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Abstract: Satellite remote sensing technologies have a high potential in applications for evaluating
land conditions and can facilitate optimized planning for agricultural sectors. However, misinformed
land selection decisions limit crop yields and increase production-related costs to farmers. Therefore,
the purpose of this research was to develop a land suitability assessment system using satellite
remote sensing-derived soil-vegetation indicators. A multicriteria decision analysis was conducted
by integrating weighted linear combinations and fuzzy multicriteria analyses in a GIS platform
for suitability assessment using the following eight criteria: elevation, slope, and LST vegetation
indices (SAVI, ARVI, SARVI, MSAVI, and OSAVI). The relative priorities of the indicators were
identified using a fuzzy expert system. Furthermore, the results of the land suitability assessment
were evaluated by ground truthed yield data. In addition, a yield estimation method was developed
using indices representing influential factors. The analysis utilizing equal weights showed that 43% of
the land (1832 km2) was highly suitable, 41% of the land (1747 km2) was moderately suitable, and 10%
of the land (426 km2) was marginally suitable for improved yield productions. Alternatively, expert
knowledge was also considered, along with references, when using the fuzzy membership function;
as a result, 48% of the land (2045 km2) was identified as being highly suitable; 39% of the land
(2045 km2) was identified as being moderately suitable, and 7% of the land (298 km2) was identified
as being marginally suitable. Additionally, 6% (256 km2) of the land was described as not suitable
by both methods. Moreover, the yield estimation using SAVI (R2 = 77.3%), ARVI (R2 = 68.9%),
SARVI (R2 = 71.1%), MSAVI (R2 = 74.5%) and OSAVI (R2 = 81.2%) showed a good predictive
ability. Furthermore, the combined model using these five indices reported the highest accuracy
(R2 = 0.839); this model was then applied to develop yield prediction maps for the corresponding
years (2017–2020). This research suggests that satellite remote sensing methods in GIS platforms are
an effective and convenient way for agricultural land-use planners and land policy makers to select
suitable cultivable land areas with potential for increased agricultural production.

Keywords: satellite; remote sensing; digital elevation model; land surface temperature; vegetation
indices; fuzzy membership function; yield prediction

1. Introduction

Proper land-use planning is essential for enhancing agricultural production and
ecological conservation and for the protection of biodiversity [1]. Inappropriate land
management practices lead to a higher rate of soil erosion, a diminished crop production,
a hindered productivity, and a deteriorated soil quality [2]. Therefore, land management
focusing on suitability should be a key issue of research and policy development mainly
due to its influence on crop production. The knowledge of local land conditions has
become increasingly recognized for its importance in sustainable land management [3].
Farmers of local communities assess their farmland using consistent observations and
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collective experiences [4]. However, for rural communities, this knowledge is usually
insufficient to understand the adequacy of suitable condition, management strategies, and
land-use decisions.

In addition, many conventional techniques for earth monitoring applications require
specific spectral features that are defined only for multispectral data such as deep learning,
exploiting both temporal and cross-sensor dependencies and deep networks achieve much
better performance than traditional methods [5,6]. Furthermore, innovative farming tech-
nologies incorporate biology with computers and device exchange-based smart agriculture
become achieved in a structured farm management system. The high spatial imagery
from remote sensing datasets may provide an aid to systematically consider issues associ-
ated with smart farming technology. Remote sensing methods support the formation of
growth profiles of plants and temporal evolution scheme of soils over their developmental
phases [7]. Remote sensing indices that incorporate environmental recovery factors are
useful for tracing the development of crops, their interrelatedness, and the consequences
of the variables of interest for crop development. Following this concern, the application
of smart agriculture and satellite remote sensing-based soil-vegetation index evaluations
for agricultural land condition assessments is the key target of this research. Therefore,
land suitability assessments can be performed using the multicriteria decision method.
Such evaluation provides information about specific land use potentials and constraints.
The Multicriteria Decision Method (MCDM) becomes more suitable when incorporating
geospatial references. In recent years, computing technologies combined with GIS have
enabled geospatial references using MCDM-land suitability evaluations. Furthermore, the
MCDM, combined with linear combination and fuzzy set theory, has the potential to reduce
subjectivity in the assessment of results. Several approaches to the MCDM that utilize
equal-weighted linear combinations or fuzzy membership systems have been applied
to conduct land suitability evaluations [8–11]. In addition, for sustainable land resource
management, the Food and Agricultural Organization (FAO) has proposed guidelines for
land evaluation [12]. According to the guidelines, land is classified into four categories:
highly suitable, moderately suitable, marginally suitable, and not suitable. Additionally,
the equal-weighted linear combination-fuzzy overlay technique in the GIS platform has
the capabilities needed to overcome these limitations by applying the required calorie
ratio (FAO recommended) to prepare land suitability assessments for smart agricultural
practices. However, there is a lack of datasets in some areas of developing regions where
assessments of land suitability are really challenging. In addition, recent datasets of those
geographic information system have limitation, especially land uses, drainage and lack of
soil sampling information for soil nutrients in a distant time period.

