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Fashion stands an important position in our life. It generally showed personal preferences
to others. Compared with other items, the sense of fashion items is constantly changing.
In recent years, many proposed interactive recommender systems have used the interaction
between the user and system to add the factor of preferences moving. However, to the best of
our knowledge, there is no existing interactive system in the field of fashion recommendation.

This thesis proposes a new fashion outfit recommendation task where an outfit is recom-
mended after several rounds of user-system interactions. In this task, the system is expected
to present a question (a set of fashion items) at each round, and the user is expected to
select the best fashion item from the presented items. The system is required to gradually
learn users’ preferences based on their responses and to generate subsequent questions for
recommending a suitable outfit based on the users’ selected fashion items. Since there was no
dataset available for this task, we developed a new dataset for evaluating interactive fashion
outfit recommendations through simulation. Based on the analysis of the developed dataset,
we devised an experimental interactive fashion outfit recommendation algorithm based on a
learning-to-rank model with hand-crafted features, including category information, similarity,
and heterogeneity. Moreover, we proposed a new deep learning structure to achieve higher
accuracy in the interactive recommendation task. The structure supports encoding questions
by Transformer or Deep Set and estimates the value of questions based on previous ques-
tions and given answers. The experimental results demonstrated that the proposed models
outperformed the learning-to-rank model, and Set Transformer is a suitable model for em-
bedding questions in the interactive fashion outfit recommendation task. Moreover, we also
created a practical training pipeline for proposed models. With the collected comparative
data, we found that the pipeline helps to enhance training efficiency with no impact on model
performance. Besides, we also conducted an ablation study to fully investiage the effects of
hyper-paprameters of the proposed model. The results indicate that the feature of the first
question and the corresponding answer is most important in prediction.
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Chapter 1

Introduction

With the rapid development of information technologies and the internet, we have gradually
entered an era of overloaded information. In this era, both producers and consumers face
significant challenges. For consumers, finding required or exciting information from a sea of
information has been exceedingly arduous. On the other hand, producers are also distressed
by making their information stand out and capturing the attention of a vast number of
targets. The recommender system is a superior technology for solving these problems.
Recommender systems establish the bridge between consumers and producers, navigating
the users to the appropriate content. In most practice, deploying recommender systems
significantly increases the revenue and improves click-through rate (CTR) and the number
of conversations. Nowadays, recommender systems have been broadly used in various online
web services, especially online shopping sites.

The recommendation of fashion items, one of the largest markets in online shopping,
has drawn the attention of researchers in the last decades. Unlike traditional item recom-
mender systems, fashion recommendation has unique challenges as fashion items are always
fitted together with other items. Therefore, when items are recommended to users, their
compatibility with other items should be considered by recommender systems. There have
been many studies on fashion compatibility, which have been evaluated with real fashion
datasets [1, 2, 3, 4].

Although one of the unique characteristics of fashion recommendation, compatibility,
has been extensively studied in the literature, there are several aspects ignored in the exist-
ing fashion recommendation studies. One of such aspects is interactivity. Existing fashion
recommendation is passive: the recommendation is based on historical, implicit feedback
from users and does not actively interact with users. As can be seen in real fashion shopping
interaction between customers and store staff, however, interaction in fashion recommen-
dation is vital to capture the user preferences changing over time, and elicit potential user
needs that are often difficult to express. To the best of our knowledge, although vari-
ous fashion recommendation datasets are available for traditional fashion recommendation
settings [5, 1, 6], there are no studies or datasets for interactive fashion recommendation.

To bring interactivity to the fashion recommendation, we propose a new fashion outfit
recommendation task where an outfit, which consists of multiple fashion items, is recom-
mended after several rounds of user-system interactions. In this task, the system is expected
to present a question, which comprises multiple fashion items, at each round, and the user
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is expected to select the best fashion item from the presented items. The system is required
to learn users’ preferences based on their responses gradually and to generate subsequent
questions for recommending a suitable outfit based on the users’ selected fashion items.
This setting is inspired by real fashion shopping interaction between customers and store
staff: a store staff recommends some fashion items to a customer and tries to find other
fashion items that better fit both customers’ preferences and their chosen items.

Since there was no dataset available for this task, we developed a new dataset for eval-
uating interactive fashion outfit recommendations. Our dataset consists of fashion items
from Polyvore [6], one of the most used datasets for fashion outfit recommendation, and
includes 16,768 question candidates that can be asked in the interactive fashion recommen-
dation task. Using the developed dataset, researchers can simulate users’ responses to a
given question and evaluate interactive fashion outfit recommendation systems.

We analyzed the developed dataset and evaluated the importance of question selection
in interactive fashion outfit recommendations. The analysis showed that (1) the question
selection greatly matters for the recommendation performance, (2) the category of fashion
items in the question affects the recommendation performance, and (3) effective questions
are likely to be similar to the previous question and include similar fashion items. Based
on these findings, we extracted several features from questions, and developed a question
selection model based on a learning-to-rank algorithm. Moreover, we also proposed Deep
Quesion Selector, which is a new deep learning model to achieve higher accuracy in the
interactive recommendation task. The structure of Deep Quesion Selector can be nested
to fit interactive recommendation tasks with different problem settings. Deep Question
Selector encodes questions by the aggregator and estimates the value of questions based
on previous questions and given answers. The aggregator can be customized for different
problem domains and settings, such as Deep Set [7] and Set Transformer [8]. In this thesis,
we investigated the performance difference between Deep Question Selector models with
different aggregators. Additionally, we present a practical training method for Transformer
Deep Question Selector models that reduces the training time while keeping the accuracy.

We conducted experiments with the developed dataset for evaluating our proposed
methods. The experimental results demonstrated that the models with proposed structure
outperformed the learning-to-rank model with hand-crafted features, and Set Transformer
is a suitable model for embedding questions in the interactive fashion outfit recommenda-
tion task. Furthermore, the proposed training method for the Transformer Deep Question
Selector models successfully reduced the training time without sacrificing the accuracy.

The contributions of this work are summarized as follows.

1. We proposed a new fashion outfit recommendation task that involves user-system
interactions.

2. We developed the first interactive fashion recommendation dataset that can be used
for simulation-based evaluation.

3. We proposed a learning-to-rank algorithm for the interactive fashion recommendation.

4. We presented a customizable model structure to improve the recommendation accuracy
and compared the effectiveness of different feature aggregators.
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5. We developed a learning pipeline that reduces the training time without sacrificing
accuracy.

