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Abstract: Oil palm crops are essential for ensuring sustainable edible oil production, in which
production is highly dependent on fertilizer applications. Using Landsat-8 imageries, the feasibility
of macronutrient level classification with Machine Learning (ML) was studied. Variable rates of
compost and inorganic fertilizer were applied to experimental plots and the following nutrients
were studied: nitrogen (N), phosphorus (P), potassium (K), magnesium (Mg) and calcium (Ca). By
applying image filters, separability metrics, vegetation indices (VI) and feature selection, spectral
features for each plot were acquired and used with ML models to classify macronutrient levels
of palm stands from chemical foliar analysis of their 17th frond. The models were calibrated and
validated with 30 repetitions, with the best mean overall accuracy reported for N and K at 79.7± 4.3%
and 76.6 ± 4.1% respectively, while accuracies for P, Mg and Ca could not be accurately classified
due to the limitations of the dataset used. The study highlighted the effectiveness of separability
metrics in quantifying class separability, the importance of indices for N and K level classification,
and the effects of filter and feature selection on model performance, as well as concluding RF or SVM
models for excessive N and K level detection. Future improvements should focus on further model
validation and the use of higher-resolution imaging.

Keywords: oil palm; nitrogen; phosphorus; potassium; machine learning; classification; Landsat-8

1. Introduction

The global population is projected to reach 7.58 billion by the end of the year and an
additional 27.7 million tonnes of edible oil will be required to fulfill food demands. With its
greater per-hectare production and economic competitiveness, oil palm is a pivotal crop in
ensuring sufficient edible oil is available in the global market [1]. Agriculture has at times
become a controversial topic among conservationists due to its negative impacts on the
environment, such as biodiversity loss, deforestation, and increased carbon emissions [2–5].
Precision agriculture (PA), which involves informed decision making in agriculture using
information interpreted from sensor-based data (such as the remote sensing data in this
paper) or other sources, is currently sought as a solution for improved sustainable food
production [6–9].
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In fertilizer application, PA enables site specific management by determining macronu-
trient status and fertilizer requirement in individual plants. These macronutrients include
nitrogen (N), phosphorus (P), potassium (K), magnesium (Mg) and calcium (Ca), which
are essential for ensuring good plant health [7–10]. Like most plants, macronutrient levels
in palm trees are diagnosed via removal of leaflets for destructive chemical analysis, such
as the Kjeldahl method for N determination [11–23]. By relating remote sensing and GIS
technology data with field results at promising accuracy and precision, the findings could
be extrapolated to plantation scales, enabling more efficient, economic and non-destructive
means of fertilizer management. This ensures global food security is met under sustainable
terms via increasing crop production with available land and resource [7,8,15,20].

Spectroradiometers are the fundamental sensing tools utilized in nutrient prediction,
due to their capacity to record reflectance readings ranging from the visible (VIS) to
the shortwave infrared (SWIR) region of the electromagnetic spectrum (300–2500 nm) in
hundreds of narrow wavebands. The data heaps from spectroradiometers warranted the
use of machine learning (ML) subsequently, due to its ability to extract information from
datasets with high dimensions and non-linear structures [20–22]. Because ML algorithms
acquire their solutions with different mathematical approaches, this prompts the adoption
of at least two algorithms in most studies for comparison purposes [18–22]. Successful
predictions with spectroradiometer data have been seen in rice [18,23–26], citrus [11,12],
wheat [10,20,27–29], oilseed rape [13,16,30], pastures [21,22,31–33] and other plants [34–36].

It can be seen that the wavelengths selected in literature for N prediction are fo-
cused in the green (i.e., 510–550 nm) and red edge (i.e., 710–750 nm) regions, which
correspond to chlorophyll characteristics [12,20,37]; this is contrary to P and K, in which
wavelengths at the SWIR region play a large role, in addition to those in the VISNIR
region [13,14,23,29,30,32–35]. Additionally, specific wavelengths identified as significant
explanatory variables may be used to derive vegetation indices (VI) mathematically for
improved prediction [23,29]. However, the exact wavelengths identified for predictions
may differ between crops, their varieties, and methods used. The authors of [20] identified
526 nm and 716 nm as ideal predictors for wheat N, while [25] concluded 522 nm and
740 nm for rice N, with both studies using the ratio of the readings from the first derivatives
of their respective wavelength pairs. On the other hand, [13,30] identified several highly
similar wavelengths despite use of different methods for oil seed rape N prediction ([13]:
513 nm, 542 nm, 718 nm, 928 nm, 1015 nm; [30]: 574 nm, 719 nm, 918 nm, 1017 nm).

It remains unfortunate that spectroradiometers are unaffordable for most agricultural
practitioners, in addition to its more laborious nature when plants have to be scanned
individually for plantation-scale monitoring. Multispectral imaging from satellite sensors
may offer a solution to wide-scale and affordable measures for nutrient monitoring. To
date, a handful of research has attempted N prediction using high spatial resolution
(<5 m) multispectral images captured from commercial satellites, such as QuickBird [38],
GeoEye-1 [39], SPOT 7 [40] and WorldView-2 [41], with promising results. Sadly, free
medium-resolution data from satellite sensors such as Landsat-8 OLI, Sentinel 2 MSI,
ASTER and Sentinel 3 OLCI were even greater in rarity [42,43], or at best, simulated with
spectroradiometer readings [31]. In palm trees, similar platforms (i.e., spectroradiometer
and high resolution images) have been explored for the prediction of N, P and K [40,44–46],
although difficulty in its widespread application still remains with its inaccessibility to oil
palm smallholders.

Taking leverage of its free availability and consistent revisit frequency, this study
assessed Landsat-8 OLI satellite imageries and ML algorithms (i.e., Support Vector Machine
(SVM), Artificial Neural Network (ANN), Random Forest (RF)) in classifying nutrient
levels of palm trees with different treatments for the following macronutrients: nitrogen
(N), phosphorus (P), potassium (K), magnesium (Mg) and calcium (Ca). Given its 30 m
resolution, the study proposed an open-source and plot-based method to classify the
nutrient status of palm trees via image processing, feature extraction and ML classification.
The aim of this study is to produce a freely available nutrient level classification model with



Remote Sens. 2021, 13, 2029 3 of 28

Landsat-8 OLI imageries as input. Studies to date on nutrient estimation have only focused
on spectroradiometer data or high resolution imaging, particularly for N. The positive
results acquired from this research will open insights to the potential of using easily
available coarse satellite imaging in classifying plot N and other macronutrient levels via
ML, subsequently allowing long-term monitoring of palm plantations at a large scale. This
would not only promote efficient, convenient and cost-effective nutrient management at a
plantation scale, but increase the accessibility of nutrient monitoring to smallholders.

2. Materials and Methods
2.1. Study Area and Experimental Setup

The study was carried out at an oil palm plantation located in Johor, Malaysia, from
2013 to 2017 (Figure 1). The palm trees were planted at a 144 trees/hectare (ha) density.
Malaysia is a country with a tropical climate due to its proximity to the equator. According
to [47,48], the study area is characterized by lowlands consisting of soil from the Rengam
series (USDA Soil Taxonomy: Ultisols). Temperature, average monthly rainfall and average
wind speed in the area during the study period ranged from 23 ◦C to 33 ◦C (annual
average: 29 ◦C), 64.01 mm to 350.9 mm (annual average: 2066.4 mm) and 3.9 to 9.7 km/h,
respectively [49]. Overall, soil and climate conditions were suitable for palm cultivation
with possible improvements from fertilizer application [48,50]. In total, the experimental
plots covered 3.97 ha of palm trees, spanning across 39.44 ha of palm plantation. Palm
stands were aged five and half years when the experiment was initially conducted. Three
levels of inorganic fertilizer and four levels of compost were applied for N, P, K and
Mg in a factorial design with three replicates for each tree. N, P, K and Mg fertilizers
applied were ammonium chloride (NH4Cl), rock phosphate (P), muriate of potash (KCl)
and kieserite (MgSO4·H2O). This resulted in 36 plot observations in total. Specific details
on treatment levels are shown in Table 1 and Figure 1. It should be noted that soil and
plant interactions were not taken into account in this study as this research’s purpose is
to evaluate the potential of ML models in classifying nutrient levels in palm tree plots
using coarse imagery, and fertilizer applications were conducted to induce nutrient level
variability in plots.

