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Abstract: In this study, the definition of discretisation that was proposed recently for continuous-time distributions is made
applicable not only to ordinary functions but to a variety of distributions including weak derivatives such that they could be
viewed from a unified perspective under useful theorems. While it is not absolutely necessary to introduce distributions for
discrete-time signals having finite values, it turns out that it is insightful to introduce discrete-time equivalents in appreciating
their richness, which culminates into continuous-time distributions as the sampling-interval approaches zero. For instance, a
discretisation of a derivative of a distribution can be found as a discrete derivative of a discretisation of a distribution. This is
much easier than the traditional approach, where an ordinary function must first be found to approximate the derivative of a
distribution. Simulations show that, by changing a single parameter of the proposed model, different types of signals that are
similar to traditional ones developed separately by approximating distributions by ordinary functions, such as Dirichlet’ kernel,
Gaussian distribution and sinc approximation, can be obtained.

1௑Introduction
Discretisation of continuous-time functions is an extremely
important process for analysing, designing and controlling various
phenomena and systems using digital devices. However, a
definition of discretisation that was applicable to all existing
classes of discrete-time signals did not appear until relatively
recently [1], which also pointed out that the impulse-invariant
model was not a proper model as known at that time and suggested
a simple scaling adjustment to make it valid. To establish a solid
ground on discretisation, a few definitions have been proposed and
some useful theorems derived, where similarities, rather than
differences, among the existing discrete-time models were
highlighted and creation of new models were demonstrated [2].
While useful, the definition was applicable only to ordinary
functions, and generalised functions, or distributions, were left
uncovered. This was not a serious problem for systems expressed
in transfer functions, where impulses could be handled in the
Laplace transform domain, circumventing the issue of infinite
magnitudes to some extent. However, when such signals are
needed to be treated in the discrete-time domain, such as in
numerical investigations, infinity must be dealt with somehow in a
digital processor based only on finite values.

An area where handling of distribution is crucial is the
descriptor system, where the initial condition must be chosen
precisely [3] to reflect the response of the continuous-time original
in the discrete-time analysis. This is because impulsive responses
can occur or disappear in the discrete-time calculation
irrespectively of the continuous-time behaviour, depending on the
initial condition and the input used. To derive a necessary and
sufficient condition on the initial state of the descriptor system, a
proper definition of distribution was necessary, and this has been
achieved in [3]. In the present paper, the discretisation concept is
made more general so that it can be applied to weak derivatives of
distributions. Related theorems are presented and applied to Dirac's
delta and its derivatives. Simulation studies are carried out to show
that a variety of signals can be obtained using the proposed method
by changing a single parameter. They include traditional methods
using Gaussian distribution [4, 5], Dirichlet's kernel [4, 5] and sinc-
function [5], which convert a continuous-time distribution into
ordinary functions.

The paper is organised as follows. After the introduction
section, Section 2 briefs on fundamental definitions. Section 3
introduces the term of discrete-time generalised function, which is
not really a distribution, but highly useful as shown in [3] for
handling impulsive responses. This is then extended to
discretisation of weak derivatives and several useful theorems are
derived. In Section 4, the results of Section 3 are applied to the
discretisation of Dirac's delta function and its derivatives are
presented. Simulation results are presented in Section 5 and
conclusions are drawn in Section 6.

2௑Preliminaries
The following conventions of symbols are used: f (k, T) = f k

denotes a discrete-time signal, where k ∈ ℤ indicates the step
number and T ∈ ℝ+ is the sampling period, whereas an upper bar
as in f̄ (t) = f̄  denotes a continuous-time signal, where t ∈ ℝ is an
independent variable of time. Similarly, an upper bar denotes
coefficients and functions related to continuous-time signals and
systems. Furthermore, boldface letters denote vectors, such as fk

and f̄ .

2.1 Discretisation

The conventional definition of signal discretisation is as follows
[1].
 

Definition 1: (Signal discretisation). A discrete-time signal
f (k, T) is said to be a discretisation of a continuous-time signal f̄ (t)
if the following condition is satisfied: for any fixed time τ and
κ ∈ ℤ that satisfy κT ≤ τ < (κ + 1)T , the following holds:

lim
T → 0

∥ f̄ (τ) − f (κ, T) ∥ = 0, (1)

where the sampling instant is synchronised at t = kT = 0.□
Discretisation of a continuous-time signal f̄ (t) is usually

considered as a process that involves loss of information between
two successive sampling instants, discarding everything between
kT and (k + 1)T . The above definition offers a slightly different
view in that a continuous-time instant τ and f̄ (τ) are fixed. If the
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discrete-time signal f (κ, T) at time-instant κT  that is closest to τ

from left (in the present definition) approaches f̄ (τ) as the
sampling period T is reduced, f (k, T) is said to be a discretisation
of f̄ (t). In this process, the domain of f (κ, T) changes, which is
unusual. However, by repeating this for all τ in the domain of
interests, point-wise convergence can be considered. In this sense,
all the time-instants are taken into account, although the
convergence is not of the uniform type but only point-wise.