Chapter 2 gives a review of the related works. The interactive fashion outfit recom-
mendation task is defined in Chapter 3. Chapter 4 analyzes the developed dataset and
reveals the properties of the proposed task and dataset. Chapter 5 introduces our proposed
methods. Chapter 6 displays and discusses findings from a series of experiments. Finally,
we conclude this work in Chapter 7.
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Chapter 2

Related Work

In this chapter, we provide a literature review in the fields related to this work, which are
fashion recommendation and interactive recommender systems.

2.1 Fashion Recommendation

Fashion, a form of self-expression and autonomy at a specific time or location, has been a
large part of daily life. Generally, clothing is the most crucial part of fashion. People are
constantly debating which clothes to wear or purchase. The fashion recommendation task
seeks to recommend appropriate fashion items or outfits, as well as a series of fashion items,
based on given information such as the user’s purchase history and item features.

Kang et al. proposed a support vector machine (SVM) and collaborative-filtering-based
fashion recommender systems to improve customer satisfaction [9]. Liu et al. introduced
an occasion-oriented clothing recommender system that relies on a latent SVM framework
with attributes and categories [10]. With the massive success of online apparel sales in the
last decade and a large amount of user data, many fashion recommender systems have been
proposed in recent years [11, 12, 13, 14]. Li et al. [14] presented a recurrent neural network
(RNN) model with fused features of the item to predict its popularity. Through large-scale
experiments, they confirmed that the proposed method is efficient.

In contrast to fashion item recommendation, the outfit recommendation task requires
an extra ability to evaluate the compatibility of items [1, 3, 2, 4]. The performances of
fashion outfit recommender systems are evaluated in the following two tasks:

Fill in the blank This task is to choose from multiple items to complete an outfit. For
instance, given four items, as well as three candidate items, the task is to choose one
of the candidate items that best fits as the fifth item to complete an outfit consisting
of five items.

Compatibility prediction This task is to predict the compatibility of the given outfit.
The compatibility of a fashion outfit measures the suitability of the items to the style
of the overall outfit. In most cases, the compatibility of the outfit indicates the affinity
between each pair of items.

Notably, fashion is constantly changing. In other words, the opinion toward fashion
is unstable. Many studies on fashion recommendation suggest that contextual information
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need to be counted in recommendation [15, 16]. When the context is not informative enough
to capture rapidly changing users’ preferences, users’ feedback is necessary to understand the
current mood of users. However, there are no studies that actively elicit users’ preferences
for fashion recommendation.

2.2 Interactive Recommender Systems

Recommender systems have been widely used in various services for increasing commercial
revenue. However, there are two problems in the existing recommendation systems: (1)
users’ experiences are monotonous: users can only passively receive recommended items [17,
18], and (2) systems have limited knowledge about users for effective recommendation [19].
A possible solution to alleviate these two problems is to allow users to interact with the
recommender systems. Interactions enable users to feel more involved and intervene in
recommendation results to a certain extent, rather than passively receiving results [20].
Moreover, the system can better understand the users’ preferences through interactions,
and, accordingly, improve the recommendation results.

Christakopoulou et al. [21] proposed a single-round interactive framework with three
modules: question generation, user feedback, and item recommendation. The user needs to
answer the question generated by the system, and the system predicts relevant items based
on the user’s feedback.

The effectiveness of interactive recommender systems has been shown in many fields [22,
23, 24, 25]. While the interactive recommendation is thought to be a superior solution in
some applications where users are willing to provide feedback, the evaluation of interactive
recommendation systems is challenging as it often requires real recommendation services.
Another evaluation methodology is a simulation in which users behaviors are simulated
based on the observation in real services. While the simulation may not fully reflect real
users’ behaviors, the evaluation is reproducible and easily repeatable. Thus, simulation-
based evaluation can be useful for initial development of interactive systems. We took the
latter approach in this study and developed the dataset for evaluating interactive fashion
outfit recommender systems through simulations.

2.3 Bidirectional Long Short-Term Memory for
Fashion Recommendation

Since deep learning was established, it has surprisingly improved the state-of-the-art in
many different artificial intelligent tasks [26]. The recurrent neural network (RNN) is one of
the most popular neural networks. In contrast to others, the structure of RNN enables the
leveraging of spatial information. Thus, in many sequential learning tasks, RNN leads the
top-level performance to others. In recent years, many works have broadly used a special
RNN – long short-term memory (LSTM) because of its overwhelming advantage in handling
long-term features. Bidirectional long short-term memory (BiLSTM) is an extension of the
original LSTM [27]. BiLSTM uses two LSTMs – forward LSTM and backward LSTM to
enable the encoding of backward information.
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Given a sequence of fashion items F = {x1, x2, . . . , xN } where xt is the feature repre-
sentation of t-th fashion item in the outfit. The model uses a forward LSTM to predict the
next item images for learning the relationships among fashion items. The objective function
of forward LSTM can be written as follows:

Ef (F; Θf ) = − 1
N

N∑
t=1

log P (xt+1 | x1, . . . , xt; Θf ) (2.1)

where Θf is the model parameters of forward LSTM, P(·) is the predicted probability of
seeing the t + 1-th item based on the inputs from previous steps. Similarly, the backward
LSTM is trained for predict the previous items, and the objective function is following:

Eb (F; Θb) = − 1
N

0∑
t=N−1

log P (xt | xN , . . . , xt+1; Θb) (2.2)

where Θb denotes the parameters of backward prediction model.
Through the training of minimizing the two objective functions, the BiLSTM finally

gathered the ability to capture the overall information over the inputs. In our work, we use
it for evaluating the compatibility of generated fashion outfits.

In this thesis, we leverage the BiLSTM model proposed by Han et al. [6] to ensure
that the items in question are potentially relevant to the initial relevant item. Each fashion
outfit is a set of multiple items. The items in the same outfit should share similar features
like colors and seasonality. As shown as Figure 2.1, given multiple fashion items, the model
can predict the fashion compatibility of these items via bidirectional LSTMs.