Table 1. Description of fertilizer and compost treatment levels for nitrogen (N), phosphorus (P),
potassium (K) and magnesium (Mg). Amounts are measured in kg nutrient per tree.

Treatment Levels Fertilizer Treatment
(N, P, K, Mg in kg palm−1 year−1)

Compost Treatment
(N, P, K, Mg in kg palm−1 year−1)

1 0, 0, 0, 0 0, 0, 0, 0
2 0.42, 0.53, 0.60, 0.16 0.45, 0.13, 0.80, 0.12
3 0.84, 1.05, 1.20, 0.34 0.90, 0.26, 1.60, 0.24
4 N/A 1.35, 0.40, 2.40, 0.36
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thermal infrared 2 (TIR2): 11.5–12.51 μm), at 30 m (panchromatic at 15 m) and 100 m spa-
tial resolution respectively. Images close to sampling dates were manually screened to 
ensure the subset consisting of the study site was cloud-free, followed by further inspec-
tion with the quality assessment band (BQA) provided in the download. Overall, the se-
lected images were +/− 2 weeks from the stipulated date. Specific details of selected im-
ageries are as below (Table 2).  

Figure 1. Location of study area in Malaysia. Highlighted boxes in enlarged image of study area
are plots considered for the study while numbers in each plot represent treatments applied to the
respective plots. The first and second numbers represent treatment levels for fertilizer and compost,
respectively (e.g., a plot with the number “13” is treated with level 1 fertilizer treatment and level 3
compost treatment). Compiled from GoogleEarth Pro.

2.2. Materials/Data Collection

Each plot consisted of 4 × 3 (12) palm trees, with an average plot area of 1100 m2.
In each plot, frond 17 from all 12 palm trees was sampled to produce ground truth by
destructive foliar analysis and its nutrient status was acquired as a mean of all observations
in the plot. Frond 17 was selected as the reference for palm tree nutrient levels due to
past studies indicating its greater representation of nutrient status and correlation between
nutrient contents and yield [51]. N was acquired using combustion or near-infrared (NIR)
spectroscopy, while P, K, Mg and Ca were acquired by wet ashing or NIR spectroscopy [52].
The acquired foliar nutrient status was reported in % dry matter (DM). By conducting the
experiment for five consecutive years (2013–2017), 36 plot observations from each year
yielded 180 samples in total. The coordinates of the four corners of each plot (Figure 1)
were recorded using a Trimble Geo7 handheld GPS device.

For image acquisition, Landsat-8 OLI/TIRS imageries (Level 1 Product) were down-
loaded from the Earth Explorer-USGS website (earthexplorer.usgs.gov, accessed on 15 De-
cember 2020). Launched in 2013, the Landsat-8 satellite is mounted with the Operational
Land Imager (OLI) and the Thermal Infrared Sensor (TIRS) instrument, offering images
scenes with nine spectral bands (aerosol: 0.43–0.45 µm; blue (B): 0.45–0.51 µm; green (G):
0.53–0.59 µm; red (R): 0.64–0.67 µm; near-infrared (NIR): 0.85–0.88 µm; shortwave infrared
1 (SWIR1): 1.57–1.65 µm; shortwave infrared 2 (SWIR2): 2.11–2.29 µm; panchromatic (Pan):
0.50–0.68 µm; cirrus (Cir): 1.36–1.38 µm) and two thermal bands (thermal infrared 1 (TIR1):
10.6–11.19 µm; thermal infrared 2 (TIR2): 11.5–12.51 µm), at 30 m (panchromatic at 15 m)
and 100 m spatial resolution respectively. Images close to sampling dates were manually
screened to ensure the subset consisting of the study site was cloud-free, followed by

earthexplorer.usgs.gov
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further inspection with the quality assessment band (BQA) provided in the download.
Overall, the selected images were +/− 2 weeks from the stipulated date. Specific details of
selected imageries are as below (Table 2).

Table 2. Date of foliar sampling in each year and description of Landsat-8 OLI/TIRS images selected
for analysis.

Year Foliar Sampling Period Image_Date Path Row

2013 4/2013 24 April 2013 125 59
2014 4/2014 26 March 2014 125 59
2015 10/2015 7 October 2015 125 59
2016 10/2016 10 November 2016 125 59
2017 10/2017 26 September 2017 125 59

2.3. Methods
2.3.1. Data Processing

QGIS and the Python programming language were used for all data processing in
the study. Nutrient level classes were constructed based on critical value ranges provided
by [53] (See Appendix A.3, Table A1). As a result, five class ranges were produced and
assigned with an ordinal class value: Deficient = 1, Marginally Deficient = 2, Optimum = 3,
Marginally Excessive = 4 and Excessive = 5. For each nutrient observation of each plot, its
value is therefore assigned based on the derived class ranges (e.g., a plot observation of
2.50% N in DM would be in the Optimum class range and thus assigned the class value 3).
The distribution of samples among nutrient levels is shown in Table 3 (Left). To reduce
overfitting or biased analysis, observations from nutrient level classes identified to have
less than 10 samples are merged with the adjacent class, yielding Table 3 (Right).

Table 3. Distribution of observations based on critical values of nutrient levels before (Left) and after
(Right) merging low sample classes.

Initial Distribution Corrected Distribution

Class N P K Mg Ca N P K Mg Ca
Deficient (Def) 0 0 0 2 0 0 0 0 0 0

Margin Def (Mar Def) 0 8 0 76 2 0 0 0 78 0
Optimum (Opt) 62 163 68 99 154 62 177 68 99 156

Margin Ex (Mar Ex) 94 6 109 0 21 94 0 109 0 21
Excessive (Ex) 21 0 0 0 0 21 0 0 0 0

The best image scene identified each year was atmospherically corrected by applying
a Dark Object Subtraction (i.e., DOS1) algorithm from a plugin in QGIS by [54]. Despite
the availability of Landsat-8 Surface Reflectance images (Level-2 Product) provided by
USGS, the study proceeded with DOS due the transferrability of the approach between
images from different platforms. This approach would enable a transferrable model to be
developed in events where surface reflectance products are not available for a particular
image and simple atmospheric correction without cost and climatological parameters are
required. Using GoogleEarth Pro as reference, the series of satellite images was checked for
co-registration, followed by a subset and resampling with the nearest neighbour to produce
a Region of Interest (ROI). In a shapefile layer, the recorded coordinates for the four corners
of each plot were used to produce a rectangular polygon feature encompassing the plot
area. The shapefile layer was rasterized to produce a binary mask with a dimension equal
to the ROI (294 × 524 pixels) as means to extract the band mean reflectance values of
all plots in the ROI (Appendix A.1, Figure A1). The spatial resolution of the resampled
ROI and the binary mask was determined at 1.6 m as the resolution required to preserve
the rectangular shape of the polygon features during rasterization. It was essential to
ensure a suitable resampling resolution was selected based on the size of polygons as a
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low resampling resolution would result in overestimation of polygon area and incorrect
value extraction [55–57] (See Figures A2 and A3 at Appendix A.1). Masking and extraction
enabled only mean values calculated from the extent of each plot in the ROI to be included
in further analysis. The acquisition of these values allowed subsequent calculation of the
Jeffries–Matusita (J-M) distance for all possible pairwise combinations of nutrient levels in
each nutrient to quantify the separability of values between plots from different nutrient
levels. The J-M distance is a distance which takes into account the covariance matrix
between features of pairwise classes (Equation (1)). The value ranges from 0 to 2, with a
value >1.8 between classes considered good for separability [54,58–60]:

B =
1
8
(x− y)t

(
∑ x + ∑ y

2

)−1
(x− y) +

1
2

ln


∣∣∣∑ x+∑ y

2

∣∣∣
|∑ x|

1
2 |∑ y|

1
2

,Jxy = 2
(

1− e−B
)

(1)

where:

x, y = first and second spectral signature vector
∑ x, ∑ y = covariance matrix of plot
B = Bhattacharya distance
Jxy = Jeffries–Matusita distance

In attempts to reduce image noise and improve separability, the following filters and
transforms were applied to the series of images: standard filters (i.e., min, median, max,
gaussian and rank) and fast fourier transform (FFT). The process was carried out using
Numpy, Pywt and Scipy libraries in Python. For FFT filtering, the image was transformed
to the 2D frequency domain and swapped for quadrants to obtain the image center [61].
Values for coordinates within 1 x or y unit from the centre of domain (i.e., (0, 0), (0, 1), (1, 0),
(0, −1), (−1, 0)) were retained, while other values in higher frequencies were suppressed
by 10 times by multiplying the values by a coefficient of 0.1. Therefore, the filter functions
as a minimum filter with the ability to suppress values at specific frequencies via the 2D
frequency domain (Appendix A.2, Figure A4). To identify the best-performing filter, value
extraction and distance calculation were repeated for all unfiltered (as control) and filtered
image scenes, whereby the approach yielding the highest J-M distance averaged from all
five nutrients was considered the best choice.

