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Abstract. In this paper, we classify almost cosymplectic 3-manifolds with pseudo-parallel
characteristic Jacobi operator. The only simply connected and complete non-cosymplectic
almost cosymplectic 3-manifolds with pseudo parallel characteristic Jacobi operator is the
Minkowski motion group.

Introduction

In almost contact metric geometry, the Jacobi operator along the characteristic vector
field (called the characteristic Jacobi operator) plays an important role. In particular, the
characteristic Jacobi operator of contact metric 3-manifolds has been paid much attention by
researchers of contact manifolds. See [6, 7] and references therein.

On the other hand, in almost contact metric geometry, the parallelism of tensor fields often
causes very strong restrictions for almost contact metric manifolds. For instance, Sasakian
manifolds with parallel Riemannian curvature (i.e. locally symmetric Sasakian manifolds) are
of constant curvature 1. Analogously locally symmetric Kenmotsu manifolds are of constant
curvature −1.

The parallelism of the characteristic Jacobi operator is also a strong restriction for al-
most contact metric manifolds. In fact, if the characteristic Jacobi operator ℓ of an almost
cosymplectic 3-manifold is parallel, then ℓ = 0 (see [14] or Proposition 9 of the present paper).

Thus we need to find appropriate relaxations of parallelism for the characteristic Jacobi
operator to characterize nice classes of almost contact metric manifolds.

From the viewpoint of almost contact structure, η-parallelism was proposed and studied
intensively for some tensor fields on almost contact metric manifolds. In our previous pa-
per [6], Cho and the first named author studied contact metric 3-manifolds with η-parallel
characteristic Jacobi operator. In addition almost cosymplectic 3-manifolds with η-parallel
characteristic Jacobi operator are investigated in [14]

On the other hand, from Riemannian geometric viewpoint, semi-parallelism, and pseudo-
parallelism are introduced. On a Riemannian manifold (M, g) with Levi- Civita connection
∇, every curvature-like tensor field acts on tensor fields of type (1, 1) as a derivation. For
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instance the derivative R · P of P by the Riemannian curvature R is given by

(R · P )(Z;X,Y ) = R(X,Y )(PZ)− PR(X,Y )Z.

A tensor field P of type (1, 1) is said to be semi-paralle if R · P = 0. More generally, P is
said to be pseudo-parallel (cf. [11]) if R · P = LR1 · P for some function L, where R1 is the
curvature-like tensor field

R1(X,Y )Z = (X ∧ Y )Z := g(Y, Z)X − g(Z,X)Y.

We proposed the following problems in [7]:

(1) Classify unit tangent sphere bundles with semi-parallel characteristic Ja-
cobi operator.

(2) Classify contact metric 3-manifolds with pseudo-parallel characteristic Ja-
cobi operator.

Concerning this problem, Cho and Chun [5] investigated unit tangent sphere bundles with
pseudo-parallel characteristic Jacobi operator (for 2-dimensional base manifold case, see [15]).

On the second problem, Wang and Dai [24] studied pseudo-parallelism and semi-parallelism
of the characteristic Jacobi operator on contact metric 3-manifolds.

Motivated by [7, 24], in the present paper we study pseudo-parallelism of characteristic
Jacobi operator of almost cosymplectic 3-manifolds.

The purpose of this paper is to classify almost cosymplectic 3-manifolds with pseudo-
parallel characteristic Jacobi operator. Our main result is stated as follows:

Theorem. Almost cosymplectic 3-manifolds with pseudo-parallel characteristic Jacobi oper-
ator are cosymplectic or non-cosymplectic and locally isomorphic to the Minkowski motion
group E1,1.

Our results will be given in Section 5 and 6. More precisely, in Section 5, we show that al-
most cosymplectic 3-manifolds with pseudo-parallel characteristic Jacobi operator are cosym-
plectic or locally isomorphic to the Minkowski motion group E1,1 (Theorem 9). It should
be mentioned that the model space Sol3 of the solvgeometry in the sense of Thurston has
pseudo-parallel characteristic Jacobi operator.

In Section 6, we study characteristic Jacobi operator of homogeneous almost cosymplec-
tic 3-manifolds. In particular, we give a complete classification of all homogeneous almost
cosymplectic 3-manifolds with pseudo-parallel Jacobi operator (Corollary 6).

1. Preliminaries

1.1. Pseudo-parallelism. Let (M, g) be a Riemannian manifold with its Levi-Civita con-
nection ∇. Then the Riemannian curvature R of M is defined by

R(X,Y ) = [∇X ,∇Y ]−∇[X,Y ].

The Ricci tensor field S of (M, g) is a symmetric tensor field defined by

S(X,Y ) = tr (Z 7−→ R(Z, Y )X).

The Ricci operator Q is a self-adjoint endomorphism field metrically equivalent to S, that is

S(X,Y ) = g(QX,Y ) = g(X,QY ).

The smooth function r = tr S = trQ is called the scalar curvature of (M, g).
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On a Riemannian manifold (M, g), We define a curvature-like tensor field R1 by

R1(X,Y )Z = (X ∧ Y )Z = g(Y, Z)X − g(Z,X)Y.

As is well known, every curvature-like tensor field acts on tensor fields as a derivation.

Definition 1. A tensor field P of type (1, 1) is said to be pseudo-parallel if there exits a
smooth function L such that

R · P = LR1 · P.
In particular, P is said to be semi-parallel if

R · P = 0.

Obviously, the following relations hold:

P is parallel ⇒ P is semi-parallel ⇒ P is pseudo-parallel.

1.2. Harmonic vector fields. Let (M, g) be a Riemannian manifold with unit tangent
sphere bundle UM . We equip the Sasaki-lift metric gs on UM . Denote by X1(M) the space
of all smooth unit vector fields on M . Every unit vector field V ∈ X1(M) is regarded as an
immersion of M into UM .

A unit vector field V ∈ X1(M) is said to be minimal if it is a critical point of the volume
functional on X1(M). It is known that V is a minimal unit vector field if and only if it is a
minimal immersion with respect to the pull-backed metric V ∗gs.

On the other hand, a unit vector field V is said to be a harmonic unit vector field if it is
a critical point of the energy functional restricted X1(M). It should be remarked that for a
unit vector field, to be a harmonic map into UM is stronger than to be a harmonic vector
field. In fact, the following result is known.

Proposition 1 ([13]). A unit vector field V : M → UM is a harmonic map if and only if it
is a harmonic vector field and in addition, satisfies

trgR(∇V, V ) = 0.

2. Almost contact metric manifolds

In this section, we recall the fundamental ingredients of almost contact metric geometry.
For general information on almost contact metric geometry, we refer to [1].

2.1. Almost contact metric structures. An almost contact metric structure of a (2n+1)-
manifold M is a quartet (φ, ξ, η, g) of structure tensor fields which satisfies:

(1) η(ξ) = 1, dη(ξ, ·) = 0,

(2) φ2 = −I + η ⊗ ξ, φξ = 0,

(3) g(φX,φY ) = g(X,Y )− η(X)η(Y ).

A (2n+ 1)-manifold M = (M,φ, ξ, η, g) equipped with an almost contact metric structure is
called an almost contact metric manifold. The vector field ξ is called the characteristic vector
field of M . The 2-form

Φ(X,Y ) = g(X,φY )

is called the fundamental 2-form of M .
An almost contact metric manifold M is said to be normal if

[φ,φ](X,Y ) + 2dη(X,Y )ξ = 0,
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where [φ,φ] is the Nijenhuis torsion of φ.

Definition 2. Let (M,φ, ξ, η, g) be an almost contact metric manifold. A tangent plane Πx

at x ∈ M is said to be holomorphic if it is invariant under φx.

It is easy to see that a tangent plane Πx is holomorphic if and only if ξx is orthogonal
to Πx. The sectional curvature K(Πx) of a holomorphic plane Πx is called the holomorphic
sectional curvature. In case dimM = 3, holomorphic sectional curvature is a smooth function
on M and we denote it by H.

Here we recall an auxiliary tensor field h which is very useful for the study of almost contact
metric manifolds. The endomorphism field h is defined by h = (£ξφ)/2. Here £ξ denotes the
Lie differentiation by ξ.

