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Abstract

In this study, the existing game theoretical framework is extended to strategic queuing in search of solutions for a two-

population game in observable double-ended queuing systems with zero matching times. We show that multiple Nash equilibria

and one unique subgame perfect Nash equilibrium exist in this game.
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1. Introduction

In this study, the concept of a two-population game in a strategic queuing model is introduced. An observable double-ended

queuing system is considered with two populations of agents arriving at each side of the queue for one-by-one matching. This

queuing model comes with various practical examples, such as taxi-passenger queues or electronic commerce platforms. In

an observable double-ended queue with one strategic side considered in the literature [6] (which is identical to an M/M/1/K

model), the Nash equilibrium (which is often referred to as “equilibrium threshold strategy”) can be instantly derived using

Naor’s [5] line of research. However, when both types of agents are strategic, such a threshold strategy is no longer guaranteed

because waiting times no longer increase with regard to the position of agents upon their arrival, but also depend on the

number of agents arriving behind them. A quick check shows that the decision adopted by both sides not to join the system at

all also forms an equilibrium, which naturally poses the question: Are there any other outcomes of this game? This problem

does not seem to be solvable with the existing literature on strategic queuing (summarized in [2, 4]), which only focuses on

the strategic behavior of one population of agents.

This study extends the current game theoretical framework to strategic queuing [1, 3] for solving a more general and realistic

problem in which two populations of agents engage in strategic behavior, which affects the strategy of not only individuals in

the same population but also those in the other population. The desired output is all possible Nash equilibria, that is, the

outcomes of the game, which are helpful for the planning and optimization of the system.

2. Preliminaries

Consider a society P = {1, 2} that consists of two populations of agents arriving at a double-ended queuing system based on

Poisson processes with rates λ1 and λ2. The buffer capacity of population-(i) is denoted by Ni (i = 1, 2). The state space

is denoted by S = {−N1,−N1 + 1, ..., N2}, where a state s < 0 prescribes a queue with population-(1) agents, while a state

s > 0 prescribes a queue with population-(2) agents, and s = 0 prescribes an empty system. Matching is performed on a

first-come-first-served basis by a pair of a population-(1) agent and a population-(2) agent in zero unit time. The reward upon

the completion of a service and the waiting cost per unit time of a population-(i) agent are denoted by Ri and Ci (i = 1, 2),

respectively.

Agents can choose to join or balk the queue upon arrival. Agents receive a reward of 0 if they choose to balk. Let A = {a1, a2}
be the set of pure strategies of each agent, where a1 represents “joining” and a2 represents “balking” upon arrival. The

strategy of an arbitrary individual in population-(i) is denoted by σ(i) ∈ [0, 1]N1+N2+1, which gives the probabilities σ
(i)
s

(s = −N1,−N1 + 1, ..., 0, ..., N2) with which the agent decides to join the queue when each system state s ∈ S is observed

upon arrival. Let a vector x(i) ∈ [0, 1]N1+N2+1 (i = 1, 2) denote the population profile of population-(i), which yields the

probabilities x
(i)
s with which the strategy joining is played at each state s in population-(i). A social profile, defined over

[0, 1]N1+N2+1 × [0, 1]N1+N2+1 as X = {x(1),x(2)}, consists of the strategy profiles of the two populations.
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Definition 1 (Limiting Probabilities, Recurrent States, Absorbing States, and Transient States). (Hassin and Haviv [3])

Let Lt be the system state at the time of arrival of the tth agent. The limiting probability of Lt = s when t → +∞, given

a social profile X and L0 = s, is denoted by π(X, s). For a given social profile X, a state s is recurrent if π(X, s) > 0. If

π(X, s) = 1, then the recurrent state s is absorbing. If π(X, s) = 0, the state s is transient.

The payoff to a focal individual in population-(i), who adopts a strategy σ(i) is given by

U (i)(σ(i)|X) =
∑
s∈S

π(X, s)U (i)(σ(i)|X, s) =
∑
s∈S

π(X, s)
[
σ(i)
s U (i)(a1|X, s) + (1− σ(i)

s )U (i)(a2|X, s)
]

=
∑
s∈S

π(X, s)σ(i)
s U (i)(a1|X, s), (1)

where U (i)(aj |X, s) (j = 1, 2) denotes the payoff to the focal individual in the population-(i), who adopts the pure strategy aj
upon observing state s. By definition, U (i)(a2|X, s) = 0, while U (i)(a1|X, s) is obtained by subtracting the waiting cost from

the service value.

