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Abstract: Tensile performance of fiber-reinforced cementitious composite (FRCC) after first cracking
is characterized by fiber-bridging stress–crack width relationships called bridging law. The bridging
law can be calculated by an integral calculus of forces carried by individual fibers, considering
the fiber orientation. The objective of this study was to propose a simplified model of bridging
law for bundled aramid fiber, considering fiber orientation for the practical use. By using the
pullout characteristic of bundled aramid fiber obtained in the previous study, the bridging laws were
calculated for various cases of fiber orientation. The calculated results were expressed by a bilinear
model, and each characteristic point is expressed by the function of fiber-orientation intensity. After
that, uniaxial tension tests of steel reinforced aramid-FRCC prism specimens were conducted to
obtain the crack-opening behavior and confirm the adaptability of the modeled bridging laws in
crack-width evaluation. The experimental parameters are cross-sectional dimensions of specimens
and volume fraction of fiber. The test results are compared with the theoretical curves calculated by
using the modeled bridging law and show good agreements in each parameter.

Keywords: FRCC; aramid fiber; bundled fiber; bridging law; fiber orientation; bilinear model;
uniaxial tension test; crack width

1. Introduction

Fiber-reinforced cementitious composite (FRCC) is cementitious material reinforced
with short discrete fibers showing ductile behavior of composite, especially in tensile
and bending stress. In the past several decades, various types of FRCCs, such as ductile
fiber-reinforced cementitious composite (DFRCC) [1], strain hardening cement composite
(SHCC) [2], and engineered cementitious composite (ECC) [3], have been studied by lots
of researchers. DFRCC shows a deflection hardening behavior and multiple cracking
behavior under bending field. SHCC and ECC show pseudo-strain-hardening behavior
and multiple-fine-cracking behavior under uniaxial tension. These types of FRCCs have
been applied for the actual structures such as walls, beams, slabs and decks, tunnel linings,
etc. [2,3]. It has been expected to extend the application of FRCCs with additional values
for resilience and sustainability of structures.

The high tensile performance of FRCC is brought by the bridging effect of fibers across
cracks after initial cracking of matrix. For that reason, fiber-bridging stress–crack width
relationships called bridging law have been studied by lots of researchers to evaluate
tensile characteristics of FRCC. In the case of FRCCs without showing multiple cracking
behavior, bridging law can be obtained from a uniaxial tension test [4,5], or indirectly from
the bending test of a prism specimen [6]. In recent years, even in SHCC showing multiple-
cracking behavior, some methodologies to measure the crack width of a single crack
have been introduced by some researchers [7,8]. On the other hand, Li et al. introduced
theoretical solution of bridging law based on the micromechanics [9]. Since the bridging
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performance is strongly affected by the fiber types and dimensions, the pullout behavior of
an individual fiber from cementitious matrix has been investigated, to reflect these factors
on bridging law. Several researchers have conducted pullout tests for various types and
dimensions of fibers, e.g., steel fiber [10,11], nylon and polypropylene (PP) fibers [12],
aramid, and polyvinyl alcohol (PVA) and polyethylene (PE) fibers [13].

The bridging law can be given by an integral calculus of forces carried by the indi-
vidual bridging fibers, considering the fiber orientation and distribution [14]. Since the
bridging performance of FRCC is influenced by the casting method and the dimensions of
the specimens [15], it is essential to evaluate the effect of the fiber orientation and distri-
bution. For that reason, evaluation methods of fiber orientation, considering fabrication
methods of specimens, have been studied by several researchers [16,17]. The authors have
also studied the influence of casting direction on fiber orientation and tensile characteristics
of PVA-FRCC through visualization simulation, using water glass solution [18]. To evalu-
ate the fiber orientation distribution quantitatively, a probability density function (PDF),
using an elliptic function (elliptic distribution), was introduced in that study. The bridging
law was calculated by using the elliptic distribution, considering casting direction. The
calculated bridging laws showed good agreements with the uniaxial tension test results of
FRCC specimens fabricated by horizontal and vertical casting. In addition, the influence
of casting method and specimen dimensions on fiber orientation of PVA-FRCC was also
studied by the authors [19,20].