2.2. The characteristic Jacobi operator. In addition we introduce a self-adjoint endo-
morphism field ℓ on an almost contact metric manifold M of dimension 2n+ 1 ≥ 3 by

ℓ(X) = R(X, ξ)ξ, X ∈ X(M).

The self-adjoint operator ℓ is called the characteristic Jacobi operator of M . Note that our ℓ
has the opposite sign to the one in [20].

2.3. Almost cosymplectic structures. Now we turn our attention to almost cosymplectic
manifolds (see [1, 12]).

Definition 3. An almost contact metric manifold M is said to be almost cosymplectic (or
almost coKähler) if dη = 0 and dΦ = 0. An almost cosymplectic manifold is said to be
cosymplectic (or coKähler) if it is normal.

The distribution
D = {X ∈ TM | η(X) = 0}

on an almost cosymplectic manifold M is integrable and hence it defines a foliation F on M .
The foliation F is called the canonical foliation of M . The almost cosymplectic structure
induces an almost Kähler structure on leaves. An almost cosymplectic manifold M is said to
be an almost cosymplectic manifold with Kähler leaves if leaves of the canonical foliation are
Kähler manifolds. Clearly if dimM = 3 or M is cosymplectic, then all the leaves are Kähler.

Theorem 1 ([18]). An almost cosymplectic manifold has Kähler leaves if and only if

(4) (∇Xφ)Y = g(X,hY )ξ − η(Y )hX.

Let us introduce an endomorphism field A by A = −∇ξ. One can see that on every leaf,
A is nothing but the shape operator of the leaf derived from the unit normal ξ. Dacko and
Olszak obtained the following formulas:

h = Aφ, A = φh, Aξ = 0, η ◦A = 0.

Moreover A is self-adjoint operator, i.e.,

g(AX,Y ) = g(X,AY )

for all vector fields X and Y on M .
The cosymplectic property is characterized as follows:

Proposition 2. An almost contact metric manifold M is cosymplectic if and only if φ is
parallel.
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In particular, ξ is parallel on every cosymplectic manifold. Here we recall the following
fundamental fact (see e.g. [2, Theorem 3.11], [12]).

Theorem 2. Let M be an almost cosymplectic manifold. Then the following properties are
mutually equivalent:

• h = 0.
• ∇ξ = 0.
• ξ is a Killing vector field.
• M is locally isomorphic to a direct product of an almost Kähler manifold and the real
line.

2.4. Cosymplectic manifolds. A complete cosymplectic manifold M of constant holomor-
phic sectional curvature c is called a cosymplectic space form.

Example 1. Let M = (M, ḡ, J) be an almost Kähler manifold. Consider the Riemannian
product M = (M × R, g) with g = ḡ + dt2. Then we can equip an almost cosymplectic
structure of M by

ξ =
d

dt
, η = dt, φ

(
X, f

d

dt

)
= (JX, 0), X ∈ X(M).

The almost cosymplectic manifold M is cosymplectic if and only if M is Kähler. In particular
when M is a complex space form, that is, a Kähler manifold of constant holomorphic sectional
curvature, then M is a cosymplectic manifold of constant holomorphic sectional curvature.
Now let CPn(c̄), Cn and CHn(c̄) be complex projective n-space of constant holomorphic sec-
tional curvature c̄ > 0, complex Euclidean n-space and complex hyperbolic n-space of constant
holomorphic sectional curvature c̄ < 0, respectively. Then the cosymplectic manifolds

CPn(c̄)× R, E2n+1 = Cn × R, CHn(c̄)× R

are cosymplectic space forms. In particular

S2(c̄)× R, E3 = E2 × R, H2(c̄)× R

are 3-dimensional cosymplectic space forms.

2.5. D-homothetic deformations. On an almost cosymplectic manifold M , we define a
subring Rη(M) of the commutative ring C∞(M) of all smooth functions on M by

Rη(M) = {f ∈ C∞(M) | df ∧ η = 0}.

For any positive constant t and β ∈ Rη(M) satisfying β 6= 0, we deform the structure tensors
(φ, ξ, η, g) as

(5) φ̃ = φ, ξ̃ =
1

β
ξ, η̃ = βη, g̃ = tg + (β2 − t)η ⊗ η.

Then the resulting structure (φ̃, ξ̃, η̃, g̃) is also almost cosymplectic with fundamental 2-form

Φ̃ = tΦ. This new structure is called a D-homothetic deform of the original structure. The
procedure (φ, ξ, η, g) 7−→ (φ̃, ξ̃, η̃, g̃) is called a D-homothetic deformation. If two almost
cosymplectic structures are related by a D-homothetic deformation, then those structures are
said to be D-homothetically equivalent.

Dacko and Olszak obtained the following result.
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Proposition 3 ([9]). The Levi-Civita connection ∇̃ of the D-homothetic deform is given by

∇̃XY = ∇XY − β2 − t

β2
g(AX,Y )ξ +

ξ(β)

β
η(X)η(Y )ξ.

The endomorphisms h̃ = £ξ̃φ̃/2 and Ã = −∇̃ξ̃ are given by

h̃ =
1

β
h, Ã =

1

β
A.

The Riemannian curvature R̃ of the D-homothetic deform satisfies

(6) R̃(X,Y )ξ̃ =
1

β
R(X,Y )ξ +

ξ(β)

β2
(η(X)AY − η(Y )AX).

From this proposition we can deduce that the characteristic Jacobi operator ℓ̃ of (M, φ̃, ξ̃, η̃, g̃)
is

ℓ̃(X) =
1

β

(
ℓ(X)− ξ(β)

β
AX

)
.

3. Generalized almost cosymplectic (κ, µ, ν)-spaces

In this section, we collect fundamental facts on generalized almost cosymplectic (κ, µ, ν)-
spaces.

3.1. H-almost cosymplectic manifolds. Here we introduce the following notion.

Definition 4. An almost cosymplectic manifold M is said to be an H-almost cosymplectic
manifold if its characteristic vector field ξ is a harmonic vector field.

Perrone clarified relations between harmonicity and minimality of unit vector fields ([20,
Theorem 4.3], [21, Theorem 4.2], cf. [12]):

Theorem 3. Let M be an almost cosymplectic 3-manifold. Then ξ is a minimal unit vector
field if and only if it is a harmonic unit vector field.

On the other hand, on an almost cosymplectic 3-manifold (M,φ, ξ, η, g), the minimality of
ξ is characterized in terms of Ricci operator as follows.

Theorem 4 ([21, 12]). On an almost cosymplectic 3-manifold M , ξ is a minimal unit vector
field if and only if ξ is an eigenvector field of Q.

Perrone proved the following fact ([22, Remark 3.1]):

Proposition 4. Let (M,φ, ξ, η, g) be an almost cosymplectic 3-manifold with minimal ξ.
Then for any positive constant t and β ∈ Rη(M) with β 6= 0, the D-homothetic deform

(M, φ̃, ξ̃, η̃, g̃) defined by (5) has minimal characteristic vector field ξ̃.

3.2. Generalized almost cosymplectic (κ, µ, ν)-spaces. Next, we recall the notion of
almost cosymplectic (κ, µ, ν)-space.

Definition 5. An almost cosymplectic manifold M is said to be a generalized almost cosym-
plectic (κ, µ, ν)-space if

R(X,Y )ξ = κ(η(Y )X − η(X)Y ) + µ(η(Y )hX − η(X)hY )(7)

+ ν(η(Y )φhX − η(X)φhY ).
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for some smooth functions κ, µ and ν. Generalized almost cosymplectic (κ, µ, 0)-spaces are
called generalized almost cosymplectic (κ, µ)-spaces.

Definition 6. Let M be a generalized almost cosymplectic (κ, µ, ν)-space. If all the functions
κ, µ and ν are constants, thenM is called an almost cosymplectic (κ, µ, ν)-space. A generalized
almost cosymplectic (κ, µ, ν)-space is said to be proper if |dκ|2 + |dµ|2 + |dν|2 6= 0.