A strategy σ(i) of a focal individual in population-(i) is called a best response against a social profile X if

σ(i) ∈ BR(i)(X) = argmax
σ(i)

U (i)(σ(i)|X), (2)

where BR(i)(X) denotes the set of best responses against X of an arbitrary individual in population-(i).

Definition 2 (Nash Equilibria). A social profile X̄ =
(
x̄(1), x̄(2)

)
is in a Nash equilibrium if all agents in each population

respond optimally to X̄, that is,

NE = {X̄ : σ̄(i) ∈ BR(i)(X̄) for all i ∈ P}, (3)

where σ̄(i) is the strategy that generates the population profile x̄(i) (σ̄(i) = x̄(i)).

Definition 3 (Subgame Perfect Nash Equilibria). A social profile X̄∗ =
(
x̄∗(1), x̄∗(2)) is in a subgame perfect Nash equilibrium

if all agents in each population respond optimally to X̄∗ at each state in the state space S, that is,

SPNE = {X̄∗ : σ̄∗(i)
s ∈ BR(i)(X̄∗, s) for all i ∈ P and s ∈ S}, (4)

where σ̄∗(i) is the strategy that generates the population profile x̄∗(i) (x̄∗(i) = x̄∗(i)), and BR(i)(X, s) denotes the set of best

responses against a population profile X at state s, calculated as

BR(i)(X, s) = argmax
σ
(i)
s

U(σ(i)|X, s).

The index “̃i” is also used to refer to a population other than i. In other words, ĩ = 2 if i = 1, and vice versa.

Furthermore, let

Ne
i = max

{
n : Ri − Ci

n

λĩ

≥ 0, n ∈ N
}
,

and Ni = min{Ni, N
e
i }. In this paper, Ne

i is referred to as ‘Naor’s threshold’.

Remark 1 (Discussion on Naor’s result in the case of finite buffer size). In addition to considering two strategic populations,

the model presented in this paper differs slightly from Naor’s in the sense that we assume a finite buffer size for both sides,

whereas an infinite buffer size was considered in Naor’s model. It should be noted that Naor’s result remains the same under

a setting with an arbitrarily large finite buffer limit, as long as it is greater than Naor’s threshold level. In Naor’s model, if

there is a limit for the buffer size and it is smaller than Naor’s threshold, then the threshold adopted by customers is identical

to that buffer limit.

3. Nash equilibria

The Nash equilibria of this game is of interest, defined as X̄ =
(
x̄(1), x̄(2)

)
, where x̄(i) is generated from strategies σ̄(i), defined

as

σ̄(i) =
(
σ̄
(i)
−N1

, σ̄
(i)
−N1+1, ..., σ̄

(i)
−1, σ̄

(i)
0 , σ̄

(i)
1 , ..., σ̄

(i)
N2−1, σ̄

(i)
N2

)
, i = 1, 2.

It immediately follows that σ̄
(1)
−N1

= σ̄
(2)
N2

= 0.
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By defining the equilibria in (2) and (3), for i = 1, 2, the following condition must be satisfied:

U (i)
(
σ̄(i)|X̄

)
= max

σ(i)
U (i)

(
σ(i)|X̄

)
. (5)

In equilibrium, the system can be modeled as shown in Figure 1. The dashed arrows indicate that the corresponding transition

rates may be equal to 0.

Figure 1: Transition diagram of the system in equilibrium.

The steady state balance equations are given by

σ̄(2)
s λ2π(X̄, s) = σ̄

(1)
s+1λ1π(X̄, s+ 1) (6)

for s = −N1,−N1 + 1, ..., N2 − 1.

Lemma 1. In equilibrium,

(1) If there exists a recurrent state s < 0, then σ̄
(2)
s = 1, σ̄

(1)
s+1 > 0, and s+ 1 is also a recurrent state.