As in the differential operator D̄ := d/dt for the continuous-
time domain, the following delta operator, δ, used for the discrete-
time domain in the paper [6, 7].
 

Definition 2: (Delta operator, δ): The discrete-time delta
operator, δ, is defined as

δ :=
q − 1

T
, (2)

where q is the conventional shift-operator that satisfies
q f (k + 1) := f (k + 1, T).□

The shift operator q is commonly used in discrete-time models,
as it makes the mechanism and implementation of algorithms
simple to interpret. In turn, it makes the relationship between the
continuous-time and discrete-time domains unclear; discrete-time
models do not approach continuous-time models even when the
sampling period goes to zero. The delta operator is better in this
aspect, as well as in numerical properties, compared with the shift
operator [6]. Since the relationship between the delta operator δ

and the shift operator q is algebraic, their modelling flexibilities are
the same.

The following definition of a discrete-time convolution contains
the scaling factor T [8].
 

Definition 3: (Discrete-time convolution): A discrete-time
convoluted v(k, T) of f (k, T) and g(k, T) is defined as

v(k, T) := ∑
i = − ∞

∞

T f (k − i, T)g(i, T) = fk ∗ gk . (3)

2.2 Distribution

In the present study, distributions of single-variable and real-valued
functions are considered [9, 10].
 

Definition 4: (Distribution ): Let D(ℝ) be a space of test-
functions defined as

D(ℝ) := ⋃
a < b

D a, b , (4)

where D a, b  is defined as

D a, b := {ϕ̄: ϕ̄ ∈ C∞ and if t ∉ a, b , then ϕ̄ = 0} . (5)

(The test function ϕ̄ ∈ D(ℝ) is a real-valued function of a real
variable which may be continuously differentiable for an infinite
number of times and have compact support.) Then a distribution is
defined as continuous and linear functional T̄  on the space D(ℝ),
such that

T̄ :D(ℝ) ∍ ϕ̄ ↦ T̄(ϕ̄) ∈ ℝ . (6)

Since distribution T̄  is a linear form on D(ℝ), let the value of T̄  on
ϕ̄ ∈ D(ℝ), that is T̄(ϕ̄), be denoted ⟨T̄ , ϕ̄⟩. Introducing a locally
integrable function in ( − ∞, ∞) as f̄ (t), the distribution f̄  is
defined through the following convergent integral and called
regular distribution:

⟨ f̄ , ϕ̄⟩ := ∫
−∞

∞

f̄ (t)ϕ̄(t)dt . (7)

A distribution is called singular if no such function exists, in which
case, the right-hand side of (7) is only symbolic [11].□

A vector-valued distribution can be considered by applying the
above definition to each component of the vector with a common
scalar ϕ̄, as

f̄ :D(ℝ) ∍ ϕ̄ ↦ f̄ (ϕ̄) ∈ ℝp, (8)

f̄ (ϕ̄) = ⟨ f̄ , ϕ̄⟩∫
−∞

∞

f̄ (t)ϕ̄(t)dt, (9)

where integration of vector-valued function calculates each
elements integration that is right-hand side of (9) is rearranged the
following:

∫
−∞

∞

f̄ (t)ϕ̄(t)dt =

∫
−∞

∞

f̄ 1(t)ϕ̄(t)dt

∫
−∞

∞

f̄ 2(t)ϕ̄(t)dt

⋮

∫
−∞

∞

f̄ p(t)ϕ̄(t)dt

, (10)

where f̄ (t) = [ f̄ 1(t) f̄ 2(t) … f̄ p(t)]T.
Since a distribution is a functional, it should be distinguished

from a function of time and not be expressed with (t). However, in
the paper, such a notation may be used for simplicity when no
ambiguity is suspected.

A definition of a distributional differentiation, which is also
called a weak derivative, is the following [9].
 

Definition 5: (Weak derivative: distributional differentiation):
For an arbitrary distribution T̄ , D̄T̄  defines a distributional
differentiation by

⟨D̄T̄ , ϕ̄⟩ := − ⟨T̄ , D̄ϕ̄⟩, (11)

where D̄ is a weak differentiator.□
Since the weak derivative D̄T̄  is also a distribution,

distributions are differentiable for an arbitrary number of times. A
definition of a distribution convolution is shown below [9].
 