2.3.2. Vegetation Index and Feature Selection

Vegetation indices (VI) are effective in enhancing signals from vegetation and sup-
pressing unintended noises. VIs were selected for this study by evaluating VIs listed in a
review on VI development [62]. The corresponding research article where each VI was first
mentioned was studied to identify its feasibility for application, with the following criteria
in mind, and with priority in descending order:

Criterion 1: VI was derived with strong theoretical or mathematical foundation
Criterion 2: VI was derived with general applicability in mind
Criterion 3: VI was derived with satellite bands or broadband wavelengths

In total, 16 VIs were shortlisted for application in this study, in which their respective
derivation was carried using values from four bands (i.e., B, G, R and NIR) of the best
filtered image. In addition to the initial bands (i.e., B, G, R, NIR, SWIR1, SWIR2), a
total of 22 spectral features would be used as model inputs for nutrient level classification.
The reference, index name and formula of each VI are portrayed in the table below (Table 4):
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Table 4. Vegetation indices (VI) selected as additional feature and for analysis. Parenthesis after full name of VI refers to
acronym used throughout study.

Reference VI Formula

[63] Normalized Difference Vegetation Index (NDVI) NIR−R
NIR+R

[63] Transformed Vegetation Index (TVI)
√

R + 0.5

[64] Soil-Adjusted Vegetation Index (SAVI) NIR−R
NIR+R+L × (1 + L) L = 0.5

[65] Green NDVI (GNDVI) NIR−G
NIR+G

[65] Green Atmospherically Resistant vegetation Index (GARI) NIR−(G−λ(B−R))
NIR+(G−λ(B−R)) λ = 1

[66] NIR/R ratio NIR
R

[66] NIR/G ratio NIR
G

[67] Soil adjusted and Atmospherically Resistant Vegetation
Index (SARVI)

NIR−(R−γ(B−R))
NIR+(R−γ(B−R))+L

L = 0.5, γ = 1

[68] Enhanced Vegetation Index (EVI) Gain NIR−R
NIR+(C1×R)−(C2×B)+L

L = 1, C1 = 6, C2 = 7.5, Gain = 2.5

[69] Atmospherically Resistance Vegetation Index (ARVI) NIR−(R−γ(B−R))
NIR+(R−γ(B−R)) γ = 1

[70] Modified SAVI (MSAVI) 2NIR+1−
√
(2NIR+1)2−8(NIR−R)

2

[71] Optimized SAVI (OSAVI) NIR−R
NIR+R+0.16

[72] Modified Simple Ratio (MSR) NIR
R − 1/

√
NIR

R + 1

[73] Renormalized Difference Vegetation Index (RDVI) NIR−R√
NIR+R

[74] Infrared Percentage Vegetation Index (IPVI) NIR
NIR+R

[75] 2-Band EVI (EVI2) 2.5 NIR−R
N+2.4R+1

VIs will be applied in two of the studied scenarios. As the VIs selected are derived from
mostly similar initial bands (e.g., RDVI and IPVI both use values from R and NIR band),
multicollinearity problems may occur. To address this, feature selection via correlation
analysis and variance inflation factor (VIF) was conducted for one of the scenarios (i.e.,
Scenario 3, see Section 2.3.4). VIF has been applied in many studies involving multiple
variable regressions to ensure minimal collinearity between independent variables [76–78]:

VIF =
1

1− R′2
(2)

where:

R′2 = coefficient of determination between an independent variable and the other indepen-
dent variables.

For each nutrient, the first 11 indices with the highest correlation coefficient were
selected. VIF was applied to reduce the number of features further for dimension reduction
and avoiding multicollinearity problems. VIFs between the variables were generated and
the six variables with the lowest VIFs were selected. It is suggested that the VIF value
for each variable should be less than 10 to avoid multicollinearity. To achieve this, the
calculation of VIF values for variables with each other and the elimination of the variable
with the highest VIF value were conducted iteratively until all variables possessed a VIF
value of less than 10 upon VIF re-calculation.

In a nutshell, processing images via Sections 2.3.1 and 2.3.2 subsequently resulted in
specific vector features with paired class values for each nutrient or scenario, which would
be applied as inputs for the algorithms of interest.
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2.3.3. Machine Learning

Supervised machine learning (ML) algorithms were applied in the classification prob-
lem of this study. Supervised learning, the most common type of ML algorithm, constructs
a decision function for future predictions by associating given sample features with their
corresponding class values in a dataset given during model training. Support Vector Ma-
chine (SVM), Artificial Neural Network (ANN) and Random Forest (RF) were selected
for this study. All models were implemented in the Python 3.7 environment using the
Scikit-learn library.

The SVM is an instance-based supervised learning algorithm developed by Vapnik
in the 20th century and originated from the Vapnik–Chervonenkis (VC) theory. At its
core, the model classifies samples by deriving an optimal separating hyperplane which
maximizes the margin between the boundaries of different classes through solving a convex
optimization problem [79,80]. Following suggestions by [81], the optimal hyperparameter
C (C) and gamma (gamma) were each searched in exponents of 2 (i.e., 2−15, 2−14, . . . , 215),
while the RBF kernel (kernel = rbf) was adopted due to its ability to map data implicitly
into a higher dimensional space.

The Multilayer Perceptron (MLP) was selected as the ANN model for this study. The
model is a Feedforward Neural Network obeying empirical risk minimization. The model
attempts to minimize the squared error in a cost function using gradient descent methods
such as the back-propagation algorithm, in which error values are propagated backwards
in the model to improve its performance at each iteration [82,83]. The model consists of one
hidden layer, and the Rectified Linear Unit was selected as the activation function. Hidden
layer sizes (i.e., hidden_layer_sizes) were searched between 1 to 10 with learning rate at
0.2, 0.1 and 0.05 (i.e., learning_rate_init), while setting maximum iterations (i.e., max_iter)
to 2000.

RF is an ensemble model consisting of a collection of classification and regression trees
(CART) [84]. The model applies the bootstrap aggregation (or Bagging) which reduces
model bias and increases variance. In each tree, samples are split into nodes based on
their function (i.e., Gini index) and the number of features defined by the user (features are
randomly selected) [85,86]. In RF, the number of estimators or trees was searched between
100, 200 and 500; the minimum sample for splitting was explored at multiples of 2 from 2
to 14; while the maximum number of features was set between 1 and 6.

2.3.4. Performance Evaluation

For each model, the classification accuracy and the confusion matrix were used as
the performance metrics to evaluate the model in both the calibration and the valida-
tion stage. Cohen’s kappa score was also provided for each of the respective models
(See Appendix A.3, Table A9). Together with grid search and 3-fold cross validation, 50%
of all samples were randomly selected and used to identify the best combination of hyper-
parameters for the model. Calibration and validation were conducted for 30 repetitions,
where the samples were randomly split to 50:50 at every iteration. The process was also
conducted in the Python 3.7 environment with the Scikit-learn library.