2.4 Visual-Semantic Embedding for Fashion Items

Traditional embedding is generally generated with information from one aspect. However,
the property of an entity in the real world is always multifaceted, such as text, images,
the number of likes. Frome et al. proposed Deep Visual-Semantic Embedding Model (De-
ViSE) [28] to solve the challenge of modeling with rich information. By fine-tuning the
visual embedding with the semantic embedding extracted by word2vec, DeViSE provides
the embedding of the given input with both visual and textual features.

The kernel of DeViSE is that learning with textual embeddings rather than the one-hot
encoded target. After fine-tuning with given textual features, the model gains the ability to
generate visual-semantics embeddings (VSE). In order to better utilize the rich information
of fashion items, we leverage the VSE of items trained with item images and descriptions.
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Figure 2.1: The architecture of bidirectional LSTMs for fashion outfits.
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Chapter 3

Interactive Fashion Outfit
Recommendation

In this chapter, we describe the workflow of an interactive fashion outfit recommender
system and provide the details of the interactive fashion outfit recommendation task.

3.1 Definition

Suppose we have a collection I consisting n different fashion items, i.e., I = {i1, i2, . . . , in}.
Each fashion item from the collection belongs to a category, e.g., tops, bottoms and dresses
etc. The category of a specific item should be one of C = {c1, c2, . . . , cm}, where C is the
collection of all categories and m denotes the number of categories. The item collection I

can be split to m disjoint subsets of different categories, i.e., I = Ic1 ∪ Ic2 ∪ · · · ∪ Icm .
A question is defined as a set of fashion items and is used to let the user choose from

multiple items. To be comparable each other, fashion items in a question belong to the
same category. Thus, a question is defined as Q = {i1, i2, . . . , ik} and is a subset of Ic of a
certain category c (k is the number of items in a question).

Similarly, outfit O is defined as a set of items, i.e., O ⊂ I. In contrast to the question
Q, O contains items of different categories to form a complete outfit.

3.2 Workflow

Figure 3.1 illustrates the overall workflow of the interactive fashion outfit recommendation
system. The recommender system composes and presents a question consisting of multiple
fashion items. The user answers the question by choosing the best item from the set
of fashion items. After several rounds of question-answering, the system is expected to
recommend outfits that include selected items and meet the user’s preference.

The interactive fashion outfit recommender system must be able to provide good ques-
tions for effectively estimating the user’s preference, and to recommend outfits compatible
with fashion items given as answers to the questions. While the outfit recommendation
component can be any existing models proposed in the literature (e.g., [2]), designing a
question selection algorithm is an interesting challenge specific to this task. Since items
selected by the user in the previous rounds matter to the question selection in the next
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Figure 3.1: The workflow of the interactive fashion outfit recommender system.
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round, the question selection algorithm should be able to identify questions that facilitate
the following interactions and achieve high accuracy in the outfit recommendation.

3.3 Task

Having described the workflow of the interactive fashion outfit recommender system, we
formally define the task of the interactive fashion outfit recommendation.

There are three main components in this task: the user U , question selection algorithm
S, and outfit recommendation algorithm R. The user is a function that returns an item
for a given question: U : Q 7→ i where i ∈ Q. Given a question-answering history up to
time step t, Ht = {(Q1, a1), (Q2, a2), . . . , (Qt, at)}, the question selection algorithm returns
a question based on Ht, i.e., S : Ht 7→ Q. The outfit recommendation algorithm is a
function that, given the question-answering history Ht and outfit O, returns a score of O

with respect to Ht. A set of outfits are then ranked by the score in descending order, i.e.,
R(Ht, Oa) < R(Ht, Ob) ⇒ Oa ≺ Ob where ≺ represents the order in the outfit ranking.

With those main components, at each time step t, a question is given by Qt = S(Ht−1).
The answer at time t is given as follows: at = U(Qt). After T rounds of interactions,
the system obtains the question-answering history HT , and recommends outfits ranked
by R. The outfit ranking can be evaluated in terms of any retrieval or recommendation
effectiveness measures such as HIT and nDCG.

As the user U is out of score of the system, the goal of this task is to design effective
functions for the question selection algorithm S and outfit recommendation algorithm R

to achieve better performances in terms of some effectiveness measures. Although one can
address both simultaneously, this work primarily focuses on the case where R is given.
Therefore, our primary task is, given user U and outfit recommendation algorithm R, to
find the question selection algorithm S that can achieve better performances in the outfit
recommendation.

For simplicity, we focus on a special case of this task where the question selection
algorithm S is defined by a question value function V :

S(Ht) = V (HT , Q) (3.1)

where V is a function that measure the value of the question Q given the question-answering
history HT of T interactions, and Q is a set of candidate questions. This simplification
enables us to focus on measuring the goodness of questions and is suitable for the dataset
explained in the next chapter.
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Chapter 4

Dataset

In this chapter, we introduce a new dataset for the interactive fashion outfit recommendation
task. The dataset and some utiliy scripts are publicly available at Github1. We also
report our findings on the importance of the question selection through the analysis of the
developed dataset.

4.1 Source Data

Polyvore2 was a fashion commerce website, which allowed users to upload outfits they liked
and provided several functions to facilitate users’ exploration of fashion items and outfits.
Since 2015, the data from Polyvore has been widely used in various fashion researches [12,
14, 29, 1]. Our dataset was constructed with the dataset developed by Han et al. [6], which
consists of 21,889 outfits with 164,379 items. Each outfit contains multiple items and rich
metadata such as the number of likes, hashtags, etc. Moreover, each item also has rich
multimodal information, such as the description, image, and category. Note that outfits
were developed by designers and used as ground truth in the outfit recommendation tasks
such as “fill in the blank” and compatibility prediction.

4.2 Assumption for Simulation

To the best of our knowledge, there is no previous study on interactive fashion outfit recom-
mender systems, and the Polyvore dataset lacks user-system interaction information. Since
no dataset exists in the fashion domain that can be used for training and evaluating the
interactive fashion recommender system, we intended to create a new dataset that can be
applied to the interactive fashion recommender system. The unit of the dataset is a set
of interactions that can represent the information of a session of recommendation. With
our task set-up, the interaction should be a question-answering pair, and there must have
contextual relationships between the interactions within the set. Interactive recommender
systems can use these interactions to simulate interactions with the user and eventually
make predictions for some of the questions that have not been asked before. The model can

1https://github.com/kasys-lab/polyvore-interactive
2https://www.polyvore.com/
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Table 4.1: Example of questions in our dataset.
Question Q1 Q2 Q3

Category Tops Bottoms Shoes
Outfit T1 B1 S1

T2 B2 S2
T3 B3 S3
T4 B4 S4
T5 B5 S5

be evaluated by comparing the final prediction of the model with the ground-truth users’
choices.