Remark 1. Generalized almost cosymplectic (κ, µ, ν)-space in this paper are called almost
cosymplectic (κ, µ, ν)-space in [22]. On the other hand, an almost cosymplectic (κ, µ, ν)-space
in the sense of Dacko and Olszak [9] is a generalized almost cosymplectic (κ, µ, ν)-space in
the sense of the present paper satisfying the additional condition:

(8) dκ ∧ η = 0, dµ ∧ η = 0, and dν ∧ η = 0.

Dacko and Olszak [9] showed that if the dimension of a generalized almost cosymplectic
(κ, µ, ν)-space is greater than 3, then κ, µ and ν satisfy this additional condition. In this
paper, we do not require this condition for 3-dimensional generalized almost cosymplectic
(κ, µ, ν)-spaces.

The endomorphism field A of a generalized almost cosymplectic (κ, µ, ν)-space M satisfies
(see [9]):

(9) A2X = −κ(X − η(X)ξ).

This equation implies the following fact.

Proposition 5. A 3-dimensional generalized almost cosymplectic (0, µ, ν)-space is cosymplec-
tic.

Proof. If κ = 0, then A2 = 0 from (9). Since A is self-adjoint, for any non-zero vector field
X, we have

0 = g(A2X,X) = g(AX,AX) = ||AX||2.

This implies that A = 0, i.e., ∇ξ = 0. By Theorem 2, M is cosymplectic. □

We notice that κ ≤ 0. Dacko and Olszak showed that if κ = 0 at some point, then κ = 0
on whole M [9, Lemma 3].

The generalized (κ, µ, ν)-property is invariant under D-homothetic deformation. Indeed,
from (6) and (7), one can check the following theorem.

Theorem 5 ([9]). Assume that (M,φ, ξ, η, g) be a generalized almost cosymplectic (κ, µ, ν)-

space. Then its D-homothetic deform (M, φ̃, ξ̃, η̃, g̃) defined by (5) is a generalized almost
cosymplectic (κ̃, µ̃, ν̃)-space with

κ̃ =
κ

β2
, µ̃ =

µ

β
, ν̃ =

νβ − ξ(β)

β2
.

4. Almost cosymplectic 3-manifolds

Hereafter we concentrate on almost cosymplectic 3-manifolds.
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4.1. Cosymplectic 3-manifolds. Cosymplectic 3-manifolds have some particular geometric
properties.

Proposition 6 ([17]). An almost contact metric 3-manifold M is cosymplectic if and only if
ξ is parallel.

Proposition 7. Let M be a cosymplectic 3-manifold. Then the Ricci operator Q of M has
the form

Q =
r

2
(I− η ⊗ ξ).

The principal Ricci curvatures are r/2, r/2 and 0. The Ricci operator Q commutes with φ.
The Riemannian curvature R satisfies

R(X,Y )ξ = 0

for any vector fields X and Y . Hence, the characteristic Jacobi operator vanishes. The
holomorphic sectional curvature is H = r/2. For a unit vector X in TxM such that η(X) = 0,
then the sectional curvatures K(X ∧ ξ) is always 0.

This proposition tells us differences between Sasakian manifolds, Kenmotsu manifolds and
cosymplectic manifolds.

Structure Sasakian Cosymplectic Kenmotsu
Characteristic Jacobi operator ℓ = −φ2 ℓ = 0 ℓ = φ2

Corollary 1. The following properties of a cosymplectic 3-manifold M are mutually equiva-
lent.

• M is locally symmetric,
• the scalar curvature r is constant,
• the holomorphic sectional curvature H is constant,
• M is locally isomorphic to a Riemannian product M(c̄) × R, where M(c̄) is a 2-
dimensional Riemannian manifold of constant curvature c̄.

Corollary 2. A cosymplectic 3-manifold M is of constant curvature if and only if it is locally
isomorphic to Euclidean 3-space E3 = E2 × R.

4.2. The Levi-Civita connection. Let M be an almost cosymplectic 3-manifold. Denote
by U1 the open subset of M consisting of points x such that h 6= 0 around x. Next, let U0

be the open subset of M consisting of points x ∈ M such that h = 0 around x. Since h is
smooth, U = U1 ∪ U0 is an open dense subset of M . Thus any property satisfied in U is also
satisfied in the whole M . For any point x ∈ U , there exists a local orthonormal frame field
E = {e1, e2 = φe2, e3 = ξ} around x, where e1 is an eigenvector field of h.

Lemma 1 (cf. [19, 21]). Let M be an almost cosymplectic 3-manifold. Then there exists a
local orthonormal frame field E = {e1, e2, e3} on U such that

he1 = λe1, e2 = φe1, e3 = ξ

for some locally defined smooth function λ. The Levi-Civita connection ∇ is described as

∇e1e1 =
1

2λ
(e2(λ) + σ(e1))e2, ∇e1e2 = − 1

2λ
(e2(λ) + σ(e1))e1 + λξ, ∇e1e3 = −λe2,

(10) ∇e2e1 = − 1

2λ
(e1(λ) + σ(e2))e2 + λξ, ∇e2e2 =

1

2λ
(e1(λ) + σ(e2))e1, ∇e2e3 = −λe1,
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∇e3e1 = αe2, ∇e3e2 = −αe1, ∇e3e3 = 0,

where σ is the 1-form metrically equivalent to Qξ, that is,

σ = g(Qξ, ·) = S(ξ, ·).
The commutation relations are

[e1, e2] =− 1

2λ
{(e2(λ) + σ(e1))e1 − (e1(λ) + σ(e2))e2} ,(11)

[e2, e3] =(α− λ)e1, [e3, e1] = (α+ λ)e2.

The Jacobi identity is described as

(12) −e1(α− λ) + ξ(p) + q(α− λ) = 0, −e2(α+ λ)− ξ(q) + p(α+ λ) = 0,

where

p =
1

2λ
(e2(λ) + σ(e1)), q =

1

2λ
(e1(λ) + σ(e2)).

4.3. The Riemannian curvature. The Riemannian curvature R is computed by the table
of Levi-Civita connection in Lemma 1:

R(e1, e2)e1 = −
(r
2
+ 2λ2

)
e2 − σ(e2)ξ, R(e1, e2)e2 =

(r
2
+ 2λ2

)
e1 + σ(e1)ξ,

R(e1, e2)e3 = σ(e2)e1 − σ(e1)e2, R(e2, e3)e1 = σ(e1)e2 − ξ(λ)ξ,

R(e2, e3)e2 = −σ(e1)e1 + (λ2 − 2αλ)ξ, R(e2, e3)e3 = ξ(λ)e1 − (λ2 − 2αλ)e2,

R(e3, e1)e1 = σ(e2)e2 − (λ2 + 2αλ)ξ, R(e3, e1)e2 = −σ(e2)e1 + ξ(λ)ξ,

R(e3, e1)e3 = (λ2 + 2αλ)e1 − ξ(λ)e2,

where

σ(e1) =e2(α) + ξ(q)− (α− λ)p = −e2(λ) + 2pλ,

σ(e2) =− e1(α) + ξ(p) + (α+ λ)q = −e1(λ) + 2qλ.

The sectional curvatures Kij = K(ei ∧ ej) are given by

K12 = λ2 + e1(q) + e2(p)− p2 − q2 =
r

2
+ 2λ2,

K13 = −λ(λ+ 2α), K23 = −λ(λ− 2α).

4.4. The Ricci operator. The Ricci operator Q is described as [21]:

Qe1 =
(r
2
+ λ2 − 2αλ

)
e1 + ξ(λ)e2 + σ(e1)ξ,

Qe2 =ξ(λ)e1 +
(r
2
+ λ2 + 2αλ

)
e2 + σ(e2)ξ,

Qe3 =σ(e1)e1 + σ(e2)e2 − 2λ2ξ.

Note that the scalar curvature r is computed as

(13) r = 2{e1(q) + e2(p)− p2 − q2 − λ2}.
The characteristic Jacobi operator ℓ is given by

ℓe1 = −(λ2 + 2αλ)e1 + ξ(λ)e2, ℓe2 = ξ(λ)e1 − (λ2 − 2αλ)e2.

From Lemma 1 we deduce that φ commutes with Q if and only if

(14) ξ(λ) = 0, α = 0, σ(e1) = σ(e2) = 0.
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It should be remarked that the commutativity Qφ = φQ implies the H-almost cosymplectic
property.