To explore the effectiveness of filters, VIs and feature selection, classification by the
model was assessed under four different scenarios: Scenario 1: Unfiltered (Control) band
mean reflectance of sites (number of features = 6); Scenario 2: Best filtered band mean
reflectance of sites (number of features = 6); Scenario 3: Feature selection of the best filtered
case (number of features vary with each nutrient); and Scenario 4: All features of the best
filtered case (number of features = 22). Figure 2 summarizes the methodology applied for
this study.
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3. Results
3.1. Data Description and Processing

Most samples from N, P, K, Mg and Ca were grouped in the Marginally Excessive
(Mar Ex), Optimum (Opt), Marginally Excessive, Optimum and Optimum classes, respec-
tively (Table 5). Given that P only has less than 10 samples, merging observations resulted
in all observations being in the optimum class and its exclusion from further model deriva-
tion. Other nutrients with their observations from one class merged to the subsequent class
include Mg and Ca, with samples at Deficient (Def) and Marginally Deficient (Mar Def)
classes merged to the subsequent class respectively. Among nutrients to be analysed, Mg
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had a rather balanced sample distribution despite the dominant class occupying more than
50% of all observations.

Table 5. Data description of foliar analysis of samples in study site.

Stats N P K Mg Ca

Units %DM %DM %DM %DM %DM
Mean 2.84 0.17 1.23 0.25 0.68
Min 2.40 0.15 0.99 0.16 0.44
Max 3.09 0.19 1.51 0.34 0.83
Std 0.148 0.009 0.095 0.032 0.068
Cov 5.2% 5.4% 7.7% 12.6% 9.9%

Class Ex Opt Mar Ex Opt Opt

From Table 6, it could be seen that the overall spectral signature exhibited from the
observations was similar to plants or oil palms: peak G, absorptions at B and R, NIR
reflectance shoulder and SWIR absorptions. When compared, the Covs of both nutrients
and reflectance values of NIR in addition to SWIR regions were similar in magnitudes:
nutrients ranged from 5.2% to 12.6%, while reflectance values from 4.5% to 8.8%. Mg and B
band reported with the highest value respectively (Tables 5 and 6).

Table 6. Descriptive analysis of plot reflectance values from spectral bands of Landsat-8 images used.

Stats B G R NIR SWIR1 SWIR2

Mean 0.0452 0.0507 0.0397 0.3842 0.1733 0.0689
Min 0.0202 0.0344 0.0233 0.3479 0.1565 0.0586
Max 0.0906 0.0906 0.0776 0.4206 0.1901 0.0860
Std 0.0199 0.0160 0.0150 0.0177 0.0078 0.0061
Cov 44.04% 31.60% 37.63% 4.61% 4.52% 8.80%

3.2. Filter and Feature Selection

J-M distances when applying filters for the studied nutrients were summarized in
Table 7. At control, N was identified to have the highest J-M distance (thus separability)
between different classes, while Ca reported the lowest value. All applied methods led
to an overall improvement in J-M distances between classes, suggesting better feature
separability. Both identified filters were found as functionally similar to the minimum filter:
Fourier filter involving 2D-FFT and subsequent suppression of high frequency values at
the frequency domain; while the Rank filter set with Rank 1 selects the 2nd-lowest value
among the centre pixel and its neighbours to replace its value. N and Ca benefited from the
Fourier filter, with the latter gaining a relative improvement of 50% in distance. K and Mg
experienced more improvements with the Rank filter instead, acquiring a <2.5% relative
increase in distance. Overall, VI transformation was conducted with values extracted from
images using the Rank filter, given its higher J-M distance when averaged among nutrients.
All pairwise J-M distances (i.e., between classes of nutrients for all filters) are provided in
Appendix A.3 (Tables A2–A8).

Table 7. Jeffries–Matusita (J-M) distance acquired for each nutrient by applying different filters. Val-
ues for each nutrient consist of an average from all pairwise distance values between possible classes.

Filters N K Mg Ca Average

Control 1.6463 0.7770 0.9124 0.7029 1.0097
Standard (Rank = 1) 1.6480 0.7839 0.9351 0.7001 1.0168

Fourier 1.6640 0.6642 0.7633 0.9496 1.0103

All nutrients were found to have statistically significant relationships with each other
at the 1% significance level (α = 0.01) (Figure 3). N is reported to be more correlated with P
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or Ca than with K or Mg. The highest correlation coefficient between nutrients was reported
between P and Ca, at 0.61. K reported negative correlation with all studied nutrients at
magnitude less than 0.30, except for Ca. Visible bands seem to correlate with each other
highly and positively (>0.90). NIR exhibited low correlation with SWIR1 and SWIR2,
contrary to the latter two exhibiting strong correlation (0.89) with each other. Excluding
Ca, correlation coefficients between nutrients and visible bands ranged between 0.20 and
0.40. In contrast, IR bands reported their best magnitude of correlation with N: NIR at 0.5,
SWIR1 at 0.44 and SWIR2 at 0.57.
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Table 8 shows the first 11 spectral features possessing the strongest correlation with the corresponding nutrient. The
feature which best correlates with each nutrient could be distinguished into two groups: initial spectral bands for K and
Mg; while correction-related indices for N and Ca. For N, the selected features ranged from 0.55 (MSR) to 0.77 (EVI) in
terms of correlation coefficient; while K ranged from 0.34 (EVI2) to 0.40 (G), Mg from 0.26 (MSR) to 0.31 (G) and Ca from
0.24 (TVI) to 0.34 (SARVI).

Table 8. Best 11 features based on correlation coefficient in descending order for each nutrient (Scenario 3). Feature names
in bold for each nutrient are the combination of features selected after VIF.

1 2 3 4 5 6 7 8 9 10 11

N EVI SARVI ARVI GARI MSAVI EVI2 NIR/R SAVI RDVI SWIR2 MSR
K G GNDVI B R TVI NDVI IPVI OSAVI RDVI SAVI EVI2

Mg G R B GNDVI TVI NDVI IPVI OSAVI GARI RDVI MSR
Ca SARVI NIR EVI2 EVI SAVI RDVI MSAVI GARI OSAVI ARVI TVI

Further application of VIF resulted in three features selected for N, two for K, two
for Mg and three for Ca (Table 8, Figure 3). It could be seen that the numbers of variables
selected for all nutrient cases were lower than the use of initial bands from the satellite
images (i.e., Scenario 1, no. of features = 6). Interestingly, none of the features selected
involved the use of SWIR bands during their respective derivations. This is attributed to
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the high correlation between selected indices with SWIR, as observed between GARI or
ARVI with SWIR1 (>0.70) or SWIR2 (>0.90) (Figure 3).

3.3. Machine Learning Model Performance

At calibration, the performance for N of almost all models were centred (i.e., median
and mean) at more than 0.8 (80%) in all scenarios, with the best performance of SVM, MLP
and RF reported in Scenario 1, 3 and 4 respectively (Figure 4). For K and Mg, the average
performances of all models seem to span a wider range: positioned in between 0.75 (75%)
to 1 (100%) for K, while 0.60 (60%) to 1 (100%) for Mg. All models were reported to have
the highest median and mean performance (>0.85) with Ca. When compared, the following
models were affected by scenarios: RF for K, MLP for N and MLP for K. For instance,
the average performance of MLP models in their best-performing scenario (Scenario 3:
0.844) was 9.2% higher than its worst performing counterpart (Scenario 1: 0.752) (Table 9).
RF reported the highest mean performance for most cases, achieving a perfect 1 (100%)
at least once for each nutrient. MLP, on the other hand, observed greater variability in
performance than RF and SVM, especially at lower quartiles. MLP for N (Scenario 3 and
4) and K (Scenario 2–4) reduced the most performance variability (i.e., boxplot size) with
scenarios, while RF and SVM found reduced performance variability with Scenarios 3 and
4 for K and Mg respectively.
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Table 9. Statistical description of model results for 30 repetitions during calibration and validation stage. Scenarios with values
in bold represent the best performing scenarios. Acronyms: min = minimum, max = maximum, std = standard deviation.