To generate a dataset for interactive fashion recommender systems, we propose an
assumption that there is a user who desires each outfit in the Polyvore dataset, and the
interactive recommender system cannot identify the exact outfit the user is looking for, but
can identify candidate items for each category, one of which is a part of the desired outfit.
The reason behind our assumption is that when a designer creates an outfit, generally, it
also means that for each item in the outfit, there is no better item than the selected one to
fit the style with the other items in the outfit. Table 4.1 shows an example of the assumed
situations. For three categories “Tops”, “Bottoms”, and “Shoes”, five fashion items are
retrieved for a given user, respectively. Each of the fashion items is potentially relevant, but
only a fashion item in each category is a part of the desired outfit (e.g., T1, B1, and S1 forms
the desired outfit). A set of items from each category can be used as a question, as they
are potentially relevant items, and the recommender system needs to identify a question
to be asked at each round. In the example of Table 4.1, the recommender system can ask
one of three questions Q1 = {T1, . . . , T5}, Q2 = {B1, . . . , B5}, and Q3 = {S1, . . . , S5}.
When Q1 is presented to the user, we assume that T1 is chosen by the user as an answer
to Q1. Therefore, we can simulate users’ responses to some questions and automatically
evaluate the performance of question selection algorithms. Note that the recommender
system cannot identify the desired outfit and which item is answered by the user before the
question is asked.

The task definition of the interactive fashion outfit recommendation becomes a little
more specific when our dataset is used. Given a user U who prefers to an outfit O as well as
a question Q, U returns a ∈ Q as an answer such that a ∈ O. Moreover, a set of questions
QU is prepared for each user U , from which the question selection algorithm is expected
to choose the most appropriate question at each time step. Thus, Q in Equation 3.1 is
replaced with QU , meaning that there are, say, six candidate questions for each user.

Although this assumption enables us to simulate user-system interactions for fashion
outfit recommendation, there are two limitations of this approach. One is the assumption
that we can prepare a set of items, one of which is relevant to the user. Its feasibility highly
depends on the fashion recommendation algorithm and can be approximated by the HIT@k

metric (1 if the top-k items contain a relevant item; otherwise 0). This limitation can be
alleviated if the fashion recommendation algorithm is improved. The other limitation is
that questions are pre-defined and not purely generated by the interactive recommendation
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system. This might prevent us from accurately evaluating the ability of interactive fashion
outfit recommender systems, since they may be able to generate better questions and achieve
higher recommendation accuracy with better interactions. Whereas, such systems must be
able to correctly identify the best question among candidates and achieve relatively higher
performances than the others. This type of assumption has been often posed in dialogue
generation tasks (e.g., [30]).

4.3 Question Generation

Building a new dataset often requires huge-scale data collection. We found it feasible to use
a pretrained user model to make choices instead of actual users by rethinking the purposed
task. With the recent developments in fashion recommender systems, many compatibility
prediction models can efficiently score outfits close to actual users. For the interactive
fashion recommender system, user preference is an unknown distribution, and the system
tries to predict the distribution of the user preference and perform prediction based on
the last few interactions information. The challenge of the task is catching the preference
feature from interactions, not the distribution itself. Both the user model and the actual
user are unknown to the system. Consequently, we believe that this has little impact on
the system’s effectiveness.

Furthermore, as discussed in the previous section, the quality of questions is vital
for realistic question-answering simulation. A qualified question should consist of relevant
items, any of which can be a part of reasonable outfits. The key idea to guarantee the
question quality is to choose potentially relevant items as a part of desired outfits. Since
we can access the complete outfit in developing questions, we can find alternatives to a
particular item in the outfit by solving the “fill in the blank” task given the other items in
the outfit.

Specifically, first, we choose an outfit from the Polyvore dataset, e.g., O = {T1, B1, S1}
in Table 4.1. To generate a question of “Tops,” we input B1 and S1 to a fashion compatibility
model and find suitable items that fill in the blank, e.g., T2, T3, T4, and T5. A question
Q1 can be composed of the original fashion item T1 as well as the output fashion items
T2 – T5. Then, we iterate this process for all the fashion items in the outfit to generate a
question for each category. We assume that the fashion compatibility model can identify
comparably suitable fashion items for the other items, which are all reasonable options for
the user.

Firstly, we initialize a question with one of the fashion items o ∈ O. Secondly, the
algorithm finds k −1 fashion items to complete the question. A fashion compatibility model
f , which takes an incomplete outfit and another fashion item to return the compatibility
score of the fashion item, is used to find the k − 1 most compatible fashion items for
O \ {o}. Iterating this procedure, we finally obtain QU containing |O| questions, each of
which corresponds to each fashion item in O.

As a fashion compatibility model f , we used the Bidirectional LSTMs model to calculate
the compatibility of fashion outfits, which was developed by Han et al. [6]. The number of
items in a question, k, is set to 5 for ease of users’ choices.
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Table 4.2: Dataset statistics.
# Question sets # Questions # Unique items

2,758 16,768 16,768

Table 4.3: Number of question sets with the different number of questions.
Size of question sets # Question sets

4 526
5 580
6 548
7 356
8 748

4.4 Analysis

Table 4.2 shows the basic statistics of the dataset. In the developed dataset, the items are
grouped in over 380 different categories. As the number of items in some categories is lower
than five, we excluded the categories with small volumes to ensure that each question can
contain five items. Finally, we obtained 2,758 question sets, 16,768 questions, and 16,768
unique items. As outfits from the Polyvore dataset may have different numbers of items,
the question sets generated based on outfits also have different amounts of questions. Table
4.3 reports the statistics of the size of question sets. Over 59.8% of the question sets contain
at least six questions. The average number of questions per question set is 6.08.