The bridging law has a potential to be the base in the evaluation of the structural
performance of FRCC members [21,22]. However, it is not convenient to adapt the calcu-
lated bridging law directly for various types of structural members because the bridging
law remarkably varies by the fiber orientation. Attempting an easy use of the bridging
law, the authors have modeled the bridging law of PVA-FRCC as the tri-linear model,
which is characterized by fiber orientation [23]. It is considered that this model of bridging
law makes it easier to evaluate structural performance of FRCC members. In fact, the
authors have conducted the evaluation of bending characteristics [23] and crack width in
steel-reinforced PVA-FRCC members [24] by using the model. Providing the models of
bridging laws not only for PVA-FRCC but also for various FRCCs using another type of
fiber helps to make the most of the potential of FRCC in the practical use.

Aramid fiber is one of the polymeric fibers that shows high tensile strength, durability,
and heat and chemical resistance. A few researchers have studied about FRCC reinforced
with short discrete aramid fibers [25–27]. Since a commercially provided single aramid fiber
has a small diameter of 12 µm, the high bond strength between the cementitious matrix
cannot be expected [13]. Although PVA fiber shows a good bond in the matrix because of
the alcohol group in PVA molecule [28], other types of polymer fibers do not generate large
bond resistance because of the smooth surface. In the case of steel fiber, the contrivances,
such as a twisted shape, hooked end, deformed surface, etc., are generally applied to make
good bond performance [29]. For these reasons, the authors have been focusing on the
bundled aramid fiber, which is made with a bundling of original yarn of aramid fiber
to improve the bond performance between the matrices. The authors have conducted
the pullout test of an individual bundled aramid fiber from the cementitious matrix [30].
The pullout characteristic was expressed by a bilinear model based on the test results.
Bridging law can be calculated by using the model, and the calculated results showed
good agreements with the experimental results obtained by the uniaxial tension test of
aramid-FRCC. However, as previously mentioned, the bridging law should be modeled
by a simple form, considering the fiber orientation, to utilize aramid-FRCC effectively in
various types of structural members.

The objective of this study was to propose a simplified model of bridging law of
bundled aramid-FRCC, considering fiber orientation. By using the pullout characteristic
of bundled aramid fiber obtained from the previous study [30], the bridging laws are
calculated by assuming various cases of fiber orientation. The calculated results are
expressed by a bilinear model, and each characteristic point is shown by the function of
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fiber-orientation intensity, which gives the main parameter of the elliptic distribution [18].
The modeled bridging laws are adapted to evaluate the crack width in steel-reinforced
aramid-FRCC members. The uniaxial tension test of aramid-FRCC prism specimens with
rebar is conducted to measure the crack-opening behavior experimentally and the test
results are compared with the theoretical ones [24], in which the bridging law is included.

2. Calculation of Bridging Law and Modeling
2.1. Calculation of Bridging Law

The aramid fiber that was the focus of this study was bundled fiber with a nominal
diameter of 500 µm, as precisely the same as that studied in the previous study [30].
Figure 1 shows the visual appearance of the fiber. The original yarns with a nominal
diameter of 12 µm (Technora, TEIJIN, Arnhem, The Netherlands [31]) are twisted to form a
thick individual fiber and sized not to unravel in the matrix. According to the manufacturer
test results, the tensile strength and elastic modulus of the yarn are 3432 MPa and 73 GPa,
respectively. Chopped fibers with a length of 30 mm are used for mixing FRCC.
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reinforced cementitious composite (FRCC) and (b) Condition of bundling of yarns.

