
ON SOME CURVES IN 3-DIMENSIONAL HYPERBOLIC GEOMETRY　
AND SOLVGEOMETRY

JUN-ICHI INOGUCHI

Dedicated to professor Koji Matsumoto on the occasion of his 80th birthday

Abstract. We study curve geometry in para-Sasakian 3-manifolds, especially in the hyper-
bolic 3-space and the space Sol3 of solvgeometry. Parametric expression for φ-trajectories in
the hyperbolic 3-space is given.

Introduction

As it is well known odd-dimensional hyperbolic space H2n+1 admits a special normal almost
contact structure compatible to the metric. The resulting space is a homogeneous Kenmotsu
manifold. Based on this fundamental fact, submanifold geometry, especially curve theory in
Kenmotsu manifolds have been developed extensively.

On the other hand, Sato [25] introduced the notion of almost paracontact structure. Let
M = (M,φ, ξ, η) be an almost paracontact manifold in the sense of Sato. Then there are two
ways to introduce “compatible metric” to this structure.

(1) positive definite Riemannian metric g compatible to the structure. In this case φ is
self-adjoint with respect to g.

(2) indefinite Riemannian metric g compatible to the structure. In this case φ is skew-
adjoint with respect to g.

There is a large number of publications in curve geometry in almost paracontact manifolds
equipped with indefinite compatible metric (see, e.g., [7] and references therein). On the
contrary curve geometry in almost paracontact manifolds equipped with positive definite
compatible metric are not well developed, yet.

The hyperbolic space Hn (for both even n and odd n) admits a particular almost paracontact
structures compatible to the metric. The resulting space is a special para-Sasakian manifold.
On the other hand, the model space Sol3 of solvgeometry in the sense of Thurston also admits
para-Sasakian structure.

In this paper we study curve geometry in para-Sasakian manifolds, especially in H3.

1. Para-Sasakian structures

1.1. Almost paracontact structures. According to Sato [25, 26, 27], an m-manifold M
is said to have an almost paracontact structure if it admits a triplet (φ, ξ, η) consisting of an
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endomorphism field φ, vector field ξ and a 1-form η satisfying

φ2 = I − η ⊗ ξ, η(ξ) = 1.

A manifold M equipped with an almost paracontact structure is called an almost paracontact
manifold. One can see that

φξ = 0, η ◦ φ = 0 and rankφ = m− 1.

As we have mentioned in Introduction, there are two options to introduce compatibility of
metric. In this paper we consider positive definite Riemannian metrics.

A Riemannian metric g of an almost paracontact manifold M is said to be compatible if

η(X) = g(ξ,X), g(φX,φY ) = g(X,Y )− η(X)η(Y )

for all smooth vector fields X and Y on M . The resulting manifold (M,φ, ξ, η, g) is called
an almost paracontact Riemannian manifold [25, 26] or almost paracontact metric manifold.
To distinguish our compatible metric with indefinite compatible metrics (and also to avoid
confusions), we use the terminology almost paracontact Riemannian manifold throughout this
article. One can see that φ is self-adjoint with respect to any compatible metric, i.e.,

g(φX, Y ) = g(X,φY )

for all smooth vector fields X and Y on M . The fundamental symmetric form Φ of M is
defined by

Φ(X,Y ) = g(X,φY ) = g(φX, Y ).

Kaneyuki and Williams [13] investigated almost paracontact structures on circle bundles over
para-Hodge manifolds.

On an almost paracontact Riemannian manifold M , the endomorphism field φ has constant
eigenvalues ±1 and 0. The multiplicity of 0 is 1. The type (p, q) of an almost paracontact
Riemannian manifold is the signature of φ, that is, p is the multiplicity of 1 and q is the
multiplicity of −1 [24]. One can see that trgφ = p − q, where trg means the metric trace
operator with respect to g, that is,

trgF =
m∑
i=1

g(Fei, ei)

for any endomorphism field F on M . Here {e1, e2, · · · , em} is a local orthonormal frame field.

1.2. Paracontact structures. Sasaki [24] introduced the notion of paracontact Riemann-
ian structure. An almost paracontact Riemannian manifold M is said to be a paracontact
Riemannian manifold in the sense of Sasaki if it satisfies

∇ξ = φ.