We then investigated which questions are likely to be effective in the interactive fashion
outfit recommendation task. To this end, we tested various questions and computed the
effectiveness measure of the recommended outfit. More specifically, we assumed a situation
where only a question had already been asked and answered by a user. All the possible
questions were asked in the simulation as the second question. The effectiveness of the
second question was evaluated by the fashion outfit recommendation, in which candidate
outfits are limited to those consisting of the answers to the first and second questions as well
as an item from another question. For example, given a set of questions Q = {Q1, Q2, Q3},
let Q1 be the question already asked. We then ask Q2 and simulate the user’s answer to
this question. Based on the question-answering history H2 = {(Q1, a1), (Q2, a2)}, the outfit
recommendation algorithm R ranks only the fashion outfits consisting of a1 and a2 as well
as an item in Q3 = {i1, i2}, i.e., {a1, a2, i1} and {a1, a2, i2}. The effectiveness of Q2 is
the reciprocal rank of a relevant outfit in the outfit ranking, where the relevant outfit is
defined as the one constituting O (an item set from which Q was generated). To develop
the recommendation algorithm R, we used the same fashion compatibility model f used to
produce questions in the dataset. The fashion compatibility model solves the “fill in the
blank” problem for given items (e.g., a1 and a2), and ranks items to form a ranked list of
outfits. For example, given a ranked list of items produced by the fashion compatibility
model, (i2, i1), the outfit ranking is obtained as follows: ({a1, a2, i2}, {a1, a2, i1}).

We first show the average effectiveness of the best and worst questions in Table 4.4. A
question is the best question if the recommendation with the question achieved the highest
effectiveness among the other questions in a question set. The worst question is defined
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Figure 4.1: Percentage of the best and worst questions in each category.
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Figure 4.2: Percentage of the best and worst questions in each category with different categories
of the initial question.
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Table 4.4: Effectiveness of the best and worst questions. “All” indicates that of all the questions.
All Best Worst

0.397 0.602 0.243

Table 4.5: Average similarity to the previous question and heterogeneity of the best and worst
questions. “All” indicates those of all the questions.

All Best Worst
Similarity 0.352 0.365 0.307
Heterogeneity 2.484 2.460 2.546

similarly. We found that there is a large performance gap between the best and worst
questions. This result suggests that the question selection algorithm has a large impact on
the outfit recommendation performance.

We then show what category of questions led to effective outfit recommendations.
Figure 4.1 shows the percentage of the best and worst questions in each category. Since there
are over 380 different item categories in the developed dataset, we manually organized those
categories into seven groups for our analysis: a suit of clothes or dress, tops, bottoms, shoes,
accessories, decorative hardware, and miscellaneous. The figure shows large differences
across the categories: the category such as miscellaneous shows a high probability of being
the best question, while questions from the bottoms category are unlikely to receive helpful
users’ feedback.

Figure 4.2 reports the percentage of the best and worst questions in each category,
with different categories of initial questions. Recall that we assumed a question had already
been asked in this simulation: this question is defined as the initial question. With the
initial question in different categories, the effectiveness of questions changes significantly.
For example, following a question about decorative hardware with another question may
improve the accuracy of future predictions. There are two possible reasons for these uneven
performances across categories: (1) some categories (e.g., bottoms) are not informative
probably because of a limited number of variations in the category. (2) the consistency of
some categories can be strongly required to form good outfits. For example, the style of
bottoms and shoes must be the same. In this case, it is not very informative to ask questions
regarding shoes when the question about bottoms is already asked.

We further investigated the similarity between the previous question and best/worst
question, and the heterogeneity of the best and worst questions. The similarity between
two questions is defined as the cosine similarity between the question embeddings:

sim(Qa, Qb) = Qa · Qb

∥Qa∥∥Qb∥
(4.1)

Here, a question embedding Qa is defined as the mean of the embeddings of items in
the question Qa: Qa = 1

|Qa|
∑

i∈Qa
i, where i is an embedding of the item i, which was

generated with a visual-semantic embedding model consisting of visual features extracted
from ResNet [31] and semantic feature from Word2Vec [32] model.

The heterogeneity of a question indicates to what extent different items constitute the
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question, and is defined as the mean of euclidean distances between all item pairs:

het(Q) = 1
k(k − 1)

∑
ia,ib∈Q

∥ia − ib∥ (4.2)

Table 4.5 demonstrates that the best question has higher similarity to the previous
question and lower heterogeneity than the average and worst questions. These findings can
be explained from the viewpoint of informativeness of questions. In active learning [33], it
is more informative to receive labels for similar examples that are difficult to distinguish.
This principle could be applied to our case: letting the user choose from similar questions
(i.e., questions similar to the previous question or those consisting of similar items) is more
effective to distinguish preferred items and the others.

In summary, we discovered that (1) the question selection has a significant impact
on recommendation performance, (2) the category of fashion items in the question has
an impact on recommendation performance, and (3) effective questions are likely to be
homogeneous and similar to the previous question.
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Chapter 5

Proposed Methods

To address the challenge in the question selection, we first introduce a learning-to-rank
model with features found to be correlated with the question quality, in Section 5.1. In
addition, we propose a new deep learning method for achieving a better ability to score
questions in Section 5.2.

5.1 Learning-to-rank Question Selector

In the analysis of the developed dataset, we showed a large performance gap when the
best and worst questions were asked. Choosing the best question from a set of questions
can be converted into a traditional Learning-To-Rank (LTR) problem. The goal of the
model in LTR is to rank the elements in the given list. If the model can produce a ranking
by scoring the questions in a given question set, it can be treated as a value function V

used to select the best question. With the view of LTR, we proposed a method based on
LambdaMART [34], which is a widely-used pairwise LTR model.

Based on the analysis of the dataset, we devised the following four features of each
question Qt, as the input of the proposed LTR model:

1. The mean similarity of item pairs in the question Qt.

2. The similarity between the previous question Qt−1 and the question Qt.

3. The category of fashion items in the previous question Qt−1.

4. The category of fashion items in the question Qt.

The similarity between two items is defined as the cosine similarity of their visual-semantic
embeddings, and the question similarity is defined in Equation 4.1.

5.2 Deep Question Selector (DQS)

Although we included several features that can correlate to the quality of questions in the
LTR model, the traditional approach using hand-crafted features may not fully capture
the characteristics of questions. Hence, we propose a new deep neural network model for
the question selection problem, to model the complex relationship between the previous
questions and answers as well as question candidates.
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Figure 5.1: The architecture of Deep Question Selector (DQS).

