ALMOST COSYMPLECTIC 3-MANIFOLDS WITH PSEUDO-PARALLEL
CHARACTERISTIC JACOBI OPERATOR

JUN-ICHI INOGUCHI AND JI-EUN LEE

ABSTRACT. In this paper, we classify almost cosymplectic 3-manifolds with pseudo-parallel
characteristic Jacobi operator. The only simply connected and complete non-cosymplectic
almost cosymplectic 3-manifolds with pseudo parallel characteristic Jacobi operator is the
Minkowski motion group.

INTRODUCTION

In almost contact metric geometry, the Jacobi operator along the characteristic vector
field (called the characteristic Jacobi operator) plays an important role. In particular, the
characteristic Jacobi operator of contact metric 3-manifolds has been paid much attention by
researchers of contact manifolds. See [6, 7] and references therein.

On the other hand, in almost contact metric geometry, the parallelism of tensor fields often
causes very strong restrictions for almost contact metric manifolds. For instance, Sasakian
manifolds with parallel Riemannian curvature (i.e. locally symmetric Sasakian manifolds) are
of constant curvature 1. Analogously locally symmetric Kenmotsu manifolds are of constant
curvature —1.

The parallelism of the characteristic Jacobi operator is also a strong restriction for al-
most contact metric manifolds. In fact, if the characteristic Jacobi operator £ of an almost
cosymplectic 3-manifold is parallel, then ¢ = 0 (see [14] or Proposition 9 of the present paper).

Thus we need to find appropriate relaxations of parallelism for the characteristic Jacobi
operator to characterize nice classes of almost contact metric manifolds.

From the viewpoint of almost contact structure, n-parallelism was proposed and studied
intensively for some tensor fields on almost contact metric manifolds. In our previous pa-
per [6], Cho and the first named author studied contact metric 3-manifolds with n-parallel
characteristic Jacobi operator. In addition almost cosymplectic 3-manifolds with n-parallel
characteristic Jacobi operator are investigated in [14]

On the other hand, from Riemannian geometric viewpoint, semi-parallelism, and pseudo-
parallelism are introduced. On a Riemannian manifold (M, g) with Levi- Civita connection
V, every curvature-like tensor field acts on tensor fields of type (1,1) as a derivation. For
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instance the derivative R - P of P by the Riemannian curvature R is given by
(R-P)(Z;X,Y)=R(X,Y)(PZ)—- PR(X,Y)Z.

A tensor field P of type (1,1) is said to be semi-paralle if R - P = 0. More generally, P is
said to be pseudo-parallel (cf. [11]) if R- P = LRy - P for some function L, where R; is the
curvature-like tensor field

Ri(X,Y)Z = (X AY)Z = g(Y,Z)X — g(Z, X)Y.
We proposed the following problems in [7]:

(1) Classify unit tangent sphere bundles with semi-parallel characteristic Ja-
cobi operator.

(2) Classify contact metric 3-manifolds with pseudo-parallel characteristic Ja-
cobi operator.

Concerning this problem, Cho and Chun [5] investigated unit tangent sphere bundles with
pseudo-parallel characteristic Jacobi operator (for 2-dimensional base manifold case, see [15]).

On the second problem, Wang and Dai [24] studied pseudo-parallelism and semi-parallelism
of the characteristic Jacobi operator on contact metric 3-manifolds.

Motivated by [7, 24], in the present paper we study pseudo-parallelism of characteristic
Jacobi operator of almost cosymplectic 3-manifolds.

The purpose of this paper is to classify almost cosymplectic 3-manifolds with pseudo-
parallel characteristic Jacobi operator. Our main result is stated as follows:

Theorem. Almost cosymplectic 3-manifolds with pseudo-parallel characteristic Jacobi oper-
ator are cosymplectic or non-cosymplectic and locally isomorphic to the Minkowski motion
group Eq 1.

Our results will be given in Section 5 and 6. More precisely, in Section 5, we show that al-
most cosymplectic 3-manifolds with pseudo-parallel characteristic Jacobi operator are cosym-
plectic or locally isomorphic to the Minkowski motion group E;; (Theorem 9). It should
be mentioned that the model space Sols of the solvgeometry in the sense of Thurston has
pseudo-parallel characteristic Jacobi operator.

In Section 6, we study characteristic Jacobi operator of homogeneous almost cosymplec-
tic 3-manifolds. In particular, we give a complete classification of all homogeneous almost
cosymplectic 3-manifolds with pseudo-parallel Jacobi operator (Corollary 6).

1. PRELIMINARIES

1.1. Pseudo-parallelism. Let (M, g) be a Riemannian manifold with its Levi-Civita con-
nection V. Then the Riemannian curvature R of M is defined by

R(X,)Y) =[Vx,Vy| = V[xy]
The Ricci tensor field S of (M, g) is a symmetric tensor field defined by
S(X,)Y)=tr(Z+— R(Z,Y)X).
The Ricci operator @ is a self-adjoint endomorphism field metrically equivalent to S, that is
S(X,Y) =g9(QX,Y) = g(X,QY).

The smooth function r = tr S = tr Q is called the scalar curvature of (M, g).
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On a Riemannian manifold (M, g), We define a curvature-like tensor field Ry by
As is well known, every curvature-like tensor field acts on tensor fields as a derivation.

Definition 1. A tensor field P of type (1,1) is said to be pseudo-parallel if there exits a
smooth function L such that

R-P=LR;-P.
In particular, P is said to be semi-parallel if
R-P=0.

Obviously, the following relations hold:
P is parallel = P is semi-parallel = P is pseudo-parallel.

1.2. Harmonic vector fields. Let (M, g) be a Riemannian manifold with unit tangent
sphere bundle UM. We equip the Sasaki-lift metric g° on UM. Denote by X1(M) the space
of all smooth unit vector fields on M. Every unit vector field V' € X;(M) is regarded as an
immersion of M into UM.

A unit vector field V' € X1(M) is said to be minimal if it is a critical point of the volume
functional on X;(M). It is known that V' is a minimal unit vector field if and only if it is a
minimal immersion with respect to the pull-backed metric V*¢°.

On the other hand, a unit vector field V is said to be a harmonic unit vector field if it is
a critical point of the energy functional restricted X;(M). It should be remarked that for a
unit vector field, to be a harmonic map into UM is stronger than to be a harmonic vector
field. In fact, the following result is known.

Proposition 1 ([13]). A unit vector field V : M — UM is a harmonic map if and only if it
is a harmonic vector field and in addition, satisfies

tryR(VV, V) = 0.
2. ALMOST CONTACT METRIC MANIFOLDS

In this section, we recall the fundamental ingredients of almost contact metric geometry.
For general information on almost contact metric geometry, we refer to [1].

2.1. Almost contact metric structures. An almost contact metric structure of a (2n+1)-
manifold M is a quartet (¢, &,n,g) of structure tensor fields which satisfies:

(1) n€) =1, dn(,-) =0,
(2) P =-T+n®¢ 9& =0,
(3) 9(pX,pY) = g(X,Y) —n(X)n(Y).