The bridging law (bridging stress–crack width relationship) is calculated as similar
with the previous study [30]. In a FRCC prism subjected to the uniaxial tension, fibers
bridge through crack plane as shown in Figure 2a. Fibers are distributed in crack plane
with various inclination angle. The pullout behavior and rupture strength of the individual
fiber is affected by the fiber inclination angle that is defined as shown in Figure 2b. The
angle, ψ, expresses the fiber inclination angle to x-axis, and angles, θ and ϕ, express
the angle between x-axis and projected lines of the fiber to x–y plane and z–x plane,
respectively. The bridging stress can be calculated by summation of forces carried by
individual fibers bridging through crack plane considering PDF for fiber inclination angles
and fiber centroidal location as given by Equation (1).

σbridge =
Pbridge

Am
=

Vf
A f
·∑

h
∑
j

∑
i

Pij(w, ψ)·pxy(θi)·pzx
(
Φj

)
·px(yh, zh)·∆θ·∆Φ(∆y·∆z) (1)

where σbridge = bridging stress, Pbridge = bridging force, Am = cross-sectional area of specimen,
Vf = fiber volume fraction, Af = cross-sectional area of an individual fiber, w = crack width,
P(w,ψ) = pullout load of an individual fiber, pxy = PDF (elliptic distribution) for fiber
inclination angle in x–y plane, pzx = PDF (elliptic distribution) for fiber inclination angle in
z–x plane, px = PDF for fiber centroidal location (assumed to be constant), and ∆y·∆z = area
of infinitesimal element on crack plane.
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Figure 2. Schematic drawing for the calculation of bridging law: (a) fibers bridging through crack
plane and (b) definition of fiber inclination angle.

The bilinear model proposed in the previous study [30] is adapted for the pullout
load of an individual fiber, P(w, ψ). The elliptic distribution [18] is adopted for the PDF, pxy
and pzx, for fiber inclination angles. The elliptic distribution is defined by two parameters;
principal orientation angle, θr (argument of one radius of elliptic function), and orientation
intensity, k (ratio of the two radii of elliptic function). The fiber orientation can be expressed
by these parameters. The random orientation is given by k = 1. Fibers tend to orient toward
θr when the value of k is larger than 1, while fibers tend to orient toward the perpendicular
to θr when the value of k is smaller than 1. The PDF for fiber centroidal location, px, is set
to constant assuming the uniform distribution of fibers along x-axis.

The calculated bridging laws for the orientation intensity k ranging from 0.1 to 10 are
shown in Figure 3. The bridging laws shown in the figures are calculated with 0.1 intervals
of k in the case of k < 1, and with 1 interval when k > 1. The left figure shows whole curves,
and the right figure focuses on small ranges until w = 5 mm. The parameters adopted for
the calculation are summarized in Table 1. Fiber volume fraction and principal orientation
angle is set to 2% and 0◦, respectively. The bridging stress in Figure 3 do not include the
tensile stress carried by the matrix before cracking to exhibit the tensile stress due to only
bridging force of fibers. Each curve in Figure 3 shows the maximum bridging stress at
about w = 0.6 mm. After that, bridging stress decreases moderately with the increase of
the crack width. This is because most of fibers do not rapture, and they are gradually
pulled out from the matrix. Bridging stress becomes zero when the crack width reaches to
15 mm (half length of the fiber) because all fibers are completely pulled out from the matrix.
On the other hand, by comparing each curve, the maximum bridging stress remarkably
increases with the increase of the value of k. In other words, bridging stress becomes
larger when the fibers strongly orient to the normal direction of the crack surface. The
examples of the adaptability of the calculated bridging law with the uniaxial tension test
results of aramid-FRCC by notched specimens can be found in the previous study [30]. The
calculated results show good agreements with the experimental ones.
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Figure 3. Calculation results of bridging law: (a) w = 0–15 mm; (b) w = 0–5 mm.
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Table 1. Parameters for bridging law calculation.