When designing the architecture of this new deep neural network model, there were
two desiderata to effectively evaluate the quality of candidate questions:

1. Questions should be modeled as a set of items, and should not be treated as an average
or a sequence of items.

2. The past interaction or question-answering history should be modeled properly to
avoid duplicate questions or not to receive less informative feedback.

Figure 5.1 illustrates the architecture of the proposed model that can satisfy the two
desiderata explained above. As we mentioned in the task setting, the question consists of
k items (k = 5 in our case). Although the input composed of multiple items is usually
treated as a sequence in many machine learning scenarios, ours should be modeled by
permutation-invariant models since there is no order for items in a question. Deep Set [7]
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and Set Transformer [8] both show good performance with set-structured input data. To
better explain the model structure, we assume that the questions are embedded by Set
Transformer in the following content.

Generally, question-answer pairs are combined together and used as contextual in-
formation to estimate the value of candidate questions. A question-answering history
Ht = {(Q1, a1), . . . , (Qt, at)} can be embedded by iteratively applying a question-answering
fusion and multilayer perceptrons:

ht = gt([ht−1; [STH(Qt); at]]) (5.1)

where ht is the embedding for Ht, STH is Set Transformer for questions in the history, and
at is the embedding of the item given as an answer to the question Qt. The question-answer
pair is combined by the vector concatenation operator [; ], and is further combined with
the embedding of the question-answering history. A multilayer perceptron gt is repeatedly
applied for keeping the embeddings in low dimensional spaces. Figure 5.1 represents a
special case of t = 1 where only a question is asked and answered. In this case, the question
history h1 is obtained as follows:

h1 = g1([h0; [STH(Q1); a1]]) = g1([STH(Q1); a1]) (5.2)

where h0 is defined as ∅ and [∅; x] is defined as x.
Given the question answering history Ht, the value of a question conditioned by ht is

obtained by:

V (Ht, Q) = g([ht; ST(Q)]) (5.3)

where g is a multilayer perceptron to produce a scalar value based on the embeddings
of the question-answering history and question. Note that Set Transformer, ST, can be
different from that used for embedding the past questions. If Set Transformer STH shares
parameters with the other Set Transformer ST, the model is called DQS-share. Whereas if
the parameters are not shared between two models, we call it DQS-ind. These variants of
the proposed model were compared in our experiments.

The entire model contains two Set Transformer models STH and ST, multilayer per-
ceptrons gt (t = 1, 2, . . .), and a multilayer perceptron g for outputting the question value.
They are trained with a cross entropy loss of a classification problem where the task is to
identify the best question among candidate questions.
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Chapter 6

Experiments

We tested the proposed methods on the developed dataset. See Appendix A for detailed
information on the experiment environment. Section 6.1 summarizes the data processing
and metrics. Section 6.2 presents and discusses the experimental results. Moreover, Section
6.3 demonstrates efficient training pipelines for DQS, and Section 6.6 reports the ablation
study.

6.1 Experimental Setup

In our dataset, there are 2,758 question sets, each of which is denoted by QU and was
originally generated from the same outfit O. As explained earlier, we assumed that each
question set QU is prepared for a user U and the goal is to find the outfit O that satisfies
the user U , by choosing effective questions from QU . In our experiments, we followed the
same experimental protocol as that used in the analysis of the developed dataset. For
every question pair (Q1, Q3) in a question set QU , we assumed a situation where Q1 had
been already asked and answered. The task is to find a question Q2 from the rest of the
questions in QU . The performance of the question selection is measured by the accuracy
of the best question selection, and the recommendation performance after the question
selection. The accuracy is defined as the fraction of cases where the question selection
algorithm can identify the best question, as was defined in Section 4.4. The success of the
recommendation was measured by nDCG, an effectiveness measure for rankings, where the
grade is 1 for a relevant outfit and 0 for the others.

The LTR model was implemented in XGBoost [35]. The DQS models were trained by
the Adam optimizer [36]. We split the dataset to a training set and a testing set with a 3:1
ratio. To prevent leakage, it was guaranteed that all the question sets generated from the
same outfit were in either the training set or the testing set. Each model was trained only
with the train set, while the evaluation ran onto the test set.

6.2 Results

Table 6.1 shows the effectiveness of the question selection models, which include the sim-
plest baseline that selects questions randomly (Random). The proposed models, DQS-*,
were trained for 200 epochs in this experimental setting. The results show that our DQS
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Table 6.1: The performance of the proposed methods.
Accuracy nDCG@1 nDCG@5

Random 0.1710 0.5002 0.7173
LTR 0.2202 0.5957 0.7824
DQS-ST-share-200 0.4144 0.7102 0.8224
DQS-ST-ind-200 0.3917 0.7010 0.8135

Figure 6.1: Accuracy of the proposed models in different categories.

models outperformed not only the random baseline but also the LTR model, to a large ex-
tent. Notably, DQS-ST-share-200 achieves the 41.44% accuracy of best question prediction.
DQS-ST-ind-200, which does not share parameters in two Set Transformer models, did not
show a better performance than DQS-ST-share-200. A two-way ANOVA of nDCG@5 re-
vealed that the system effect is statistically significant (F (3, 24, 960) = 1329.458, p < 0.05).
A Tukey’s HSD test shows that all the differences except for that of DQS-ST-share-200
and DQS-ST-ind-200 are statistically significant (p < 0.05).

Figure 6.1 reports the accuracy of proposed models in different categories. While LTR,
DQS-ST-share and DQS-ST-ind all achieved substantial improvements over the random
baseline, there exist significant differences across categories. The LTR model outperformed
in the accessories type question. However, it cannot handle bottoms and tops; the accuracy
is even worse than the random baseline. This is probably because the LTR model highly
relies on the category information and is likely to select questions in the accessories category.
On the other hand, DQS shows its superiority across all the categories against the other
methods.
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Table 6.2: The performance of DQS models with the special training pipelines.
Accuracy nDCG@1 nDCG@5