A (2n + 1)-manifold M = (M, ,&,n, g) equipped with an almost contact metric structure is
called an almost contact metric manifold. The vector field £ is called the characteristic vector
field of M. The 2-form
P(X,Y) = g(X,pY)
is called the fundamental 2-form of M.
An almost contact metric manifold M is said to be normal if
[P, 0](X,Y) 4 2dn(X,Y){ = 0,
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where [p, ¢] is the Nijenhuis torsion of ¢.

Definition 2. Let (M, ¢,&,n,g) be an almost contact metric manifold. A tangent plane II,
at x € M is said to be holomorphic if it is invariant under .

It is easy to see that a tangent plane II, is holomorphic if and only if £, is orthogonal
to II,. The sectional curvature K(II,) of a holomorphic plane II, is called the holomorphic
sectional curvature. In case dim M = 3, holomorphic sectional curvature is a smooth function
on M and we denote it by H.

Here we recall an auxiliary tensor field h which is very useful for the study of almost contact
metric manifolds. The endomorphism field h is defined by h = (£¢¢)/2. Here £, denotes the
Lie differentiation by &.

2.2. The characteristic Jacobi operator. In addition we introduce a self-adjoint endo-
morphism field ¢ on an almost contact metric manifold M of dimension 2n 4+ 1 > 3 by
(X) = R(X,0¢ X € X(M).

The self-adjoint operator ¢ is called the characteristic Jacobi operator of M. Note that our ¢
has the opposite sign to the one in [20].

2.3. Almost cosymplectic structures. Now we turn our attention to almost cosymplectic
manifolds (see [1, 12]).

Definition 3. An almost contact metric manifold M is said to be almost cosymplectic (or
almost coKdhler) if dn = 0 and d® = 0. An almost cosymplectic manifold is said to be
cosymplectic (or coKdhler) if it is normal.

The distribution
D={XeTM|nX)=0}
on an almost cosymplectic manifold M is integrable and hence it defines a foliation F on M.
The foliation F is called the canonical foliation of M. The almost cosymplectic structure
induces an almost Kéhler structure on leaves. An almost cosymplectic manifold M is said to
be an almost cosymplectic manifold with Kdhler leaves if leaves of the canonical foliation are
Kahler manifolds. Clearly if dim M = 3 or M is cosymplectic, then all the leaves are Kahler.

Theorem 1 ([18]). An almost cosymplectic manifold has Kdhler leaves if and only if
(4) (Vxp)Y = g(X,hY)E — n(Y)hX.

Let us introduce an endomorphism field A by A = —V&. One can see that on every leaf,
A is nothing but the shape operator of the leaf derived from the unit normal . Dacko and
Olszak obtained the following formulas:

h=Ap, A=¢ph, A(=0, noA=0.
Moreover A is self-adjoint operator, i.e.,
g(AX> Y) = g(Xa AY)

for all vector fields X and Y on M.
The cosymplectic property is characterized as follows:

Proposition 2. An almost contact metric manifold M is cosymplectic if and only if ¢ is

parallel.
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In particular, ¢ is parallel on every cosymplectic manifold. Here we recall the following
fundamental fact (see e.g. [2, Theorem 3.11], [12]).

Theorem 2. Let M be an almost cosymplectic manifold. Then the following properties are
mutually equivalent:

h=0.

Ve =0.

& is a Killing vector field.

M is locally isomorphic to a direct product of an almost Kdhler manifold and the real
line.

2.4. Cosymplectic manifolds. A complete cosymplectic manifold M of constant holomor-
phic sectional curvature c is called a cosymplectic space form.

Example 1. Let . M = (M,g,J) be an almost Kihler manifold. Consider the Riemannian
product M = (M x R, g) with ¢ = g+ dt?>. Then we can equip an almost cosymplectic
structure of M by

gzia n:dta @(vajt> :(JX70)7 XE%(M)

dt

The almost cosymplectic manifold M is cosymplectic if and only if M is Kihler. In particular
when M is a complex space form, that is, a Kéhler manifold of constant holomorphic sectional
curvature, then M is a cosymplectic manifold of constant holomorphic sectional curvature.
Now let CP,(¢), C™ and CH,(¢) be complex projective n-space of constant holomorphic sec-
tional curvature ¢ > 0, complex Euclidean n-space and complex hyperbolic n-space of constant
holomorphic sectional curvature ¢ < 0, respectively. Then the cosymplectic manifolds

CP,(¢) xR, E> =C"xR, CH,(c) xR
are cosymplectic space forms. In particular
S’@) xR, E*=E*xR, H?*@E) xR
are 3-dimensional cosymplectic space forms.

2.5. D-homothetic deformations. On an almost cosymplectic manifold M, we define a
subring R, (M) of the commutative ring C*° (M) of all smooth functions on M by

Ry (M) = {f € C(M) | df An = 0},

For any positive constant ¢ and 8 € R, (M) satisfying 5 # 0, we deform the structure tensors

(0,€,m,9) as
s _ s_ 1
(5) ¢ =, 6—5

Then the resulting structure (@, 5 .7, g) is also almost cosymplectic with fundamental 2-form
® = t®. This new structure is called a D-homothetic deform of the original structure. The
procedure (p,£,7,9) — ($,€,7,§) is called a D-homothetic deformation. If two almost
cosymplectic structures are related by a D-homothetic deformation, then those structures are
said to be D-homothetically equivalent.
Dacko and Olszak obtained the following result.
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Proposition 3 ([9]). The Levi-Civita connection V of the D-homothetic deform is given by

2
- —t
Ty = vy - 2t yax e oo
The endomorphisms h = £€~gb/2 and A = —@é are given by
~ 1 - 1
h=—h, A=-A.
g B
The Riemannian curvature R of the D-homothetic deform satisfies
. -1 3
0 ROCYIE= SROGY)E+ S 00 AY — () AX),
From this proposition we can deduce that the characteristic Jacobi operator £ of (M, @, €, 7, §)
is
5 1 £(8) >
((X)==[lX)—- ==AX |.
0= (100 -5

3. GENERALIZED ALMOST COSYMPLECTIC (K, ji, V)-SPACES

In this section, we collect fundamental facts on generalized almost cosymplectic (k, i, v)-
spaces.

3.1. H-almost cosymplectic manifolds. Here we introduce the following notion.

Definition 4. An almost cosymplectic manifold M is said to be an H-almost cosymplectic
manifold if its characteristic vector field £ is a harmonic vector field.

Perrone clarified relations between harmonicity and minimality of unit vector fields (]20,
Theorem 4.3], [21, Theorem 4.2], c¢f. [12]):

Theorem 3. Let M be an almost cosymplectic 3-manifold. Then & is a minimal unit vector
field if and only if it is a harmonic unit vector field.

On the other hand, on an almost cosymplectic 3-manifold (M, ¢, &, 7, g), the minimality of
¢ is characterized in terms of Ricci operator as follows.

Theorem 4 ([21, 12]). On an almost cosymplectic 3-manifold M, & is a minimal unit vector
field if and only if £ is an eigenvector field of Q.

Perrone proved the following fact ([22, Remark 3.1]):

Proposition 4. Let (M, p,&,m,9) be an almost cosymplectic 3-manifold with minimal .
Then for any positive constant t and f € R,(M) with  # 0, the D-homothetic deform

(M, @,é,ﬁ,g) defined by (5) has minimal characteristic vector field €.