Parameter Input

Fiber Volume Fraction, Vf (%) 2.0

Length of Fiber, lf (mm) 30

Diameter of Fiber, df (mm) 0.5

Apparent Rupture Strength of Fiber, σfu (MPa) [30] σfu = 1080 · e −0.667ψ

Bilinear Model [30]
Maximum Pullout Load, Pmax (N) Pmax = 7.47 · lb
Crack Width at Pmax, wmax (mm) Wmax = 0.13 · lb0.64

Notation: ψ = fiber inclination angle to x-axis (rad.); lb = embedded length of fiber (mm).

2.2. Modeling of Bridging Law

The calculated bridging laws are modeled by simple forms that consider fiber orien-
tation, to utilize them effectively in various types of structural members. From Figure 3,
the bridging law is simply characterized by two regions, i.e., the curve until the maximum
stress and softening branch. Therefore, the bridging law is expressed by a bilinear model,
as shown in Figure 4. The model has three parameters: the maximum bridging stress, σmax;
the crack width at maximum bridging stress, wmax; and the crack width when bridging
stress at zero, wtu. The values of σmax and wmax of the model can be obtained directly from
the calculation results. The value of wtu is determined to have an equivalent fracture energy
with the calculated bridging law in the softening branch. The modeled bridging laws for
each fiber orientation intensity, k, are shown in Figure 5. The comparison between the
calculated bridging laws and the models for k = 0.1, 1, and 10 are shown in Figure 6.
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Figure 6. Comparison between the calculated bridging law and model.

The three parameters in the model are expressed as a function of the fiber orientation
intensity, k, to simplify the modeling of bridging law. The relationships between the pa-
rameters and k are shown in Figure 7. The dotted lines in all figures exhibit the regression
calculation results by the least square method. The solid lines exhibit the modified regres-
sion calculation result, to simplify the relational expression between each parameter and k,
as given by Equations (2)–(4).

σmax = 2.0k0.3 (MPa) (2)

wmax = 0.60k0.07 (mm) (3)

wtu = 9.3k0.05 (mm) (4)
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Figure 7. Relationship between each parameter of model and orientation intensity k: (a) σmax-k
relationship, (b) wmax-k relationship, and (c) wtu-k relationship.
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The characteristic points of bilinear model of bridging law (Figure 4) in each fiber
orientation intensity, k, can be easily obtained by using these formulas.

3. Uniaxial Tension Test of Aramid-FRCC Specimens with Steel Rebar
3.1. Specimens and Used Materials

Uniaxial tension test of aramid-FRCC prism specimens with steel rebar is conducted
to measure the crack-opening behavior experimentally. Figure 8 and Table 2 show the
dimensions of specimens and the list of specimens, respectively. The specimens have
same dimensions with those in the previous study by the authors [24], and the mixture
proportions of the matrix are also the same as in the literature [30]. The No Fiber series
specimens tested in the previous study by the authors [24] are focused on again, to contrast
the test results in this study. The specimen is FRCC prism reinforced with a single steel rebar
along the longitudinal direction. The prism has a square cross-section, and the length of
the prism is 600 mm. Steel deformed rebar D16 is used for the reinforcement. The bundled
aramid fiber previously mentioned is used for FRCC. The test parameters are cross-sectional
dimensions and volume fraction of fibers. The cross-section was 100 mm × 100 mm (A
series), 120 mm × 120 mm (B series), and 140 mm × 140 mm (C series). To ensure the
position of cracking, slits were installed on both specimen sides, at 100 mm spacing. The
depth of slit was varied in each series of specimens so that the cross-sectional area at
the slit was 60% of the full sectional area. These slits were installed after demolding the
specimen by using a concrete cutter, so as not to disturb the fiber orientation. The volume
fraction of aramid fiber was set to 1% and 2%, and three specimens were fabricated in each
combination of parameters.
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Figure 8. Dimension of specimens [24].