Random 0.1710 0.5002 0.7173
LTR 0.2202 0.5957 0.7824
DQS-mean-200 0.3089 0.6691 0.8053
DQS-ST-share-200 0.4144 0.7102 0.8224
DQS-ST-ind-200 0.3917 0.7010 0.8135
DQS-DS-share-200 0.4243 0.7146 0.8210
DQS-DS-ind-200 0.3676 0.6757 0.8107
DQS-ST-share-50-sp 0.4123 0.7077 0.8140
DQS-ST-share-100-sp 0.4269 0.7187 0.8199
DQS-ST-ind-50-sp 0.3961 0.7118 0.8179
DQS-ST-ind-100-sp 0.4117 0.7072 0.8187
DQS-ST-com-100-sp 0.4282 0.7190 0.8206

Table 6.3: Training time of DQS models with the special training pipelines.
# Epoch Time

Set Transformer pre-training 100 53mins
LTR 200 2mins
DQS-mean-200 200 1hr 37mins
DQS-ST-share-200 200 1d 5hrs 45mins
DQS-ST-ind-200 200 1d 15hrs 38mins
DQS-ST-share-50-sp 150 8hrs 5mins
DQS-ST-share-100-sp 200 15hrs 35mins
DQS-ST-ind-50-sp 150 10hrs 29mins
DQS-ST-ind-100-sp 200 19hrs 56mins
DQS-ST-com-100-sp 200 17hrs 10mins

6.3 Training Pipeline

Furthermore, we propose a practical training pipeline for the DQS models. As shown
in the following experimental results, it turned out that the training of Set Transformer
is a bottleneck of efficient training. Thus, we aimed to reduce the training time of Set
Transformer models without loss of model performances. The idea came from transfer
learning [37]: we first pre-train Set Transformer so that its output for a question Q becomes
close to the mean of item embeddings in Q. More precisely, we trained ST to minimize the
mean absolute error, ∥ST(Q)− 1

|Q|
∑

i∈Q i∥, for each training question Q. A DQS model then
loaded the trained parameters of the Set Transformer and started the learning of the full
model. Additionally, to verify the effectiveness of the mean item embedding, we introduced
a new model DQS-mean in which Set Transformer in DQS is replaced with a mean aggregator.
In the following experiments, we pre-trained ST for 100 epochs with the Adam optimizer.

Table 6.2 reports the performance of DQS models, and Table 6.3 shows the training
time of each model when using an NVIDIA GeForce GTX TITAN X. DQS models with
the pre-trained Set Transformer are suffixed with *-sp. Besides, we show the performance
of a special model DQS-com-100-sp, which is a DQS-ind model initialized by parameters
of DQS-share-50-sp and further trained for extra 50 epochs. These tables indicate that
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Table 6.4: The performance of DQS models with the special training pipelines.
Accuracy nDCG@1 nDCG@5

DQS-ST-share-200 0.4144 0.7102 0.8224
DQS-ST-ind-200 0.3917 0.7010 0.8135
DQS-ST-share-100-sp 0.4269 0.7187 0.8199
DQS-ST-ind-100-sp 0.4117 0.7072 0.8187
DQS-ST-com-100-sp 0.4282 0.7190 0.8206
DQS-DS-share-200 0.4243 0.7146 0.8210
DQS-DS-ind-200 0.3676 0.6757 0.8107
DQS-DS-share-100-sp 0.4032 0.7058 0.8137
DQS-DS-ind-100-sp 0.3353 0.6848 0.8082
DQS-DS-com-100-sp 0.4022 0.7105 0.8165

Table 6.5: Training time of DQS models with the special training pipelines.
# Epoch Time

Set Transformer pre-training 100 53mins
Deep Set pre-training 100 6mins
DQS-ST-share-200 200 1d 5hrs 45mins
DQS-ST-ind-200 200 1d 15hrs 38mins
DQS-ST-share-100-sp 200 15hrs 35mins
DQS-ST-ind-100-sp 200 19hrs 56mins
DQS-ST-com-100-sp 200 17hrs 10mins
DQS-DS-share-200 200 6hrs 36mins
DQS-DS-ind-200 200 8hrs 13mins
DQS-DS-share-100-sp 200 3hrs 28mins
DQS-DS-ind-100-sp 200 4hrs 17mins
DQS-DS-com-100-sp 200 3hrs 57mins

our methods largely reduced the training time without substantial performance loss; some
models even achieved better accuracy. Although the training time may vary slightly due to
environmental factors, it was turned out that DQS models required more time to train, and
the proposed pipeline significantly accelerated the training process. The combination of the
two types of DQS models does not show a significant difference. We speculate that the
aggregation part might have reached a locally optimal point in the later stage of training.
The results also suggest that the mean aggregator for question embedding was effective for
pre-training, but not for constituting an effective question selection algorithm.

6.4 Difference between Aggregators

In the previous sections, we only compared the DQS Set Transformer models with traditional
machine learning methods. However, as we mentioned before, the question aggregator can
be modified for different tasks. Deep Set [7] is a deep learning model which has the same
functionality as Set Transformer of embedding set-structured input data. To figure out
the difference between question aggregators, we executed aforementioned experiments with
DQS Deep Set models.

As Figure 6.4 shown, Set Transformer outperformed Deep Set in most subjects with
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Table 6.6: The result of representative methods in the case study
Method Result
Random Canditate #4

LambdaMART Canditate #3
DQS-ST-com-100-sp Canditate #2
DQS-DS-com-100-sp Canditate #2

slight approvement. DQS-DS-com-100-sp, which trained with the special pipeline, also
achieved very similar performance to DQS-DS-share-100-sp with less training time. Al-
though there exists a slight performance gap between Set Transformer models and Deep Set
models, the required training time of Set Transformer models is about five times compared
with Deep Set models.

6.5 Case Study

In order to show more clearly the difference between the various methods, we introduce a
case study in this section.

Figure. 6.2 shows the basic structure of the dataset. Firstly, the system asks the user
to answer the first question and collects the answer. As shown in Figure. 6.2, the user
chooses the third item as a favorite item. Secondly, the dataset provides a set of questions.
Each question candidate contains five different fashion items, and there is no duplication
between items within all questions. Finally, after questioning the user with the specific
question, the system will predict the user’s favorite item in the third question. According
to the influence of each question candidate on the final prediction, the candidate itself can
be scored and ranked. The best question candidate is marked as #1 in Figure. 6.2, and the
worst question candidate marked as #5. Although each candidate belongs to a different
classification, the visual diversity among question candidates seems to influence the scores
further.