Classifier
Nutrient N K Mg Ca

Scenarios 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

SVM
Calibration

mean 0.838 0.835 0.826 0.824 0.778 0.778 0.773 0.768 0.728 0.727 0.613 0.892 0.922 0.921 0.892 0.929

min 0.784 0.784 0.773 0.750 0.693 0.693 0.670 0.648 0.659 0.648 0.545 0.841 0.886 0.875 0.83 0.875

max 0.920 0.920 0.920 0.920 0.875 0.875 0.875 0.875 0.852 0.852 0.693 0.955 0.977 0.989 0.955 0.989

std 0.030 0.031 0.036 0.037 0.043 0.043 0.047 0.051 0.044 0.043 0.051 0.031 0.023 0.026 0.029 0.025

SVM
Validation

mean 0.787 0.788 0.792 0.797 0.766 0.766 0.747 0.745 0.607 0.604 0.548 0.635 0.849 0.845 0.870 0.854

min 0.708 0.708 0.697 0.674 0.674 0.674 0.562 0.562 0.517 0.528 0.494 0.517 0.775 0.775 0.809 0.787

max 0.843 0.843 0.854 0.876 0.854 0.854 0.854 0.854 0.708 0.708 0.629 0.697 0.910 0.899 0.933 0.910

std 0.035 0.036 0.037 0.043 0.041 0.041 0.054 0.066 0.051 0.049 0.03 0.05 0.030 0.031 0.028 0.026

MLP
Calibration

mean 0.752 0.790 0.844 0.799 0.731 0.789 0.728 0.763 0.673 0.771 0.588 0.793 0.892 0.892 0.898 0.893

min 0.511 0.648 0.784 0.670 0.602 0.670 0.568 0.568 0.534 0.648 0.466 0.580 0.830 0.830 0.830 0.830

max 0.909 0.943 0.920 0.92 0.875 0.875 0.841 0.864 0.773 0.920 0.648 0.886 0.955 0.955 0.966 0.955

std 0.110 0.067 0.032 0.059 0.078 0.044 0.078 0.058 0.071 0.068 0.042 0.067 0.029 0.029 0.034 0.029

MLP
Validation

mean 0.701 0.733 0.754 0.735 0.675 0.718 0.703 0.718 0.594 0.610 0.580 0.592 0.870 0.870 0.865 0.870

min 0.404 0.539 0.674 0.539 0.438 0.562 0.539 0.573 0.483 0.483 0.506 0.449 0.809 0.809 0.787 0.809

max 0.863 0.820 0.843 0.854 0.809 0.809 0.809 0.809 0.674 0.697 0.652 0.697 0.921 0.933 0.933 0.933

std 0.113 0.065 0.048 0.087 0.093 0.055 0.084 0.07 0.048 0.053 0.043 0.055 0.027 0.028 0.035 0.028

RF
Calibration

mean 0.877 0.887 0.886 0.903 0.905 0.863 0.875 0.927 1.000 0.909 1.000 1.000 1.000 1.000 1.000 0.977

min 0.818 0.818 0.830 0.864 0.864 0.818 0.818 0.898 1.000 0.955 1.000 1.000 1.000 0.989 1.000 0.943

max 0.920 0.932 0.932 0.943 0.955 0.920 0.920 0.966 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

std 0.027 0.027 0.026 0.021 0.024 0.026 0.024 0.016 0.000 0.012 0.000 0.000 0.000 0.002 0.000 0.015

RF
Validation

mean 0.753 0.758 0.778 0.769 0.724 0.736 0.701 0.703 0.597 0.599 0.620 0.621 0.847 0.849 0.855 0.856

min 0.674 0.652 0.685 0.674 0.663 0.674 0.629 0.640 0.517 0.517 0.539 0.539 0.775 0.775 0.798 0.787

max 0.820 0.820 0.843 0.843 0.798 0.820 0.775 0.798 0.708 0.685 0.708 0.708 0.921 0.933 0.910 0.921

std 0.038 0.041 0.037 0.035 0.034 0.038 0.034 0.034 0.046 0.041 0.036 0.045 0.029 0.032 0.027 0.030

The average performance of all models at validation stage decreased for all nutrients
regardless of scenarios: N, K, Mg and Ca achieved an average greater than 0.70 (70%), 0.60
(60%), 0.50 (50%) and 0.80 (80%) respectively (Figure 5). For most cases, the best performing
scenario reported by each model in each nutrient during validation was different from its
calibration counterpart (Table 9).

When mean was considered, nutrients reported the best performance with SVM at
Scenario 4 (0.797 ± 0.043), SVM at Scenario 1 or 2 (0.766 ± 0.041), SVM at Scenario 4
(0.635 ± 0.05) and MLP at Scenario 4 (0.870 ± 0.028) for N, K, Mg and Ca respectively
(Table 9). When maximums are considered, N displayed the highest accuracy (0.876, 86.5%)
with SVM or MLP at Scenario 3; while K (0.854, 85.4%), Mg (0.708, 70.8%) and Ca (0.933,
93.3%) noted their best with SVM at all Scenarios, SVM or RF at Scenario 1 and RF or MLP
at Scenario 3 respectively. At the other extreme (i.e., minimum), the highest accuracy was
achieved by SVM at Scenario 1 or 2, RF or SVM at Scenario 2, RF at Scenario 4 and SVM at
Scenario 3 respectively.

MLP acquired more instances of performance accuracy beyond its boxplot, and greater
performance variability (i.e., larger boxplot size) and standard deviation than SVM and
RF (Figure 5 and Table 9). MLP was the greatest benefactor of scenarios. For instance,
Scenario 3 improved the mean accuracy of MLP from 0.701 to 0.754 for N and from 0.675
to 0.718 for K, in addition to decreased performance variability with Scenario 2 or 3. RF
and SVM experienced increase in performance for similar scenarios as well, but to a lesser
extent (<2% in mean accuracy) than MLP (>3% in mean accuracy). Overall, SVM has the
best classification accuracy while RF had the upper hand in standard deviation and size
of boxplot.
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4. Discussion

J-M distance was shown to be a strong separability metric in this study. This was
observed by instances for N level classification: perfect classification of samples between
Optimum (Opt) and Excessive (Ex) levels as well as low misclassification between Opt
and Marginally Excessive (Mar Ex) levels, given the pairwise J-M distance values were at
1.99 and 1.87 respectively (Table 10A). After filtering, pairwise distance of N for between
Mar Ex and Ex as well as K or Ca for Opt and Mar Ex were increased by slight amounts.
Unfortunately, this did not translate into any form of improved classification accuracy. Most
samples from different classes of Mg or Ca remain misclassified with the given pairwise
distance. These findings were consistent with those reported by [58–60], who noted
requirement of J-M distance values greater than 1.80 for effective class separability.
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Table 10. Best confusion matrix of models during validation stages: (A) N, (B) K, (C) Mg and (D)
Ca level classification respectively. Rows represent ground truth class while columns represent
model classification. Scenarios and Iterations in which matrices were yielded are provided for
reference purposes. Acronyms: Opt = Optimum, Mar Ex = Marginally Excessive, Ex = Excessive,
Iter = Iteration.

(A) SVM: Scenario 3/4, Iteration (Iter) 7

Opt Mar Ex Ex

Opt 32 1 0
Mar Ex 5 45 0

Ex 0 5 0

(B) SVM: All Scenarios, Iter 21

Opt Mar Ex
Opt 16 11

Mar Ex 2 60

(C)SVM: All Scenarios, Iter 9

SVM Mar Def Opt
Mar Def 23 17

Opt 9 40

(D) SVM: Scenario 2, Iter 29

SVM Opt Mar Ex
Opt 75 4

Mar Ex 8 2

However, low J-M distance values may also be a result of uneven sampling encoun-
tered between classes for all nutrients in this study, particularly N, K and Ca. Uneven
sampling could lead to model overfitting and complex decision surfaces formed and
dominated by samples from the majority class. In remote sensing, RF is susceptible to
uneven sampling between classes for classification problems, although findings regarding
its impact remained inconclusive [84]. For SVM in this study, more than 50% of all support
vectors were selected from the majority class, leading to greater misclassification of samples
from another class as the majority class (Table 10B–D). Some SVM instances were noted
to have high support vector to total sample ratio (50%) as well. An increase in ratio may
subsequently result in increased overfitting and misclassification [87,88]. Although a high
classification accuracy was acquired for Ca (Table 9, Figure 4) during the validation stage,
it has to be reflected that most of the correct classifications (>90%) were from the majority
class (Table 10D). Taking into account the required J-M distance value greater than 1.80
for effective class separability [58–60] and the need for even sampling, it is suggested
that the classification of nutrient levels for Mg and Ca using Landsat-8 imagery remains
inconclusive based on the limitations of the dataset.