It is worth mentioning that quick and accurate land suitability assessments can aid in
the improvement of yield prediction models. Regarding the judgment of the prediction of
yield using vegetation indices (VIs), it is the most straightforward approach to establishing
empirical relationships between ground-based yield measures and Vis [13–15]. In this re-
gard, satellite remote sensing technologies and GIS applications for monitoring crops have
the potential to establish timely assessments of changes in the growth and development of
crops on regional scales [16]. The yield prediction is also helpful for making decisions on
regional food security policies and production inventories to understand the availability of
field crop.

Additionally, local farmer’s perceptions and their assessment of land suitability can
differ from scientific approaches due to the much broader contextual implications of the
former and how they are often framed. This often results in differences in perceived
problems and the require solutions [17]. In most cases, developing location specific descrip-
tions by soil sampling and analysis is expensive and challenging. Following this concern,
advanced and affordable smart satellite remote sensing multicriteria technologies that
consider climate factors are required for land suitability and accuracy assessments.

Therefore, the purpose of this research is to develop a soil-vegetation intent land
suitability assessment model based on multicriteria decision-making analysis to determine
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optimal land distributions according to soil-vegetation indices to ensure elevated productiv-
ity, and a yield prediction method was developed using vegetation indices. A methodology
that can be applied across various countries is proposed to reduce the complexities of
farmland evaluation practices.

2. Materials and Methods

The proposed method utilizes a GIS-based multicriteria analysis to develop a soil-
vegetation index-associated suitability analysis by exploiting satellite remote sensing for
land suitability assessment and consists of three major steps (Figure 1): the calculation of
soil vegetation indices for land suitability mapping of diversified crops, regression analysis
using ground truth yield data for validation, and the utilization of a yield prediction model
to develop a yield map. ArcGIS 10.4® (ESRI, CA, USA) software was used for criteria ag-
gregation, data preprocessing and calculation standardization, weight determination by an
equal-weighted overlay, fuzzy membership function, fuzzy overlay, and raster calculation.

Figure 1. Framework for land suitability assessment using satellite remote sensing derived soil-vegetation indices.

2.1. Study Area

The study area is located between 25◦14′ and 26◦02′ N latitudes and 88◦22′ and
89◦54′ E longitudes in the northern part of Bangladesh and has a total area of 8260 square
kilometers. The study was conducted in the Dinajpur, Rangpur, Kurigram, and Gaibandha
districts of the Rangpur Division where the inhabitants derive their livelihoods from agri-
culture (Figure 2). The area consists of 36 administrative units with an overall population
of 11,498,000 [18]. The population is economically active in agriculture; nevertheless,
agronomic land use is highly inconsistent due to climatic factors, soil property issues,
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water infiltration, environmental resources, and local socioeconomic conditions. Based
on weather data, the minimum and maximum mean annual temperature varies between
8.47 ◦C and 36.3 ◦C. The annual average rainfall recorded is 7650–1233 mm, with a high
humidity in the range of 41–77% [19]. The elevation ranges from 5 to 30 m above sea level.

Figure 2. Study area: northern part of Bangladesh, four districts: Dinajpur, Rangpur, Gaibandha, and Kurigram.