3.2. Generalized almost cosymplectic (k,p,v)-spaces. Next, we recall the notion of
almost cosymplectic (k, u, v)-space.

Definition 5. An almost cosymplectic manifold M is said to be a generalized almost cosym-
plectic (k, u,v)-space if
(7) RX,Y)E = w(n(Y)X —=n(X)Y) + p(n(Y)hX —n(X)hY)
+v(n(Y)ehX —n(X)phY).
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for some smooth functions k, p and v. Generalized almost cosymplectic (&, i, 0)-spaces are
called generalized almost cosymplectic (k, u)-spaces.

Definition 6. Let M be a generalized almost cosymplectic (k, i, v)-space. If all the functions
k, i and v are constants, then M is called an almost cosymplectic (k, p, v)-space. A generalized
almost cosymplectic (k, u1, v)-space is said to be proper if |dk|? + |du|? + |dv|? # 0.

Remark 1. Generalized almost cosymplectic (k, u,v)-space in this paper are called almost
cosymplectic (k, u,v)-space in [22]. On the other hand, an almost cosymplectic (k, u, v)-space
in the sense of Dacko and Olszak [9] is a generalized almost cosymplectic (k, i, v)-space in
the sense of the present paper satisfying the additional condition:

(8) de An=0, duAn=0, and dvAn=0.

Dacko and Olszak [9] showed that if the dimension of a generalized almost cosymplectic
(k, p, v)-space is greater than 3, then k, p and v satisfy this additional condition. In this
paper, we do not require this condition for 3-dimensional generalized almost cosymplectic
(K, p, v)-spaces.

The endomorphism field A of a generalized almost cosymplectic (k, 1, v)-space M satisfies
(see [9]):
(9) APX = —k(X = n(X)§).
This equation implies the following fact.

Proposition 5. A 3-dimensional generalized almost cosymplectic (0, u, v)-space is cosymplec-
tic.

Proof. If k = 0, then A? = 0 from (9). Since A is self-adjoint, for any non-zero vector field
X, we have

0 =g(A*X, X) = g(AX, AX) = | AX|".
This implies that A = 0, i.e., V& = 0. By Theorem 2, M is cosymplectic. ([l

We notice that £ < 0. Dacko and Olszak showed that if x = 0 at some point, then x =0
on whole M [9, Lemma 3].

The generalized (k, p, v)-property is invariant under D-homothetic deformation. Indeed,
from (6) and (7), one can check the following theorem.

Theorem 5 ([9]). Assume that (M, ¢,&,n,9) be a generalized almost cosymplectic (K, p,v)-
space. Then its D-homothetic deform (M,$,£,7,q) defined by (5) is a generalized almost
cosymplectic (R, fi, V)-space with

F=— a=%, b= M
B’ B2

4. ALMOST COSYMPLECTIC 3-MANIFOLDS

Hereafter we concentrate on almost cosymplectic 3-manifolds.
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4.1. Cosymplectic 3-manifolds. Cosymplectic 3-manifolds have some particular geometric
properties.

Proposition 6 ([17]). An almost contact metric 3-manifold M is cosymplectic if and only if
& 1s parallel.

Proposition 7. Let M be a cosymplectic 3-manifold. Then the Ricci operator Q) of M has
the form
r
Q= 5(1 —n®¢E).

The principal Ricci curvatures are r/2, r/2 and 0. The Ricci operator QQ commutes with .
The Riemannian curvature R satisfies

R(X,Y)E =0

for any wvector fields X and Y. Hence, the characteristic Jacobi operator vanishes. The
holomorphic sectional curvature is H = r/2. For a unit vector X in TyM such that n(X) =0,
then the sectional curvatures K(X A§) is always 0.

This proposition tells us differences between Sasakian manifolds, Kenmotsu manifolds and
cosymplectic manifolds.

Structure Sasakian | Cosymplectic | Kenmotsu
Characteristic Jacobi operator | £ = —p? =0 = p?

Corollary 1. The following properties of a cosymplectic 3-manifold M are mutually equiva-
lent.

M s locally symmetric,

the scalar curvature r is constant,

the holomorphic sectional curvature H is constant,

M is locally isomorphic to a Riemannian product M(¢) x R, where M(¢) is a 2-
dimensional Riemannian manifold of constant curvature c.

Corollary 2. A cosymplectic 3-manifold M is of constant curvature if and only if it is locally
isomorphic to Euclidean 3-space E? = E? x R.

4.2. The Levi-Civita connection. Let M be an almost cosymplectic 3-manifold. Denote
by U, the open subset of M consisting of points x such that h # 0 around x. Next, let Uy
be the open subset of M consisting of points x € M such that h = 0 around z. Since h is
smooth, U = U; Ul is an open dense subset of M. Thus any property satisfied in U is also
satisfied in the whole M. For any point x € U, there exists a local orthonormal frame field
E ={e1,ea = ey, e3 = £} around x, where e; is an eigenvector field of h.

Lemma 1 (c¢f. [19, 21]). Let M be an almost cosymplectic 3-manifold. Then there exists a
local orthonormal frame field € = {e1, ea,e3} on U such that

her = de1, ez = ey, e3=¢

for some locally defined smooth function \. The Levi-Civita connection V is described as

! (e2(A) +o(e1))ez, Veea =

1
Ve €1 = X —ﬁ(ez(z\) +o(er))er + A, Ve, es = —Nea,
1 1
(10) V52€1 = —5(61()\) + 0'(62))62 + A, V@eg = 5(61()\) + 0'(62))61, V€263 = —)eq,
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v6361 = wey, ve362 = —aeq, v€363 = 07
where o is the 1-form metrically equivalent to QE, that is,

0= g(Q€7 ) = S(gv )

The commutation relations are

(11) le1,e2] = — % {(e2(A) +a(e1))er — (e1(A) + o(e2))ea},

[ea, €3] =(a — Ne1, [es,e1] = (a+ Nea.
The Jacobi identity is described as
(12) —er(a—=A) +&(p) +ala—A) =0, —ex(a+A)—&(q) +p(a+A) =0,
where

p=grle) +olen), a= o) +ole),

4.3. The Riemannian curvature. The Riemannian curvature R is computed by the table
of Levi-Civita connection in Lemma 1:

R(e1,ez)er = — (i + 2)\2> ea —o(e2)é, Rlej,ez)es = (g + 2/\2> e1 +o(er)é,

2
R(e1,ez)es = o(e2)er — o(eq)es, R(ez,e3)er = o(er)e2 — E(N)E,
R(ez,e3)es = —a(er)er + (A2 — 2aN)E, R(ea,e3)es = E(N)er — (A2 — 2a\)eq,
R(ez,er)er = o(ez)es — (N2 + 200§, Res,er)es = —o(e2)er + E(NE,
R(ez,er)es = (A2 + 2a))e; — £(N)ea,
where

o(e1) =ez2(a) +&(q) — (= A)p = —e2(A) + 2pA,
o(es) = —e1(a) +&(p) + (a+ N)g = —er(N\) + 2gA.

The sectional curvatures K;; = K(e; A e;) are given by

Kia =X +ei(q) +ealp) —p* —¢* = g +2)2,
Ki3=—-AA+2a), Ko =-\\—2a).
4.4. The Ricci operator. The Ricci operator @ is described as [21]:
Qe = (g + A% - 2a)\) e1+&(N)es + o(e)E,
Qez =¢(N)er + (g + A+ 2a)\) es + a(ea)é,
Qes =o(e1)er + o(ez)ey — 2M%E.