Table 3 lists the mixture proportion and mechanical properties of FRCC. The mixture
proportion is precisely same as the previous study conducted by the authors [30]. Since
the fresh FRCC shows self-compacting characteristics, FRCC was filled into the mold
by pouring from one longitudinal end of the mold, as shown in Figure 9, similar with
the previous study [20], while making sure not to disturb the fiber orientation. The
compressive strength and elastic modulus of FRCC, as shown in Table 3, were obtained
from compression test of Φ100 mm × 200 mm cylinder test pieces. Table 4 lists the
mechanical properties of reinforcing bar. A steel deformed rebar with diameter of 16 mm
(nominal value) was used for the reinforcement. These values are obtained from the tension
test of steel rebar in the previous study [24].
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Table 2. List of specimens.

Type Common Factor Cross-Section
(Section at Slit)

Volume Fraction
of Fibers

No Fiber-A [24]

Length: 600 mm
Number of slits: 6

Spacing of slits: 100 mm
Steel rebar: D16 (SD490)
Fiber: Bundled aramid

100 mm × 100 mm
(100 mm × 60 mm)

-

AF1-A 1.0%

AF2-A 2.0%

No Fiber-B [24]
120 mm × 120 mm
(120 mm ×72 mm)

-

AF1-B 1.0%

AF2-B 2.0%

No Fiber-C [24]
140 mm × 140 mm
(140 mm × 84 mm)

-

AF1-C 1.0%

AF2-C 2.0%

Table 3. Mixture proportion and mechanical properties of FRCC.

Type
Unit Weight (kg/m3) Compressive Strength

(MPa)
Elastic Modulus

(GPa)Water Cement Sand Fly Ash Aramid Fiber

No Fiber [24]
380 678 484 291

0 52.5 18.1

AF1 13.9 48.2 18.1

AF2 27.8 47.5 16.4
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Table 4. Mechanical properties of steel rebar.

Type Yield Strength
(MPa)

Yield Strain
(µ)

Elastic Modulus
(GPa)

Tensile Strength
(MPa)

D16 (SD490) 516 2604 198 709

3.2. Loading and Measurements

Figure 10 shows the setup of loading and measurement. Uniaxial monotonic tension
loading is conducted under the controlled displacement using universal testing machine.
The total deformation was measured by two linear variable displacement transducers
(LVDTs) to confirm the yielding of steel rebar. Crack width at each slit position was
measured by Pi-type LVDTs arranged at 100 mm spacing on both side of the specimens.
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The criteria of defining crack width are explained in detail in Section 3.3. Visible crack
observations were recorded in each loading and measurement step. These loading and
measurement methods are consistent with the previous study [24].
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3.3. Test Results

Figure 11 shows the examples of crack patterns after yielding of steel rebar. The
specimens with fewer cracks in the longitudinal direction were selected as the examples in
each parameter. Cracking at slit position was observed before the yielding of steel rebar
in every specimen. However, branched cracks at the slit positions, or another crack at the
no-slit position, were observed in many specimens. The total number of cracks increased
with the decrease of the cross-sectional area and increase of the fiber volume fraction.
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In the case of a single crack at slit position, the crack width is obtained by averaging
two values measured by Pi-type LVDTs on both sides of specimen ignoring the elastic
deformation of FRCC. After the second crack was observed in one measurement region as
shown in Figure 12, the measured data at that region were excluded from the evaluation,
so that the measured crack width corresponds to a single crack.
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third crack).

Figure 13 shows the steel strain–crack width relationships. The steel strain is calculated
from the measured tensile load by using the elastic modulus of reinforcing bar previously
shown in Table 4. The crack width of these curves increases just after the beginning of the
loading due to the deformation of FRCC in the measurement region. The average line of
test results is shown in Figure 13 as dotted line to compare the crack-opening behavior.
The average line is obtained by averaging the slopes of approximate straight lines (y = a·x)
of experimental curves in each parameter.
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Figure 13. Steel strain–crack width relationship: (a) A series; (b) B series; (c) C series.

The slope of the average lines is larger in AF2 specimens compared with AF1 spec-
imens in the same series of cross-section. Since the fiber bridging effect increases with
increasing of fiber volume fraction, crack width tends to be smaller in the specimens with
many fibers. This tendency is consistent with the previous studies [24,32,33]. However, no
large difference is observed between No Fiber and AF1 specimens. It is considered that the
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number of fibers bridging through the crack is too small to control the crack opening in
AF1 specimens.