Here we recall the following result:

Theorem 6 ([4, 8]). Let M be an almost cosymplectic 3-manifold. If M satisfies Qφ = φQ if
and only if M is either cosymplectic or locally isomorphic to the Minkowski motion group E1,1

equipped with a left invariant almost cosymplectic structure. In the latter case, the eigenvalue
λ of h is constant.

The left invariant almost cosymplectic structure of E1,1 appeared in Theorem 6 will be
described explicitly in Example 3 of Section 6 (with a = b, i.e., c1 = −c2). Note that
Dacko [8] showed that 3-dimensional almost cosymplectic (κ, 0)-spaces with κ < 0 are locally
homogeneous and locally isomorphic to E1,1.

4.5. Curvatures of H-almost cosymplectic 3-manifolds. The class of H-almost cosym-
plectic 3-manifolds is characterized in terms of Riemannian curvature as follows (see [22,
Theorem 4.1, Proposition 4.3]):

Theorem 7 ([21]). Let M be an almost cosymplectic 3-manifold. If M is a generalized
(κ, µ, ν)-space, then ξ is a minimal unit vector field. Conversely, if ξ is a minimal unit vector
field, then M satisfies the generalized (κ, µ, ν)-condition on an open dense subset. In such a
case we have

Qξ = −2λ2ξ, κ = −λ2, tr (h2) = 2λ2.

Moreover λ satisfies dλ∧η = 0, that is, X(λ) = 0 for any vector field X orthogonal to ξ. The
Ricci operator has the form

Q =
(r
2
+ λ2

)
I−

(r
2
+ 3λ2

)
η ⊗ ξ + µh+ νφh.

Let us take a local orthonormal field {e1, e2, e3} on a 3-dimensional generalized almost
cosymplectic (κ, µ, ν)-space as in Lemma 1, we have

Qξ = −2λ2ξ, κ = −λ2, µ = −2α, λν = ξ(λ).

By Theorem 7, the eigenvalue λ satisfies e1(λ) = e2(λ) = 0. Hence p = q = 0. Thus from
(13), the scalar curvature is r = −tr(h2) = −2λ2. Hence the Ricci operator has the form

Qe1 =− 2αλe1 + ξ(λ)e2,

Qe2 =ξ(λ)e1 + 2αλe2,

Qe3 =− 2λ2e3.

The Riemannian curvature R of a generalized almost cosymplectic (κ, µ, ν)-space is described
as follows ([3, Theorem 3.25]).

R =
(r
2
− 2κ

)
R1 +

(r
2
− 3κ

)
R3 + µR4 + νR7,

where

R3(X,Y )Z =η(Z)η(X)Y − η(Y )η(Z)X + {g(Z,X)η(Y )− g(Y, Z)η(X)}ξ,
R4(X,Y )Z =g(Y, Z)hX − g(Z,X)hY + g(hY, Z)X − g(Z, hX)Y,

R7(X,Y )Z =g(Y, Z)φhX − g(Z,X)φhY + g(φhY,Z)X − g(Z,φhX)Y.
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Combining this curvature formula and the formula of Q above, we obtain the following cur-
vature formula for 3-dimensional generalized almost cosymplectic (κ, µ, ν)-spaces:

(15) R = −κR1 − 2κR3 + µR4 + νR7.

Remark 2. Carriazo and Mart́ın-Molina showed the curvature formlula (15) under the as-
sumption

dκ ∧ η = 0, dµ ∧ η = 0, dν ∧ η = 0.

See [3, Corollary 3.28].

As we have mentioned before, for ξ, to be a harmonic map is stronger than to be a harmonic
vector field.

Proposition 8. Let M be almost cosymplectic 3-manifold. Then its characteristic vector field
is a harmonic map into the unit tangent sphere bundle UM of M if and only if σ(X) = 0
for all vector fields X orthogonal to ξ and M satisfies the generalized (κ, µ, 0)-condition on
an open dense subset of M .

From this we notice that

Qφ = φQ =⇒ ξ is a harmonic map =⇒ ξ is minimal.

Now let M be an almost cosymplectic 3-manifold whose characteristic vector field ξ is a unit
minimal vector field. Then M satisfies the generalized (κ, µ, ν)-condition on an open dense
subset of M . Take a local orthonormal frame field {e1, e2, e3} as in Lemma 1 on an open
subset on which h 6= 0. Then from Theorem 7, κ = −λ2 < 0 and dλ ∧ η = 0. We perform a
local D-homothetic deformation (5) with t = 1 and β = λ. The resulting structure (φ̃, ξ̃, η̃, g̃)
satisfies the generalized almost cosymplectic (κ̃, µ̃, ν̃)-structure such that

κ̃ = −1, µ̃ =
µ

λ
= ± µ√

−κ
, ν̃ = 0.

One can see that {ẽ1 = e1, ẽ2 = e2, ẽ3 = ξ̃} is a local orthonormal frame field of (M, φ̃, ξ̃, η̃, g̃)
and satisfies

h̃ẽ1 = ẽ1, h̃ẽ2 = −ẽ2, h̃ẽ3 = 0.

This procedure is valid for any 3-dimensional generalized almost cosymplectic (κ, µ, ν)-space
with κ < 0.

Theorem 8. Let M be a 3-dimensional generalized almost cosymplectic (κ, µ, ν)-space with
κ < 0. Then there exists a D-homothetic deformation of M to a generalized almost cosym-
plectic (−1, µ/

√
−κ, 0)-space.

In [9, 10], Dacko and Olszak constructed a local model N3(µ) = (−ε, ε) × U ⊂ R3 for
generalized almost cosymplectic (−1, µ, 0)-spaces satisfying dµ ∧ η = 0. In particular, N3(µ)
for constant µ is extended to the whole R3. Those model spaces are realized as universal

covering Ẽ2 of the Euclidean motion group E2 for |µ| > 2, Heisenberg group for |µ| = 2 and,
Minkowski motion group E1,1 for |µ| < 2, respectively. We discuss again these Lie groups in
Section 6.

5. Pseudo-parallelism of the characteristic Jacobi operator

In this section, we study almost cosymplectic 3-manifolds with pseudo-parallel character-
istic Jacobi operator.
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5.1. Almost cosymplectic 3-manifolds with vanishing ℓ. From Lemma 1 we obtain

(∇e1ℓ)e3 = λℓe2, (∇e2ℓ)e3 = λℓe1.

These equations imply the following discouraging fact.

Proposition 9. Let M be an almost cosymplectic 3-manifold. Then its characteristic Jacobi
operator is parallel if and only if ℓ = 0 and the structure is cosymplectic.

Motived from this fact, we study semi-parallelism and pseudo-parallelism of the character-
istic Jacobi operator.

5.2. Semi-parallelism. First, the derivative of ℓ by R(X,Y ) is defined by

(R(X,Y ) · ℓ)Z = R(X,Y )ℓZ − ℓR(X,Y )Z,

and we calculate R(X,Y ) · ℓ as follows:

(R(e1, e2) · ℓ)e1 =
(r
2
+ 2λ2

)
{2ξ(λ)e1 + 4αλe2}+ {(λ2 + 2αλ)σ(e2) + ξ(λ)σ(e1)}ξ,

(R(e1, e2) · ℓ)e2 = (
r

2
+ 2λ2){4αλe1 − 2ξ(λ)e2} − {ξ(λ)σ(e2) + (λ2 − 2αλ)σ(e1)}ξ,

(R(e1, e2) · ℓ)e3 = {(λ2 + 2αλ)σ(e2) + ξ(λ)σ(e1)}e1 − {ξ(λ)σ(e2) + (λ2 − 2αλ)σ(e1)}e2,
(R(e2, e3) · ℓ)e1 = −2σ(e1)ξ(λ)e1 − 4αλσ(e1)e2 + 2λ2ξ(λ)ξ,

(R(e2, e3) · ℓ)e2 = −4αλσ(e1)e1 + 2σ(e1)ξ(λ)e2 − {ξ(λ)2 + (λ2 − 2αλ)2}ξ,
(R(e2, e3) · ℓ)e3 = 2λ2ξ(λ)e1 − {ξ(λ)2 + (λ2 − 2αλ)2}e2,
(R(e3, e1) · ℓ)e1 = −2σ(e2)ξ(λ)e1 − 4αλσ(e2)λe2 + {ξ(λ)2 + (λ2 + 2αλ)2}ξ,
(R(e3, e1) · ℓ)e2 = −4αλσ(e2)e1 + 2σ(e2)ξ(λ)e2 − 2λ2ξ(λ)ξ,

(R(e3, e1) · ℓ)e3 = {(λ2 + 2αλ)2 + ξ(λ)2}e1 − 2λ2ξ(λ)e2.