Note that the scalar curvature r is computed as
(13) r=2{ei(q) + ea(p) — p* — ¢* = N}
The characteristic Jacobi operator ¢ is given by
ler = —(N2 +2a0)ey + E(N)ea,  Leg = E(N)er — (A2 — 2a))es.
From Lemma 1 we deduce that ¢ commutes with @ if and only if

(14) EAN) =0, a=0, o(e)=oc(ez)=0.
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It should be remarked that the commutativity Q¢ = ¢Q implies the H-almost cosymplectic
property.
Here we recall the following result:

Theorem 6 ([4, 8]). Let M be an almost cosymplectic 3-manifold. If M satisfies Qp = ¢Q if
and only if M is either cosymplectic or locally isomorphic to the Minkowski motion group Eq 1
equipped with a left invariant almost cosymplectic structure. In the latter case, the eigenvalue
A of h is constant.

The left invariant almost cosymplectic structure of E;; appeared in Theorem 6 will be
described explicitly in Example 3 of Section 6 (with a = b, i.e., c; = —c2). Note that
Dacko [8] showed that 3-dimensional almost cosymplectic (x,0)-spaces with k < 0 are locally
homogeneous and locally isomorphic to Eq i.

4.5. Curvatures of H-almost cosymplectic 3-manifolds. The class of H-almost cosym-
plectic 3-manifolds is characterized in terms of Riemannian curvature as follows (see [22,
Theorem 4.1, Proposition 4.3]):

Theorem 7 ([21]). Let M be an almost cosymplectic 3-manifold. If M is a generalized
(K, p, v)-space, then & is a minimal unit vector field. Conversely, if € is a minimal unit vector
field, then M satisfies the generalized (k, u,v)-condition on an open dense subset. In such a
case we have

QE = —2)%¢, k=-)\%, tr(h?) =2\

Moreover \ satisfies AN\ = 0, that is, X(\) = 0 for any vector field X orthogonal to . The
Ricci operator has the form

Q= (g‘f‘)\Q) I- <g+3/\2) N Q&+ ph + veh.

Let us take a local orthonormal field {ej,e2,e3} on a 3-dimensional generalized almost
cosymplectic (k, i, v)-space as in Lemma 1, we have

QE=—-2)%, k=-X, =20, Iv=E\).

By Theorem 7, the eigenvalue \ satisfies e1(A) = ea(\) = 0. Hence p = ¢ = 0. Thus from
(13), the scalar curvature is r = —tr(h?) = —2A2. Hence the Ricci operator has the form

Qer = —2aker + &(N)ea,
Qe2 =E(N)e1 + 2adeq,
Qeg = — 2)\263.

The Riemannian curvature R of a generalized almost cosymplectic (&, i, v)-space is described
as follows ([3, Theorem 3.25]).

R= (%—25)R1+(g—3m>R3+uR4+uR7,

where
R3(X,Y)Z =n(Z)n(X)Y —n(Y)n(2)X +{g(Z, X)n(Y) — g(Y, Z)n(X)}¢,
Ry(X,Y)Z =g(Y,Z)hX — g(Z, X)hY + g(hY,Z)X — g(Z,hX)Y,
R7(X,Y)Z =g(Y, Z)phX — g(Z, X)phY + g(phY, Z)X — g(Z, ph X)Y.
10



Combining this curvature formula and the formula of @) above, we obtain the following cur-
vature formula for 3-dimensional generalized almost cosymplectic (k, i, v)-spaces:

(15) R =—-kRy —2cR3 + uRy + VR

Remark 2. Carriazo and Martin-Molina showed the curvature formlula (15) under the as-
sumption

de Am=0, duAn=0, dvAn=0.
See [3, Corollary 3.28].

As we have mentioned before, for £, to be a harmonic map is stronger than to be a harmonic
vector field.

Proposition 8. Let M be almost cosymplectic 3-manifold. Then its characteristic vector field
is a harmonic map into the unit tangent sphere bundle UM of M if and only if o(X) = 0
for all vector fields X orthogonal to & and M satisfies the generalized (k, u,0)-condition on
an open dense subset of M.

From this we notice that
Qy = pQQ = &is a harmonic map = £ is minimal.

Now let M be an almost cosymplectic 3-manifold whose characteristic vector field £ is a unit
minimal vector field. Then M satisfies the generalized (k, u, v)-condition on an open dense
subset of M. Take a local orthonormal frame field {ej, ez, e3} as in Lemma 1 on an open
subset on which i # 0. Then from Theorem 7, K = —A%2 < 0 and dA A1 = 0. We perform a
local D-homothetic deformation (5) with ¢ = 1 and 8 = X. The resulting structure (@, &, 7, §)
satisfies the generalized almost cosymplectic (&, fi, 7)-structure such that

F=-1, p=F=-x 1 5-o

A NaT
One can see that {€; = e1,é9 = ey, €3 = 5} is a local orthonormal frame field of (M, 3, €1, 9)
and satisfies

hé, = &1, héy = —és, hész=0.
This procedure is valid for any 3-dimensional generalized almost cosymplectic (k, u, v)-space
with £ < 0.

Theorem 8. Let M be a 3-dimensional generalized almost cosymplectic (k, p, v)-space with
k < 0. Then there exists a D-homothetic deformation of M to a generalized almost cosym-

plectic (=1, u/v/—k,0)-space.

In [9, 10], Dacko and Olszak constructed a local model N3(u) = (—¢,e) x U C R? for
generalized almost cosymplectic (—1, i, 0)-spaces satisfying du A n = 0. In particular, N3(u)
for constant p is extended to the whole R3. Those model spaces are realized as universal
covering Eo of the Euclidean motion group Es for |u| > 2, Heisenberg group for |u| = 2 and,
Minkowski motion group E;; for |u| < 2, respectively. We discuss again these Lie groups in
Section 6.

5. PSEUDO-PARALLELISM OF THE CHARACTERISTIC JACOBI OPERATOR

In this section, we study almost cosymplectic 3-manifolds with pseudo-parallel character-
istic Jacobi operator.
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5.1. Almost cosymplectic 3-manifolds with vanishing ¢. From Lemma 1 we obtain
(Velﬁ)eg = )\Eeg, (V62€)€3 = /\661.

These equations imply the following discouraging fact.

Proposition 9. Let M be an almost cosymplectic 3-manifold. Then its characteristic Jacobi
operator is parallel if and only if £ = 0 and the structure is cosymplectic.

Motived from this fact, we study semi-parallelism and pseudo-parallelism of the character-
istic Jacobi operator.