(2) If there exists a recurrent state s > 0, then σ̄
(1)
s = 1, σ̄

(2)
s−1 > 0, and s− 1 is also a recurrent state.

Proof. (1) Assume that σ̄
(2)
s < 1. Then, an arbitrary population-(2) agent who adopts a strategy σ(2), where σ

(2)
j = σ̄

(2)
j for

all j ̸= s, and σ
(2)
s = 1, would find the expected payoff of

U (2)
(
σ(2)|X̄

)
=

∑
j ̸=s

π(X̄, j)U (2)
(
σ(2)|X̄, j

)
+ π(X̄, s)U (2)

(
σ(2)|X̄, s

)
=

∑
j ̸=s

π(X̄, j)U (2)
(
σ(2)|X̄, j

)
+ π(X̄, s)R2

>
∑
j ̸=s

π(X̄, j)U (2)
(
σ(2)|X̄, j

)
+ π(X̄, s)σ̄(2)

s R2 (as σ̄(2)
s < 1 and π(X̄, s) > 0),

= U (2)
(
σ̄(2)|X̄

)
,

which contradicts the definition of the best responses and equilibria in (2) and (3). This means that σ̄
(2)
s = 1. Because

π(X̄, s) > 0 and σ
(2)
s = 1, the left-hand side of (6) is positive, implying that σ̄

(1)
s+1λ1π(X̄, s + 1) > 0. Thus, σ̄

(1)
s+1 > 0 and

π(X̄, s+ 1) > 0. This also means that s+ 1 is recurrent.

(2) This can be similarly proved.

From Lemma 1, the following important result can be obtained by induction: In equilibrium, if there exists a recurrent state

s < 0, then all states s + 1, s + 2, ..., 0 are also recurrent, and σ
(2)
j = 1 for all j = s, s + 1, ..., 0. Similarly, if there exists a

recurrent state s > 0 in equilibrium, then all states s− 1, s− 2, ..., 0 are also recurrent, and σ
(1)
j = 1 for all j = s, s− 1, ..., 0.

For deriving the joining strategy of a tagged agent, it is necessary to obtain the expected waiting time with respect to the

state observed upon arrival, prescribed one-dimensionally by s ∈ S, which also encodes the number of agents in the same

population in front of the tagged agent. This expected waiting time is 0 if there is currently a queue of agents in the opponent

population. If a tagged agent arrives and observes a queue of agents in the same population, one more variable that represents

the number of agents behind the tagged agent is required to derive the expected waiting time of the tagged agent. This

is because the arrival of other agents in the same population behind the tagged agent affects the strategy of agents in the

opponent population. According to first step analysis, the expected waiting time Ti(u, v) of a tagged population-(i) agent who

is at position u > 0 (that is, there are u − 1 other population-(i) agents in front of the tagged agent) and observes v other

population-(i) agents behind him (u+ v ≤ Ni) is

Ti(u, v) =


1

σ̄
(i)
w λi+σ̄

(ĩ)
w λĩ

+
σ̄(i)
w λi

σ̄
(i)
w λi+σ̄

(ĩ)
w λĩ

Ti(u, v + 1) +
σ̄(ĩ)
w λĩ

σ̄
(i)
w λi+σ̄

(ĩ)
w λĩ

Ti(u− 1, v) if u+ v < Ni,

1

σ̄
(ĩ)
w λĩ

+ Ti(u− 1, v) if u+ v = Ni,
(7)
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where Ti(0, v) = 0 is the bound for the recursion, w = −(u + v) if i = 1, and w = u + v if i = 2. The joining strategy of a

population-(i) agent upon a state s is based on the expected waiting time upon arrival, that is, Ti(|s|, 0).
By induction, it is easy to determine that Ti(u, v) ≥ u

λĩ
. Intuitively, u

λĩ
is the expected waiting time of a population-(i) agent

at position u, in an “ideal” scenario that population-(̃i) is not strategic (that is, population-(̃i) agents always join the system

with probability 1). Therefore, when population-(̃i) is strategic, a population-(i) agent should expect a longer waiting time.

In equilibrium, let s1 = min
{
s : −N1 ≤ s ≤ 0, π

(
X̄, s

)
> 0

}
and s2 = max

{
s : 0 ≤ s ≤ N2, π

(
X̄, s

)
> 0

}
.