On the other hand, M is said to be a paracontact Riemannian manifold in the sense of Sato
[25] if

g(φX, Y ) =
1

2
{(∇Xη)Y + (∇Y η)X}

for all smooth vector fieldsX and Y onM . Obviously, paracontact Riemannian in the sense of
Sasaki is stronger than the one of Sato. Note that almost paracontact Riemannian manifolds
satisfying ∇ξ = φ are called special paracontact Riemannian manifolds by Sato. In this article
we use Sasaki’s definition for paracontact Riemannian.
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If M is a paracontact Riemannian manifold, then

2dη(X,Y ) =(∇Xη)Y − (∇Y η)X = g(∇Xξ, Y )− g(∇Y ξ,X)

=g(φX, Y )− g(X,φY ) = 0,

since φ is self-adjoint.

Definition 1.1 ([28]). An paracontact Riemannian manifold is said to be a para-Sasakian
manifold if it satisfies

(∇Xφ)Y = −g(X,Y )ξ − η(Y )X + 2η(X)η(Y )ξ. (1.1)

It should be remarked that para-Sasakian manifolds satisfy dη = 0.

Proposition 1.1. Let M be an almost paracontact Riemannian manifold. Assume that M
is a paracontact Riemannian manifold in the sense of Sato. Then M is para-Sasakian if and
only if dη = 0 and

(∇Xφ)Y = −g(X,Y )ξ − η(Y )X + 2η(X)η(Y )ξ.

Sato obtained the following characterization of para-Sasakian structure.

Theorem 1.1. Let (M, g) be a Riemannian manifold. Assume that there exists a 1-form η
satisfying

(∇Xη)Y = −ε{g(X,Y )− η(X)η(Y )}, ε = ±1. (1.2)

Then the structure (φ, ξ, η, g) is a para-Sasakian structure on M . Here ξ is the metrical dual
vector field of η and φ = ∇ξ.

Proof. From (1.2) we deduce that

φX = ∇Xξ = −ε(X − η(X)ξ).

One can see that (φ, ξ, η) is almost paracontact from this formula. Direct computation of ∇φ
yields (1.1). □

It should be remarked that general para-Sasakian manifolds do not satisfy (1.2). For this
reason, para-Sasakian manifolds satisfying (1.2) are called special para-Sasakian manifolds
[28]. After introduction of para-Sasakian structure [28], Adati and his collaborators published
many articles concerning para-Sasakian manifolds (large part of those papers were published
in TRU Math. and Tensor N. S.). Here we only refer [1] and [2]. Matsumoto published
some papers [16, 17, 20] in Bull. Yamagata Univ. (see also Ogata’s paper [23]). See also
[10, 11, 17, 18, 19].

1.3. Kenmotsu manifolds. To give an important example, here we recall the notion of
Kenmotsu manifold.

Definition 1.2. A (2n + 1)-manifold M is said to have an almost contact structure if it
admits a triplet (ψ, ζ, ω) consisting of an endomorphism field ψ, vector field ζ and a 1-form
ω satisfying

ψ2 = −I + ω ⊗ ζ, ω(ζ) = 1.

A Riemannian metric g of an almost contact manifold M is said to be compatible if

ω(X) = g(ζ,X), g(ψX,ψY ) = g(X,Y )− ω(X)ω(Y )
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for all smooth vector fields X and Y on M . The resulting manifold (M,ψ, ζ, ω, g) is called
an almost contact Riemannian manifold.

Example 1.1 (Sasakian manifold). An almost contact Riemannian manifold (M,ψ, ζ, ω, g)
is said to be a Sasakian manifold if it satisfies

(∇Xφ)Y = g(X,Y )ξ − η(Y )X.

Sasakian manifolds satisfy ∇ζ = −ψ. In particular ζ is a unit Killing vector field.

Remark 1. A Sasakian analogue of Theorem 1.1 is well known. If a Riemannian manifold
(M, g) admits a unit Killing vector field ζ satisfying

∇X∇Y ζ −∇∇XY ζ = g(Y, ζ)X − g(X,Y )ζ.

Then (ψ = −∇ζ, ζ, ω, g) is a Sasakian structure on M . Here ω is the metrical dual of ζ.

Example 1.2 (Kenmotsu manifold). An almost contact Riemannian manifold (M,ψ, ζ, ω, g)
is said to be a Kenmotsu manifold if it satisfies

(∇Xψ)Y = h(ψX, Y )ζ − ω(Y )X. (1.3)

Kenmotsu manifolds satisfy

∇Xζ = X − ω(X)ζ. (1.4)

Theorem 1.2. Let M = (M,ψ, ξ, η, g) be a Kenmotsu (2n+1)-manifold. Then the structure
(φ, ξ, η, g) defined by φ = ∇ξ is a special para-Sasakian structure of type (2n, 0).