On the other hand, the slope of average lines decreases with the increase of cross-
sectional dimensions, when comparing among No Fiber-A, -B, and -C specimens. Crack
width tends to be larger because the number of cracks decreases with increasing of cross-
sectional area as mentioned before. In the case of AF1 and AF2 specimens, the difference of
cross-sectional area affects less on the crack opening, compared with the case of No Fiber
specimens because of the bridging effect of fibers. This tendency is also consistent with the
previous studies [24].

4. Adaptability of Modeled Bridging Laws in Crack Width Evaluation

In this section, to verify the adaptability of modeled bridging law in Section 2 in crack
width evaluation of steel reinforced aramid-FRCC, the theoretical curve of steel strain–crack
width relationship is calculated by using the crack width prediction formula, in which
bridging law is included and compared with the test results obtained in Section 3.

4.1. Theoretical Curve of Steel Strain–Crack Width Relationship

In the case of uniaxial tension test of steel reinforced FRCC prism, the theoretical curve
of steel strain–crack width relationship is given by Equation (5) [24]. This formula is led
by considering bond interaction between FRCC and rebar, fiber bridging effect at crack
surface and cracking condition of FRCC.

εs(LOAD) =
kbo ϕs

8Ac{σcr−σbr(wcr)}wcr
2 + 1+np

2npEc
{σcr + σbr(wcr)} (5)

where εs(LOAD) = strain of rebar at loaded end, wcr = crack width, σbr (wcr) = bridging
law (function of crack width, wcr), σcr = cracking strength of FRCC, kbo = bond stiffness
between matrix and rebar, ϕs = perimeter of rebar, Ac = cross-sectional area of FRCC,
As = cross-sectional area of rebar, Ec = elastic modulus of FRCC, Es = elastic modulus of
rebar, p = reinforcement ratio (=As/Ac), and n = ratio of elastic modulus (=Es/Ec).

Note that Equation (5) does not give the crack-opening behavior of a single crack but
gives the possible maximum value of crack width at arbitrary strain of rebar as shown
in Figure 14. This is because Equation (5) is led by using the condition that a new crack
generates. This is based on the assumption that the generation of a new crack increases the
number of cracks and decreases the crack width of each crack; hence, the crack width of a
certain crack does not become larger than the theoretical value calculated by Equation (5).Materials 2020, 13, x FOR PEER REVIEW 12 of 16 
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Table 5 shows the parameters adapted for the theoretical formula, Equation (5). The
perimeter and cross-sectional area of steel rebar correspond to the nominal values. The
elastic modulus of FRCC and steel rebar is obtained from material tests described in
Section 3.
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Table 5. Parameters adapted for theoretical formula.

No Fiber [24] AF1 AF2 Remarks

Steel
Rebar

Perimeter ϕs Mm 50
Nominal Value

Cross-Sectional Area As mm2 198.6

Elastic Modulus Es GPa 198 Material Test

FRCC

Cross-Sectional Area Ac mm2 A:1002, B:1202, C:1402 –

Elastic Modulus Ec GPa 18.1 18.1 16.4 Material Test

Cracking Strength σcr Mpa 1.03 1.09 1.45 Tension Test

Bond Stiffness kbo N/mm3 50 [24]

On the other hand, since it is difficult to obtain the cracking strength of FRCC directly
from the material test, the value is assumed from the test results of uniaxial tension test.
According to the experimental curves in Figure 13, it can be confirmed that the crack
width increases rapidly at the early stage of the loading in No Fiber-C, AF1-B, and AF2-B
specimens. It can be assumed that the cracks start opening at these steel strains (No Fiber-C,
324µ; AF1-B, 239µ; and AF2-B, 318µ). These values are converted to the tensile loads by
using cross-sectional area and elastic modulus of steel rebar. The converted tensile loads are
divided by the cross-sectional area of specimens at slit position (B series, 120 mm × 72 mm;
C series, 140 mm × 84 mm), and the cracking strength of No Fiber, AF1, and AF2 series
specimens is calculated as shown in Table 5. The same value from the previous study [24]
for bond stiffness between the steel rebar and FRCC is used.

