
for the Okumura type connection (5.2). Then γ is a slant curve, that is the angle θ between
its velocity vector and the characteristic vector field ξ is constant.

Proof. Since γ is unit speed, the contact angle θ is defined by cos θ = η(γ′). We have

d

ds
η(γ′) =

d

ds
g(γ′, ξ) = g(∇γ′γ′, ξ) + g(γ′,∇γ′ξ) = 0.

Hence θ is constant. �
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Let γ be a unit speed curve in a quasi-Sasakian 3-manifold which is a geodesic for the Okumura
type connection (5.2). Then, γ can be interpreted as a magnetic curve with non-constant
strength

q(s) = −
[
a(γ(s)) + α(γ(s))

]
cos θ.

Remark 5.3. The magnetic curves with variable strength generate, in the Euclidean plane
E2, beautiful aesthetic curves. See e.g. [27]. Applications of magnetic curves in E3 with
variable strength to CAD systems are described in [26].

We close this Section with the following result.

Theorem 5.3. Let γ be a unit speed curve in a quasi-Sasakian 3-manifold whose structure
function α is constant. Suppose that γ is a geodesic for the Okumura type connection (5.2)
with a ∈ R. Then γ is a magnetic curve with strength q = −(a+ α) cos θ.

Remark 5.4. On almost contact metric manifolds of arbitrary dimension, the following one-

parameter family {∇̃t}t∈R of linear connections was introduced in [8]:

∇̃tXY = ∇XY −
1

2
ϕ(∇Xϕ)Y − 1

2
η(Y )∇Xξ − tη(X)ϕY + (∇Xη)(Y )ξ,

for all vector fields X and Y . Here t is a real constant. The connection ∇̃0 is the (ϕ, ξ, η)-
connection introduced by Sasaki and Hatakeyama in [20]. More than 30 years later, Cho

defined and studied [3] the connection ∇̃1. Note that on a Sasakian manifold of dimension 3,

the connection ∇̃t coincides with the linear connection introduced by Okumura. In particular,

∇̃1 is called the Okumura connection. On contact metric 3-manifolds, ∇̃−1 coincides with the
Tanaka-Webster connection [21, 25]. All the structure tensor fields ϕ, ξ, η and g are parallel

with respect to ∇̃t.

On a normal almost contact metric 3-manifold M , ∇̃tXY is given by

∇̃tXY = ∇XY + α{g(X,ϕY )ξ + η(Y )ϕX}+ β{g(X,Y )ξ − η(Y )X} − tη(X)ϕY.

Thus, for a quasi-Sasakian 3-manifold the connection ∇̃t coincides with the Okumura type
connection ∇ defined by (5.2) with a = −t.
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