Proof. First of all

φ2X = ∇φXξ = ∇∇Xξξ = ∇X−η(X)ξξ = ∇Xξ − η(X)∇ξξ = X − η(X)ξ.

Hence (φ, ξ, η) is almost paracontact. Next,

g(φX,φY ) = g(X − η(X)ξ, Y − η(Y )ξ) = g(X,Y )− η(X)η(Y ).

Thus g is compatible to (φ, ξ, η). Since ∇ξ = φ, (φ, ξ, η, g) is paracontact Riemannian. Since
φX = X − η(X)ξ, the type of this almost paracontact structure is (2n, 0). We compute the
covariant derivative ∇φ. From

∇X(φY ) =∇X∇Y ξ = ∇X(Y − η(Y )ξ)

=∇XY −Xη(Y )ξ − η(Y )(X − η(X)ξ),

φ(∇XY ) =∇∇XY ξ = ∇XY − η(∇XY )ξ,

we obtain

(∇Xφ)Y =− (∇Xη)Y ξ − η(Y )X + η(X)η(Y )ξ

=− g(X,Y )ξ − η(Y )X + 2η(X)η(Y )ξ.

Hence (φ, ξ, η, g) is para-Sasakian. □
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1.4. Model spaces. We give model spaces of para-Sasakian manifolds.

Example 1.3 (Sasaki-Nemoto’s example). Let F1 = (F p
1 , g1) and (F q

2 , g2) be Riemannian
manifolds of dimension p and q, respectively. Then we consider double-warped product [8,
§3.6], [9]:

M(p, q) = R×et F1 ×e−t F2, g = dt2 + e2tg1 + e−2tg2.

We define ξ = ∂/∂t. Then its metrical dual is η = dt. One can check that M(p, q) is a
non-special para-Sasakian manifold of type (p, q) [21].

Sasaki showed that the maximum dimension of the automorphism group Aut(M) of a para-
Sasakian manifold of type (p, q) is {p(p+1)+ q(q+1)}/2+ 1. The following example attains
the maximum dimension.

Example 1.4 (Solvable Lie groups). Let us choose F1 = Rp and F2 = Rq (and change the
notation from t to z) in the preceding example [24]. Then the resulting space is the Cartesian
space Rp+q+1 with homogeneous Riemannian metric

g = e2z(dx21 + · · ·+ dx2p) + e−2z(dy21 + · · ·+ dy2q ) + dz2.

One can see that this Riemanian manifold is realized as the following solvable Lie group

Solv(p, q) =





e−z · · · 0 0 · · · 0 x1
...

. . .
...

...
. . .

...
...

0 · · · e−z 0 · · · 0 xp
0 · · · 0 ez · · · 0 y1
...

. . .
...

...
. . .

...
...

0 · · · 0 0 · · · ez yq
0 · · · 0 0 · · · 0 1



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
x1, · · · , xp, y1, . . . , yq, z ∈ R


.

The para-Sasakian structure is left invariant on Solv(p, q). The automorphism groupG(p, q) =
Aut(Solv(p, q)) acts transitively on Solv(p, q). The para-Sasakian manifold Solv(p, q) is rep-
resented as Solv(p, q) = G(p, q)/O(p)×O(q)×O(1). Note that Solv(1, 1) is the model space
Sol3 of 3-dimensional solvgeometry in the sense of Thurston [29]. In addition the identity
component of G(1, 1) is Solv(1, 1) itself.

Example 1.5 (Hyperbolic spaces). Let us realize the hyperbolic n-space Hn as the warped
product manifold R ×ez Rn−1. The warped product R ×ez Rn−1 is realized as the following
solvable Lie group

Hn =




e−z · · · 0 x1
...

. . .
...

...
0 · · · e−z xn−1

0 · · · 0 1


∣∣∣∣∣∣∣∣∣x1, · · · , xn−1, z ∈ R

 .

The para-Sasakian structure is special and left invariant.

Remark 2. Manev and Staikova studied para-Sasakian manifolds of type (n, n) [15].
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1.5. Solvable Lie group model. To describe H3 and Solv(1, 1) in a unified way, here we
give the following solvable Lie group model:

G(δ) =


 e−z 0 x

0 eδz y
0 0 1

 ∣∣∣∣∣∣ x, y, z ∈ R

 , δ = ±1

equipped with the left invariant metric

g = e2zdx2 + e−2δzdy2 + dz2.

