
1. Introduction

Most paleomagnetic studies, in agreement with plume-
related magmatic rocks and glacial intervals, support the
placement of the Tarim craton to the north or west of Austra-
lia in Neoproterozoic reconstructions of Rodinia [1–4]. In
contrast, some authors [5–7] argue for a “missing link” con-

figuration of the Tarim craton at the heart of the unified
Rodinia supercontinent between Australia and Laurentia,
based on early Neoproterozoic to early Ediacaran paleomag-
netic and tectonostratigraphic data from the Tarim craton.

However, ca. 1.0-0.6Ga magmatism along the northern
margin of the Tarim craton [8, 9] is younger than
Grenville-age (ca. 1.35-1.05Ga) magmatism within the
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The location of the Tarim craton during the assembly and breakup of the Rodinia supercontinent remains enigmatic, with some 
models advocating a Tarim-Australia connection and others a location at the heart of the unified Rodinia supercontinent 
between Australia and Laurentia. In this study, our new zircon U-Pb dating results suggest that middle Neoproterozoic 
sedimentary rocks in the Altyn Tagh orogen of the southeastern Tarim craton were deposited between ca. 880 and 760 Ma in a 
rifting-related setting slightly prior to the breakup of Rodinia at ca. 750 Ma. A compilation of existing Neoproterozoic geological 
records also indicates that the Altyn Tagh orogen of the southeastern Tarim craton underwent collision at ca. 1.0-0.9 Ga and 
rifting at ca. 850-600 Ma related to the assembly and breakup of Rodinia. Furthermore, in order to establish the paleoposition of 
the Tarim craton with respect to Rodinia, available detrital zircon U-Pb ages and Hf isotopes from Meso- to Neoproterozoic 
sedimentary rocks were compiled. Comparable detrital zircon ages (at ca. 0.9, 1.3-1.1, and 1.7 Ga) and Hf isotopes indicate a 
close linkage among rocks of the southeastern Tarim craton, Cathaysia, and North India but exclude a northern or western 
Australian affinity. In addition, detrital zircons from the northern Tarim craton exhibit a prominent age peak at ca. 830 Ma with 
minor spectra at ca. 1.9 and 2.5 Ga but lack Mesoproterozoic ages, comparable to the northern and western Yangtze block.
Together with comparable geological responses to the assembly and breakup of the Rodinia supercontinent, we offer a new 
perspective of the location of the Tarim craton between South China and North India in the periphery of Rodinia.
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Musgrave and Albany-Fraser blocks of western-central
Australia [10, 11], challenging a Tarim-western Australia
linkage (e.g., [3]). Furthermore, ca. 1.0-0.6Ga magmatic
rocks from the northern Tarim craton have recently been
reinterpreted to correlate with a long-lived subduction event
[8, 9]. Such subduction-related magmatism without any
Grenville-age unconformity or metamorphism indicates that
the Tarim craton was probably located in the periphery of
Rodinia with its northern margin facing the circum-
Rodinia subduction zones [8, 9], rather than at the heart of
Rodinia [6, 7]. In addition, the recognition of ca. 940-
900Ma syncollisional magmatism and metamorphism from
the Altyn Tagh orogen of the southeastern Tarim craton sup-
ports to interpret that this orogen is the suture between the
Tarim craton and another block during the amalgamation
of Rodinia (e.g., [12–16]). However, the location of the Tarim
craton in the periphery of Rodinia remains enigmatic and
subsequent dispersal of the Tarim craton from Rodinia is
not fully understood.

This study first reports on middle Neoproterozoic sedi-
mentary rocks of the Altyn Tagh orogen of the southeastern
Tarim craton, which were probably deposited in a rifting-
related setting slightly earlier than the breakup of Rodinia
due to the opening of the Proto-Tethys Ocean at ca. 750Ma
(e.g., [3, 17]). We suggest the placement of the Tarim craton
between South China and North India with respect to Rodi-
nia, based on a comparison of available detrital zircon age
spectra and Hf isotope compositions.