The modeled bridging law of aramid-FRCC in Section 2 is adapted for Equation (5).
The fiber orientation intensity, k, for the model is decided based on the results of previous
study in which the size effect on fiber orientation of FRCC [20] has been investigated.

In that study, four-point bending test was conducted for three different dimen-
sions of PVA-FRCC prism specimens with 40 mm × 40 mm, 100 mm × 100 mm, and
180 mm × 280 mm in cross-section. The section analysis was performed by using bridging
law of PVA fiber, considering several cases of fiber orientation intensity, k. The test results of
100 mm × 100 mm cross-section specimens showed the best agreement with the analytical
results in bending strength by assuming k = 1.

For these reasons, k = 1 is also adapted for Equations (2)–(4), and the model shown in
Figure 15 is used for the evaluation. In FRCC specimens with fiber volume fraction of 1%,
the bridging stress is considered half as much as that of 2%, as shown by the dotted line in
Figure 15. When the bridging law is substituted for the theoretical formula, bridging stress
is reduced as 0.6 times, which corresponds to the ratio of cross-sectional area at slit position
to the whole section, in order to take the absence of bridging fibers at slit into account.Materials 2020, 13, x FOR PEER REVIEW 13 of 16 
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Figure 15. Bridging law model of aramid-FRCC used for evaluation.
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4.2. Comparison between Theoretical Curve and Test Results

Figure 16 shows the comparison of theoretical curve and test result. The theoretical
curve shows the possible maximum value of crack width, while the curves of test results
show the crack opening behavior of each crack, as mentioned before. By comparing the
theoretical curves among No Fiber, AF1, and AF2 specimens in the same series of sectional
dimensions, the crack width at the same steel strain is smaller in specimens with larger
volume fraction of fibers.
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The curves of test results in most of the specimens are located inside the smaller crack-
width region than the theoretical curves. It can be concluded that the theoretical curves
show good agreements with the test results. It is considered that crack-width evaluation
for steel-reinforced aramid-FRCC is also adaptable, using the modeled bridging law.

In this study, crack width evaluation was performed as the example of actual ap-
plication of proposed bridging law model. Although the model was simplified by the
function of fiber orientation intensity, k, only one case of k = 1 was experimentally verified.
It is considered that the fabrications of specimens controlling fiber orientation is not easy.
The results of the previous study that discusses the size effect on bending characteristics
of FRCC [20] show the possibility to control the fiber orientation by dimensions of the
specimens. In uniaxial tension test specimens adopted in this study, however, smaller
sectional-area specimens become to show unexpected cracks in axial direction of the speci-
men, larger sectional-area specimens may show few cracks that satisfy the enough level of
crack width evaluation before rebar yielding. Further experiments with various types of
aramid-FRCC specimens, considering these viewpoints, are necessary to investigate the
generality of the models in the future research.
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5. Conclusions

Based on the modeling of bridging law for aramid-FRCC and crack-width evaluation
through experimental program, the following conclusions are drawn:

1. To propose the simplified model of bridging law of bundled aramid-FRCC, the bridg-
ing law is calculated by assuming various cases of fiber orientation and expressed as
bilinear model. The characteristic points of the model are given by the function of
fiber orientation intensity.

2. The uniaxial tension test of aramid-FRCC specimens with steel rebar is conducted,
and crack-opening behavior is measured experimentally. The crack width tends to be
smaller in AF2 (fiber volume fraction of 2%) specimens, compared with No Fiber and
AF1 (that of 1%) specimens.

3. The theoretical curves of steel strain–crack width relationships are calculated by using
the modeled bridging law. The calculated curves show good agreements with the test
results in each parameter.
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