This family is useful for our study on hyperbolic 3-space and Sol3. In fact, G(−1) is the
hyperbolic 3-space and G(1) is Solv(1, 1) = Sol3.

The group operation of G(δ) is given explicitly by

(x, y, z) ∗ (x̃, ỹ, z̃) = (x+ e−zx̃, y + eδz ỹ, z + z̃). (1.5)

The Lie algebra g(δ) of G(δ) is
 −w 0 u

0 δw v
0 0 0

 ∣∣∣∣∣∣ u, v, w ∈ R

 .

Take an orthonormal basis

E1 =

 0 0 1
0 0 0
0 0 0

 , E2 =

 0 0 0
0 0 1
0 0 0

 , E3 =

 c1 0 0
0 c2 0
0 0 0

 .

We denote by ei the left invariant vector field on G(δ) which is obtained by left translation
of Ei. Then we have

e1 = e−z ∂

∂x
, e2 = eδz

∂

∂y
, e3 =

∂

∂z
, (1.6)

[e1, e2] = 0, [e2, e3] = δ e2, [e3, e1] = −e1. (1.7)

This commutation relations implies that every G(δ) is solvable.

The Levi-Civita connection ∇ of G(δ) is described as

∇e1e1 = −e3, ∇e1e2 = 0, ∇e1e3 = e1,

∇e2e1 = 0, ∇e2e2 = δ e3, ∇e2e3 = −δ e2, (1.8)

∇e3e1 = 0, ∇e3e2 = 0, ∇e3e3 = 0.

Define the endomorphism field φ by φ = ∇e3 and put ξ = e3 and η = dz, then we have

φe1 = e1, φe2 = −δ e2, φe3 = 0.

One can check that (φ, ξ, η, g) is a left invariant para-Sasakian structure on G(δ).

The covariant derivative ∇η is computed as

(∇Xη)Y = g(X, e1)g(Y, e1)− δ g(X, e2)g(Y, e2).

On the other hand,

g(X,Y )− η(X)η(Y ) = g(X, e1)g(Y, e1) + g(X, e2)g(Y, e2).

Thus G(c1, c2) is special para-Sasakian if and only if δ = −1. In particular, on H3, we have

(∇Xη)Y = g(X,Y )− η(X)η(Y ).
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2. Slant curves

2.1. Almost paracontact curves. We start with the following definition :

Definition 2.1. An arc length parametrized curve γ(s) in an almost paracontact Riemannian
manifold M is said to be a slant curve if its angle function θ(s) of γ′(s) and ξ is constant
along it.

In particular, an arc length parametrized curve γ(s) is said to be a almost paracontact curve
(or para-Legendre curve) if its unit tangent vector field γ′(s) is orthogonal to ξ.

2.2. Slant curves in G(δ). In this subsection we study slant curves in the para-Sasakian
group G(δ). Slant curves in H3 equipped with Kenmotsu structure are investigated in [6].
The notion of slant curve in H3 with respecto to para-Sasakian structure coincides with that
for Kenmotsu structure. Thus we may use results obtained in [6].

Let γ(s) = (x(s), y(s), z(s)) be a unit speed curve in G(δ). Then the unit tangent vector field
is given by

T (s) =γ′(s) = x′(s)
∂

∂x
+ y′(s)

∂

∂y
+ z′(s)

∂

∂z

=ez(s)x′(s)e1 + ez(s)y′(s)e2 + z′(s)e3.

We put

T1(s) = ez(s)x′(s), T2(s) = e−δ z(s)y′(s), T3(s) = z′(s). (2.1)

The last equation implies that γ(s) is almost Legendre if and only if z is constant.

By the arc length condition, we have

T1(s)
2 + T2(s)

2 + T3(s)
2 = 1.

On the other hand the contact angle is given by

cos θ(s) = z′(s) = T3(s).

Thus we get T1(s)
2 + T2(s)

2 = sin2 θ(s). Hence (T1(s), T2(s)) is expressed as

(T1(s), T2(s)) = (sin θ(s) cosψ(s), sin θ(s) sinψ(s))

for some function ψ(s).