Definition 6: (Distribution convolution): The convolution of
distribution T̄  and S̄ is defined as

⟨T̄ ∗ S̄, ϕ̄⟩ := ⟨T̄ (ξ)S̄(η), ϕ̄(ξ + η)⟩ (12)

= ⟨T̄ (ξ), ⟨S̄(η), ϕ̄(ξ + η)⟩⟩, (13)

where ξ := t − τ, η := τ and T̄ (ξ), S̄(η) are functions of ξ and η.□
The following describes Dirac's delta function and its

derivatives used to verify the validity of the proposed definition in
the paper at Section 4 and its characteristics.

The definition of Dirac's delta function, δ̄, that is one of the test
signals are widely used in control theory for analysis and design
systems called impulse signal, is the following [10].
 

Definition 7: (Dirac's delta function δ̄): Dirac's delta function,
δ̄, is defined as

δ̄:D(ℝ) ∍ ϕ̄ ↦ ⟨δ̄, ϕ̄⟩ = ϕ̄(0) ∈ ℝ . (14)
Since Dirac's delta function is a singular distribution, it should

not really be denoted as δ̄(t). However, it is a common practice to
express it as δ̄(t) and may be used in the paper.

Differentiation of Dirac's delta function is derived in the
following with distribution differentiation Definition 5 [10].
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Theorem 1: (Differentiation of Dirac's delta function δ̄(i)): An i -
th derivative of Dirac's delta function, δ̄(i), is given by

δ̄
(i):D(ℝ) ∍ ϕ̄ ↦ ⟨δ̄

(i), ϕ̄⟩ = ( − 1)i
ϕ̄

(i)(0) ∈ ℝ, (15)

where i ≥ 1 and ⋅(i) is expressed ith derivative.□
Characteristics of Dirac's delta function and its derivatives

convolutions are reviewed as follows [10].
 

Theorem 2: (Identity element of convolution): A convolution of
an arbitrary distribution T̄  and the Dirac's delta function δ̄ is given
by

δ̄ ∗ T̄ = T̄ . (16)
Dirac's delta function derivatives δ̄(i) behave differentiator with

convolution, as [10].
 

Theorem 3: (Differential operator): A convolution of an
arbitrary distribution T̄  and derivatives of the Dirac's delta function
δ̄(i) are given by

δ̄
(i) ∗ T̄ = T̄

(i) . (17)

3௑Extended definition and theorem
This section defines discrete-time generalised function and
extension of signal discretisation and derives several theorems with
the definitions.

Although it may not be necessary to use distributions in the
discrete-time domain, as they take finite values only, it was found
quite useful to define discrete-time functionals that approach
distributions as the sampling period approaches zero. Therefore,
the following definition is proposed in the present study as a
discrete-time version of the continuous-time distribution defined by
(7). This is achieved by considering multiple sampling points,
rather than a single point as used previously, in comparing discrete-
time and continuous-time signals, as follows [3].
 

Definition 8: (Discrete-time generalised function): A discrete-
time generalised function f (φ) is defined as a functional that
assigns a value according to

fk:ϕ(k, T) ↦ f (ϕ), (18)

f (ϕ) = ⟨ fk, ϕk⟩ := ∑
k = − ∞

∞

T f (k, T)ϕ(k, T), (19)

where ϕ(k, T) is an arbitrary discrete-time function, which satisfies
ϕ(k, T) = 0 when k ∉ α, β , α, β ∈ ℤ. The inner product defined
in (19) is convergent for any finite sequence, since ϕ(k, T) has a
finite support.□

Equation (19) is forward or backward difference approximation
of continuous-time regular distribution (7).

A definition of signal discretisation based on Definition 8 is
proposed as follows [3]: it can be considered in the definition that a
multi-step discretisation signal such as Dirac's delta function
derivatives described in Section 4.
 

Definition 9: (Extension of signal discretisation [3]): A
discrete-time signal f (k, T) is said to be a discretisation of a
continuous-time signal f̄ (t) if the following condition is satisfied:

lim
T → 0

∥ ⟨ f̄ , ϕ̄⟩ − ⟨ fk, ϕk⟩ ∥ = 0, (20)

where ϕk = ϕ̄(kT).
Since ϕk = ϕ̄(kT), ϕk has support such that ϕk = 0, k ∉ α, β

and α, β are satisfied (α − 1)T < a ≤ αT , βT ≤ b < (β + 1)T ,
limT → 0 α = a, limT → 0 β = b.