From (R(e2, e3) · ℓ)e3 = 0 and (R(e3, e1) · ℓ)e1 = 0, we get λ = 0 and hence we, have the
following classification of almost cosympectic 3-manifolds with semi-parallel ℓ.

Proposition 10. An almost cosymplectic 3-manifolds M with semi-parallel characteristic
Jacobi operator is a cosympletic manifold and ℓ = 0.

5.3. Pseudo-parallelism. It turned out that semi-parallelism is still a strong restriction for
ℓ. Next, we consider pseudo-parallelism. The derivative R1 · ℓ is given by

(R1(X,Y ) · ℓ)Z =((X ∧ Y ) · ℓ)Z = (X ∧ Y )ℓZ − ℓ((X ∧ Y )Z)

=g(Y, ℓZ)X − g(ℓZ,X)Y − g(Y, Z)ℓX + g(Z,X)ℓY.
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and using this we calculate (X ∧ Y ) · ℓ as follows:

((e1 ∧ e2) · ℓ)e1 = 2ξ(λ)e1 + 4αλe2,

((e1 ∧ e2) · ℓ)e2 = 4αλe1 − 2ξ(λ)e2,

((e1 ∧ e2) · ℓ)e3 = 0,

((e2 ∧ e3) · ℓ)e1 = −ξ(λ)ξ,

((e2 ∧ e3) · ℓ)e2 = (λ2 − 2αλ)ξ,

((e2 ∧ e3) · ℓ)e3 = −ξ(λ)e1 + (λ2 − 2αλ)e2,

((e3 ∧ e1) · ℓ)e1 = −(λ2 + 2αλ)ξ,

((e3 ∧ e1) · ℓ)e2 = ξ(λ)ξ,

((e3 ∧ e1) · ℓ)e3 = −(λ2 + 2αλ)e1 + ξ(λ)e2.

Now we suppose that λ 6= 0 and M satisfies the pseudo-parallel condition:

(16) R(X,Y ) · ℓ = L(X ∧ Y ) · ℓ, X, Y ∈ X(M).

From the list above, R(e3, e1) · ℓ = L(e3 ∧ e1) · ℓ holds if and only if

(17) αλσ(e2) = 0, σ(e2)ξ(λ) = 0, (L+ 2λ2)ξ(λ) = 0,

and

(18) (L+ λ2 + 2αλ)(λ2 + 2αλ) + ξ(λ)2 = 0.

Next, R(e2, e3) · ℓ = L(e2 ∧ e3) · ℓ holds if and only if

(19) αλσ(e1) = 0, σ(e1)ξ(λ) = 0, (L+ 2λ2)ξ(λ) = 0,

and

(20) (L+ λ2 − 2αλ)(λ2 − 2αλ) + ξ(λ)2 = 0.

Finally, R(e1, e2) · ℓ = L(e1 ∧ e2) · ℓ holds if and only if

(21) ξ(λ)
{
L−

(r
2
+ 2λ2

)}
= 0, αλ

{
L−

(r
2
+ 2λ2

)}
= 0

and

(22) (λ2 + 2αλ)σ(e2) + ξ(λ)σ(e1) = 0, (λ2 − 2αλ)σ(e1) + ξ(λ)σ(e2) = 0.

From the above equations we have our main theorem.

Theorem 9. Let M be almost cosymplectic 3-manifold with pseudo-parallel characteristic Ja-
cobi operator. Then M is cosymplectic with L = 0 or locally isomorphic to the Minkowski mo-
tion group E1,1 equipped with a left invariant non-normal almost cosymplectic (κ, 0)-structure
and L = κ = −tr(h2)/2 is a negative constant.

Proof. Let us consider the open subsets

U0 ={x ∈ M | h = 0 in a neighborhood of x},
U1 ={x ∈ M | h 6= 0 in a neighborhood of x}.

Suppose that M = U0 then M is cosymplectic. Obviously, when M is cosymplectic, ℓ is
pseudo-parallel with L = 0 (The case (1)). Hereafter we assume that U1 is non-empty. Then
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we can take a local orthonormal frame field {e1, e2, e3} as in Lemma 1. To analyze the system
of pseudo-parallelism for ℓ, we set

U2 ={x ∈ U1 | ξ(λ) = 0 in a neighborhood of x},
U3 ={x ∈ U1 | ξ(λ) 6= 0 in a neighborhood of x},

where U2 ∪ U3 is open and dense in the closure of U1.
(1) In U2, the equation R(e3, e1) · ℓ = L(e3 ∧ e1) ·R is reduced to

ασ(e2) = 0, (L+ λ2 + 2αλ)(λ2 + 2αλ) = 0.

the equation R(e2, e3) · ℓ = L(e2 ∧ e3) ·R is reduced to

ασ(e1) = 0, (L+ λ2 − 2αλ)(λ2 − 2αλ) = 0.

Finally, the equation R(e1, e2) · ℓ = L(e1 ∧ e2) ·R is reduced to

α
{
L−

(r
2
+ 2λ2

)}
= 0, (λ− 2α)σ(e1) = (λ+ 2α)σ(e2) = 0.

We consider, in addition, open subsets of U2;

U4 ={x ∈ U2 | α = 0 in a neighborhood of x},
U5 ={x ∈ U2 | α 6= 0 in a neighborhood of x}.

Here U4 ∪ U5 is open and dense in the closure of U2.

• In U4, the pseudo-parallel condition is the system:

L = −λ2, σ(e1) = σ(e2) = 0.

In this case, U4 is H-almost cosymplectic. Since we assumed that ξ(λ) = 0 and α = 0,
U4 is locally a generalized almost cosymplectic (κ, 0)-space. Moreover, from (14), φ
commutes with Q. Hence Theorem 6 implies that U4 is locally isomorphic to E1,1

(The case (2)).
• In U5, we have the system

σ(e1) = σ(e2) = 0, (L+λ2+2αλ)(λ+2α) = 0, (L+λ2−2αλ)(λ−2α) = 0, L =
r

2
+2λ2.

From these we deduce that U5 is H-almost cosymplectic and

L = −2λ2, r = −8λ2, λ = ±2α.

On the other hand, from (13) we have r = −2λ2. Hence, we have λ = 0 and this is a
contradiction. Hence U5 is empty.

Thus U4 is open and dense in the closure of U2.

(2) In U3, the pseudo-parallel condition is the system:

σ(e1) = σ(e2) = 0, L = −2λ2 =
r

2
+ 2λ2

and

(L+ λ2 + 2αλ)(λ2 + 2αλ) + ξ(λ)2 = 0, (L+ λ2 − 2αλ)(λ2 − 2αλ) + ξ(λ)2 = 0.

Hence U3 is H-almost cosymplectic and L = −2λ2, r = −8λ2. From (13) we have r = −2λ2,
hence, we have λ = 0 and it is contradiction. Thus U3 is empty. Henceforth U2 is open and
dense in the closure of U1. Thus U1 is locally isomorphic to E1,1. □

Concerning on the harmonicity of ξ, we have the following corollary.
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Corollary 3. Let M be an almost cosymplectic 3-manifold with pseudo-parallel characteristic
Jacobi operator, then its characteristic vector field ξ is a harmonic map into UM .

The Minkowski motion group E1,1 mentioned in Theorem 6 is a standard example of ho-
mogeneous almost cosymplectic 3-manifolds. In the next section, we give explicit models of
homogeneous almost cosymplectic 3-manifolds, especially E1,1.

6. Homogeneous almost cosymplectic 3-manifolds

6.1. Simply connected homogeneous almost cosymplectic 3-manifolds. In this sec-
tion, we study the characteristic Jacobi operator of homogeneous almost cosymplectic 3-
manifolds.