2. Geological Background

The Altyn Tagh orogen occupies a crucial junction between
the Tarim craton to the northwest, the Qilian orogen to the
northeast, and the Qiadam block and the East Kunlun orogen
to the southeast (Figure 1(a)). It has generally been divided
into four units. From northeast to southwest, namely, the
North Altyn Tagh terrane, the North Altyn Tagh
subduction-accretion belt, the Central Altyn Tagh terrane,
and the South Altyn Tagh subduction-collision belt
(Figure 1(b)). The North Altyn Tagh terrane consists mainly
of ca. 2.8Ga and ca. 2.4-1.8Ga orthogneiss and ca. 1.9Ga
paragneiss [5, 18] comparable to Archean to Paleoproterozoic
basement of the Tarim craton [9]. The North Altyn Tagh
subduction-accretion belt has been interpreted to represent
an early Paleozoic accretionary orogenic system [19]. It con-
sists mainly of ca. 520-450Ma ophiolitic mélanges [20–22],
ca. 512-491Ma high-pressure (HP)/low-temperature (LT)
eclogite and blueschist [23], ca. 514-390Ma magmatic rocks
[24–26], and early Paleozoic volcanosedimentary sequences
[27]. In addition, the Suolak Formation containing ca. 760-
750Ma basalt and rhyolite associations are sporadically
exposed in the North Altyn Tagh subduction-accretion belt
[28, 29]. The Central Altyn Tagh terrane is composed of
Meso- to Neoproterozoic metasedimentary rocks, ca.
920Ma foliated rhyolite, ca. 754Ma basalt, ca. 703Ma A-
type granite, and ca. 522-433Ma intermediate to felsic mag-
matic rocks (Figure 1(c); [16, 25, 28, 30–32]). The South Altyn
Tagh subduction-collision belt (Figure 1(b)), regarded as an
early Paleozoic collisional orogenic system [19], is dominated

by ca. 501Ma ophiolitic mélange [33], ca. 508-475Ma (U)HP
and ca. 457-436Ma Barrovian-type metamorphic rocks (e.g.,
[34–36]), and ca. 517-226Ma magmatic rocks [25, 31]. Addi-
tionally,Meso- toNeoproterozoic metasedimentary rocks, ca.
940-900Ma granitic rocks with I- and S-type affinities [12,
14], and ca. 763Ma mafic rocks are recorded in the South
Altyn Tagh subduction-collision belt (Figure 1(c)).

3. Sample Descriptions and Results

Sample 17LQ50-1A (GPS: 39°04′40.82″N, 92°15′09.67″E)
was collected from an outcrop located ~8 km southwest of
the main body of the Lapeiquan ophiolitic mélange in the
North Altyn Tagh subduction-accretion belt (Figures 1(a)
and 2(a)).

The sampled outcrop contains rock associations of phyl-
lite and quartz schist with prevailing cleavage and foliation
(Figure 2(b)). It is associated with early Paleozoic sedimen-
tary sequences in the matrix of the Lapeiquan ophiolitic
mélange (Figure 2(a)). Due to the poor quality of the outcrop,
the relationship of this outcrop with early Paleozoic sedimen-
tary sequences was difficult to establish in the field. Nonethe-
less, a tectonic contact is inferred (Figure 2(a)), based on (1)
the strikingly distinctive rock associations of the studied
schists and the conglomerate-sandstone beds of the early
Paleozoic sedimentary sequences [27], (2) the different dip
angles of the schistosity of the studied schists and the bedding
of the early Paleozoic sedimentary sequences (Figure 2(a)),
and (3) the extensive fault activities in the region
(Figure 2(a)). Sample 17LQ50-1A is a fine-grained quartz
schist. Major mineral compositions include elongated quartz
(80%) and tiny muscovite (20%), which delineate well-
developed schistosity (Figure 2(c)).

Detrital zircons extracted from sample 17LQ50-1A show
subhedral, subrounded, and well-rounded forms with aspect
ratios of 1-3 (Figure 3). They illustrate predominantly oscilla-
tory zoning and subordinately homogeneous internal
structures under cathodoluminescence (CL; Figure 3). Th
(2-1926 ppm) and U (12-2765 ppm) contents are conspicu-
ously variable with Th/U ratios of mostly >0.2 (Table DR1
in the GSA Data Repository (GSA Data Repository item
201Xxxx, analytical methods and results (Tables DR1 and
DR2) and compiled data (Table DR3) are available online at
http://www.geosociety.org/pubs/ft20XX.htm or on request
from editing@geosociety.org.)), indicative of a magmatic
origin. Only six analytical spots have low Th/U ratios of
0.01-0.10 (Table DR1 in the GSA Data Repository),
reflecting their metamorphic origin, as also indicated by
their complex, heterogeneous CL images (Figure 3). For
<1000Ma and >1000Ma zircons, the 206Pb/238U and
207Pb/206Pb ages were adopted, respectively. One analysis
with an unreasonable minus error was deleted for discussion
(Table DR1 in the GSA Data Repository). Another 140
measurements yielded a large variation of concordant
Precambrian ages ranging from ca. 2700 to 888Ma,
characterized by a continuous age distribution of ca. 1.7-
0.9Ga and minor age abundances at ca. 2.7 and 2.0-1.9Ga
(Figure 3). The youngest zircon grain gave a concordant
206Pb/238U age of 888 ± 7Ma, interpreted as the maximum
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depositional age of sample 17LQ50-1A. Hf isotope analyses
were carried out on 75 dated detrital zircons with a
magmatic origin. Most detrital zircons exhibit a large spread
of εHf ðtÞ values varying from -10 to +11, with only one grain
aged ca. 902Ma showing a highly negative εHf ðtÞ value of
-15 (Figure 4; Table DR2 in the GSA Data Repository).