Definition 9 is indeed an extension of the conventional
Definition 1.
 

Theorem 4: (Definition 9 is extension of Definition 1): Let a
discrete-time signal f (k, T) be a discretisation of f̄ (t) in the sense
of conventional Definition 1, then f (k, T) also satisfies Definition
9.
 

Proof: It is shown below that when the discrete-time f (k, T)
satisfies Definition 1 for f̄ (t), the discrete-time signal f (k, T) meets
Definition 9; i.e. ∥ ⟨ f̄ , ϕ̄⟩ − ⟨ fk, ϕk⟩ ∥ approaches zero as T → 0.
Let f (k, T) satisfy conventional signal discretisation Definition 1
for f̄ (t) that is f̄ (t) is locally integrable and distribution f̄  is
regular.

The continuous-time signals f̄
∗
(t), ϕ̄

∗
(t) are the outputs of the

zero-order-hold when its inputs f (t), ϕ̄(t) are introduced and satisfy
the following conditions:

f̄
∗
(t) = f̄ (kT), (21)

f̄
∗
(t) → f̄ (t), (T → 0), (22)

ϕ̄
∗
(t) = ϕ̄(kT), (23)

ϕ̄
∗
(t) → ϕ̄(t), (T → 0), (24)

It should be noted that while f̄
∗
(t), ϕ̄

∗
(t) is locally integrable, ϕ̄∗

(t)
is not continuously differentiable. The use of these conditions
yields

lim
T → 0

∥ ⟨ f̄ , ϕ̄⟩ − ⟨ fk, ϕk⟩ ∥ (25)

= lim
T → 0

∥ ⟨ f̄ , ϕ̄⟩ − ⟨ f̄
∗
, ϕ̄⟩

+⟨ f̄
∗
, ϕ̄⟩ − ∫

−∞

∞

f̄
∗
(t)ϕ̄

∗
(t)dt

+∫
−∞

∞

f̄
∗
(t)ϕ̄

∗
(t)dt − ⟨ fk, ϕk⟩ ∥ .

(26)

Since norm is subadditive, triangle inequality holds and it yields

≤ lim
T → 0

∥ ⟨ f̄ , ϕ̄⟩ − ⟨ f̄
∗
, ϕ̄⟩ ∥

+ lim
T → 0

∥ ⟨ f̄
∗
, ϕ̄⟩ − ∫

−∞

∞

f̄
∗
(t)ϕ̄

∗
(t)dt ∥

+ lim
T → 0

∥ ∫
−∞

∞

f̄
∗
(t)ϕ̄

∗
dt − ⟨ fk, ϕk⟩ ∥ .

(27)

f̄  and f̄
∗ are regular distributions, expanding the above equation

leads to

= lim
T → 0

∥ ∫
−∞

∞

f̄ (t)ϕ̄dt − ∫
−∞

∞

f̄
∗
(t)ϕ̄(t)dt ∥

+ lim
T → 0

∥ ∫
−∞

∞

f̄
∗
(t)ϕ̄(t)dt − ∫

−∞

∞

f̄
∗
(t)ϕ̄

∗
(t)dt ∥

+ lim
T → 0

∥ ∫
−∞

∞

f̄
∗
(t)ϕ̄

∗
(t)dt − ∑

k = − ∞

∞

T f (k, T)ϕ(k, T) ∥

(28)
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= lim
T → 0

∫
−∞

∞

( f̄ (t) − f̄
∗
(t))ϕ̄(t)dt

+ lim
T → 0

∫
−∞

∞

f̄
∗
(t)(ϕ̄(t) − ϕ̄

∗
(t))dt

+ lim
T → 0

∑
k = − ∞

∞

T f̄ (kT)ϕ̄(kT) − ∑
k = − ∞

∞

T f (k, T)ϕ(k, T) .

(29)

ϕ(k, T) = ϕ̄(kT) yields

= lim
T → 0

∫
−∞

∞

( f̄ (t) − f̄
∗
(t))ϕ̄dt

+ lim
T → 0

∫
−∞

∞

f̄
∗
(t)(ϕ̄(t) − ϕ̄

∗
(t))dt

+ lim
T → 0

∑
k = − ∞

∞

T( f̄ (kT) − f (k, T))ϕ(k, T) .