5.2. Semi-parallelism. First, the derivative of ¢ by R(X,Y’) is defined by
(R(X,Y) 0)Z = R(X,Y)Z — (R(X,Y)Z,

and we calculate R(X,Y) - £ as follows:

(R(e1, e2) - O)er = ( + 2)\2> {26(V)er + dadea} + {(A% + 2a\) o (e2) + E(N)o(e1) 1€,
(R(e1,e2) - £)ez =( +20%) {dader — 26(N)ea} — {E(N)a(e2) + (N = 2aX)o(e1) ¢,
(R(e1,e2) - L)ez = {()\2 +2a))o(e2) +EN)a(er)er — {E(Na(e2) + (A2 = 2a)a(er) Yo,
(R(ea, e3) - £)er = —20(e1)é(N)er — dada(er)es + 2X2E(N)E,

(R(ea, e3) - £)eg = —dado(er)er + 20(e1)é(N)ea — {E(N)? + (A2 — 2a0)?)¢,

(R(e2,e3) - f)es = 2X%¢(Ner — {E(N)? + (A — 2a0)* e,

(R(es,e1) - £)er = —20(e2)€é(N)er — dada(ez)heg + {E(N)? + (A2 + 2a0)?}€,

(R(es,e1) - £)ez = —dada(ez)er + 20 (e2)€(N)ea — 20 (NS,

(R(es,e1) - O)es = {(A\? + 2a0)? + £(N)?Jer — 20%E(\)ey

From (R(eg,e3) - £)es = 0 and (R(es,eq) - £)ey = 0, we get A = 0 and hence we, have the
following classification of almost cosympectic 3-manifolds with semi-parallel £.

Proposition 10. An almost cosymplectic 3-manifolds M with semi-parallel characteristic
Jacobi operator is a cosympletic manifold and ¢ = 0.

5.3. Pseudo-parallelism. It turned out that semi-parallelism is still a strong restriction for
£. Next, we consider pseudo-parallelism. The derivative R; - £ is given by

(Ri(X,Y) - 0)Z =(XAY)-0)Z=(XAY)Z ~ (X AY)Z)
—g(Y 0Z2)X — g(tZ, X)Y — g(Y, Z)tX + g(Z, X)LY.
12



and using this we calculate (X AY') - £ as follows:

((e1 Nea) - l)er = 26(N)er + dades,

((e1 Nea) - O)ea = dare;r — 2€(N)eq,

((e1 Nea)-l)es =0,

((e2 ANes) - L)er = =§(A)E,

((e2 A e3) - O)ea = (A2 — 2aN)¢,

((e2 Ae3) - £)es = —E(Ner + (A2 — 2 ey,

((es Aer)-O)er = —(A2 + 2aN)¢,

((e3 Aer) - £)ea = E(NE,

((e3 Aer) - Les = —(A? +2a))er + E(N)ea
Now we suppose that A # 0 and M satisfies the pseudo-parallel condition:
(16) RX,)Y) {=L(XAY)-t, X, YeX(M).
From the list above, R(es,eq1) - £ = L(esz A e1) - £ holds if and only if
(17) ado(e) =0, o(e2)é(N) =0, (L+2X*)EN) =0,
and
(18) (L4 2% +200) (A2 + 2a\) + £(N)? = 0.
Next, R(ea,e3) - ¢ = L(ea A e3) - £ holds if and only if
(19) aAo(e) =0, o(en)E(N) =0, (L+222)E0N) =0,
and
(20) (L + 22— 2a0)(A2 — 20\) + £(N)? = 0.
Finally, R(e1,eq2) - £ = L(e1 A ez) - £ holds if and only if
(21) §()\){L— (g+2)\2)} —0, a/\{L— (§+2A2)} —0
and
(22) (A2 4+ 2aN)o(e2) + EN)a(er) =0, (A2 =2aN)o(er) + E(N)a(ez) = 0.

From the above equations we have our main theorem.

Theorem 9. Let M be almost cosymplectic 3-manifold with pseudo-parallel characteristic Ja-
cobi operator. Then M is cosymplectic with L = 0 or locally isomorphic to the Minkowski mo-
tion group Eq 1 equipped with a left invariant non-normal almost cosymplectic (k,0)-structure
and L = k = —tr(h?)/2 is a negative constant.

Proof. Let us consider the open subsets

Uy ={x € M | h =0 in a neighborhood of z},
={z € M | h# 0 in a neighborhood of z}.
Suppose that M = Uy then M is cosymplectic. Obviously, when M is cosymplectic, £ is

pseudo-parallel with L = 0 (The case (1)). Hereafter we assume that U/; is non-empty. Then
13



we can take a local orthonormal frame field {e1, €2, €3} as in Lemma 1. To analyze the system
of pseudo-parallelism for ¢, we set

Uy ={z € Uy | {(N\) =0 in a neighborhood of x},
Us ={x € Uy | {(N\) # 0 in a neighborhood of x},

where Us U U3 is open and dense in the closure of U;.
(1) In Us, the equation R(es,e1) - ¢ = L(eg Aey) - R is reduced to

ac(e2) =0, (L4 A +2a\)(\? + 2a\) = 0.
the equation R(ez,e3) - £ = L(ea A es) - R is reduced to

ac(e)) =0, (L+ A2 —2a)\)(\? — 2a)) = 0.
Finally, the equation R(e1,e2) - £ = L(e; Aez) - R is reduced to

a {L _ (g v 2)\2)} =0, (A—2a)o(er) = (A +2a)0(e2) = 0.

We consider, in addition, open subsets of Us;
Uy ={x € Uy | & = 0 in a neighborhood of z},
Us ={x € Uz | @ # 0 in a neighborhood of z}.

Here Uy U U5 is open and dense in the closure of Us.
e In Uy, the pseudo-parallel condition is the system:

L= —)\2, U(Gl) = J(€2) =0.

In this case, Uy is H-almost cosymplectic. Since we assumed that £(A\) = 0 and a = 0,
Uy is locally a generalized almost cosymplectic (k,0)-space. Moreover, from (14), ¢
commutes with ). Hence Theorem 6 implies that Uy is locally isomorphic to Eq 1

(The case (2)).
e In U5, we have the system

oler) = o(es) =0, (L+A2+200)(A+20) =0, (L+A2—2a)\)(A\—2a)=0, L= g+zx2.

From these we deduce that Us is H-almost cosymplectic and
L=-2)\ r=-8)\, \=+2a.

On the other hand, from (13) we have r = —2)\%. Hence, we have A = 0 and this is a
contradiction. Hence U5 is empty.

Thus Uy is open and dense in the closure of Us.

(2) In Us, the pseudo-parallel condition is the system:
oler) =o(er) =0, L=-2)\= % 4 2\
and
(L4 N +200) (A +20X) + £(N)? =0, (L + A —2aA)(A* = 2a)) + £(N)* = 0.

Hence Us is H-almost cosymplectic and L = —2A%, r» = —8)2. From (13) we have r = —2)2,
hence, we have A = 0 and it is contradiction. Thus U3 is empty. Henceforth Uy is open and
dense in the closure of U;. Thus U is locally isomorphic to Eq 1. ]

Concerning on the harmonicity of £, we have the following corollary.
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Corollary 3. Let M be an almost cosymplectic 3-manifold with pseudo-parallel characteristic
Jacobi operator, then its characteristic vector field & is a harmonic map into UM .

The Minkowski motion group E;; mentioned in Theorem 6 is a standard example of ho-
mogeneous almost cosymplectic 3-manifolds. In the next section, we give explicit models of
homogeneous almost cosymplectic 3-manifolds, especially E ;.