Since G(δ) is homogeneous, it suffices to determine slant curves with θ ̸= 0, π under the initial
condition

x(0) = y(0) = z(0) = 0, x′(0) = X, y′(0) = Y, z′(0) = Z. (2.2)

First, the z-coordinate is determined as z(s) = (cos θ)s. Next, since

T1(0) = sin θ cosψ(0) = X, T2(0) = sin θ sinψ(0) = Y,

we have

x(s) =

∫ s

0
e−z(s)T1(s) ds = sin θ

∫ s

0
exp((cos θ)s) cosψ(s) ds,

y(s) =

∫ s

0
eδ z(s)T1(s) ds = sin θ

∫ s

0
exp(δ(cos θ)s) sinψ(s) ds.
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Theorem 2.1 ([6]). A slant curve with θ ̸= 0, π in H3 starting at the origin is represented
as

x(s) = sin θ

∫ s

0
exp((cos θ)s) cosψ(s) ds,

y(s) = sin θ

∫ s

0
exp((cos θ)s) sinψ(s) ds,

z(s) =(cos θ)s.

Theorem 2.2. A slant curve with θ ̸= 0, π in Sol3 starting at the origin is represented as

x(s) = sin θ

∫ s

0
exp((cos θ)s) cosψ(s) ds,

y(s) = sin θ

∫ s

0
exp(−(cos θ)s) sinψ(s) ds,

z(s) =(cos θ)s.

3. φ-trajectories

3.1. Paracontact planar curves. Let M be an almost paracontact Riemannian manifold.
Then a curve γ(t) is said to be a paracontact planar curve [5] if there exist functions a(t) and
b(t) defined along γ(t) such that

∇γ′γ′ = a(t)γ′(t) + b(t)φγ′(t).

Paracontact planar curves are examples of so-called F -geodesics or F -planar curves [3, 4, 22].
In this section we consider curves satisfying

∇γ′γ′ = c φγ′. (3.1)

Here c is a constant (called the charge). Arc length parametrized curves satisfying this ODE
are called φ-trajectories.

Remark 3. In an almost contact Riemannian manifold (M,ψ, ζ, ω, g), one can consider ψ-
trajectories:

∇γ′γ′ = c ψγ′.

In this case, we have the following conservation law :

d

dt
g(γ′(t), γ′(t)) = 2g(∇γ′γ′, γ′(t)) = cg(ψγ′(t), γ′(t))) = 0,

since ψ is skew-adjoint. Thus ψ-trajectories are of constant speed.

On the contrary, when the ambient space is almost paracontact Riemannian, this conservation
law does not hold. We can deduce that

d

dt
g(γ′(t), γ′(t)) = cg(φγ′(t), γ′(t))).

For simplicity, let us assume that M is special para-Sasakian then

d

dt
g(γ′(t), γ′(t)) =− cεg(γ′(t)− η(γ′(t))ξ, γ′(t)))

=− cε{g(γ′(t), γ′(t))− η(γ′(t))2}.
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Hence γ(t) is of constant speed when and only when c = 0 or g(γ′(t), γ′(t)) = η(γ′(t))2. Thus
arc length parametrization causes restrictions for φ-trajectories. Thus we do not assume that
φ-trajectories are arc length parametrized.

3.2. φ-trajectories in G(δ). Let γ(t) = (x(t), y(t), z(t)) be a regular curve in G(δ). As we
pointed out before, t is not necessarily arc length parametrized. The tangent vector field
T = γ′ is given by

T (t) = γ′(s) =x′(t)
∂

∂x
+ y′(t)

∂

∂y
+ z′(t)

∂

∂z

=ez(t)x′(t)e1 + ez(t)y′(t)e2 + z′(t)e3.

We put

T1(t) = ez(t)x′(t), T2(t) = e−δ z(t)y′(t), T3(t) = z′(t).

The acceleration vector field is

∇γ′γ′ = (T ′
1 + T3T1)e1 + (T ′

2 − δ T3T2)e2 + (T ′
3 − T 2

1 + δ T 2
2 )e3.

On the other hand,

φγ′ = T1e1 − δ T2e2.

Hence the φ-trajectory equation is the system

T ′
1 + T3T1 = cT1, T ′

2 − δ T3T2 = −cδ T2, T ′
3 − T 2

1 + δ T 2
2 = 0. (3.2)

Remark 4. With respect to the Kenmotsu structure of G(−1), ψ-trajectory equation is [12]:

T ′
1 + T3T1 = −cT2, T ′

2 + T3T2 = cT1, T ′
3 − (T 2

1 + T 2
2 ) = 0.

Let us determine φ-trajectories under the initial condition (2.2).