Definition 7 (cf. [20]). An almost contact metric manifold M = (M,φ, ξ, η, g) is said to
be a homogeneous almost contact metric manifold if there exists a Lie group G of isometries
which acts transitively on M such that every element f of G preserves η, that is f∗η = η.

Perrone obtained the following classification.

Theorem 10 ([20]). Let M be a simply connected homogeneous cosymplectic 3-manifold, then
M is either

• M is one of the product Riemannian symmetric spaces

S2(c̄)× R, H2(c̄)× R,

where S2(c̄) and H2(c̄) are sphere of curvature c̄ > 0 and hyperbolic plane of curvature
c̄ < 0 or

• M itself is a Lie group G equipped with left invariant almost cosymplectic structure.

6.2. Unimodular Lie groups. Let G be a 3-dimensional unimodular Lie group with a left
invariant metric 〈·, ·〉. Then there exists an orthonormal basis {e1, e2, e3} of the Lie algebra g
such that

(23) [e1, e2] = c3e3, [e2, e3] = c1e1, [e3, e1] = c2e2, ci ∈ R.

Three-dimensional unimodular Lie groups are classified by Milnor as [16] follows:

Signature of (c1, c2, c3) Simply connected Lie group Property
(+,+,+) SU2 compact and simple

(−,−,+) or (−,+,+) S̃L2R non-compact and simple

(+,+, 0) Ẽ2 solvable
(−,+, 0) E1,1 solvable
(0,+, 0) Heisenberg group nilpotent
(0, 0, 0) (R3,+) Abelian

To describe the Levi-Civita connection ∇ of G, we introduce the following constants:

µi =
1

2
(c1 + c2 + c3)− ci.

Proposition 11. The Levi-Civita connection is given by

∇e1e1 = 0, ∇e1e2 = µ1e3, ∇e1e3 = −µ1e2,
∇e2e1 = −µ2e3, ∇e2e2 = 0, ∇e2e3 = µ2e1,
∇e3e1 = µ3e2, ∇e3e2 = −µ3e1 ∇e3e3 = 0.
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The Riemannian curvature R is given by

R(e1, e2)e1 = (µ1µ2 − c3µ3)e2, R(e1, e2)e2 = −(µ1µ2 − c3µ3)e1,

R(e2, e3)e2 = (µ2µ3 − c1µ1)e3, R(e2, e3)e3 = −(µ2µ3 − c1µ1)e2,

R(e1, e3)e1 = (µ3µ1 − c2µ2)e3, R(e1, e3)e3 = −(µ3µ1 − c2µ2)e1.

The basis {e1, e2, e3} diagonalizes the Ricci operator Q. The principal Ricci curvatures are
given by

S1 = 2µ2µ3, S2 = 2µ1µ3, S3 = 2µ1µ2.

6.3. Perrone invariants. According to a result due to Perrone, simply connected 3-dimensional
unimodular Lie groups equipped with left invariant almost cosymplectic structure are classi-
fied by Perrone invariant P = ||£ξh|| − 2||h||2 as follows:

Theorem 11 ([20]). Let (G,φ, ξ, η, g) be a simply connected 3-dimensional Lie group equipped
with left invariant almost cosymplectic structure. If G is unimodular, then G is one of the
following Lie groups:

(1) If G is cosympletic then P = 0 and G = Ẽ2 with flat metric or abelian group R3

equipped with Euclidean metric.
(2) If G is non-cosympletic, then

(a) G = Ẽ2 if P > 0.
(b) G = Heisenberg group if P = 0.
(c) G = E1,1 if P < 0.

The Lie algebra g of G is generated by an orthonormal basis {e1, e2, e3} as in (23) with c3 = 0.
The left invariant cosymplectic structure is determined by

ξ = e3, φe1 = e2, φe2 = −e1, φξ = 0.

Hereafter we denote by G(c1, c2) the 3-dimensional unimodular Lie group (whose Lie al-
gebra is determined by (23) with c3 = 0) equipped with a left invariant almost cosymplectic
structure. The global orthonormal frame field {e1, e2, e3} on G(c1, c2) is an example of the
frame field given in Lemma 1 with α = µ3 = (c1 + c2)/2.

Proposition 12. The endomorphism field h of a unimodular Lie group G(c1, c2) equipped
with a left invariant homogeneous almost cosymplectic structure is given by

he1 = −1

2
(c1 − c2)e1, he2 =

1

2
(c1 − c2)e2.

The sectional curvatures of G are given by

H = K12 =
1

4
(c1 − c2)

2, K13 =
1

4
(c1 − c2)(c1 + 3c2), K23 = −1

4
(c1 − c2)(3c1 + c2).

The principal Ricci curvatures are

S1 =
1

2
(c21 − c22), S2 = −1

2
(c21 − c22), S3 = −1

2
(c1 − c2)

2.

The scalar curvature is

r = −2λ2 = −1

2
(c1 − c2)

2.

In particular, G(c1, c2) is scalar flat if and only if c1 = c2.
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The Perrone invariant is computed as

P = |c1 − c2|
(√

c21 + c22 − |c1 − c2|
)
.

Corollary 4. The non-cosymplectic unimodular Lie group G(c1, c2) is an almost cosymplectic
(κ, µ)-space with

κ = −1

4
(c1 − c2)

2, µ = −(c1 + c2).

Comparing the model spaces N3(µ) of almost cosymplectic (−1, µ)-space constructed in
[10] with G(c1, c2) we obtain the following corollary.

Corollary 5. Let N3(µ) be a 3-dimensional simply connected almost cosymplectic (−1, µ)-
space. Then N3(µ) is isomorphic to one of the following almost cosymplectic Lie groups:

• Ẽ2 if |µ| > 2,
• Heisenberg group if |µ| = 2,
• E1,1 if |µ| < 2.

6.4. Explicit models. Here we give explicit expressions of these unimodular Lie groups.

Example 2 (Euclidean motion group). Let us denote by Ẽ2 the universal covering of the

Euclidean motion group E2. Then Ẽ2 is realized as R3(x, y, z) with multiplication

(x1, y1, z1) · (x2, y2, z2) = (x1 + (cos z1)x2 − (sin z1)y2, y1 + (sin z1)x2 + (cos z1)y2, z1 + z2).

For any positive real numbers a, b and c satisfying a ≥ b, we take a global frame field

e1 =
1

a

(
cos z

∂

∂x
+ sin z

∂

∂y

)
, e2 =

1

b

(
− sin z

∂

∂x
+ cos z

∂

∂y

)
, e3 =

1

c

∂

∂z
.

Then {e1, e2, e3} satisfies

[e1, e2] = 0, [e2, e3] =
a

bc
e1, [e3, e1] =

b

ca
e2.

The left invariant Riemannian metric g determined by the condition {e1, e2, e3} is orthonor-
mal with respect to it and it is

g = a2ω1 ⊗ ω1 + b2ω2 ⊗ ω2 + c2ω3 ⊗ ω3,

where
ω1 = cos z dx+ sin z dy, ω2 = − sin z dx+ cos z dy, ω3 = dz.

Let us introduce a left invariant almost contact structure by

η = cω3 = c dz, ξ = e3,

φe1 = e2, φe2 = −e1, φe3 = 0.

Then the resulting homogeneous almost contact metric 3-manifold (Ẽ2, φ, ξ, η, g) is almost
cosymplectic with Perrone invariant

P =
|a2 − b2|
a2b2c2

(√
a4 + b4 − |a2 − b2|

)
≥ 0.

The almost cosymplectic 3-manifold (Ẽ2, φ, ξ, η, g) is cosymplectic when and only when a = b.
In such a case g is flat and has the form

g = a2(dx2 + dy2) + c2 dz2.
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Example 3 (The Mikowski motion group). The identity component of the isometry group
of Minkowski plane E1,1 = (R2(x1, x2), dx1dx2) is denoted by E1,1 and called the Minkowski
motion group. The Minkowski motion group E1,1 is realized as R3(x, y, z) with multiplication

(x1, y1, z1) · (x2, y2, z2) = (x1 + ez1x2, y1 + e−z1y2, z1 + z2).