Table 6.6 reports the result of four representative methods: Random, LambdaMART,
DQS-ST-com-100-sp, and DQS-DS-com-100-sp. Unfortunately, none of the models selected
the best question candidate for this test case. DQS provides better selection results in the
given case. LambdaMART also showed a certain degree of predictive ability in the question
selection.

6.6 Ablation Study

To figure out the effect of each component in the DQS model, we conducted an extra
experiment for ablation study. We evaluated DQS-ST-com-100-sp by suppressing modules
for Q1, (Q1, a1), or (Q1, a1, Q2). Figure 6.3 shows that the results of the ablation study. It
can be found that the Set Transformer for the candidate question, Q2, is the most important
for question selection. On the other hand, the first question and answer had almost no effect
on the question selection, though there exist small differences between DQS-ST-com-100-sp
and −Q1, and DQS-com-100-sp and −(Q1, a1). This problem could be further investigated
in future work.
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Figure 6.2: The example of question selection. Each question contains five different fashion items;
the system is required to select the best question to the answer predicting in the third question.
See Appendix B for the URLs of listed item images.

27



Figure 6.3: Accuracy, nDCG@1, and nDCG@5 of the ablations of Q1, (Q1, a1), and (Q1, a1, Q2).
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Chapter 7

Conclusions

This thesis proposed a new fashion outfit recommendation task where an outfit is recom-
mended after several rounds of user-system interactions. We developed a new dataset for
evaluating interactive fashion outfit recommendations through simulation. Based on the
analysis of the developed dataset, we devised interactive fashion outfit recommendation
algorithms based on a learning-to-rank model and Set Transformer. The experimental re-
sults demonstrated that the proposed Deep Question Selector models outperformed the
learning-to-rank model, and Set Transformer is a suitable model for embedding questions
in the interactive fashion outfit recommendation task. We hope that our work and in-
teractive fashion recommendation dataset will draw more attention to interactive fashion
recommendation research.
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Appendix A

Experiment Environment

• System: Ubuntu 18.04.5 LTS

• Linux Kernel: 3.10.0-1127.19.1.el7.x86_64

• GPU: single NVIDIA GeForce GTX TITAN X

• CUDA: 11.1

• Docker: 19.03.13

• Python: 3.8.8

– numpy: 1.19.2

– scipy: 1.7.1

– scikit-learn: 0.24.2

– lightgbm: 2.3.1

– xgboost: 1.4.2

– torch: 1.8.1

– torchvision: 0.9.1

• Python: 2.7.1

– tensorflow-gpu: 0.11
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Appendix B

The URL of Pictures Used in This
Thesis

1. http://img2.polyvoreimg.com/cgi/img-thing?.out=jpg&size=m&tid=94307864

2. http://img2.polyvoreimg.com/cgi/img-thing?.out=jpg&size=m&tid=88103180

3. http://img2.polyvoreimg.com/cgi/img-thing?.out=jpg&size=m&tid=169354407

4. http://img2.polyvoreimg.com/cgi/img-thing?.out=jpg&size=m&tid=168367314

5. http://img2.polyvoreimg.com/cgi/img-thing?.out=jpg&size=m&tid=154976551

6. http://img2.polyvoreimg.com/cgi/img-thing?.out=jpg&size=m&tid=152368950

7. http://img2.polyvoreimg.com/cgi/img-thing?.out=jpg&size=m&tid=133543185

8. http://img2.polyvoreimg.com/cgi/img-thing?.out=jpg&size=m&tid=133416182

9. http://img2.polyvoreimg.com/cgi/img-thing?.out=jpg&size=m&tid=133348458

10. http://img2.polyvoreimg.com/cgi/img-thing?.out=jpg&size=m&tid=133348447

11. http://img2.polyvoreimg.com/cgi/img-thing?.out=jpg&size=m&tid=132686258

12. http://img2.polyvoreimg.com/cgi/img-thing?.out=jpg&size=m&tid=131275624

13. http://img2.polyvoreimg.com/cgi/img-thing?.out=jpg&size=m&tid=125132715

14. http://img2.polyvoreimg.com/cgi/img-thing?.out=jpg&size=m&tid=106858616

15. http://img2.polyvoreimg.com/cgi/img-thing?.out=jpg&size=m&tid=103912700

16. http://img2.polyvoreimg.com/cgi/img-thing?.out=jpg&size=m&tid=101307979

17. http://img1.polyvoreimg.com/cgi/img-thing?.out=jpg&size=m&tid=98664184

18. http://img1.polyvoreimg.com/cgi/img-thing?.out=jpg&size=m&tid=93321499

19. http://img1.polyvoreimg.com/cgi/img-thing?.out=jpg&size=m&tid=85317648

20. http://img1.polyvoreimg.com/cgi/img-thing?.out=jpg&size=m&tid=200740423
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21. http://img1.polyvoreimg.com/cgi/img-thing?.out=jpg&size=m&tid=197222045

22. http://img1.polyvoreimg.com/cgi/img-thing?.out=jpg&size=m&tid=173069545

23. http://img1.polyvoreimg.com/cgi/img-thing?.out=jpg&size=m&tid=172337434

24. http://img1.polyvoreimg.com/cgi/img-thing?.out=jpg&size=m&tid=166247947

25. http://img1.polyvoreimg.com/cgi/img-thing?.out=jpg&size=m&tid=164107498

26. http://img1.polyvoreimg.com/cgi/img-thing?.out=jpg&size=m&tid=156113120

27. http://img1.polyvoreimg.com/cgi/img-thing?.out=jpg&size=m&tid=155674974

28. http://img1.polyvoreimg.com/cgi/img-thing?.out=jpg&size=m&tid=129954578

29. http://img1.polyvoreimg.com/cgi/img-thing?.out=jpg&size=m&tid=129461850

30. http://img1.polyvoreimg.com/cgi/img-thing?.out=jpg&size=m&tid=129121319

31. http://img1.polyvoreimg.com/cgi/img-thing?.out=jpg&size=m&tid=123073770

32. http://img1.polyvoreimg.com/cgi/img-thing?.out=jpg&size=m&tid=111583344

33. http://img1.polyvoreimg.com/cgi/img-thing?.out=jpg&size=m&tid=111487583

34. http://img1.polyvoreimg.com/cgi/img-thing?.out=jpg&size=m&tid=110083108

35. http://img1.polyvoreimg.com/cgi/img-thing?.out=jpg&size=m&tid=105426358
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