From the φ-trajectory system we deduce the following 2nd order ODE for T3:

T ′′
3 (t) = 2(c− T3(s))T

′
3(s). (3.3)

Obviously the constant function T3(t) = c is a solution to (3.3). First we observe φ-trajectories
with T3(t) = c. In this case, we obtain z(t) = ct. Next, substituting T3 = c into the first and
second equations of the system (3.2), we obtain T ′

1 = T ′
2 = 0. Thus T1 and T2 are constant.

From the third equation of (3.2), we deduce that T 2
1 = δ T2. Under the initial condition (2.2),

we get T1(t) = X and T2(t) = Y . In particular, when δ = −1, X = Y = 0. In this case the
φ-trajectory is a geodesic. On the other hand, when δ = 1, Y = ±X. By integrating

x′(t) = Xe−ct, y′(t) = Y eδ ct,

we arrive at

x(t) = −X
c
e−ct, y(t) =

δ Y

c
eδct.

Proposition 3.1. The φ-trajectory γ(t) of charge c in the special para-Sasakian H3 starting
at the origin which satisfies the initial condition z′(0) = c is a geodesic parametrized as

γ(t) = (0, 0, ct).
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The φ-trajectory γ(t) of charge c ̸= 0 in the para-Sasakian Sol3 starting at the origin which
satisfies the initial condition z′(0) = c is parametrized as

γ(t) =

(
−X
c
e−ct,

∓X
c
ect, ct

)
.

The φ-trajectory is rewritten as (
−X
c
e−z,

∓X
c
ez, z

)
.

Hereafter we look for non-constant solutions to (3.3). The ODE (3.3) is rewritten as

(T3(s)− c)′′ = −{(T3(s)− c)2}′.

By integration we get

(T3(s)− c)′ = −(T3(s)− c)2 + k, k ∈ R.

(1) The Case k = 0: Under the initial condition we get

z(t) = ct+ log |1 + (Z − c)t|, T3(t) = c+
Z − c

1 + (Z − c)t
. (3.4)

When Z = c, z(t) = ct and T3(t) = c.
(2) The Case k > 0: If k = 1/c21 > 0, then we have

T3(t) = c+
1

c1
tanh

t+ c2
c1

, c1 ∈ (R∖ {0}) ∪ {±∞}, c2 ∈ R. (3.5)

The constant c2 is determined by

c2 = c1 tanh
−1{c1(Z − c)}.

This formula implies that

−1 < c1(Z − c) < 1. (3.6)

The constant solution T3(t) = c is regarded as a particular solution with c1 = ±∞.
(3) The Case k < 0: If k = −1/c21 > 0, then we have

T3(t) = c− 1

c1
tan

t+ c2
c1

, c1 ∈ (R∖ {0}) ∪ {±∞}, c2 ∈ R. (3.7)

The constant c2 is determined by

c2 = c1 tan
−1{c1(c− Z)}.

The constant solution T3(t) = c is regarded as a particular solution with c1 = ±∞.

Hereafter we assume that c1 ̸= ±∞ for the cases k = ±/c21.
From the φ-trajectory system, we get

dT1
T1

= (−δ)dT2
T2

= c− T3.

From the initial condition (2.2), we obtain

T1(t) = X exp(ct− z(t)), T2(t) = Y exp{(−δ)(ct− z(t))}.
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Hence we get

x(t) =X

∫ t

0
exp(ct− 2z(t)) dt, (3.8)

y(t) =Y

∫ t

0
exp{(−δ)(ct− 2z(t))}dt. (3.9)

3.3. Let us consider the case T3(t) is given as in (3.4). Then we have

ct− 2z(t) = −ct− 2 log |1 + (Z − c)t|.
Hence we obtain

T1(t) =
X

1 + (Z − c)t
, T2(t) = Y {1 + (Z − c)t}δ,

x′(t) =
Xe−ct

{1 + (Z − c)t}2
, y′(t) = Y eδ ct{1 + (Z − c)t}2δ.

The x-coordinate is given by

x(t) =

∫ x

0

Xe−ct

{1 + (Z − c)t}2
dt.

Here we have ∫
e−ct

{1 + (Z − c)t}2
dt

= − c

(Z − c)2

{
e−ct

ct+ c
Z−c

− exp

(
c

Z − c

)
Ei

(
1, ct+

c

Z − c

)}
,

where Ei(a, z) is the exponential integral function defined by

Ei(a, z) =

∫ ∞

1
exp(−tz) t−a dt, z > 0.

Next when δ = 1, y-coordinate is integrated as

y(t) =
Y e−ct

c3
{
c2{1 + (Z − c)t}2 − 2c{1 + (Z − c)t}+ 2(Z − c)2

}
− Y

c3
(c2 − 2c+ 2(Z − c)2).