Consider the following 4 cases.

Case 1 : s1 < 0 and s2 > 0. Induced from Lemma 1, the following results can be obtained:

• σ̄
(2)
s = 1 and σ̄

(1)
s+1 > 0 for all s1 ≤ s < 0, and

• σ̄
(1)
s = 1 and σ̄

(2)
s−1 > 0 for all 0 < s ≤ s2, and

• any state s satisfying s1 ≤ s ≤ s2 is recurrent.

From (6), we have σ̄
(2)
s1−1λ2π(X̄, s1 − 1) = σ̄

(1)
s1 λ1π(X̄, s1), which implies that σ̄

(1)
s1 = 0 (as π(X̄, s1) > 0 and π(X̄, s1 − 1) = 0).

Similarly, σ̄
(2)
s2 = 0 can be obtained.

For any s1 < s ≤ 0, the condition R1 − C1T1(|s| + 1, 0) ≥ 0 must be satisfied because if R1 − C1T1(|s| + 1, 0) < 0, then an

arbitrary population-(1) agent who adopts a strategy σ(1), where σ
(1)
s = 0, and σ

(1)
j = σ̄

(1)
j for j ̸= s, would find a payoff of

U (1)
(
σ(1)|X̄

)
=

∑
j ̸=s

π(X̄, j)U (1)
(
σ(1)|X̄, j

)
+ π(X̄, s)U (1)

(
σ(1)|X̄, s

)
=

∑
j ̸=s

π(X̄, j)U (1)
(
σ(1)|X̄, j

)
>

∑
j ̸=s

π(X̄, j)U (1)
(
σ(1)|X̄, j

)
+ π(X̄, s)σ̄(1)

s (R1 − C1T1(|s|+ 1, 0)) (as σ̄(1)
s > 0 and π(X̄, s) > 0),

= U (1)
(
σ̄(1)|X̄

)
,

which contradicts the definition of “best response” and “equilibria” in (2) and (3). Furthermore, if R1 −C1T1(|s|+ 1, 0) > 0,

then it is easily implied that σ
(1)
s = 1. If R1 − C1T1(|s|+ 1, 0) = 0, then σ

(1)
s ∈ (0, 1).

Consequently,

|si| ≤ Ni. (8)

Consider the case in which i = 1. The above condition is obvious when N1 ≤ Ne
1 (which is equivalent to N1 = N1) because s1

cannot exceed the buffer capacity of the population-(1) queue (N1). When N1 > Ne
1 (that is, N1 = Ne

1 ), this can be proved

by contradiction. Assume that |s1| > Ne
1 , then

R1 − C1T1(N
e
1 + 1, 0) ≤ R1 − C1

Ne
1 + 1

λ2
< 0,

which contradicts the definition of Ne
1 .

Similarly, for any s2 ≤ N2 and 0 ≤ s < s2, the condition R2 −C2T2(s+1, 0) ≥ 0 must be satisfied. If R2 −C2T2(s+1, 0) > 0,

then σ̄
(2)
s = 1. If R2 − C2T2(s+ 1, 0) = 0, then σ̄

(2)
s ∈ (0, 1).

Furthermore, the condition Ri−CiTi(|si|+1, 0) ≤ 0 (i = 1, 2) must also be satisfied. Assuming that Ri−CiTi(|si|+1, 0) > 0,

then an arbitrary population-(i) agent who adopts a strategy σ(i), where σ
(i)
si > 0 and σ

(i)
j = σ̄

(i)
j for j ̸= si, would find a

payoff of

U (i)
(
σ(i)|X̄

)
=

∑
j ̸=s

π(X̄, j)U (i)
(
σ(i)|X̄, j

)
+ π(X̄, s)U (i)

(
σ(i)|X̄, si

)
=

∑
j ̸=si

π(X̄, j)U (i)
(
σ(i)|X̄, j

)
+ π(X̄, si)σ

(i)
si (Ri − CiTi(|si|+ 1, 0))