2.2. Image Acquisition

Landsat 8 is the most recently launched Landsat satellite and carries the Operational
Land Imager (OLI) and Thermal Infrared Sensor (TIRS) instruments. OLI collects data in
the visible, near infrared, and shortwave infrared spectral bands and in a panchromatic
band. These two sensors provide seasonal coverage of the global landmass at a spatial
resolution of 30 m (visible, NIR, and SWIR), 100 m (thermal), and 15 m (panchromatic). The
100 m TIRS data are registered to the OLI dataset to create radiometrically, geometrically,
and terrain-corrected 12-bit data products. Images were acquired from 2017 to 2020. In this
study, all satellite data were downloaded from the United States Geological Survey (USGS).
The image was acquired (less than 10% cloud cover) in growing stage of the specific crop
cycle (dry season irrigated rice).

2.3. Digital Image Preprocessing

All satellite images were first processed by resampling the band resolution at 30 m and
then mosaicked and masked. Subsequently, an algebraic raster operation and a radiometric
calibration as well as geometric and atmospheric corrections were applied to the remote
sensing images using ArcGIS 10.4®. Image acquisition was performed for each band. After
that, all selected bands were converted to a 30 m resolution using a resampling technique
to ensure a similar cell size and data uniformity. The average reflectance values were
calculated for the study area in each band using the raster calculator tool to compensate for
the spatial variability to minimize the bias. Three different blocks collected during related
time periods were mosaicked to cover the large study area.
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2.4. Criteria Aggregation for Land Fertility Assessment

Three vital layers were developed by satellite data, and five vegetation indices were
used as the input parameters to develop the land suitability analysis (Figure 3). The most
important land and soil affiliated indices, SAVI, SARVI, ARVI, MASAVI, and OSAVI, were
utilized to describe land conditions (Table 1). In addition, the slope and elevation layers
were used as representative land conditions. The land surface temperature was taken as
another influential criterion of agriculture land suitability assessment.

Figure 3. Criteria: (a) Elevation, (b) Slope, (c) LST, (d) SAVI, (e) ARVI, (f) SARVI, (g) MSAVI (h) OSAVI.
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Table 1. List of data and original data sources for land suitability analysis.

No Data Native Format Description Source

1 Land Use Map
92 small vector

blocks (point, line,
polygon, and tabular)

Scale at 1:25,000m 2019, SoB,
Bangladesh

2 Elevation Map raster Extracted from 3 m resolution 2020, STRM

3 Slope Map raster Derived from 30-mresolution 2020, STRM

4 Land Surface
Temperature (LST) raster Derived from 30-m resolution 2020, Landsat 8

5 SAVI Map raster Derived from 30-m resolution 2020, Landsat 8, USGS

6 ARVI Map raster Derived from 30-m resolution 2020, Landsat 8, USGS

7 SARVI Map raster Derived from 30-m resolution 2020, Landsat 8, USGS

8 MSAVI Map raster Derived from 30-m resolution 2020, Landsat 8, USGS

9 OSAVI Map raster Derived from 30-m resolution 2020, Landsat 8, USGS

2.4.1. Elevation

Elevation is an important factor that plays a vital role in the variability of plant
cover and causes temperature changes, particularly in highland areas. Areas with higher
topographic elevations are more affected by rainfall and soil erosion [20]. Soil erosion is the
alarming condition of agriculture field crop. Also, it is the main problems of agricultural
development, such as landslides and flood events; these disasters have been severely
influenced by the soil erosion process [21]. Most of the study area is plains land, and the
elevation is less than 131 m (Figure 3a). The elevation data were extracted using a data
elevation model (DEM) and were downscaled to a 30 m resolution.

2.4.2. Slope

Slope is a vital topographic element for indicating suitable farmland in assessments.
Slope indicates many landscape processes, such as soil water content, erosion potential,
runoff, and surface and subsurface flow velocity. The thickness of the soil layer decreases
with the increasing slope [22]. The slope gradient has an impact on the runoff and soil loss:
the greater the slope gradient the higher the potential for runoff and soil loss [23]. The slope
was developed by using data from the original Shuttle Radar Topography Mission (SRTM)
and the digital elevation model (DEM). The DEM was downscaled to a 30 m resolution.
The Universal Transverse Mercator (UTM) projection system and WGS84 datum were used
as rectifying agents in ArcGIS. The slope was calculated from the maximum rate of change
between each cell and its neighbors. Every cell in the output raster had a slope value. Field
crops generally require flat land; only a slight slope between 0% and 8% is resistant to
erosion [24]. When the slope gradient is very steep (40%), soil sediment losses remain at the
same high levels after cultivation abandonment because slope gradient is the main factor
controlling soil erosion [25]. In the study area, the slope range was under 10% (Figure 3b),
which is a suitable condition for most farming practices [26–28].