3.4. Next we consider the case T3(t) is given as in (3.5). Then z-coordinate is given by

z(t) =

∫ t

0
c+

1

c1
tanh

t+ c2
c1

dt = ct+ log cosh
t+ c2
c1

− log cosh
c2
c1
.

Thus we obtain

e−z(t) =
e−ct cosh c2

c1

cosh t+c2
c1

, exp(ct− z(t)) =
cosh c2

c1

cosh t+c2
c1

.

Hence T1 and T2 are determined as

T1(t) = X

(
cosh c2

c1

cosh t+c2
c1

)
, T2(t) = Y

(
cosh c2

c1

cosh t+c2
c1

)−δ

.
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Inserting these into the the third equation of the φ-trajectory system and evaluated at t = 0,
we deduce that

c21{X2 − δ Y 2 + (Z − c)2} = 1 (3.10)

Thus the integral constant c1 is determined by the initial data X, Y and Z with charge c.
Comparing (3.6) and (3.10),

0 < {c1(Z − c)}2 = 1− c21(X
2 − δ Y 2) < 1.

This implies that X2 − δY 2 > 0. When δ = −1, this condition is automatically satisfied. In
case δ = 1, we obtain X2 − Y 2 > 0.

Since

x′(t) = Xe−ct

(
cosh c2

c1

cosh t+c2
c1

)2

, y′(t) = Y eδ ct

(
cosh c2

c1

cosh t+c2
c1

)−2δ

,

the x-coordinate is integrated as

x(t) = X cosh2
c2
c1

∫ t

0

e−ct

cosh2 t+c2
c1

dt.

When δ = 1, the y-coordinate is given by

y(t) =
Y

cosh2 c2
c1

∫ t

0
ect cosh2

t+ c2
c1

dt.

Note that

exp
c2
c1

=
|1 + c1(Z − c)|√
1− c21(Z − c)2

.

3.5. Finally we consider the case T3(t) is given as in (3.7). Then z-coordinate is given by

z(t) =

∫ t

0
c− 1

c1
tan

t+ c2
c1

dt = ct+ log cos

∣∣∣∣ t+ c2
c1

∣∣∣∣− log cos

∣∣∣∣c2c1
∣∣∣∣ .

Thus we obtain

e−z(t) = e−ct
| cos c2

c1
|

| cos t+c2
c1

|
, exp(ct− z(t)) =

| cos c2
c1
|

| cos t+c2
c1

|
.

Hence T1 and T2 are determined as

T1(t) = X
| cos c2

c1
|

| cos t+c2
c1

|
, T2(t) = Y

(
| cos c2

c1
|

| cos t+c2
c1

|

)−δ

.

Inserting these into the the third equation of the φ-trajectory system and evaluated at t = 0,
we deduce that

c21{X2 − δ Y 2 − (c− Z)2} = 1 (3.11)

Thus the integral constant c1 is determined by the initial data X, Y and Z with charge c.

The x-coordinate is given by

x(t) = X cos2
c2
c1

∫ t

0

e−ct

cos2 c1t+c2
c1

dt.
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When δ = 1, the y-coordinate is given by

y(t) =
Y

cos2 c2
c1

∫ t

0
ect cos2

t+ c2
c1

dt.

We carry out these integrations. For x-coordinate, we have∫
ect cos2

t+ c2
c1

dt =
cect

2

cos 2(t+c2)
c1

(c2 + 4
c21
)
+
ect sin 2(t+c2)

c1

c1(c2 +
4
c21
)

+
ect

2c
.

Next, for y-coordinate, we get∫
cos2

t+ c2
c1

ect dt =

∫
1

2

(
1 + cos

2(t+ c2)

c1

)
ect dt

=
ect

2c(c2c21 + 4)

(
c2c21 cos

2(t+ c2)

c1
+ 2cc1 sin

2(t+ c2)

c1
+ c2c21 + 4

)
.

By using these, the x-coordinate is integrated as

x(t) =
e−ct| cos c2

c1
|

| cos t+c2
c1

|

∫ t

0
X

| cos c2
c1
|

| cos t+c2
c1

|
dt =

2c1X e−ct cos2 c2
c1

| cos t+c2
c1

|
log

1 + sin t+c2
c1

cos t+c2
c1

=
2c1X e−ct cos2 c2

c1

| cos t+c2
c1

|

(
log

1 + sin t+c2
c1

cos t+c2
c1

− log
1 + sin c2

c1

cos c2
c1

)
.