>
∑
j ̸=si

π(X̄, j)U (i)
(
σ(i)|X̄, j

)
(as σ(i)

si > 0 and π(X̄, si) > 0),

= U (i)
(
σ̄(i)|X̄

)
,

which contradicts the definition of “best response” and “equilibria” in (2) and (3). In summary, the system equilibrium in

this case is

X̄ =
(
σ̄(1), σ̄(2)

)
,
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defined with

σ̄(1) =
(
0, σ̄

(1)
−N1+1, ..., σ̄

(1)
s1−1, 0, σ̄

(1)
s1+1, ..., σ̄

(1)
−1 , σ̄

(1)
0 , 1, 1, ..., 1, σ̄

(1)
s2+1, ..., σ̄

(1)
N2−1, σ̄

(1)
N2

)
,

and

σ̄(2) =
(
σ̄
(i)
−N1

, σ̄
(i)
−N1+1, ..., σ̄

(i)
s1−1, 1, 1, ..., 1, σ̄

(i)
0 , σ̄

(i)
1 , ..., σ̄

(i)
s2−1, 0, σ̄

(i)
s2+1, ...σ̄

(i)
N2−1, 0

)
,

where 0 < |si| ≤ Ni, and the unidentified σ̄
(i)
s take an arbitrary value in [0, 1] and satisfy the following conditions.

• σ̄
(1)
s > 0 for all s1 < s ≤ 0; and σ̄

(2)
s > 0 for all 0 ≤ s < s2;

• T1(|s|+ 1, 0) ≤ R1

C1
; if T1(|s|+ 1, 0) < R1

C1
, then σ

(1)
s = 1; otherwise, σ

(1)
s ∈ (0, 1), for all s1 < s ≤ 0;

T2(|s|+ 1, 0) ≤ R2

C2
; if T2(|s|+ 1, 0) < R2

C2
, then σ

(2)
s = 1; otherwise, σ

(2)
s ∈ (0, 1), for all 0 ≤ s < s2;

• Ti(|si|+ 1, 0) ≥ Ri

Ci
;

This pattern of equilibria can be illustrated in Figure 2.

Figure 2: Equilibrium pattern 1.

Case 2 : If s1 = s2 = 0, then the only existing recurrent state, s = 0, becomes the only absorbing state. This implies that

π(X̄, 0) = 1 and π(X̄, s) = 0 for all s ̸= 0. Now, the solutions of σ̄
(1)
0 and σ̄

(2)
0 must be acquired to obtain the equilibrium

strategies of agents in the only recurrent state of the system. From (6), σ̄
(2)
0 λ2π(X̄, 0) = σ̄

(1)
1 λ1π(X̄, 1) can be obtained, which

is equivalent to σ̄
(2)
0 λ2 = 0 (because π(X̄, 1) = 0), implying that σ̄

(2)
0 = 0. Similarly, σ̄

(1)
0 = 0 can be obtained. Now, the

payoff to a population-(i) who follows the crowd and adopts strategy σ̄(i) is

U (i)
(
σ̄(i)|X̄

)
=

∑
s

π(X̄, s)U (i)
(
σ̄(i)|X̄, s

)
= π(X̄, 0)U (i)

(
σ̄(i)|X̄, 0

)
= 0.

Consider an arbitrary population-(i) who adopts a strategy σ(i) where σ
(i)
0 > 0. The payoff to this focal population-(i) agent

is

U (i)
(
σ(i)|X̄

)
=

∑
s

π(X̄, s)U (i)
(
σ(i)|X̄, s

)
= π(X̄, 0)U (i)

(
σ(i)|X̄, 0

)
= σ

(i)
0 (Ri − CiTi(1, 0)) .

For X̄ to be a state of equilibrium, the condition (5) is necessary, meaning that the focal population-(i) agent should find

a non-positive payoff. Thus, the set of σ̄
(i)
s (s ̸= 0) must satisfy Ti(1, 0) ≥ Ri

Ci
. Otherwise, Ri − CiTi(1, 0) > 0, then

σ
(i)
0 ∈ argmax

σ̄
(i)
0

σ
(i)
0 (Ri − CiTi(1, 0)) = {1}, which contradicts σ

(i)
0 = 0.