Identification of SWIR2 as a strong predictor for N concurs with findings from [44,89],
who conducted similar experiments with hyperspectral spectroradiometers instead. Several
other researchers have also identified SWIR regions as potential regions for N predictions.
The SWIR2 band (2.11–2.29 µm) region is associated with absorption features as a result of
vibration activities from amide bonds of N-containing proteins. SWIR regions are also said
to have low scattering by canopy structural variation, thus making them perfect candidates
for canopy-level monitoring [90,91]. Sadly, the limited wavelength coverage by band
reflectance from Landsat-8 OLI satellite prevented further comparison of other spectral
regions as predictors for the studied nutrients. VIs were also applied in hopes of magnifying
signals from biophysical parameters of vegetation. Several VIs related to soil-line and
atmospheric adjustments were identified as potential predictors for N (i.e., SAVI, SARVI,
EVI, MSAVI, EVI2 and GARI), while NIR-related indices for K (i.e., NDVI, TVI and IPVI).
This may be attributed to the following: (1) the role of N in photosynthesis as well as the
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susceptibility of involved spectral regions (i.e., visible) to soil background or atmospheric
effects and (2) the role of K in plant cellular structure maintenance, development and
disease resistance, which may be spectrally reflected at the corresponding NIR region (i.e.,
815–879 nm) of the applied band [92,93].

In this study, atmospherically-adjusted indices (i.e., EVI, SARVI, ARVI, GARI) were
prioritised over soil indices in N. This was suggested by the little-to-no difference in
correlation coefficients between mathematically related indices; the correlation coefficient
between N and ARVI was greater than N and SAVI, in addition to the former possessing a
coefficient closer in magnitude to their composite, SARVI. Yet, soil-related indices were still
important in this study. Developed by [64], SARVI combined SAVI and ARVI to address
both atmospheric and soil background effects. Using cotton plants, the index was shown
to outperform ARVI and SAVI when atmospheric and soil effects were strong, particularly
when LAI < 3. A similar conclusion could be drawn by observing greater coefficients of
SAVI than OSAVI. SAVI had a higher L parameter (L = 0.5) set in this study compared
to OSAVI (L = 0.16) which had greater performance when scenes contain greater soil
background effects [64,71]. This suggests the presence of background soil effects from the
study site, despite being visually confirmed to have closed canopy cover.

Based on literature [63–75], most indices were initially derived to quantify biophys-
ical parameters such as LAI, vegetation cover or fPAR. Subsequently, one would expect
growth in palm stands due to greater N and K levels to be captured in VIs [94]. In ad-
dition, most identified VIs were originally derived from satellite data (i.e., Landsat and
MODIS imageries), thus suggesting further compatibility in application [63,65,67–69,72,75].
Still, many of the indices evaluated in this study were highly correlated with each other, due
to indices being successions of other indices, such as EVI2 being a 2-band approximation
of EVI [68,75]. Because of this, care should be taken to include VIs identified as strong
predictors but uncorrelated with each other, such that issues related to multicollinearity
could be avoided. The use of feature selection may aid in remediating the issue, as applied
in Scenario 3.

Using scenarios, it could be seen that MLP experienced the greatest improvement for
N and K in both classification accuracy and consistency with the use of filters (Scenario 2)
or filters and feature selection (Scenario 3), as observed in improved minimum, mean and
maximum accuracy, in addition to reduced standard deviation and boxplot size. MLPs
are able to benefit from greater number of features which improves the description of the
response variable to be classified [80]. Increased accuracy was also identified in RF and
SVM models under similar scenarios and nutrients. However, the use of filters and all
features (Scenario 4) led to decreased mean accuracy and increased standard deviation
of models for several models compared to Scenario 3: SVM for K, RF for K and MLP for
N. It may be plausible to suggest the Hughes’ phenomenon or curse of dimensionality as
its cause, where increasing data dimension with further inclusion of features resulted in
sample points being so sparsely distributed such that models were unable to acquire a
generalize solution or establishing an effective decision surface [95]. Using VIF to address
multicollinearity and dimension reduction (Scenario 3), it was found MLP and RF acquired
their respective best performance for N during validation, despite number of features
applied were less than the use of initial bands. This is consistent the previous finding for
feature selection and may suggest the potential use of fewer indices to represent or improve
the information captured in the initial bands of the images, including bands not applied in
their derivation, such as the SWIR bands.

On another note, SVM or RF for N at Scenario 4 during validation was the best scenario
despite reduced accuracy during calibration. SVM and RF possessed the upper hand in
performance accuracy, variability and accuracy difference between scenarios compared
to MLP. This suggests the robustness and stability conferred to these models in handling
high dimensional data at low samples [95]. The main contribution to such differences is
each model’s approach in acquiring its respective generalized solution: SVM follows the
structural risk minimization and the kernel method, thus focusing samples involved in
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constructing the decision boundaries only and allowing the ability to handle both low
and high dimension data respectively; and RF is able to mediate these factors by applying
bootstrap aggregation (or bagging) mechanism which involves decision making from
hundreds of tree classifiers [77,86,96]. MLPs require greater number of features to perform
well and solve non-convex problems by minimizing observed errors, which may, at times,
result in local optima convergence and overfitting [83]. Still, it is worth noting MLP was
able to classify several instances of N for the Ex class accurately using the selected features
(Table 11).

Table 11. Confusion matrix for N prediction at a particular iteration.

SVM: Scenario 3, Iteration 18

SVM Opt Mar Ex Ex

Opt 31 2 0
Mar Ex 5 39 1

Ex 0 11 0

MLP: Scenario 3, Iteration 18

MLP Opt Mar Ex Ex

Opt 31 2 0
Mar Ex 5 23 17

Ex 0 5 6

Overall, SVM has the best performance in terms of accuracy (i.e., minimum, mean,
median, maximum) for both N and K while RF in terms of stability (i.e., boxplot size,
standard deviation). Model performance and stability is summarized as SVM > RF > MLP
and RF > SVM > MLP, respectively. The coefficient of variation (Cov) of models may be
used as a compromise for both aspects when selecting a model of choice for a particular
nutrient. Models with lower Cov (i.e., low standard deviation/high mean) are preferred
due to lower performance dispersal. Table 12 summarizes the performance of the best
model in each ML algorithm for N and K. Based on the table, RF is preferred over SVM
for both N and K, although SVM may be selected for K instead if accuracy is prioritised
over standard deviation, as shown by the slight difference in Cov and a difference of 3% in
mean classification accuracy.

Table 12. Mean, standard deviation (Std), coefficient of variation (Cov) and average Cohen’s kappa
(κ) of the best performing model in each algorithm for N and K.

Nitrogen (N) Potassium (K)

Mean Std Cov Avg κ Mean Std Cov Avg κ

SVM 0.797 0.043 0.0540 0.6347 SVM 0.766 0.041 0.0535 0.4654
MLP 0.754 0.048 0.0637 0.5893 MLP 0.703 0.084 0.1195 0.4404
RF 0.778 0.037 0.0475 0.5499 RF 0.736 0.038 0.0516 0.4378

Nevertheless, the performance of all models in classifying nutrient levels of palm
tree plots in this study remained optimistic, particularly for N and K. Despite the coarse
resolution of Landsat-8 OLI/TIRS imageries, the study yielded models with performance
greater or comparable to several studies [14,40,46] which conducted similar research with
data of higher spatial or spectral resolutions (i.e., SPOT7 imagery and spectroradiometer).
In fact, in several iterations, merging samples from Ex to Mar Ex to produce a binary
problem (i.e., Ex or Opt) for N resulted in a nearly perfect classification (>90%, Figure 6).
This may open opportunities for developing models which are able to detect nutrient
excessiveness in palms and subsequently guide reduction in fertilizer application. If further
validations reap consistent results, ML models trained with Landsat-8 images may become
a possible approach to informed decision making in reducing excessive application of
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fertilizers. Contrary to this, further studies are required for N deficiency detection as no
sample for the class was produced with the experimental set-up, although [14] had shown
such possibilities with reflectance from a spectroradiometer. While not performing as well
as N, K levels may still be classified with satisfactory accuracy using SVM or RF.
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Further studies are required to study the transferability of the models in terms of
generalizing nutrient level classes. Oil palm trees are perennial crops with an industrial
life cycle of approximately 25 years, which led to controlled experiments and monitoring
being more challenging than annual crops (i.e., maize, rice, etc.). As such, studies on
such applications for palm stands beyond the age range (i.e., 6.5–11 years) in this study
are required. To gain better insights, higher-resolution imaging, such as UAV imaging,
should be deployed to study nutrient prediction with ML on individual palm trees to
check for consistency. The use of UAV data increases the variability in spectral and textural
information captured for each plot and individual trees.