(30)

The first and second terms are shown in (22) and (24) to converge
to 0 as T → 0. Since f (k, T) is a discretisation of f̄ (t) in the sense
of Definition 1, the third term disappears as T → 0. Therefore,
∥ ⟨ f̄ , ϕ̄, ⟩ − ⟨ fk, ϕk⟩ ∥ approaches 0 as T → 0 and f̄ (t), f (k, T) that
satisfied Definition 1 also satisfied Definition 9. Thus, it can be
said that Definition 9 is an extension of conventional Definition
1.□

Discretisation of weak derivatives is defined as follows.
 

Definition 10: (Weak derivative discretisation): Let a discrete-
time signal f (k, T) be a discretisation of the continuous-time signal
f̄ (t). Then the discrete-time signal D fk is said to be a discretisation
of the continuous-time weak derivative signal D̄ f̄ , if the following
condition is satisfied:

lim
T → 0

∥ ⟨D̄ f̄ , ϕ̄⟩ − ⟨D fk, ϕk⟩ ∥ = 0 . (31)
D is an operator on f (k, T), such as the delta operator δ and w-

prime operator w′ [8]. While there is an infinite number of
operations that can be used in the above definition, a general
difference operation δ /(μTδ + 1) called the mapping discrete-time
model [3, 12] is used in the present paper.

To prove the general difference satisfies Definition 10, at first,
its characteristic of discrete-time generalised function in Definition
8 corresponded continuous-time weak derivative (Definition 5) is
shown below.
 

Lemma 1: (Characteristic of general difference):
(δ /(μTδ + 1))i

f (k, T), which is difference of f (k, T), satisfies

δ

μTδ + 1

i

fk, ϕk = ( − 1)i 1
μTδ + 1

i

fk, δ
i
ϕk − i . (32)

 
Proof: Induction on i prove this theorem.
For i = 1, the left-hand-side of (32) can be rewritten as

δ

μTδ + 1
fk, ϕk (33)

= ∑
k = − ∞

∞

T
δ

μTδ + 1
f (k, T)ϕ(k, T) . (34)

Since (δ /(μTδ + 1)) fk = (δ fk /(μTδ + 1)), the above equation can
be rewritten as

= ∑
k = − ∞

∞

T
1

μTδ + 1
f (k + 1, T)ϕ(k, T)

T

− ∑
k = − ∞

∞

T
1

μTδ + 1
f (k, T)ϕ(k, T)

T
.

(35)

By shifting the first term infinite sum for f (k + 1, T) using a
variable transformation

= ∑
k = − ∞

∞

T
1

μTδ + 1
f (k, T)ϕ(k − 1, T)

T

− ∑
k = − ∞

∞

T
1

μTδ + 1
f (k, T)ϕ(k, T)

T
,

(36)

rearranging the above equation taking f (k, T) as the common term
leads to

= ∑
k = − ∞

∞

T
1

μTδ + 1
f (k, T)

ϕ(k − 1, T) − ϕ(k, T)
T

(37)

= − ∑
k = − ∞

∞

T
1

μTδ + 1
f (k, T)δϕk − 1 (38)

= −
1

μTδ + 1
fk, δϕk − 1 , (39)

the right-hand-side of (32) is obtained.
Assume that (32) holds for i = j and let us get the following

condition:

δ

μTδ + 1

j

fk, ϕk

= ∑
k = − ∞

∞

T
δ

μTδ + 1

j

f (k, T)ϕ(k, T)

(40)

= ( − 1) j 1
μTδ + 1

j

fk, δ
j
ϕk − j (41)

= ( − 1) j ∑
k = − ∞

∞

T
1

μTδ + 1

j

fkδ
j
ϕk − j . (42)

We then have to show for i = j + 1 that

δ

μTδ + 1

j + 1

fk, ϕk (43)

= ∑
k = − ∞

∞

T
δ

μTδ + 1
δ

μTδ + 1

j

f (k, T)ϕ(k, T), (44)

by using the induction hypothesis

= ( − 1) j ∑
k = − ∞

∞

T
δ

μTδ + 1
1

μTδ + 1

j

f (k, T)δ j
ϕ(k − j, T), (45)

rearranging the above equation in the same manner as the case of
i = 1 leads to

= ( − 1) j ∑
k = − ∞

∞

T
1

μTδ + 1

j + 1 f (k + 1, T)δ j
ϕ(k − j, T)

T

−( − 1) j ∑
k = − ∞

∞

T
1

μTδ + 1

j + 1 f (k, T)δ j
ϕ(k − j, T)
T

(46)
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= ( − 1) j ∑
k = − ∞

∞

T
1

μTδ + 1

j + 1 f (k, T)δ j
ϕ(k − j − 1, T)