2.4.3. Land Surface Temperature (LST)

The LST (Figure 3c) was calculated for selected land areas using temporal information
from Landsat 8 OLI images when less cloud coverage was present [29]. From 2017–2020,
the LST data received from the obtained images ranged between 17 ◦C and 33 ◦C. The LST
calculation was based on the moving average method. A single raster was formed from
multiple years of raster datasets as the multiple predictions’ raster.
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LST was calculated for the cropland using temporal information from Landsat 8 OLI
that was selected during period of less cloud coverage. Two steps were required to calculate
the LST; first, the NDVI was calculated for the given time period.

NDVI =
ρNIR − ρRED
ρNIR + ρRED

(1)

After that, the resulting NDVI value was used to analyze the proportion vegetation
(PV), which can be expressed as follows:

PV =

(
NDVI − NDVImin

NDVImax − NDVImin

)2
(2)

After calculating the PV, the land surface emissivity (ελ) could be expressed as fol-
lows [30]:

ελ = 0.004 ∗ PV + 0.986 (3)

Second, the thermal bands are included in band 10 and band 11 from the Landsat
8 imagery. The thermal bands were converted to digital numbers to estimate the radiance.
The spectral radiance could be expressed as follows:

Lλ = ML + QCAL + AL
Lλ = 0.0003342 ∗ Band10 + 0.1 and Lλ = 0.0003342 ∗ Band11 + 0.1
Lλ = 0.0003342 ∗ Band10 + 0.1 and Lλ = 0.0003342 ∗ Band11 + 0.1

(4)

where Lλ is the TOA spectral radiance at the sensor aperture, ML is the band-specific
multiplicative rescaling factor from the metadata, QCAL is the quantized and calibrated
standard product pixel value (DN), and AL is the band-specific additive rescaling factor
from the metadata. Then, the brightness temperature (BT) could be expressed as follows
(Jesus and Santana, 2017):

BT =
K2

ln
[(

K1
Lλ

)
+ 1
] − 273.15 (5)

where BT is the satellite brightness temperature [Celsius]; K2 is the calibration constant
2 [Kelvin], where the band-specific thermal conversion constant is taken from the metadata;
and K1 is the calibration constant 1 [Kelvin], where the band-specific thermal conver-
sion constant is taken from the metadata. Finally, LST was calculated and expressed as
follows [30]:

LST =
BT

1 +
(

λ∗BT
ρ

)
∗ lnελ

(6)

where λ is the average wavelength of band 10; ελ is the emissivity calculated from Equa-
tion (3); and ρ is (h ∗ c

σ ), which is equal to 1.438 × 10−2 mK, where σ is the Boltzmann
constant (1.38 × 10−23 J/K), h is Plank’s constant (6.626 × 10−34 J.s) and c is the velocity of
light (3 × 108 m/s).

2.4.4. Soil-Adjusted Vegetation Index (SAVI)

Soil has a unique spectral signature that differs from that of other types of land cover.
In the visible and near-infrared zones, reflectance increases in proportion to increases in
wavelength. However, the rate of increase is affected by various factors. Soil moisture
and organic matter may lower the soil reflectance. The association between red and near-
infrared reflectance remains constant for different soil type physiognomies. When the
moisture content changes, the two values are related and have a linear relationship. This
relationship is very specific for each type of soil. SAVI is therefore useful for monitoring
soils. Furthermore, SAVI is a modification of the normalized difference vegetation index
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(NDVI), which corrects for the influence of soil brightness when the vegetation cover is
low [31]. SAVI (Figure 3d) was extracted from Landsat 8 OLI imagery by a mask for the
study area. Datasets were acquired from 2017 to 2020. These datasets were used to build a
single raster using map algebra in the ArcGIS platform.

To reduce the soil background effect, modified indices were proposed using the soil
adjustment factor L to account for first-order soil background variations and obtain the
SAVI [32]. SAVI can be expressed as follows:

SAVI =
ρNIR − ρRED

ρNIR + ρRED + L
(1 + L) (7)

where ρNIR is the reflectance value in the near-infrared band, ρRED is the reflectance value
in the red band, and L is the soil brightness correction factor. An L value of 0.5 in the
reflectance space was found to minimize soil brightness variations and eliminate the need
for additional calibration for different soils. The described SAVI value was 0.798 to −0.302
for the study area (Figure 3d).