6. HOMOGENEOUS ALMOST COSYMPLECTIC 3-MANIFOLDS

6.1. Simply connected homogeneous almost cosymplectic 3-manifolds. In this sec-
tion, we study the characteristic Jacobi operator of homogeneous almost cosymplectic 3-
manifolds.

Definition 7 (¢f. [20]). An almost contact metric manifold M = (M, p,&,n,g) is said to
be a homogeneous almost contact metric manifold if there exists a Lie group G of isometries
which acts transitively on M such that every element f of G preserves n, that is f*n =n.

Perrone obtained the following classification.

Theorem 10 ([20]). Let M be a simply connected homogeneous cosymplectic 3-manifold, then
M is either

e M 1is one of the product Riemannian symmetric spaces
S%@) x R, H2(¢) x R,
where S%(¢) and H2(¢) are sphere of curvature ¢ > 0 and hyperbolic plane of curvature

c<0or
o M itself is a Lie group G equipped with left invariant almost cosymplectic structure.

6.2. Unimodular Lie groups. Let G be a 3-dimensional unimodular Lie group with a left
invariant metric (-, -). Then there exists an orthonormal basis {e1, e2, e3} of the Lie algebra g

such that
(23) [e1, e2] = czes,  [ea, e3] = crer, [es, e1] = czen, c; €R.
Three-dimensional unimodular Lie groups are classified by Milnor as [16] follows:
Signature of (¢1, c2,¢3) | Simply connected Lie group Property
(+,+,+) SU, compact and simple
(= —+)or (=, +,+) SLoR non-compact and simple
(+,+,0) Eo solvable
(—, ,0) Eia solvable
(0,4,0) Heisenberg group nilpotent
(0,0,0) (R3,+) Abelian

To describe the Levi-Civita connection V of G, we introduce the following constants:

1
i = 5(61 +c2+c3) — ¢

Proposition 11. The Levi-Civita connection is given by

velel = 07 v61€2 = H1€3, v6163 = —p1€é2,
v62€1 = —l2€3, vezeQ - 07 veze?) = K2e€q,
Vegel = u3e2, vegeg = —u3€e1 v63€3 = 0.
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The Riemannian curvature R is given by

R(e1,e2)er = (uipe — c3pz)ez, Rler,ez)ea = —(p1p2 — caps)er,

R(ea, e3)ea = (paps — cipn)es, R(ez,ez)es = —(uaps — cip)ez,

R(e1,e3)er = (uzpn — copz)es, R(er,es)es = —(uzpn — capiz)er.

The basis {e1, e, e3} diagonalizes the Ricci operator Q. The principal Ricci curvatures are
given by
S1=2pap3, S2 =2u1p3, S3=2p1pu2.

6.3. Perrone invariants. According to a result due to Perrone, simply connected 3-dimensional

unimodular Lie groups equipped with left invariant almost cosymplectic structure are classi-
fied by Perrone invariant P = |£¢h| — 2|h|? as follows:

Theorem 11 ([20]). Let (G, ¢,&,n, g) be a simply connected 3-dimensional Lie group equipped
with left invariant almost cosymplectic structure. If G is unimodular, then G is one of the
following Lie groups:
(1) If G is cosympletic then P = 0 and G = Eo with flat metric or abelian group R3
equipped with FEuclidean metric.
(2) If G is non-cosympletic, then
(a) G=Ey if P> 0.
(b) G = Heisenberg group if P = 0.
(C) G = E1,1 Zf'y < 0.
The Lie algebra g of G is generated by an orthonormal basis {e1, e2, ez} as in (23) with cz = 0.
The left invariant cosymplectic structure is determined by

§=e3, el =e2, er=—eq, p§=0.

Hereafter we denote by G(ci,c2) the 3-dimensional unimodular Lie group (whose Lie al-
gebra is determined by (23) with c3 = 0) equipped with a left invariant almost cosymplectic
structure. The global orthonormal frame field {e,e2,e3} on G(c1,c2) is an example of the
frame field given in Lemma 1 with o = p3 = (¢1 + ¢2)/2.

Proposition 12. The endomorphism field h of a unimodular Lie group G(c1,c2) equipped
with a left invariant homogeneous almost cosymplectic structure is given by

1 1
h61 = —5(61 — 62)81, heg = 5(61 — 62)62.
The sectional curvatures of G are given by
1 1 1
H =Ky = Z(Cl — 62)2, K3 = Z(Cl — 62)(61 + 302), Koz = _Z(Cl — 02)(361 + CQ).

The principal Ricci curvatures are

1 1 1

Si=5(d—c), Sa=-5(d-¢a), S3=-5(a—ec)

2 2 2

The scalar curvature is

1
r= —2)\2 e —5(01 - 02)2.
In particular, G(c1,c2) is scalar flat if and only if ¢1 = ca.
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The Perrone invariant is computed as

P=lc1 — <\/C%+C%— |1 —02\>.

Corollary 4. The non-cosymplectic unimodular Lie group G(c1, c2) is an almost cosymplectic
(K, p)-space with
1

K= —i(cl — ) p=—(c1 + ).

Comparing the model spaces N3(u) of almost cosymplectic (—1, u1)-space constructed in
[10] with G(c1,c2) we obtain the following corollary.

Corollary 5. Let N3(u) be a 3-dimensional simply connected almost cosymplectic (—1, u)-
space. Then N3(p) is isomorphic to one of the following almost cosymplectic Lie groups:

o Ey if |u| > 2,

e Heisenberg group if |u| = 2,

° E171 Zf |,u| < 2.

6.4. Explicit models. Here we give explicit expressions of these unimodular Lie groups.

Example 2 (Euclidean motion group). Let us denote by E, the universal covering of the
Euclidean motion group Eo. Then Es is realized as R3(z,y, z) with multiplication

(z1,91,21) - (T2, Y2, 22) = (1 + (c0os 21)T2 — (sin 21)y2, Y1 + (sin z1)x2 + (cos 21)y2, 21 + 22).
For any positive real numbers a, b and ¢ satisfying a > b, we take a global frame field
1 0 .0 1 .0 0 10
ey = a (COSZO:U +smzay> , €2 = 3 <_Sln28x +COSZ@y> , €3 = E @
Then {e1, e, e3} satisfies

b

ler,e2] =0, [ez,es] = 5e1, ez, en] = —ea.

be
The left invariant Riemannian metric g determined by the condition {ej, e, e3} is orthonor-
mal with respect to it and it is

g = ad’w! @ w4 bw? @ w? + Pw? @ Wwd,

where

wl=coszdr+sinzdy, w?=—sinzdr+coszdy, w=dz.

Let us introduce a left invariant almost contact structure by

n:cwgzcdz, ¢ = eg,

pep = ez, er =—e1, ez =0.
Then the resulting homogeneous almost contact metric 3-manifold (Es, p,&,n,¢g) is almost
cosymplectic with Perrone invariant

2 b2

P= 7‘“2 | (\/0,4 + bt — |a® — b2y) > 0.
a2b?c?

The almost cosymplectic 3-manifold (Eg, v, &,1m,g) is cosymplectic when and only when a = b.