For any positive numbers a, b, c, we set

e1 = a

(
ez

∂

∂x
− e−z ∂

∂y

)
, e2 = b

(
ez

∂

∂x
+ e−z ∂

∂y

)
, e3 = c

∂

∂z
.

Then we have

[e1, e2] = 0, [e2, e3] = c1e1, [e3, e1] = c2e2

with

c1 = −bc

a
< 0, c2 =

ca

b
> 0.

We equip a left invariant metric ga,b,c so that {e1, e2, e3} is orthonormal with respect to it.
Then

ga,b,c =
a2 + b2

4a2b2
(e−2zdx2 + e2zdy2) +

dz2

c2
.

In particular,

g 1√
2
,
1√
2
,1
= e−2zdx2 + e2zdy2 + dz2

is the metric of the model space Sol3 of solvgeometry in the sense of Thurston [23]. Let us
introduce an almost contact structure by ξ = e3, η = ga,b,c(e3, ·) and

φe1 = e2, φe2 = −e1, φe3 = 0,

then the Minkowski motion group equipped with this almost cosymplectic structure satisfies:

λ =
c(a2 + b2)

2ab
6= 0, κ = −(a2 + b2)2c2

4a2b2
, µ =

(a2 − b2)c

ab
.

H =
(a2 + b2)c2

4a2b2
, K13 =

(a2 + b2)(3a2 − b2)c2

4a2b2
, K23 =

(a2 + b2)(a2 − 3b2)c2

4a2b2
.

The Perrone invariant is computed as

P =
c2(a2 + b2)

a2b2

(√
a4 + b4 − (a2 + b2)

)
< 0.

The characteristic Jacobi operator is invariant under characteristic flow when and only when
a = b. In particular, Sol3 equipped with compatible left invariant almost cosymplectic struc-
ture satisfies £ξℓ = 0 but not ℓ = 0 (see [14]).

For the explicit representation of left invariant almost cosymplectic structure on the Heisen-
berg group, see [14, Example 5.3].

18



6.5. The characteristic Jacobi operator. The characteristic Jacobi operator ℓ of a uni-
modular Lie group G(c1, c2) is computed as

ℓ(e1) = ℓ1e1, ℓ(e2) = ℓ2e2,

where

ℓ1 =
1

4
(c1 − c2)(c1 + 3c2) = K13, ℓ2 = −1

4
(c1 − c2)(3c1 + c2) = K23.

In particular, we have

ℓ1 + ℓ2 = −1

2
(c1 − c2)

2, ℓ1 − ℓ2 = (c1 − c2)(c1 + c2).

Thus ℓ = 0 if and only if c1 = c2.

Proposition 13. A 3-dimensional unimodular Lie group G(c1, c2) has vanishing characteris-

tic Jacobi operator if and only if G(c1, c2) is locally isometric to Ẽ2 equipped with flat metric
or Euclidean 3-space E3.

Proposition 14. A 3-dimensional unimodular Lie group G(c1, c2) equipped with a left in-
variant almost cosymplectic structure satisfies ℓ = 0 if and only if G(c1, c2) is cosymplectic.

6.6. Pseudo-parallelism. We already know from Theorem 9, the only possible unimodular
Lie algebra g(c1, c2) with pseudo-parallel characteristic Jacobi operator are cosymplectic ones
or e1,1. However as we have exhibited in Example 3, left invariant almost cosymplectic
structure on E1,1 are not unique. We need to identify the left invariant almost cosymplectic
structures on E1,1 admitting pseudo-parallel characteristic Jacobi operator. In this section,
we pursue this task.

Let us investigate the pseudo-parallelism of the characteristic Jacobi operator ℓ of the
unimodular Lie group G(c1, c2). First of all the covariant derivatives ∇ℓ is described as

(∇e1ℓ)e1 = (∇e2ℓ)e2 = (∇e3ℓ)e3 = 0,

(∇e1ℓ)e2 =µ1K23e3 =
1

8
(c1 − c2)

2(3c1 + c2)e3,

(∇e1ℓ)e3 =µ1K23e2 =
1

8
(c1 − c2)

2(3c1 + c2)e2,

(∇e2ℓ)e1 =− µ2K13e3 = −1

8
(c1 − c2)

2(c1 + 3c2)e3,

(∇e2ℓ)e3 =− µ2K13e1 = −1

8
(c1 − c2)

2(c1 + 3c2)e1,

(∇e3ℓ)e1 =µ3(K13 −K23)e2 =
1

2
(c1 + c2)

2(c1 − c2)e2,

(∇e3ℓ)e2 =µ3(K13 −K23)e1 =
1

2
(c1 + c2)

2(c1 − c2)e1.

Thus we obtain

Proposition 15. Let G(c1, c2) be a 3-dimensional unimodular Lie group equipped with a
left invariant almost cosymplectic structure. Then G(c1, c2) has parallel characteristic Jacobi
operator if and only if G(c1, c2) is cosymplectic and ℓ = 0.

Unimodular almost cosymplectic Lie groups with pseudo-parallel characteristic Jacobi op-
erator are classified as follows.
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Theorem 12. Let G(c1, c2) be a 3-dimensional unimodular Lie group equipped with left in-
variant almost cosymplectic structure. Then G(c1, c2) has pseudo-parallel characteristic Jacobi
operator if and only if G(c1, c2) is one of the following list:

(1) cosymplectic Lie groups: E3 or Ẽ2,
(2) non-cosymplectic Lie groups: E1,1 with c1 + c2 = 0. In this case, the characteristic

Jacobi operator is properly pseudo-parallel with L = −c21.

Proof. From Proposition 11, first, we have R(e3, e1) · ℓ = L(e3 ∧ e1) · ℓ holds if and only if

(24) µ1(µ1 + 2µ3){L+ µ1(µ1 + 2µ3)} = 0.

Also, we have R(e2, e3) · ℓ = L(e2 ∧ e3) · ℓ holds if and only if

(25) µ1(µ1 − 2µ3){L+ µ1(µ1 − 2µ3)} = 0.

Thus, we have R(e1, e2) · ℓ = L(e1 ∧ e2) · ℓ holds if and only if

(26) µ1µ3(L− µ2
1) = 0.

From (26), we have µ1 = 0, µ3 = 0 or L = µ2
1.

First, if µ1 = 0, then c1 = c2 and G(c1, c2) is cosymplectic.
Next, if µ1 6= 0 and µ3 = 0, then from (24) and (25) we get L = −µ2

1 = −c21. Lastly, if
µ1 6= 0 and µ3 6= 0 and L = µ2

1, then it contradicts to (24) and (25). □
Remark 3. The unimodular basis {e1, e2, e3} of G(c1, c2) is a global orthonormal frame field
as in Lemma 1 with λ = µ1 = −(c1 − c2)/2, α = µ3 = (c1 + c2)/2, p = q = 0 (and hence
σ(e1) = σ(e2) = 0) and r = −2µ2

1. Thus Theorem 12 can be verified by using the system
(17)–(22) of pseudo-parallelism of ℓ with respect to {e1, e2, e3} and applying Theorem 9.

6.7. Non-unimodular Lie groups. Now let us consider 3-dimensional non-unimodular Lie
groups equipped with left invariant almost cosymplectic structure. Here we recall Perrone’s
construction [20].

Let G be a (simply connected) 3-dimensional non-unimodular Lie group equipped with a
left invariant almost cosymplectic structure. Then one can easily check that ξ ∈ u. We take
an orthonormal basis {e2, e3 = ξ} of u. Then e1 = −φe2 ∈ u⊥ and hence ad(e1) preserves u.
Express ad(e1) as

[e1, e2] = a11e2 + a21e3, [e1, e3] = a12e2 + a22e3

over u. The closing condition dη = 0 implies that a21 = 0. Next, ∇ξξ = 0 implies that a22 = 0.
Moreover one can deduce that [e2, e3] = 0 from the Jacobi identity. Note that 3-dimensional
non-unimodular Lie algebras are classified by Milnor invariant D = det ad(e1).

Theorem 13 ([20]). Let G be a 3-dimensional non-unimodular Lie group equipped with a
left invariant almost cosymplectic structure. Then the Lie algebra g = g(γ, δ) satisfies the
commutation relations

[e1, e2] = δe2, [e2, e3] = 0, [e3, e1] = −γe2,

with e3 = ξ, e1 = −φe2 ∈ u⊥ and δ 6= 0. In particular Milnor invariant of g(γ, δ) is 0.