In summary, the system equilibrium in this case is

X̄ =
(
σ̄(1), σ̄(2)

)
,

where

σ̄(1) =
(
0, σ̄

(1)
−N1+1, ..., σ̄

(1)
−1 , 0, σ̄

(1)
1 , ..., σ̄

(1)
N2−1, σ̄

(1)
N2

)
,

and

σ̄(2) =
(
σ̄
(2)
−N1

, σ̄
(2)
−N1+1, ..., σ̄

(2)
−1 , 0, σ̄

(2)
1 , ..., σ̄

(2)
N2−1, 0

)
,

with all σ̄
(i)
s (s > 0) satisfying T2(1, 0) ≥ R2

C2
, and all σ̄

(i)
s (s < 0) satisfying T1(1, 0) ≥ R1

C1
. This equilibrium pattern is

illustrated in Figure 3.

Figure 3: Equilibrium pattern 2.
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Case 3&4 : si = 0 and sĩ ̸= 0. These cases can be treated similarly to Case 1 and Case 2. The patterns of equilibria are

illustrated in Figure 4 and Figure 5. In these equilibrium patterns, there exists only one population of agents in the queue.

Figure 4: Equilibrium pattern 3.

Figure 5: Equilibrium pattern 4.

In summary, in all four cases, the system may end up at a Nash equilibrium at which the length of each population’s buffer

does not exceed a certain threshold (prescribed by |si|, in the case of population-(i)), and such thresholds do not exceed Naor’s

threshold. A social profile X̄ =
(
σ̄(1), σ̄(2)

)
is in equilibrium if all of the following conditions are satisfied:

(i) There exist states s1 ≤ 0 and s2 ≥ 0 such that σ̄
(i)
si = 0, 0 ≤ |si| ≤ Ni.

If s1 ̸= 0, σ̄
(1)
s > 0 for all s1 < s ≤ 0. If s2 ̸= 0, σ̄

(2)
s > 0 for all 0 ≤ s < s2.

(ii) T1(|s|+ 1, 0) ≤ R1

C1
; if T1(|s|+ 1, 0) < R1

C1
, then σ

(1)
s = 1; otherwise, σ

(1)
s ∈ (0, 1), for all s1 < s ≤ 0;

T2(|s|+ 1, 0) ≤ R2

C2
; if T2(|s|+ 1, 0) < R2

C2
, then σ

(2)
s = 1; otherwise, σ

(2)
s ∈ (0, 1), for all 0 ≤ s < s2.

(iii) Ti(|si|+ 1, 0) ≥ Ri

Ci
.

Proposition 1 (Sensitivity of agents’ strategies against buffer capacity). An arbitrary social profile under the setting of buffer

capacity (Ni, Nĩ) (i = 1, 2), is denoted by X(Ni,Nĩ) =
(
σ(i),(Ni,Nĩ),σ(̃i),(Ni,Nĩ)

)
, defined over [0, 1]N1+N2+1×[0, 1]N1+N2+1. Let

X(Ni+k,Nĩ) =
(
σ(i),(Ni+k,Nĩ),σ(̃i),(Ni+k,Nĩ)

)
, defined over [0, 1]N1+N2+k+1× [0, 1]N1+N2+k+1, be a social profile with buffer ca-

pacity (Ni + k,Nĩ), where k is an arbitrary positive integer. All vector elements are indexed by the corresponding system states.

If σ
(i),(Ni,Nĩ)
s = σ

(i),(Ni+k,Nĩ)
s for all s = −N1,−N1 + 1, ..., N2 and X(Ni,Nĩ) is not an equilibrium under the setting (Ni, Nĩ)

by violating condition (i) when Ne
i ≤ Ni, or violating condition (ii), then X(Ni+k,Nĩ) is not an equilibrium under the setting

(Ni + k,Nĩ).

Proof. Consider the following two cases.

• A state si satisfying σ
(i),(Ni,Nĩ)
si = 0 and |si| ≤ Ni does not exist (violation of condition (i)) and Ne

i ≤ Ni. As a result,

in the setting (Ni + k,Nĩ), a state si that satisfies σ
(i),(Ni+k,Nĩ)
si = 0 and |si| ≤ Ne

i = min {Ne
i , Ni + k} does not exist,

which implies that X(Ni+k,Nĩ) is not an equilibrium.