In such a case g is flat and has the form

g = d*(dz® + dy?) + * dz*.
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Example 3 (The Mikowski motion group). The identity component of the isometry group
of Minkowski plane EV! = (R?(z1, 29), dz1dzs) is denoted by E1,1 and called the Minkowski
motion group. The Minkowski motion group Ej ; is realized as R3(z,y, z) with multiplication

(1,91, 21) - (T2, Y2, 22) = (1 + ™ w2, y1 + € Ty, 21 + 22).
For any positive numbers a, b, ¢, we set

0 0 0 0
eg1=alef— —e *— eo=blef— +e " — e3=c—.
! < oz 8y> r 2 < oz 8y> r e 0z
Then we have
[e1,e2] =0, ez, e3] = crer, [es,e1] = coer
with
be < ca -
a b
We equip a left invariant metric g, 4. so that {ei,es,e3} is orthonormal with respect to it.
Then

Ccl1 =

a? + b?
4a2b?

@

Jabe = (€722dw2 4 62zdy2) + 62

In particular,

g1 1 = e 2% dx? + e*dy* + dz?
V2V

is the metric of the model space Sols of solvgeometry in the sense of Thurston [23]. Let us
introduce an almost contact structure by £ = e3, 1 = gqp.c(€3,-) and

per = ez, pes = —e1, ez =0,

then the Minkowski motion group equipped with this almost cosymplectic structure satisfies:

c(a® + b?) (a® + b%)2c? (a® - b?)c
A=—"F7—"7—"#0, k=—"—57—, H=—7-—.
2ab ’ 4a?b? 7 ab
_ (a®+b?)c? ~ (a®+b%)(3a® — b?)c? ~ (a® +b%)(a® - 3b?)c?
H= 4a20? K1z = 4a2b? y K= 4a2?

The Perrone invariant is computed as

2002 1 b2

P= C(%;;) (\/a4+b4 — (a? +b2)) <0.
a

The characteristic Jacobi operator is invariant under characteristic flow when and only when

a = b. In particular, Sols equipped with compatible left invariant almost cosymplectic struc-

ture satisfies £¢€ = 0 but not £ =0 (see [14]).

For the explicit representation of left invariant almost cosymplectic structure on the Heisen-
berg group, see [14, Example 5.3].
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6.5. The characteristic Jacobi operator. The characteristic Jacobi operator ¢ of a uni-
modular Lie group G(ci,¢2) is computed as

5(61) = £1€1, 6(62) = Egeg,

where . )
b = 1(61 —c2)(c1 +3c2) = K3, {2 = —1(01 —c2)(3c1 + c2) = Kas.

In particular, we have

1
b+ 0y = —5(61 — 62)2, b1 — by = (Cl — CQ)(Cl + CQ).
Thus ¢ = 0 if and only if ¢; = co.

Proposition 13. A 3-dimensional unimodular Lie group G(c1,c2) has vanishing characteris-

tic Jacobi operator if and only if G(c1,c2) is locally isometric to Eq equipped with flat metric
or Buclidean 3-space E3.

Proposition 14. A 3-dimensional unimodular Lie group G(ci,c2) equipped with a left in-
variant almost cosymplectic structure satisfies £ = 0 if and only if G(c1,c2) is cosymplectic.

6.6. Pseudo-parallelism. We already know from Theorem 9, the only possible unimodular
Lie algebra g(cq, c2) with pseudo-parallel characteristic Jacobi operator are cosymplectic ones
or e11. However as we have exhibited in Example 3, left invariant almost cosymplectic
structure on E; ; are not unique. We need to identify the left invariant almost cosymplectic
structures on Eq; admitting pseudo-parallel characteristic Jacobi operator. In this section,
we pursue this task.

Let us investigate the pseudo-parallelism of the characteristic Jacobi operator ¢ of the
unimodular Lie group G(ci, c2). First of all the covariant derivatives V¢ is described as

(Ve D)er = (Veyl)ea = (Vegl)es =0,
(Ve l)ez =pn1 Kozes = é(q — 2)*(3¢1 + c2)es,
(Ve l)es =p1 Kazea = é(q — ¢2)%(3c1 + c2)ea,
(Veyl)er = — paKizes = —é(ﬁ — ¢2)*(c1 + 3ep)es,
(Vegl)es = — paKizer = —é(ﬁ — c2)*(c1 + 3cp)en,
(Vegb)er =ps(Kiz — Kag)ea = %(01 + )% (1 — co)ea,
(Vesl)ea =p3(Kiz — Kaz)ep = %(01 +2)?(c1 — ca)eq.

Thus we obtain

Proposition 15. Let G(ci,c2) be a 3-dimensional unimodular Lie group equipped with a
left invariant almost cosymplectic structure. Then G(cy,c) has parallel characteristic Jacobi
operator if and only if G(cy,ca) is cosymplectic and £ = 0.

Unimodular almost cosymplectic Lie groups with pseudo-parallel characteristic Jacobi op-
erator are classified as follows.
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Theorem 12. Let G(c1,c2) be a 3-dimensional unimodular Lie group equipped with left in-
variant almost cosymplectic structure. Then G(c1, ca) has pseudo-parallel characteristic Jacobi
operator if and only if G(c1,ca) is one of the following list:

(1) cosymplectic Lie groups: E3 or Eg,

(2) non-cosymplectic Lie groups: Ei ;1 with ¢1 + co = 0. In this case, the characteristic

Jacobi operator is properly pseudo-parallel with L = —c%.

Proof. From Proposition 11, first, we have R(es,e1) - ¢ = L(esz A eq) - £ holds if and only if

(24) pa(pa + 2u3){L + pa(pa +2p3)} = 0.
Also, we have R(eg,e3) - £ = L(ea A e3) - £ holds if and only if
(25) pa(pn — 2p3){L + pa(pa — 2u3)} = 0.
Thus, we have R(ej,ez) - £ = L(e1 A eg) - £ holds if and only if
(26) paps(L — p3) = 0.

From (26), we have u; =0, uz = 0 or L = p2.

First, if 41 = 0, then ¢; = ¢ and G(¢q, ¢2) is cosymplectic.

Next, if p1 # 0 and pz = 0, then from (24) and (25) we get L = —u? = —c2. Lastly, if
p1 # 0 and puz # 0 and L = p2, then it contradicts to (24) and (25). O

Remark 3. The unimodular basis {e1, es,e3} of G(c1,c2) is a global orthonormal frame field
as in Lemma 1 with A = iy = —(c1 — 2)/2, @ = pu3 = (1 + ¢2)/2, p = ¢ = 0 (and hence
o(e1) = o(ez) = 0) and 7 = —2u2. Thus Theorem 12 can be verified by using the system
(17)—(22) of pseudo-parallelism of ¢ with respect to {e1, ez, e3} and applying Theorem 9.

6.7. Non-unimodular Lie groups. Now let us consider 3-dimensional non-unimodular Lie
groups equipped with left invariant almost cosymplectic structure. Here we recall Perrone’s
construction [20].

Let G be a (simply connected) 3-dimensional non-unimodular Lie group equipped with a
left invariant almost cosymplectic structure. Then one can easily check that £ € u. We take
an orthonormal basis {es,e3 = £} of u. Then e; = —pes € ut and hence ad(e;) preserves u.
Express ad(e1) as

le1,e2] = ar1e2 + azies, [e1,e3] = arzea + axes

over u. The closing condition dn = 0 implies that as; = 0. Next, V¢ = 0 implies that ags = 0.
Moreover one can deduce that [e2, e3] = 0 from the Jacobi identity. Note that 3-dimensional
non-unimodular Lie algebras are classified by Milnor invariant D = det ad(ey).