4. Depositional Age

The youngest zircon (888 ± 7Ma) from sample 17LQ50-1A
shows a subhedral, prismatic form with abraded edges
(Figure 3), suggesting transportation before deposition to
some extent. It indicates that sample 17LQ50-1A might have
been deposited at some time posterior to ca. 888Ma. In addi-
tion, the Suolak Formation of the North Altyn Tagh
subduction-accretion belt [28, 29] provides a reliable esti-
mate of its minimum age. The Suolak Formation consists of
basalt, basaltic breccia and tuff, intermediate to felsic tuff,
rhyolite, and chert, in which a SHRIMP zircon U-Pb age of
ca. 763Ma was obtained from a basalt [28] and a LA-ICP-
MS zircon U-Pb age of ca. 750Ma was obtained from a
rhyolite [29]. The studied quartz schist is distinct from the
volcanic and volcaniclastic sequences of the Suolak Forma-
tion (Figure 5) and does not contain any detrital zircons from
the ca. 760-750Ma volcanic rocks of the Suolak Formation
[29]. Therefore, the studied sample was probably deposited
earlier than the ca. 760-750Ma Suolak Formation. In conclu-

sion, sample 17LQ50-1A was probably deposited between ca.
880 and 760Ma.

5. Geological Records of the Southeastern Tarim
Craton in response to the Assembly and
Breakup of Rodinia

The main body of the Rodinia supercontinent finally assem-
bled along major Grenvillian (ca. 1.3-1.0Ma) orogenic belts
in southern Laurentia, western and northern Australia,
Amazonia, and the Maud-Namaqua-Natal Provinces of East
Antarctica and Africa [10, 11, 56, 57]. In addition, ca. 1.0-
0.9Ga orogenic belts are documented in southwestern
Baltica, the Eastern Ghats belt in India, and the Northern
Prince Charles orogenic belt in East Antarctica [11, 56]. Such
early Neoproterozoic tectonic events are also preserved in the
Altyn Tagh orogen of the southeastern Tarim craton, as
manifested by extensive ca. 940-900Ma felsic magmatism
in Central and South Altyn Tagh (Figure 1(c)). Geochemical
studies revealed high-K calc-alkaline I-type and S-type affin-
ities for the ca. 940-900Ma granitic rocks and proposed an
active continental margin [14] or a syncollisional setting
[12]. A syncollisional regime is preferred based on ca.
910Ma metamorphic zircon overgrowths on Mesoprotero-
zoic zircon cores documenting in Mesoproterozoic metasedi-
mentary rocks of the South Altyn Tagh subduction-collision
belt [13]. It reflects metamorphism of Mesoproterozoic
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supracrustal material at ca. 910Ma [12], which was more
likely related to syncollision. Recycling of Mesoproterozoic
supracrustal material is also supported by ca. 1.9-1.4Ga zir-
con Hf isotope model ages and coeval inherited zircon cores
in some ca. 940-900Ma granitic rocks [14, 15]. On the other
hand, an active continental margin is also difficult to recon-
cile with the lack of typical arc-like products in the Altyn
Tagh orogen, such as mafic-intermediate magmatic rocks
and calc-alkaline granitoids. In addition, comparable ca.
1.0-0.9Ga magmatic rocks are also distributed throughout
the adjacent Qilian and Qaidam regions [14, 58]. Therefore,
an early Neoproterozoic (ca. 1.0-0.9Ga) collisional orogen
characterizes the southeastern Tarim craton, which is coinci-
dent with the late assembly of the Rodinia supercontinent.

Following early Neoproterozoic final assembly, the inte-
rior of Rodinia underwent rifting-related extension at ca.