2.4.5. Atmospherically Resistant Vegetation Index (ARVI)

The ARVI (Figure 3e) is obtained using a self-correction process for the atmospheric
effect on the red channel, using the difference in the radiance between the blue and
red channels to correct the radiance in the red channel due to the excellent atmospheric
resistance of the ARVI [33].

ARVI =
ρNIR − (ρRED − γ(ρBlUE − ρRED))

ρNIR + (ρRED − γ(ρBlUE − ρRED))
(8)

where γ depends on the aerosol type. A good default value is γ = 1 when the aerosol model
is not available. ARVI is resistant to atmospheric effects due to its self-correction process.
This index uses the difference in the radiance between the blue and red bands to correct
the radiance in the red band. Simulations show that ARVI has a similar dynamic range as
SAVI, but on average, its sensitivity to atmospheric effects is four times less than that of
NDVI [34]. The ARVI value fluctuated between 0.886 and −0.662 (Figure 3e).

2.4.6. Soil Adjusted and Atmospherically Resistant Vegetation Index (SARVI)

SARVI has a similar dynamic range to NDVI but is four times less sensitive to atmo-
spheric effects than NDVI. SARVI performs much better for moderate to small sized aerosol
particles (e.g., continental, urban, or smoke aerosol) than for large particles. Consequently,
a single combination of blue and red channels in ARVI calculations may be used in all or
most remote sensing applications [34].

SARVI = (1 + L)(ρNIR − (ρRED − γ(ρBlUE − ρRED)))/(ρNIR + (ρRED − γ(ρBlUE − ρRED)) + L) (9)

where L is a correction factor similar to that in the SAVI calculation and γ is similar to that
in the ARVI calculation. SARVI can minimize both canopy background and atmospheric
effects [35,36]. In this research, the SARVI value was found to range from 0.679 to −0.397
(Figure 3f).

2.4.7. Modified Soil-Adjusted Vegetation Index (MSAVI)

Richardson and Wiegand (1977) proposed a modified secondary soil-adjusted vegeta-
tion index (MSAVI) [37], which can be expressed as follows:

MSAVI = 0.5 ∗
[(

2ρNIR + 1)−
√
(2ρNIR + 1)2 − (8ρNIR − ρRED)

]
(10)

MSAVI does not rely on the soil line principle and has a simpler algorithm; it is mainly
used in soil organic matter analysis, drought monitoring, and soil erosion analysis. In
addition, it is useful for plant growth analyses, desertification studies, grassland yield
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estimations, and leaf area index (LAI) assessments. In the study area, the MSAVI value was
observed to be between +1 and −1 (Figure 3g).

2.4.8. Optimized Soil-Adjusted Vegetation Index (OSAVI)

The Optimized Soil Adjusted Vegetation Index (OSAVI) is a newly developed alter-
native that can accommodate greater variability due to high soil background values [38].
OSAVI does not depend on the soil line and can eliminate the influence of the soil back-
ground effectively. However, the applications of OSAVI are not extensive; it is mainly
used for the calculation of aboveground biomass, leaf nitrogen content, and chlorophyll
content [39].

OSAVI =
ρNIR − ρRED

ρNIR + ρRED + X
(11)

where X = 1.6. OSAVI is mainly used for the calculation of aboveground biomass, leaf
nitrogen content, chlorophyll content, etc. The observed value was between 0.531 and
−0.201 (Figure 3h).

2.5. Data Aggregation
2.5.1. Pattern Analysis

Several criteria were used for pattern analysis, which required pattern analyses from
multiple years or months of data to form a predicted raster for reclassification. The single
raster-based calculation was not reliable, nor did it provide enough datasets. This section
shows several criteria from multiple years of data (2017 to 2020) for building a predicted
raster for LST, SAVI, ARVI, SARVI, MSAVI, and OSAVI. The following section introduces
the pattern analysis for multitemporal datasets into a single raster.

Moving Average

The moving average was processed after completing the digital image processing
steps. The moving average was calculated in each year and can be expressed as follows:

MAn =
∑n

i=1 Di
n

(12)

where D is the number of data points in the raster cell and n is the amount of data to average.