• Two states s1 and s2 satisfying σ
(i),(Ni,Nĩ)
si = 0 and |si| ≤ Ni exist; however, at least one of the equilibrium conditions

concerning the expected waiting times is violated (violation of condition (ii)). It is implied from (7) that expected waiting

times at all states within the these two states do not change when the buffer size increases from Ni to Ni+k. Therefore,

the corresponding equilibrium conditions for the expected waiting times in the (Ni + k,Nĩ) setting are violated, which

implies that X(Ni+k,Nĩ) is not an equilibrium state.

Remark 2 (Discussion on the case of infinite buffer size). Consider a system with an infinite buffer size on both sides of the

queue. Similarly to the results in Proposition 1, a social profile denoted

X =
(
σ(1),σ(2)

)
=

((
..., σ̄

(1)
−1 , σ̄

(1)
0 , σ̄

(1)
1 , ...

)
,
(
..., σ̄

(2)
−1 , σ̄

(2)
0 , σ̄

(2)
1 , ...

))
is not in equilibrium if:

6



• A state si satisfying σ
(i)
si = 0 and |si| ≤ Ne

i does not exist (violation of condition (i)), or

• Two states s1 and s2 satisfying σ
(i)
si = 0 and |si| ≤ Ne

i exist; however, at least one of the equilibrium conditions

concerning the expected waiting times is violated (violation of condition (ii)). The recursion in the case of infinite buffer

size is slightly different from (7) with regard to the bound. Without a bounding state Ni, the recursion for the calculation

of the expected waiting times (under the same notations as (7)) is

Ti(u, v) =
1

σ
(i)
w λi + σ

(̃i)
w λĩ

+
σ
(i)
w λi

σ
(i)
w λi + σ

(̃i)
w λĩ

Ti(u, v + 1) +
σ
(̃i)
w λĩ

σ
(i)
w λi + σ

(̃i)
w λĩ

Ti(u− 1, v).

However, if there exists a state si satisfying σ
(i)
si = 0, it is implied that expected waiting times at all states bounded by si

are calculable and insensitive to the buffer size (si becomes the bound of the recursion over all states within this state).

Therefore, the result in Proposition 1 similarly holds when k → +∞, which is equivalent to the case of an infinite

buffer size on both sides.

On another note, whether a state s < 0 (if s > 0 can be similarly analyzed) is recurrent or transient is directly controlled

by population-(1) agents’ decisions (because the queue length of population-(1) agents is the consequence of their decision

to join or balk); however, such decisions depend on the strategy of population-(2) agents. Because a transient state may

never be observed (it occurs with probability 0), the strategy of population-(2) agents in transient states does not affect their

expected payoff; therefore, they can choose to join at those states with arbitrary probabilities. Meanwhile, the strategy of

population-(1) agents in those transient states would depend on their beliefs about the strategy of population-(2) agents. If

population-(1) agents hold the belief that population-(2) agents join the queue at such transient states s < 0 with probabilities

smaller than 1, the system may end up at an equilibrium at which the maximal buffer of population-(1) agents is smaller than

N1. When population-(1) agents believe that population-(2) agents optimize their payoff at every state (including transient

states) and vice versa, the outcome of the system is a subgame perfect Nash equilibrium derived in the next section.

4. Subgame perfect Nash equilibrium

In this section, the subgame perfect Nash equilibria of this game is derived, defined as X̄∗ =
(
σ̄∗(1), σ̄∗(2)), where

σ̄∗(i) =
(
σ̄
∗(i)
−N1

, σ̄
∗(i)
−N1+1, ..., σ̄

∗(i)
−1 , σ̄

∗(i)
0 , σ̄

∗(i)
1 , ..., σ̄

∗(i)
N2−1, σ̄

∗(i)
N2

)
.

It immediately follows that σ̄
∗(1)
−N1

= σ̄
∗(2)
N2

= 0.

At any state s > 0, we have

σ̄∗(1)
s ∈ argmax

σ̄
∗(1)
s

U (1)
(
σ̄∗(1)
s |X∗, s

)
= argmax

σ̄
∗(1)
s

σ̄∗(1)
s R1 = {1}.

In other words, σ̄
∗(1)
s = 1 for all 0 < s ≤ N2.