T

−( − 1) j ∑
k = − ∞

∞

T
1

μTδ + 1

j + 1 f (k, T)δ j
ϕ(k − j, T)
T

(47)

= ( − 1) j + 1 ∑
k = − ∞

∞

T
1

μTδ + 1

j + 1

f (k, T)

δ
j
ϕ(k − j, T) − δ

j
ϕ(k − j − 1, T)

T

(48)

= ( − 1) j + 1 ∑
k = − ∞

∞

T
1

μTδ + 1

j + 1

f (k, T)

δ
j + 1

ϕ(k − ( j + 1), T)

(49)

= ( − 1) j + 1 1
μTδ + 1

j + 1

fk, δ
j + 1

ϕk − ( j + 1) , (50)

which complete the proof.□
The above result is similar to a continuous-time weak derivative

(Definition 5).
It can be shown below that difference of f (k, T) is a

discretisation of f̄ (t) derivatives. It is important that this can
discretise weak derivatives with a general difference. As a
conventional definition, since the general difference is an
approximation of differentiation, it is assumed that the
differentiable function should be differentiable for a sufficient
number of times.
 

Theorem 5: (Discretisation of weak derivative): If a discrete-
time signal f (k, T) is a discretisation of a continuous-time signal
f̄ (t), then a discrete-time signal f

(i)(k, T) is also a discretisation of a
continuous-time signal f̄

(i)(t) in the sense of Definition 9, where
f

(i)(k, T) is defined as

f̄
(i)(k, T) :=

δ

μTδ + 1

i

f (k, T) . (51)

 
Proof: It is shown below that the discrete-time signal f

(i)(k, T)

satisfies Definition 9, where ϕk
(i) satisfies ϕk

(i) = ϕ̄
(i)(kT).

Weak derivative definition (Definition 5) and characteristic of
general difference (Lemma 1) yields

lim
T → 0

f̄
(i), ϕ̄ −

δ

μTδ + 1

i

fk, ϕk (52)

= lim
T → 0

( − 1)i
f̄ , ϕ̄

(i)

−( − 1)i 1
μTδ + 1

i

fk, δ
i
ϕk − i

(53)

= lim
T → 0

f̄ , ϕ̄
(i) −

1
μTδ + 1

i

fk, δ
i
ϕk − i (54)

= lim
T → 0

f̄ , ϕ̄
(i) − fk, ϕk

(i)

+ fk, ϕk
(i) − fk, δ

i
ϕk − i

fk, δ
i
ϕk − i −

1
μTδ + 1

i

fk, δ
i
ϕk − i .

(55)

Since norm is subadditive, triangle inequality holds and it yields

≤ lim
T → 0

f̄ , ϕ̄
(i) − fk, ϕk

(i)

+ lim
T → 0

fk, ϕk
(i) − fk, δ

i
ϕk − 1

+ lim
T → 0

fk, δ
i
ϕk − i −

1
μTδ + 1

i

fk, δ
i
ϕk − i ,

(56)

rearranging the above equation leads to

= lim
T → 0

f̄ , ϕ̄
(i) − fk, ϕk

(i)

+ lim
T → 0

∑
k = − ∞

∞

T fk ϕk
(i) − δ

i
ϕk − i

+ lim
T → 0

∑
k = − ∞

∞

T fk −
1

μTδ + 1

i

fk δ
i
ϕk − i .

(57)

Since f (k, T) is a discretisation of f̄ (t) in the sense of Definition 9,
the first term converges to 0 as T approaches 0. The second term is
shown in the definition of differentiation to converge to 0 as T goes
to 0. The third term approaches 0 as T goes to 0 with
(1/(μTδ + 1))i satisfies the following condition:
limT → 0 (1/(μTδ + 1))i = 1. Therefore, f

(i)(k, T) is a discretisation
of f̄

(i)(t).□
The above theorem becomes to be able to discretise weak

derivatives. Since conventional interpretation of general difference
δ /(μTδ + 1) is a finite difference approximation of differentiation,
differentiated signals should be sufficiently smooth.

The validity of the proposed Definition 9 is explained below:

• The proposed definition of the discrete-time generalised
function (Definition 8) approaches (7) of the continuous-time
distribution definition (Definition 4) as T → 0.

• It is shown in Theorem 4 that the proposed Definition 9 is an
extension of conventional Definition 1.

• Section 4 describes to verify the validity of the proposed
definition with Dirac's delta function that is one of the typical
singular distribution.

4௑Dirac's delta function and its derivatives
discretisation
This section derives a discretisation and some characteristics of
Dirac's delta function and its derivatives to present adaption
examples and verify the validity of the proposed definition.