Note that

exp
c2
c1

=
|1 + c1(Z − c)|√
1− c21(Z − c)2

.

When δ = 1, the y-coordinate is given by

y(t) =
e−ct| cos c2

c1
|

| cos t+c2
c1

|

∫ t

0
Y
| cos t+c2

c1
|

| cos c2
c1
|
dt =

c1Y e
−ct

| cos t+c2
c1

|

(
sin

t+ c2
c1

− sin
c2
c1

)
.

4. Main theorem

Now we state our main results.

Theorem 4.1. The non-geodesic φ-trajectories in the special para-Sasakian H3 are congruent
to one of the following curves:

• The curve parametrized as

x(t) =
Xe−ct log |1 + (Z − c)t|
(Z − c){1 + (Z − c)t}

,

y(t) =
Y e−ct log |1 + (Z − c)t|
(Z − c){1 + (Z − c)t}

,

z(t) =ct+ log |1 + (Z − c)t|,

where Z ̸= c.
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• The curve parametrized as

x(t) =
2c1X e−ct cosh2 c2

c1

cosh t+c2
c1

(tan−1 exp
t+ c2
c1

− tan−1 exp
c2
c1
).

y(t) =
2c1Y e

−ct cosh2 c2
c1

cosh t+c2
c1

(tan−1 exp
t+ c2
c1

− tan−1 exp
c2
c1
).

z(t) =ct+ log cosh
t+ c2
c1

− log cosh
c2
c1
,

where the constants c1 and c2 satisfies

−1 < c1(Z − c) < 1, c21{X2 + Y 2 + (Z − c)2} = 1, tanh
c2
c1

= c1(Z − c).

• The curve parametrized as

x(t) =
2c1X e−ct cos2 c2

c1

| cos t+c2
c1

|

(
log

1 + sin t+c2
c1

cos t+c2
c1

− log
1 + sin c2

c1

cos c2
c1

)
,

y(t) =
2c1Y e

−ct cos2 c2
c1

| cos t+c2
c1

|

(
log

1 + sin t+c2
c1

cos t+c2
c1

− log
1 + sin c2

c1

cos c2
c1

)
,

z(t) =ct+ log cos

∣∣∣∣ t+ c2
c1

∣∣∣∣− log cos

∣∣∣∣c2c1
∣∣∣∣ ,

where the constants c1 and c2 satisfies

c21{X2 + Y 2 − (c− Z)2} = 1, tan
c2
c1

= c1(c− Z).

Theorem 4.2. The φ-trajectories in the para-Sasakian Sol3 are congruent to one of the
following curves:

• The curve parametrized as (
−X
c
e−ct,

∓X
c
ect, ct

)
with initial condition Z = c ̸= 0.

• The curve parametrized as

x(t) =
Xe−ct log |1 + (Z − c)t|
(Z − c){1 + (Z − c)t}

,

y(t) =
Y e−ct

1 + (Z − c)t

(
t+

Z − c

2
t2
)
,

z(t) =ct+ log |1 + (Z − c)t|,

where Z ̸= c.
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• The curve parametrized as

x(t) =
2c1X e−ct cosh2 c2

c1

cosh t+c2
c1

(tan−1 exp
t+ c2
c1

− tan−1 exp
c2
c1
).

y(t) =
c1Y e

−ct

cosh t+c2
c1

(
sinh

t+ c2
c1

− sinh
c2
c1

)
,

z(t) =ct+ log cosh
t+ c2
c1

− log cosh
c2
c1
,

where the constants c1 and c2 satisfies

−1 < c1(Z − c) < 1, c21{X2 − Y 2 + (Z − c)2} = 1, tanh
c2
c1

= c1(Z − c).

• The curve parametrized as

x(t) =
2c1X e−ct cos2 c2

c1

| cos t+c2
c1

|

(
log

1 + sin t+c2
c1

cos t+c2
c1

− log
1 + sin c2

c1

cos c2
c1

)
,

y(t) =
c1Y e

−ct

| cos t+c2
c1

|

(
sin

t+ c2
c1

− sin
c2
c1

)
,

z(t) =ct+ log cos

∣∣∣∣ t+ c2
c1

∣∣∣∣− log cos

∣∣∣∣c2c1
∣∣∣∣ ,

where the constants c1 and c2 satisfies

c21{X2 − Y 2 − (c− Z)2} = 1, tan
c2
c1

= c1(c− Z).
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