5. Conclusions

Precision agriculture plays an essential role in ensuring food security is sought sus-
tainably in the near future. Thanks to their greater oil production on a per hectare basis,
oil palm trees contribute to the sustainable production of edible oils by freeing up more
land when compared to other oil crops. By applying sensor technology and ML models,
this study assessed the ability of freely available satellite images from Landsat-8 OLI/TIRS
and machine learning models in creating an open-source method for classifying nutrient
levels of palm trees on a plot basis. This was conducted using mean reflectance extracted
from each plot as predictors for nutrient levels acquired from chemical analysis of frond
17 in palm stands. In this study, the potential of separability metrics, image filters, VIs
and feature selection were also put to the test via constructing models with the dataset on
different scenarios.

Overall, nutrients with high pairwise J-M distances such as N and K were able to
achieve satisfactory performance. However, the performance of most models was under-
mined by uneven sample distribution, resulting in possible overfitting by the majority
class. Uneven sample distribution also poses a risk of result misinterpretation if not taken
into account, as observed with Ca. Rank filter was selected as the filter of choice and the
visible region had greater correlation than IR regions for K and Mg, with the inverse being
true for N. For VIs, atmospherically or soil-corrected indices were selected for N (i.e., SAVI,
SARVI, EVI, MSAVI, EVI2 and GARI), while those related to NIR (i.e., NDVI, TVI, IPVI)
for K. Using VIF to address multicollinearity, the study further identified the potential of
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using fewer VIs, such as GARI and ARVI to represent information from all initial bands,
including those not involved in their derivation.

When the considered algorithms were compared, SVM was superior to RF and was
the best in terms of accuracy, while the inverse was true for model stability. In terms
of scenarios, MLP gained the most from filters and selected features (Scenario 2 and 3),
though use of filters and all features (Scenario 4) led to worse performance. SVM and
RF experienced similar situations, though to a lesser extent. This may be caused by the
Hughes’ phenomenon. The study concluded N and K as potential variables predictable by
reflectance value from Landsat-8 imageries and respective machine learning algorithms
(RF for N and RF or SVM for K), with the best mean accuracy reported at 79.7% and
76.6% respectively. In fact, the results acquired for N from this study by collapsing the
classification problem into a simpler version may be the first to point towards the possibility
of producing a one-of-its-kind classification model for excessive N detection in oil palm
trees using freely available Landsat-8 imageries. Unfortunately, Mg and Ca remained not
possible for classification in this study.

While this study has comparable or better results than several studies conducted with
data of greater resolution, further research is required to ensure the models’ transferability,
with rooms for further improvement via higher resolution data or different analytical
approaches. The results from the free-source approach used by this study thus bring the
palm plantation cultivation community one step closer to open-source precision agriculture.
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polygons on raster ROI (b); and (e) Raster with only reflectance values for study plots (c,d). Mean values are subsequently 
derived to yield vectors for each plot. The process applies to all bands and scenes. 
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particular resampled resolution: (a) 30 m; (b) 8 m; (c) 3.2 m; (d) 1.6 m and (e) 1 m. Consideration of 
all pixels intersected by the plot polygons (partial or full) as the plots’ area by the rasterization 
algorithm led to an overestimation of polygon area (i.e., black colored coverage), which decreases 
with increasing resolution (a–e). Visualization of comparison between (d,e) are less obvious, alt-
hough (e) has approximately 5.5% less relative area error than (d). Comparisons between 
resampled polygons and the plot polygons reported relative area errors at 249.17% for 30 m, 
72.38% for 8 m, 27.91% for 3.2 m, 13.81% for 1.6 m and 8.55% for 1 m. 

 
Figure A3. Enlarged images of resampling effects on rasterization of plot extent. (a) illustrates the 
an overview of the effect and (b) is an enlargement highlighting its effects on a polygon. For illus-
tration, the resampled polygons were produced by conducting raster-to-vector conversion on ras-
ters from Figure A2. Note the slight difference between resampled polygons at 1 m (Green) and 
1.6 m (Yellow). 1.6 m resampling was selected despite lower error of 1 m resampling, due to the 
latter’s increase in dimension and storage space. Further comparisons of trade-offs between both 
aspects are beyond the scope of study. 

  

Figure A2. Effect of resampling on rasterization of plot polygons. Cyan polygons represent actual
plot extent while black colored coverage represent plot extent from rasterization of polygon at a
particular resampled resolution: (a) 30 m; (b) 8 m; (c) 3.2 m; (d) 1.6 m and (e) 1 m. Consideration
of all pixels intersected by the plot polygons (partial or full) as the plots’ area by the rasterization
algorithm led to an overestimation of polygon area (i.e., black colored coverage), which decreases with
increasing resolution (a–e). Visualization of comparison between (d,e) are less obvious, although (e)
has approximately 5.5% less relative area error than (d). Comparisons between resampled polygons
and the plot polygons reported relative area errors at 249.17% for 30 m, 72.38% for 8 m, 27.91% for
3.2 m, 13.81% for 1.6 m and 8.55% for 1 m.

Remote Sens. 2021, 13, x FOR PEER REVIEW 22 of 29 
 

 

  
Figure A2. Effect of resampling on rasterization of plot polygons. Cyan polygons represent actual 
plot extent while black colored coverage represent plot extent from rasterization of polygon at a 
particular resampled resolution: (a) 30 m; (b) 8 m; (c) 3.2 m; (d) 1.6 m and (e) 1 m. Consideration of 
all pixels intersected by the plot polygons (partial or full) as the plots’ area by the rasterization 
algorithm led to an overestimation of polygon area (i.e., black colored coverage), which decreases 
with increasing resolution (a–e). Visualization of comparison between (d,e) are less obvious, alt-
hough (e) has approximately 5.5% less relative area error than (d). Comparisons between 
resampled polygons and the plot polygons reported relative area errors at 249.17% for 30 m, 
72.38% for 8 m, 27.91% for 3.2 m, 13.81% for 1.6 m and 8.55% for 1 m. 

 
Figure A3. Enlarged images of resampling effects on rasterization of plot extent. (a) illustrates the 
an overview of the effect and (b) is an enlargement highlighting its effects on a polygon. For illus-
tration, the resampled polygons were produced by conducting raster-to-vector conversion on ras-
ters from Figure A2. Note the slight difference between resampled polygons at 1 m (Green) and 
1.6 m (Yellow). 1.6 m resampling was selected despite lower error of 1 m resampling, due to the 
latter’s increase in dimension and storage space. Further comparisons of trade-offs between both 
aspects are beyond the scope of study. 