Deriving a discretisation of Dirac's delta function δ̄ in the sense
of Definition 9 is shown below.
 

Theorem 6: (Discretisation of Dirac's delta function δk): A
discretisation of a continuous-time Dirac's delta function δ̄ (14) in
the sense of Definition 9 is given by

δk :=
1
T

, k = 0,

0, k ≠ 0.
(58)

 
Proof: Substituting (58) in Definition 9 ((20)) yields

lim
T → 0

δ̄, ϕ̄ − δk, ϕk

= lim
T → 0

ϕ̄(0) − ∑
k = − ∞

∞

Tδkϕk

(59)

= lim
T → 0

∥ ϕ̄(0) − ϕ0 ∥ (60)

= 0. (61)
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Since the discrete-time signal, δk (58) satisfied Definition 9, it is a
discretisation of continuous-time Dirac's delta function, δ̄ (14), in
the sense of Definition 9.□

Fig. 1 shows δk (58). 
While (58) is not identical to Kronecker's delta, or unit pulse

[13, 14], which is often used in digital signal processing as a
discrete-time version of impulse function, it is identical to a
popular discrete-time impulse function in delta form digital control
[6, 7].

Deriving a discretisation of Dirac's delta function derivatives δ̄
in the sense of Definition 9 with Theorem 6 and 5 is shown below.
 

Theorem 7: (Discretisation of Dirac's delta function derivatives
δμ, k

(i) ): A discrete-time signal δμ
(i)(k, T) defined as the following is a

discretisation in the sense of Definition 9 of Dirac's delta function
derivatives

δμ, k
(i) :=

δ

μTδ + 1

i

δk . (62)

 
Proof: The proof is easily verified with Theorem 6 and

Theorem 5.
Figs. 2–5 show δμ, k

(i)  whose parameters are chosen as
i = 1, 2, μ = 0, 1. 

When μ = 0, the above signal is not proper.
It is shown below that convolution characteristics of derived

discrete-time signals, δk, (58) and δμ, k
(i) , (62) correspond to

continuous-time characteristics.
 

Theorem 8: (Convolution of δk, δμ, k
(i) ): Discrete-time

convolutions of δk (58), δμ, k
(i)  (62) are given by

δk ∗ f k = f k, (63)

δμ, k
(i) ∗ f k =

δ

μTδ + 1

i

f k, (64)

 
Proof: . Induction on i prove this theorem.
For i = 0, equation is given by

δk ∗ f k = ∑
n = − ∞

∞

Tδn f k − n (65)

= ( f k + f k − 1 + …) − ( f k − 1 + f k − 2 + …) (66)

= f k . (67)

Assume that the theorem is true for i = j, the equation is given by

δμ, k
( j) ∗ f k = ∑

n = − ∞

∞

Tδμ, n
( j)

f k − n =
δ

μTδ + 1

j

f k . (68)

We then have to show for i = j + 1 that

δμ, k
( j + 1) ∗ f k = ∑

n = − ∞

∞

Tδμ, n
( j + 1)

f k − n (69)

= ∑
n = − ∞

∞

T
δ

μTδ + 1
δμ, n

( j)
f k − n (70)

=
δ

μTδ + 1 ∑
n = − ∞

∞

Tδμ, n
( j)

f k − n (71)

=
δ

μTδ + 1
δ

μTδ + 1

j

f k (72)

=
δ

μTδ + 1

j + 1

f k, (73)

which is exactly the right-hand-side of the equation.□
The above theorem leads to the following. It is shown below

that convolutions of discrete-time Dirac's delta function and its
derivatives are discretisation of continuous-time.
 

Theorem 9: (Convolutions of Dirac's delta function and its
derivatives): If a discrete-time signal f (k, T) is a discretisation of a
continuous-time signal f̄ (t), then discrete-time convolutions
δk ∗ fk, δμ, k

(i) ∗ fk are discretisation of continuous-time convolutions
δ̄ ∗ f̄ , δ̄(i) ∗ f̄ .
 