Similarly, at any state s < 0, we have

σ̄∗(2)
s ∈ argmax

σ̄
∗(2)
s

U (2)
(
σ̄∗(2)
s |X∗, s

)
= argmax

σ̄
∗(2)
s

σ̄∗(2)
s R2 = {1}.

In other words, σ̄
∗(2)
s = 1 for all −N1 ≤ s < 0. It then easily follows from (7) by induction that Ti(u, 0) =

u
λĩ
. Therefore, at

any state s ≤ 0, we have

σ̄∗(1)
s ∈ argmax

σ̄
∗(1)
s

U (1)
(
σ̄∗(1)
s |X∗, s

)
= argmax

σ̄
∗(1)
s

(
σ̄∗(1)
s

(
R1 − C1

|s|+ 1

λ2

))

=


{0} if R1 − C1

|s|+1
λ2

< 0,

[0, 1] if R1 − C1
|s|+1
λ2

= 0,

{1} if R1 − C1
|s|+1
λ2

> 0,

which is equivalent to

σ̄∗(1)
s =


0 if −N1 ≤ s ≤ −N1,

p1 if s = −N1 + 1,

1 if −N1 + 2 ≤ s ≤ 0,
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where p1 = 1 if R1 − C1
N1

λ2
> 0, and p1 takes any value on [0, 1] if R1 − C1

N1

λ2
= 0. Similarly, at any state s ≥ 0,

σ̄∗(2)
s =


0 if N2 ≤ s ≤ N2,

p2 if s = N2 − 1,

1 if 0 ≤ s ≤ N2 − 2,

where p2 = 1 if R2 − C2
N2

λ1
> 0, and p2 takes any value on [0, 1] if R2 − C2

N2

λ1
= 0. This subgame perfect Nash equilibrium

can be illustrated in Figure 6.

Figure 6: Subgame perfect Nash equilibrium.

This is a special case of the equilibrium pattern in Case 1 considered in the previous section, where si = Ni for i = 1, 2.

Remark 3 (Discussion on the case of infinite buffer size). Under an infinite buffer size setting on both sides of the queue,

the subgame perfect Nash equilibrium can still be derived with the same method. If an assumption that agents choose to join

when expecting a zero payoff is added, then the conclusion on the subgame perfect Nash equilibrium becomes identical to that in

Naor’s setting: population-(i) agents join the queue if they observe a queue of population-(i) agents with the length of Ne
i − 1

or less, and balk otherwise.

5. Concluding remarks

The comparison between the results in this study and Naor’s classical results is briefly discussed in this section. First, in

terms of system setting, Naor considered an infinite buffer size; however, the threshold level did not change even if a large

finite buffer limit was considered. In the current study, we considered an arbitrary finite buffer size on both sides of the queue.

When such a buffer limit is small owing to physical constraints, the maximum length of the agent queues might be identical

to the buffer limit. We also extended part of the results to the case where the buffer size was infinite. Second, in terms of

game setting, Naor considered a one-population game, and the threshold strategy is a subgame perfect equilibrium and the

only Nash equilibrium of the game. Strategies adopted by agents in transient states do not affect their expected payoffs.

Meanwhile, in this two-population game setting, different patterns exist that generalize multiple Nash equilibria. Strategies

of agents in transient states in a population did not affect their expected payoff but affected agents’ strategies in the other

population. This results in different possible queue buffer thresholds that can be equal to or smaller than Naor’s threshold

level. The existence of a unique subgame perfect Nash equilibrium at which the system is most likely to end up in reality was

also demonstrated (often referred to as “equilibrium threshold strategy” in existing literature). However, a subgame imperfect

Nash equilibrium may also be the solution of the game in special cases where agents hold some initial beliefs. For example,

the extreme equilibrium at which no agents choose to join the system may occur when the system is terminated. Knowing all

the possibilities for different outcomes may help social planners in planning the system. The problem of equilibrium selection,

however, falls outside the scope of this research and may be a topic for future work.

The extended game theoretical framework under the scope of multi-population games may also be similarly applicable in

queuing systems with two different populations of strategic agents under different settings, such as unobservable systems.

Further studies may consider the application of this framework to other queuing systems.
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