825-750Ma, leading to the development of anorogenic mag-
matic rocks in most Rodinia terranes but not forming new
oceans (e.g., [3]). The Rodinia supercontinent had not bro-
ken up until ca. 750-600Ma due to the diachronous opening
of relevant ocean domains [3, 17, 57]. Among these oceans,
the Proto-Tethys Ocean separating Tarim, South China,
and North China from other East Asian blocks was opened
as early as ca. 750Ma [3, 17]. Ca. 760-750Ma basalt and rhy-
olite associations in the North Altyn Tagh subduction-
accretion belt (Figure 1(c); [28, 29]) are coincident with the
opening of the Proto-Tethys Ocean leading to the separation
of the Tarim craton from Rodinia. The studied sample
17LQ50-1A deposited between ca. 880 and 760Ma probably
correlates with a rifting-related extensional setting prior to
the separation of the Tarim craton from Rodinia. All these
Neoproterozoic sedimentary and volcanic rocks of the North
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Altyn Tagh subduction-accretion belt were probably pre-
served in response to a well-preserved ca. 0.8-0.6Ga rift
depression throughout the Tarim basin [59]. Other geologi-
cal records indicating middle-late Neoproterozoic extension
in the Altyn Tagh orogen (Figure 1(c)) include ca. 763Ma
mafic rocks and ca. 703Ma A-type granite in Central and
South Altyn Tagh [15, 28, 32] and ca. 820-750Ma MORB-
like protoliths of the early Paleozoic eclogite and garnet
peridotite in South Altyn Tagh [34, 35, 48]. Comparable ca.
800-600Ma rifting-related mafic to felsic magmatism also
operated throughout Qilian and Qaidam [60, 61]. Therefore,

a middle-late Neoproterozoic (ca. 850-600Ma) rifting regime
was operating in the southeastern Tarim craton, associated
with the extension and breakup of Rodinia.

In conclusion, the southeastern Tarim craton underwent
ca. 1.0-0.9Ga collision and ca. 850-600Ma rifting in response
to the assembly and breakup of Rodinia, respectively.

6. Linking Tarim with South China and North
India during Rodinia

The ca. 2.7Ga and ca. 2.0-1.9Ga zircons from sample
17LQ50-1A are coincident with two episodes of granitic
magmatism at ca. 2.8-2.3Ga and ca. 2.0-1.8Ga in the North
Altyn Tagh terrane and the Tarim craton (e.g., [5, 18]), indi-
cating a derivation from the Tarim basement. Similarly, the
ca. 940-900Ma felsic magmatic rocks in Central and South
Altyn Tagh (Figure 1(c)) could be a potential source for the
ca. 910Ma detrital zircons in the studied sample. Some ca.
1497-1470Ma diabase dikes were documented in the Kulu-
ketage area of the northeastern Tarim craton [62, 63], but
these mafic rocks might not have been the primary source
material for the ca. 1.4Ga detrital zircons in our studied sam-
ple because zircons typically crystallize from magmas with
greater than 60% SiO2 with much lesser abundance in lower
silica magmas (e.g., [64]). Nonetheless, other source terranes
that once connected with the southeastern Tarim craton
during depositional time but subsequently drifted away were
also required because ca. 1.7-1.1Ga source rocks are lacking
in the region. This highlights the importance of this study,
in which we established the paleoposition of the Tarim
craton within Rodinia by comparing available ages and Hf
isotopes of detrital zircons from Meso- to Neoproterozoic
sedimentary rocks in possible Rodinia terranes (Figures 4
and 6; Table DR3 in the GSA Data Repository).

A linkage between the southeastern Tarim craton and the
Cathaysia block is suggested by comparable detrital zircon
age populations at ca. 0.9, 1.3-1.1, and 1.7Ga (Figure 6).
The Cathaysia block exhibits variably negative to positive
zircon εHf ðtÞ values at ca. 1.7Ga, consistent with those of
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the coeval detrital zircons in the studied sample (Figure 4).
Mostly positive εHf ðtÞ values of the ca. 1.3-0.9Ga detrital
zircons in this study also agree with a large portion of the
positive zircon εHf ðtÞ values at ca. 1.3-0.9Ga in Cathaysia
(Figure 4). Notably, a zircon age peak at ca. 758Ma in Cath-
aysia is absent in the southeastern Tarim craton because the
studied sample was deposited prior to 760Ma and unlikely
contains such a young age peak at ca. 758Ma. In addition,
ca. 940-900Ma collision operating within the southeastern
Tarim craton is consistent with ca. 1.0-0.9Ga collision
recording in the Wuyi-Yunkai domains along southeastern
Cathaysia (Figure 7; [52, 65]). The ca. 820-710Ma sedimen-
tation and bimodal magmatism due to the Nanhua rifting
across South China [66–68] also matches well with the
rifting-related records of the southeastern Tarim craton (see
the above section).