Theorem 13 ([20]). Let G be a 3-dimensional non-unimodular Lie group equipped with a
left invariant almost cosymplectic structure. Then the Lie algebra g = g(~,d) satisfies the
commutation relations

[ela 62] - 6627 [62) 63] — 0) [637 61] = —7Ye€2,
with e3 = £, e1 = —pea € ut and § # 0. In particular Milnor invariant of g(v, ) is 0.
The Lie algebra g = g(7,0) is given explicitly by

(1+d8)z v y
g(v,0) = 0 x oz x,y,z €R
0 0 =z
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with basis

146 ~ 0 00 1 00 0
e = 0 10 ]|,e=[000],es=[001
0 0 1 000 000

The corresponding simply connected Lie group G(v,d) = exp g(7y, ) is given by

T Sz _1)_
e(148)z %ex(eéa:_l) e ((5y+7z)gzx 1)—ydzz)

G(v,0) = 0 er ze®r
0 0 er

z,y,z € R

The multiplication law is expressed as
v\ y2\\ _ Y1 orr yx1\ (Y2
(o () (o (8)) = (e () 2o (70 (2)
ox1 Y (0T
_ (7 e 51 =1)\ (2
= <.231 + Z2, <21> + < 0 1 o

= (a:l + x9,y1 + e‘smyg + %(e‘m1 —1)z9,21 + 22) .

The left invariant metric is expressed as w! ® w! + w? ® w? + 1 ® 7, where

w! = dx,
—dx Sr—1
w?=dy + % {(vy + 02)dx — x(ydz + ddy)},
n =dz.

The left invariant vector fields obtained from e, es and e3 by left translation are

€1 = —— - €9 =

0 (e 4 5x —1)(6y +v2) O ﬂﬁ 6—8 Tl —E 0
oz da(eh — 1) Dy’ e —10y" 0z 9§

The Levi-Civita connection of G is given by the following table:

Proposition 16 ([20]).

Ve e1 =0, Ve, €2 = _%637 Ve, €3 = %627
Ve,e1 = —dea — ge3,  Ve,ea =der,  Ve,ez = Te,
ve3€1 == —%62, ve362 == %61 V€3€3 = 0.

The global orthonormal frame filed {ei,e2,e3} is an example of orthonormal frame field
given in Lemma 1 with « = A = —v/2.
From this table, we obtain

Thus G(v, ) is cosymplectic if and only if v = 0.
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The Riemannian curvature R is given by

2 2
R(e1, e2)er = <52 - 1) e2 +7de3, R(e1,e2)es = — ((52 - 1) el,

3 2 3 2
R(€1, 63)61 = ydes + %63, R(el, 63)63 = _%61,
2 2
R(eg,e3)es = L6 R(ea,e3)es = T

R(e1,e2)es = —vdey.

Hence
2

gl 37 Y
H=Ky=-0+"1, Kg=—-"", Kop=—.
12 + 1 13 1 23 1
Thus the characteristic Jacobi operator is given by
6(61) = K13€1, 6(62) = K23€2.

The Ricci operator @ is described as

2 2 2
Qe = — (52 + ’Y2> e1, Qe = — ((52 — 72) ea — 0§, Q&= —vdes — %5

The principal Ricci curvatures of (Q are computed as

_f _ 52 12 — 52 _12
2 T2 ’ 2

The scalar curvature is

1 2 2
= 42— 252
T 2’)/

Proposition 17. The almost cosymplectic non-unimodular Lie group G(v,0) satisfies £ =0
if and only if v = 0. In this case, the structure is cosymplectic.

Thus the vanishing of ¢ is a too strong restriction for G(v,d). Next we investigate paral-
lelism of . The covariant derivatives of £ are computed as

3
(Ve )er =0, (Ve f)ea = —%K23€3 = —%63,
3 3
(Ve,0)er = — 0(K13 — Kag)ea — %Kl?,eg - ’72562 + %63,

(Ve,0)ea = — 0(K13 — Kag)ep = ~v2dey.

Proposition 18. The characteristic Jacobi operator of the almost cosymplectic non-unimodular
Lie group G(v,6) is parallel when and only when v = 0. In such a case £ = 0.

Thus unfortunately parallelism of ¢ is still a strong restriction for G(+, 9).
From Theorem 9, the only possible G(vy, ) admitting pseudo-parallel characteristic Jacobi
operator is the cosymplectic G(0,9). Here we conform this fact by direct approach.

Theorem 14. An almost cosymplectic non-unimodular Lie group G(~,d) has pseudo-parallel
characteristic Jacobi operator if and only if € is parallel. In this case, it is G(0,9) and
cosymplectic. Thus it has left invariant cosymplectic structure which is isometric to H?(—6%) x
R.
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Proof. The orthonormal basis {e1, ea, e3} of g(v, d) is regarded as a globally defined orthonor-
mal frame field as in Lemma 1 with A = a = —v/2, p =10, ¢ =4, o(e1) =0, o(e2) = —0
and r = —2(62 + %)
From (17) R(es,e1) - £ = L(eg A ey) - £ holds if and only if
3
(27) 35 =0, (L + 472> 7% =0.
Next from (19) R(ea,e3) - £ = L(ea A es) - £ holds if and only if

(28) (L - 1%) 72 = 0.

4
Finally, from (21) and (22), R(e1,e2) - ¢ = L(ej A ez) - £ holds if and only if
2
(29) 2 <L +62— 74) =0, &P=0.
The second equation of (29) implies that v = 0 since 0 # 0. Of course, if ¢ is semi-parallel
(i.e., L =0), then v = 0. O

Remark 4. The simply connected almost cosymplectic Lie group G(0,0) is cosymplectic and
isometric to the cosymplectic space form H?(—§2) xR. However, as a homogeneous cosymplec-
tic 3-manifold, these two spaces are distinguished. The cosymplectic space form H?(—§2) x R
is represented by H?(—4?) x R = (SU7 1 x R)/U; as a homogeneous space. On the other hand,
G(0,6) is represented as H?(—46%) x R = G(0,4)/{Id}.

By using Theorem 14 together with Theorem 10, Theorem 11 and Theorem 12, we obtain
the following classification of homogeneous almost cosymplectic 3-manifolds.

Corollary 6. Let M be a homogeneous almost cosymplectic 3-manifold with pseudo-parallel
characteristic Jacobi operator. Then M is locally isomorphic to one of the following spaces:
e Cosymplectic space forms: S?(¢) x R = (SUz x R)/Uy, H?(¢) x R = (SU; 1 x R)/Uy,
E3 = E3/S0s3,
e Ey equipped with left invariant flat cosymplectic structure,
e E 1 with structure constants (c1,c) satisfying c1 +co = 0 equipped with left invariant
non-cosymplectic almost cosymplectic structure.
e The non-unimodular Lie group G(0,9) equipped with left invariant cosymplectic struc-
ture which is isometric to H?(—42%) x R.

In particular, the model space Sols of Thurston geometry equipped with compatible almost
cosymplectic structure has pseudo-parallel characteristic Jacobi operator.
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