Proof: As in the case of δk ∗ fk, since f (k, T) is a discretisation
of f̄ (t), it is clear with Theorem 2 and Theorem 8. Similarly, as in
the case of δμ, k

(i) ∗ fk, it is clear with Theorem 3, Theorem 5 and
Theorem 8.□

Fig. 1௒ Discrete-time Dirac's delta function δk

 

Fig. 2௒ Discrete-time Dirac's delta function derivative δ0, k
1

 

Fig. 3௒ Discrete-time Dirac's delta function derivative δ1, k
1

 

Fig. 4௒ Discrete-time Dirac's delta function derivative δ0, k
2

 

Fig. 5௒ Discrete-time Dirac's delta function derivative δ1, k
2
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5௑Simulations
In this section, simulations are carried out to show that different
types of signals can be obtained by changing parameter μ of the
proposed model. Fig. 6 shows the series discrete-time
differentiators for this purpose. When the step input hk defined as

hk :=
0, k < 0,

1, k ≥ 0,
(74)

is used, the outputs of the first and the second blocks are discrete-
time models of the impulse and doublet signals, respectively.
Shown in Figs. 7–9 are the results obtained for μ = 2.0 with
T = 1 , 0.5and0.1 s, respectively. Their magnitudes at t = 0
increase as T decreases, and these responses approach zero
monotonically, which look similar to the impulse obtained by
Gaussian's approximation (It might be easier to visualise the
continuous-time stair-case waveform obtained through the zero-
order-hold.). Figs. 10–12 are the results obtained under the same
condition except for μ = 1.0. This is a special case of the above
with the responses converging to zero in a single step. Figs. 13–15
are for μ = 0.7, where the responses converge to zero with both
positive and negative swings and look similar to those obtained
using Dirichlet's kernel. Figs. 16–18 show the outputs of the

second block for three values of μ and with T = 0.1 s, which are
valid discrete-time models of the continuous-time doublet signals
under the definition given in the present paper, without which such
conclusions are difficult to draw. 

6௑Conclusions
The concept of distribution is abstract but useful idealisation in
simplifying expressions and handling real phenomena, even though
no such physical signals may exist exactly. Discrete-time signals
have finite values and it is not absolutely necessary to introduce
generalised functions as in continuous-time signals. However, it
turns out to be useful to introduce a discrete-time functional that

Fig. 6௒ Block diagram of simulation
 

Fig. 7௒ Discrete-time delta – general difference of step function,
μ = 2.0, T = 1 s

 

Fig. 8௒ Discrete-time delta – general difference of step function,
μ = 2.0, T = 0.5 s

 

Fig. 9௒ Discrete-time delta – general difference of step function,
μ = 2.0, T = 0.1 s

 

Fig. 10௒ Discrete-time delta – general difference of step function,
μ = 1.0, T = 1 s

 

Fig. 11௒ Discrete-time delta – general difference of step function,
μ = 1.0, T = 0.5 s
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approaches continuous-time distribution as the discrete-time
interval approaches zero. A key in this extension is to take multiple
sampling points into account, rather than a single point as has been
considered previously. Using the results obtained in the present
paper, discrete-time signals that approach a continuous-time
distribution in the sense defined in the paper can now be created
easily. For instance, the discretisation of derivatives of a
distribution can be found as the discrete derivatives of a
discretisation of a distribution. This is much easier than the
traditional approach, where ordinary functions must first be found
as appropriate approximations of the derivatives of a distribution
and assessments of their validity must be conducted for each such
approximation. Without such endeavours, one is not sure if the

discrete-time model can be expected to behave as in the
continuous-time case at the limit of discrete-time interval
approaching zero. These proposed models form a class of
discretised systems and an infinite number of other and new
models can be obtained. As an example, Dirac's delta function and
its derivatives, which are typical distributions and often appear as
input signals and system responses, are discretised so that the
results obtained using on-line discrete-time computations approach
those of continuous-time originals as the discretisation period
approaches zero. This is what has been expected but not achieved
for systems expressed in the descriptor form with arbitrary initial
conditions and inputs. It is indeed crucial to choose a proper initial
condition on and calculate the responses of, descriptor systems,

Fig. 12௒ Discrete-time delta – general difference of step function,
μ = 1.0, T = 0.1 s

 

Fig. 13௒ Discrete-time delta – general difference of step function,
μ = 0.7, T = 1 s

 

Fig. 14௒ Discrete-time delta – general difference of step function,
μ = 0.7, T = 0.5 s

 

Fig. 15௒ Discrete-time delta – general difference of step function,
μ = 0.7, T = 0.1 s

 

Fig. 16௒ Discrete-time doublet – general difference of delta function,
μ = 2.0, T = 0.1 s

 

Fig. 17௒ Discrete-time doublet – general difference of delta function,
μ = 1.0, T = 0.1 s
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where impulsive responses can be preserved or avoided
corresponding to the continuous-time case [3]. Simulations have
also been carried out and shown that by changing a single
parameter, different types of signals can be obtained, including
those known with the traditional methods that uses Gaussian
distributions and Dirichlet kernels.
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