Multiple Predicted Raster

As a part of the point pattern analysis, a single predicted raster was made. After that,
LST, SAVI, ARVI, SARVI, MSAVI, and OSAVI were computed from 2017–2020. The basic
extent encompassed the overall density pattern. This is basically the ratio of the observed
number of single predicted rasters of points (r) to the study region area (a) and referred
to as the multiple predicted raster (MPR). The MPR was applied as a criterion for land
suitability analysis. MPR can be expressed as follows:

MPR =
r
a

(13)

where r is the ratio of the observed number of single predicted raster points and a is the
area of the study region.

2.5.2. Land Use/Land Cover

Land use data enable the estimation of an area’s coverage with vegetated areas,
settlements, forests, and water bodies. Land use data were collected from the Survey of
Bangladesh (SoB), which was split into 92 blocks. After aggregation in the ArcGIS platform,
the data were used to develop a more accurate land use/land cover (LULC) map for the
land fertility assessment. In this study, rivers, forests, water bodies, and settlements were
considered restrictions in the analysis. Subsequently, after excluding the constraints, only
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agricultural land was considered for land evaluation. Agricultural land was subclassified
into cultivated land (80%), uncultivated land (0.5%) and vegetated land (19%) (Figure 2).

2.6. Land Fertility Assessment

The weighted overlay was used to prioritize the weights of each criterion to generate
a land fertility assessment map. The reclassified raster data layers were combined with
the weighted overlay in ArcGIS®. First, the combination criteria were input as equally
weighted linear combinations. Second, the land suitability analysis was carried out by
a fuzzy membership function, fuzzy reclassification and fuzzy overlay to evaluate the
consistency of the two outcomes.

2.6.1. Map Development by Weighted-Linear Combination

First, reclassification was conducted to interpret the raster data by substituting a single
value as the new value or by categorizing the ranges of values into a single value. Each
criteria source map was reclassified into four classifications (Table 2). Land suitability
analysis was conducted using different classification categories proposed by the FAO. As
suggested by the FAO’s framework for land evaluation, the first class was designated as
suitable (S) or not suitable (N). The suitability classification aimed to show the suitability
of each land unit for crop production. In practice, three classes, namely (S1), (S2), and
(S3), are typically used to identify land that is highly suitable, moderately suitable, and
marginally suitable, respectively. The analysis was built using the aforementioned criteria
and reclassified into 4 classes. Finally, the classes were found based on their weighted
linear combination.

Weighted Overlay =
n

∑
i=1

Ci ∗Wn (14)

where Ci is each criterion (i) that has been reclassified and Wn is the number of data (n) that
were weighted.
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Table 2. Criteria reclassification for weighted linear combination.

Criteria Suitability Class Sub Criteria Reference

S1 0–8%

[24,40,41]Slope S2 8–15%

S3 15–25%

N >25%

S1 0–25

[20,42,43]
Elevation

S2 25–125

S3 125–250

N >250

S1 20–25

[29,44,45]LST
S2 18–20

S3 15–18

N 9–15, >25

S1 0.372483–0.797756

[32,46,47]SAVI
S2 0.217838–0.372483

S3 0–0.217838

N −0.301941–0

ARVI

S1 0.293275–0.885854

[33,34,48]S2 0.1542–0.293275

S3 0–0.1542

N −0.662108–0

S1 0.301197–0.671395

[34,49,50]SARVI
S2 0.301197–0.16658

S3 0.16658–0

N −0.39713–0

S1 0.752112–1

[37,46,51]MSAVI
S2 0.752112–0.443157

S3 0.443157–0

N −1–0

S1 0.245221–0.526082

[38,46,52]OSAVI
S2 0.145221–0.248311

S3 0–0.145221

N −0.201272–0

2.6.2. Map Development by the Fuzzy Membership Function

The fuzzification process had no sharply defined boundaries that characterized the
imprecision of the classes. In this process, each value of the phenomenon central to the
core of the definition of the set was set to 1. Those values that were not part of the set were
set to 0. Those values that fell between these two extremes were within the transitional
zone of the set, which was defined as the boundary [8,53–55]. In the present study, fuzzy
membership classification was used to accommodate the high uncertainty of the scoring
methods in assigning the suitability classes; several fuzzy membership functions were used
for normalization. For this research, fuzzy functions were determined based on references
and a literature review (Table 3).
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Table 3. Criteria reclassification for Fuzzy membership function.