The Lie algebra g = g(γ, δ) is given explicitly by

g(γ, δ) =


 (1 + δ)x γx y

0 x z
0 0 x

 ∣∣∣∣ x, y, z ∈ R
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with basis

e1 =

 1 + δ γ 0
0 1 0
0 0 1

 , e2 =

 0 0 1
0 0 0
0 0 0

 , e3 =

 0 0 0
0 0 1
0 0 0

 .

The corresponding simply connected Lie group G(γ, δ) = exp g(γ, δ) is given by

G(γ, δ) =


 e(1+δ)x γ

δ e
x(eδx − 1)

ex((δy+γz)(eδx−1)−γδxz)
δ2x

0 ex zex

0 0 ex

 ∣∣∣∣ x, y, z ∈ R

 .

The multiplication law is expressed as(
x1,

(
y1
z1

))
·
(
x2,

(
y2
z2

))
=

(
x1 + x2,

(
y1
z1

)
+ exp

(
δx1 γx1
0 0

)(
y2
z2

))
=

(
x1 + x2,

(
y1
z1

)
+

(
eδx1 γ

δ (e
δx1 − 1)

0 1

)(
y2
z2

))
=
(
x1 + x2, y1 + eδx1y2 +

γ
δ (e

δx1 − 1)z2, z1 + z2

)
.

The left invariant metric is expressed as ω1 ⊗ ω1 + ω2 ⊗ ω2 + η ⊗ η, where

ω1 = dx,

ω2 = dy +
e−δx + δx− 1

δ2x2
{(γy + δz)dx− x(γdz + δdy)} ,

η = dz.

The left invariant vector fields obtained from e1, e2 and e3 by left translation are

e1 =
∂

∂x
−eδx(e−δx + δx− 1)(δy + γz)

δx(eδx − 1)

∂

∂y
, e2 =

δxeδx

eδx − 1

∂

∂y
, e3 =

∂

∂z
−γ

δ

(
1 +

x

1− e−δx

)
∂

∂y
.

The Levi-Civita connection of G is given by the following table:

Proposition 16 ([20]).

∇e1e1 = 0, ∇e1e2 = −γ
2e3, ∇e1e3 =

γ
2e2,

∇e2e1 = −δe2 − γ
2e3, ∇e2e2 = δe1, ∇e2e3 =

γ
2e1,

∇e3e1 = −γ
2e2, ∇e3e2 =

γ
2e1 ∇e3e3 = 0.

The global orthonormal frame filed {e1, e2, e3} is an example of orthonormal frame field
given in Lemma 1 with α = λ = −γ/2.

From this table, we obtain

he1 = −1

2
γe1, he2 =

1

2
γe2.

Thus G(γ, δ) is cosymplectic if and only if γ = 0.
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The Riemannian curvature R is given by

R(e1, e2)e1 =

(
δ2 − γ2

4

)
e2 + γδe3, R(e1, e2)e2 = −

(
δ2 − γ2

4

)
e1,

R(e1, e3)e1 = γδe2 +
3γ2

4
e3, R(e1, e3)e3 = −3γ2

4
e1,

R(e2, e3)e2 = −γ2

4
e3, R(e2, e3)e3 =

γ2

4
e2,

R(e1, e2)e3 = −γδe1.

Hence

H = K12 = −δ2 +
γ2

4
, K13 = −3γ2

4
, K23 =

γ2

4
.

Thus the characteristic Jacobi operator is given by

ℓ(e1) = K13e1, ℓ(e2) = K23e2.

The Ricci operator Q is described as

Qe1 = −
(
δ2 +

γ2

2

)
e1, Qe2 = −

(
δ2 − γ2

2

)
e2 − γδξ, Qξ = −γδe2 −

γ2

2
ξ

The principal Ricci curvatures of Q are computed as

−γ2

2
− δ2,

γ2

2
− δ2, −γ2

2
.

The scalar curvature is

r = −1

2
γ2 − 2δ2.

Proposition 17. The almost cosymplectic non-unimodular Lie group G(γ, δ) satisfies ℓ = 0
if and only if γ = 0. In this case, the structure is cosymplectic.

Thus the vanishing of ℓ is a too strong restriction for G(γ, δ). Next we investigate paral-
lelism of ℓ. The covariant derivatives of ℓ are computed as

(∇e1ℓ)e1 =0, (∇e1ℓ)e2 = −γ

2
K23e3 = −γ3

8
e3,

(∇e2ℓ)e1 =− δ(K13 −K23)e2 −
γ

2
K13e3 = γ2δe2 +

3γ3

8
e3,

(∇e2ℓ)e2 =− δ(K13 −K23)e1 = γ2δe1.

Proposition 18. The characteristic Jacobi operator of the almost cosymplectic non-unimodular
Lie group G(γ, δ) is parallel when and only when γ = 0. In such a case ℓ = 0.

Thus unfortunately parallelism of ℓ is still a strong restriction for G(γ, δ).
From Theorem 9, the only possible G(γ, δ) admitting pseudo-parallel characteristic Jacobi

operator is the cosymplectic G(0, δ). Here we conform this fact by direct approach.

Theorem 14. An almost cosymplectic non-unimodular Lie group G(γ, δ) has pseudo-parallel
characteristic Jacobi operator if and only if ℓ is parallel. In this case, it is G(0, δ) and
cosymplectic. Thus it has left invariant cosymplectic structure which is isometric to H2(−δ2)×
R.
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Proof. The orthonormal basis {e1, e2, e3} of g(γ, δ) is regarded as a globally defined orthonor-
mal frame field as in Lemma 1 with λ = α = −γ/2, p = 0, q = δ, σ(e1) = 0, σ(e2) = −γδ

and r = −2(δ2 + γ2

4 ).
From (17) R(e3, e1) · ℓ = L(e3 ∧ e1) · ℓ holds if and only if

(27) γ3δ = 0,

(
L+

3

4
γ2

)
γ2 = 0.

Next from (19) R(e2, e3) · ℓ = L(e2 ∧ e3) · ℓ holds if and only if

(28)

(
L− 1

4
γ2

)
γ2 = 0.

Finally, from (21) and (22), R(e1, e2) · ℓ = L(e1 ∧ e2) · ℓ holds if and only if

(29) γ2
(
L+ δ2 − γ2

4

)
= 0, δγ3 = 0.

The second equation of (29) implies that γ = 0 since δ 6= 0. Of course, if ℓ is semi-parallel
(i.e., L = 0), then γ = 0. □
Remark 4. The simply connected almost cosymplectic Lie group G(0, δ) is cosymplectic and
isometric to the cosymplectic space form H2(−δ2)×R. However, as a homogeneous cosymplec-
tic 3-manifold, these two spaces are distinguished. The cosymplectic space form H2(−δ2)×R
is represented by H2(−δ2)×R = (SU1,1×R)/U1 as a homogeneous space. On the other hand,
G(0, δ) is represented as H2(−δ2)× R = G(0, δ)/{Id}.

By using Theorem 14 together with Theorem 10, Theorem 11 and Theorem 12, we obtain
the following classification of homogeneous almost cosymplectic 3-manifolds.

Corollary 6. Let M be a homogeneous almost cosymplectic 3-manifold with pseudo-parallel
characteristic Jacobi operator. Then M is locally isomorphic to one of the following spaces:

• Cosymplectic space forms: S2(c̄)× R = (SU2 × R)/U1, H2(c̄)× R = (SU1,1 × R)/U1,
E3 = E3/SO3,

• Ẽ2 equipped with left invariant flat cosymplectic structure,
• E1,1 with structure constants (c1, c2) satisfying c1+ c2 = 0 equipped with left invariant
non-cosymplectic almost cosymplectic structure.

• The non-unimodular Lie group G(0, δ) equipped with left invariant cosymplectic struc-
ture which is isometric to H2(−δ2)× R.

In particular, the model space Sol3 of Thurston geometry equipped with compatible almost
cosymplectic structure has pseudo-parallel characteristic Jacobi operator.
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