  

Figure A3. Enlarged images of resampling effects on rasterization of plot extent. (a) illustrates the an
overview of the effect and (b) is an enlargement highlighting its effects on a polygon. For illustration,
the resampled polygons were produced by conducting raster-to-vector conversion on rasters from
Figure A2. Note the slight difference between resampled polygons at 1 m (Green) and 1.6 m (Yellow).
1.6 m resampling was selected despite lower error of 1 m resampling, due to the latter’s increase in
dimension and storage space. Further comparisons of trade-offs between both aspects are beyond
the scope of study.
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Appendix A.2. Image Filtering with 2D Fourier Analysis
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0), (−1, 0) and (0, −1)). (Bottom row): Illustration of image filtering (by amplifying signals intended 
for suppression by 1000 times). From left to right: 1st Image: Image before filtering; 2nd Image: 
Image at 2D fourier domain; and 3rd Image: Image after filtering. Note only signal at the centre of 
the image is faintly visible in 2D domain (In inner orange circle of top row image), while other 
magnitudes for other frequencies are relatively low (As illustrated by bottom row image). Semi-
transparent circles added to identify region where signal is still visible. Given only frequencies 
beyond the centre are further suppressed in terms of magnitude, this method serves as a mini-
mum filter for specific frequencies (as observed with processed image in top row being smoother). 
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Figure A4. Image filtering with 2D Fast Fourier Transform (FFT). (Top row): Image filtering with
selected parameter (i.e., suppression of all signals apart from those at coordinates (0, 1), (0, 0), (1, 0),
(−1, 0) and (0, −1)). (Bottom row): Illustration of image filtering (by amplifying signals intended for
suppression by 1000 times). From left to right: 1st Image: Image before filtering; 2nd Image: Image at
2D fourier domain; and 3rd Image: Image after filtering. Note only signal at the centre of the image
is faintly visible in 2D domain (In inner orange circle of top row image), while other magnitudes
for other frequencies are relatively low (As illustrated by bottom row image). Semi-transparent
circles added to identify region where signal is still visible. Given only frequencies beyond the centre
are further suppressed in terms of magnitude, this method serves as a minimum filter for specific
frequencies (as observed with processed image in top row being smoother).

Appendix A.3. Tables

Table A1. Critical values for nutrient levels in leaf 17 of palm stands aged more than 6 years from planting (Source: [52]).

N P K Mg Ca

Units %DM %DM %DM %DM %DM
Deficient x < 2.30 x < 0.14 x < 0.75 x < 0.20 x < 0.25

Margin Def 2.30 ≤ x < 2.40 0.14 ≤ x < 0.15 0.75 ≤ x < 0.90 0.20 ≤ x < 0.25 0.25 ≤ x < 0.50
Optimum 2.40 ≤ x ≤ 2.80 0.15 ≤ x≤ 0.18 0.90 ≤ x ≤ 1.20 0.25 ≤ x ≤ 0.40 0.50 ≤ x ≤ 0.75
Margin Ex 2.80 < x ≤ 3.00 0.18 < x ≤ 0.25 1.20 < x ≤ 1.60 0.40 < x ≤ 0.70 0.75 < x ≤ 1.00
Excessive x > 3.00 x > 0.25 x > 1.60 x > 0.70 x > 1.00
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Table A2. Pairwise Jeffries-Matusita (J-M) distance of classes in each nutrient when using control/non-
filtered image.

N Opt Mar Ex Ex

Opt 0.00000 1.87186 1.98576
Mar Ex 1.87186 0.00000 1.08115

Ex 1.98576 1.08115 0.00000

K Opt Mar Ex

Opt 0.00000 0.77703
Mar Ex 0.77703 0.00000

Mg Mar Def Opt

Mar Def 0.00000 0.91239
Opt 0.91239 0.00000

Ca Opt Mar Ex

Opt 0.00000 0.70293
Mar Ex 0.70293 0.00000

Table A3. Pairwise J-M distance of classes in each nutrient when using Minimum filter image.

N Opt Mar Ex Ex

Opt 0.00000 1.86874 1.98552
Mar Ex 1.86874 0.00000 1.09026

Ex 1.98552 1.09026 0.00000

K Opt Mar Ex

Opt 0.00000 0.78383
Mar Ex 0.78383 0.00000

Mg Mar Def Opt

Mar Def 0.00000 0.93513
Opt 0.93513 0.00000

Ca Opt Mar Ex

Opt 0.00000 0.69993
Mar Ex 0.69993 0.00000

Table A4. Pairwise J-M distance of classes in each nutrient when using Median filter image.

N Opt Mar Ex Ex

Opt 0.00000 1.87212 1.98580
Mar Ex 1.87212 0.00000 1.08080

Ex 1.98580 1.08080 0.00000

K Opt Mar Ex

Opt 0.00000 0.77730
Mar Ex 0.77730 0.00000

Mg Mar Def Opt

Mar Def 0.00000 0.91280
Opt 0.91280 0.00000

Ca Opt Mar Ex

Opt 0.00000 0.70320
Mar Ex 0.70320 0.00000
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Table A5. Pairwise J-M distance of all classes in each nutrient when using Maximum filter image.

N Opt Mar Ex Ex

Opt 0.00000 1.87387 1.98573
Mar Ex 1.87387 0.00000 1.07383

Ex 1.98573 1.07383 0.00000

K Opt Mar Ex

Opt 0.00000 0.76866
Mar Ex 0.76866 0.00000

Mg Mar Def Opt

Mar Def 0.00000 0.88725
Opt 0.88725 0.00000

Ca Opt Mar Ex

Opt 0.00000 0.70529
Mar Ex 0.70529 0.00000

Table A6. Pairwise J-M distance of all classes in each nutrient when using Gaussian filter image.

N Opt Mar Ex Ex

Opt 0.00000 1.87211 1.98577
Mar Ex 1.87211 0.00000 1.08009

Ex 1.98577 1.08009 0.00000

K Opt Mar Ex

Opt 0.00000 0.77663
Mar Ex 0.77663 0.00000

Mg Mar Def Opt

Mar Def 0.00000 0.91199
Opt 0.91199 0.00000

Ca Opt Mar Ex

Opt 0.00000 0.70314
Mar Ex 0.70314 0.00000

Table A7. Pairwise Jeffries-Matusita (J-M) distance of all classes in each nutrient when using Rank
filter image.

N Opt Mar Ex Ex

Opt 0.00000 1.86889 1.98555
Mar Ex 1.86889 0.00000 1.08949

Ex 1.98555 1.08949 0.00000

K Opt Mar Ex

Opt 0.00000 0.78394
Mar Ex 0.78394 0.00000

Mg Mar Def Opt

Mar Def 0.00000 0.93508
Opt 0.93508 0.00000

Ca Opt Mar Ex

Opt 0.00000 0.70015
Mar Ex 0.70015 0.00000
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Table A8. Pairwise Jeffries-Matusita (J-M) distance of all classes when using Fourier filter image.

N Opt Mar Ex Ex

Opt 0.00000 1.85355 1.97768
Mar Ex 1.85355 0.00000 1.16078

Ex 1.97768 1.16078 0.00000

K Opt Mar Ex

Opt 0.00000 0.66422
Mar Ex 0.66422 0.00000

Mg Mar Def Opt

Mar Def 0.00000 0.76335
Opt 0.76335 0.00000

Ca Opt Mar Ex

Opt 0.00000 0.94962
Mar Ex 0.94962 0.00000

Table A9. Cohen’s Kappa value for all model accuracy (scenarios, algorithm and nutrient) during Calibration and Validation.

Nutrient N K Mg Ca

Scenario 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

SVM Calibration 0.6358 0.6365 0.6613 0.6580 0.4857 0.4857 0.4850 0.4857 0.3503 0.3572 0.2747 0.4614 0.1691 0.1935 0.0000 0.1995
SVM Validation 0.6000 0.6002 0.6368 0.6347 0.4654 0.4654 0.4597 0.4654 0.3084 0.3243 0.2415 0.4265 0.1531 0.1508 0.0000 0.1855
MLP Calibration 0.5916 0.5869 0.6212 0.5962 0.3161 0.4338 0.4695 0.5050 0.4164 0.4485 0.2622 0.3799 0.0000 0.0000 0.0000 0.1258
MLP Validation 0.5703 0.5628 0.5893 0.5752 0.2784 0.4189 0.4404 0.4901 0.3984 0.3951 0.2529 0.3717 0.0000 0.0000 0.0000 0.1201
RF Calibration 0.5630 0.5877 0.5916 0.5938 0.4979 0.4866 0.4455 0.4858 0.3913 0.3763 0.3118 0.3552 0.1327 0.1107 0.0578 0.0000
RF Validation 0.5390 0.5542 0.5617 0.5499 0.4431 0.4378 0.4044 0.4465 0.3811 0.3601 0.2567 0.3330 0.0740 0.0883 0.0071 0.0000
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