Criteria Most Suitable
Condition

Maximum
Expectable
Condition

Minimum
Acceptable
Condition

Not Fuzzy
Member Reference

Fuzzy
Membership

Function

Slope <4◦ 20◦ 0◦ <20 [43,56] F small

Elevation 0 0–25 250 >250 [20,57] F Gaussian

LST 10 ◦C–20 ◦C up to 35 ◦C 10 ◦C >35 ◦C or <20 ◦C [45,58] F Gaussian

SAVI 0.7978 +1 −1 −0.3019 < SAVI
< 0.7978 [11,47,59] F Linear

ARVI 0.8859 +1 −1 −0.3971 < ARVI
< 0.8859 [33,34,48] F Linear

SARVI 0.6713 +1 −1 −0.3971 < SARVI
< 0.6713 [34,49,50] F Linear

MSAVI 1 +1 −1 −0.1 < MSAVI < 1 [37,46,51] F Linear

OSAVI 0.5261 +1 −1 −0.2013 < OSAVI
< 0.5261 [38,52,60] F Linear

Out of the seven varieties of fuzzy membership functions available, three fuzzy
functions were used in this study considering ecological criteria: the fuzzy small, Gaussian,
and fuzzy linear functions. These functions generate continuous fuzzy classifications under
standardized criteria. The reclassification tool in ArcGIS enables the transformation of
categorical data to range from 0 to 10 and then divides the resulting transformed data by
10 to derive a 0 to 1 scale. The equations for the fuzzy small (Equation (15)), fuzzy linear
(Equation (16)), and Gaussian functions (Equation (17)) are as follows:

µ(x) =
1

1 +
(

x
f2

) f1
(15)

The fuzzy small transformation function was used when small input values were
more likely to be members of the set. The criterion slope was followed by a fuzzy small
function in this research.

µ(x) = e(− f 1∗(x− f 2)2) (16)

The layers of SAVI, ARVI, SARVI, MSAVI, and OSAVI were each followed by a fuzzy
linear transformation function that related a linear function between the user-specified
minimum and maximum values for reclassification.

µ(x) = f (x) =


0

x−a
b−a
1

x ≤ a
a < x < b

x ≥ b
(17)

The fuzzy Gaussian function converts the primal values into a normal distribution.
If the input values decrease in membership, they move away from the midpoint. The
midpoint of the fuzzy Gaussian function was set to 1 [59]. The elevation and LST layers
were analyzed under the fuzzy Gaussian membership function.

In the fuzzy small and fuzzy linear membership functions, the control point included
a midpoint (f2) and a spread (f1). The midpoint was a specific point that had a 0.5 value
of membership in the large and small functions. Gaussian functions are determined by
the user based in the references (ESRI, CA, USA). The spread was generally allocated a
number between 1 and 10. The fuzzy membership curve became steeper for higher spread
values. The fuzzy linear transformation function applied a linear function between the
minimum and maximum values. Any value below the minimum was determined to be
0 (not a member), and any value above the maximum was 1 (a member) [61]. To analyze
the relationships and interactions between all the sets for the 8 criteria in the overlay model,
fuzzy overlay techniques were used. The available fuzzy set overlay techniques in ArcGIS
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are fuzzy And, fuzzy Or, fuzzy Product, fuzzy Sum, and fuzzy Gamma. Each of these
techniques described the cell’s membership related to the input sets. In this study, the fuzzy
Gamma overlay assisted in developing suitability maps for three identical seasons, which
were determined based on references and a literature review (ESRI, Redlands, CA, USA).

2.7. Validation Using Ground Truth Data

The detected fertile zone was verified by ground reference data. The time series
datasets played a vital role in developing and validating the yield prediction models.
In Bangladesh, nearly 80% of the total land is allocated solely to rice cultivation [62].
Additionally, in the northwestern part of the country, approximately 70% [63–65] of the
land is cultivated with dry season irrigated rice (boro rice). To facilitate further analysis,
the major rice crop was carefully chosen for approval. The suitable area was verified by
ground truth yield data. The yield data of dry season irrigated rice were collected from
the Department of Agricultural Extension (DAE), Ministry of Agriculture, Bangladesh, for
the 36 subdistricts in 2017–2020 to evaluate the accuracy of the land suitability analysis
(Figures 4 and 5). After preparing the data in Microsoft Excel, the correlations among the
five selected indices were evaluated.