A connection between the northern Tarim craton and the
northern and western Yangtze block is indicated by the same
prominent age spectrum at ca. 830Ma and minor spectra at
ca. 1.9 and 2.5Ga of detrital zircons (Figure 6). Another age
peak at ca. 2.6-2.7Ga in the northern and western Yangtze

craton probably reflects the importance of ca. 2.6-2.7Ga
crystalline basement in the Yangtze craton [69, 70], which
is relatively rare in the Tarim craton. Moreover, a ca. 1.0-
0.6Ga active continental margin along the northern Tarim
craton [8, 9] is comparable to the ca. 1.0-0.7Ga Panxi-
Hannan belt along the northern and western peripheries of
the Yangtze block [71, 72]. Together they probably belong
to the Neoproterozoic accretionary orogen along the north-
ern margin of Rodinia [9, 71, 73].

Collectively, a Tarim-South China linkage can be estab-
lished in the periphery of Rodinia (Figure 7). South China
was assembled by the connection of the Yangtze and Cathay-
sia blocks at ca. 820-800Ma [68] and occupied a position
adjacent to North India and western Australia with respect
to Rodinia (Figure 7), based on comprehensive geologic, geo-
chemical, geochronological, paleomagnetic, and faunal data
[73]. We further suggest a location of the Tarim craton
between South China and North India (Figure 7), according
to the following lines of evidence.

First, a North Indian affinity for the southeastern Tarim
craton is indicated by the similar age spectra (at ca. 1.2-0.9
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and 1.7Ga) and εHf ðtÞ values for detrital zircons (Figures 4
and 6). This inference is also supported by the ca. 940-
900Ma collisional orogen in the southeastern Tarim craton,
which is comparable to the ca. 990-900Ma Eastern Ghats belt
in India (Figure 7). In addition, the late Neoproterozoic strata
in the Greater and Lesser Himalaya terranes were accumu-
lated along the passive margin of North India [74, 75]. Their
age spectra at ca. 1.2-0.9 and 1.7Ga are consistent with our
results (Figure 6), further demonstrating the close linkage
between the southeastern Tarim craton and Great India
(Figure 7). Furthermore, the ca. 1.4Ga detrital zircons with
positive εHf ðtÞ values in the studied sample were probably
derived from the Northern Prince Charles Mountains of East
Antarctica [11, 56] that exhibit a number of positive zircon
εHf ðtÞ values at ca. 1.4Ga (Figure 4).

Second, the ca. 1.0-0.6Ga arc magmatic rocks along the
northern Tarim craton are coeval with the ca. 1.0-0.8Ga
arc-related magmatic rocks of northwestern India and the
ca. 800-720Ma Andean-type arcs in the Seychelles and
Madagascar [71, 76, 77], occupying the circum-Rodinia
subduction-accretion system (Figure 7).

Third, we argue against an Australian affinity for the
Tarim craton in the reconstruction of Rodinia [1, 2, 4]. The
age spectra in this study are different from those in northern
or southern Australia, which are characterized by a predomi-
nant age population at ca. 1.7-1.6Ga but devoid of 0.9 and 1.4-
1.3Ga ages (Figure 6). A western Australian affinity is also
questionable because western Australia lacks ca. 0.9 and
1.4Ga detrital zircons from Meso- to Neoproterozoic sedi-
mentary rocks (Figure 6). Importantly, even younger Permian
sedimentary rocks in western Australia also lack ca. 0.9 and
1.4Ga detrital zircons (e.g., [78]), implying coherent absence
of ca. 0.9 and 1.4Ga events in western Australia. In addition,
the Grenvillian (ca. 1.3-1.0Ga) orogens extending from the
Albany-Fraser belt to theMusgrave block inwestern to central

Australia (Figure 7) are significantly older than the Neopro-
terozoic orogens in the peripheries of Tarim, challenging a
western Australian affinity for the Tarim craton.

This study first reported middle Neoproterozoic
sedimentary rocks in the Altyn Tagh orogen of the southeastern
Tarim craton related to a rifting-related setting slightly earlier
than the breakup of Rodinia at ca. 750Ma. A new perspective
on the location of the Tarim craton between South China and
North India in the periphery of Rodinia is advocated based on
Neoproterozoic geological records and detrital zircon U-Pb-
Hf isotopes.
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