Figure 4. Ground Reference information points in 36 subunits.
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Figure 5. Comparison of different indices and ground reference information points in 36 sub-units.

2.8. Yield Prediction and Analysis

The performances of the yield prediction models were examined by field data. After
the correlations among the five selected vegetation indices were established, the yield
map was developed. Simple and multiple regression analyses were carried out between
the mean values of the vegetation indices and the ground referenced data of the dry
season irrigated rice to determine the best-fitted models for rice production. These data
were classified to evaluate the production that occurred between 2017 and 2020. The
SAVI, ARVI, SARVI, MSAVI, and OSAVI values were aggregated into a time series pattern
(Appendix A). The yield data were compared through regression. The five vegetation
index values were collected from reference points in the 36 subdistricts. Ground truth data
information was obtained from the 36 subdistricts, and the yield was reported in metric
tons per hector (MT/ha).

3. Results
3.1. Land Suitability Analysis

The weighted linear model was used to prioritize the weights of each criterion to
generate the land suitability assessment. First, the variables were analyzed as equally
weighted linear combinations. Second, the suitability assessment was carried out by a
fuzzy membership function to verify the consistency of the two procedure results (Table 4).
The land fertility analysis (Figure 6a) with equal weights showed that 43% of the land
(1832 km2) was highly suitable, 41% of the land (1747 km2) was moderately suitable, and
10% of the land (426 km2) was marginally suitable. In addition, the restricted zone was
defined as an unsuitable area. In this research, the unsuitable area was found to cover 6%
(256 km2). However, the land suitability analysis using the fuzzy membership function
(Figure 6b) showed that 48% (2045 km2) of the land area consisted of the most suitable
area, 39% of the land (1661 km2) was moderately suitable, and 7% of the land (298 km2)
was marginally suitable. In addition, restricted areas accounted for 6% of the land area. In
fuzzy overlay analysis, 256 km2 of the area was classified as fallow land that is not suitable
for cultivation.
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Table 4. Percentage and Area of each land suitability analysis.

Classification
Suitability Assessment by Equal-Weighted

Linear Combination
Suitability Assessment by Fuzzy

Membership Function

Percentage Area (%) Area (km2) Percentage Area (%) Area (km2)

Highly Suitable (S1) 43 1832 48 2045

Moderately Suitable (S2) 41 1747 39 1661

Marginally Suitable (S3) 10 426 7 298

Not Suitable (N) 6 256 6 256

Figure 6. Suitable classes of land suitability analysis using soil specified remote sensing data. (a) Equal weighted overlay.
(b) Fuzzy overlay.

3.2. Yield Estimation

The predictors derived from the satellite imagery in the form of spectral bands or
vegetation indices (SAVI, SAVI, ARVI, SARVI, MSAVI, and OSAVI) were the most effective
spectral parameters for predicting rice yield (Figure 7). In addition, the individual index
values were extracted from the ground truth information (Figures 4 and 5) for the subdis-
tricts that were located in the highly suitable areas. A trend line approach was used to
verify the index influences at different study points (Figure 8). Regression analysis was
performed between the vegetation indices and the observed yield. The SAVI, SARVI, ARVI,
MSAVI, and OSAVI values were obtained from satellite imagery from 2017–2020 (Table 5).
The results showed good accuracy in the regression analysis using SAVI (R2 = 77.3%), ARVI
(R2 = 68.9%), SARVI (R2 = 71.1%), MSAVI (R2 = 74.5%) and OSAVI (R2 = 81.2%) (Figure 9).
From the multiple regression model, it was observed that using more than one variable for
the yield prediction increased the model accuracy by enhancing the R2 value. However, the
best-fitted models were obtained using the SAVI-ARVI-SARVI-MSAVI-OSAVI composite
vegetation index. The yield prediction model with the composite index had a goodness
of fit of R2 = 0.839. The model was used to estimate the yield in the time series dataset
(Table 6).
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Figure 7. Comparison of actual yield and predicted yield for different indices (a) SAVI (b)ARVI, (c) SARVI, (d) OSAVI,
(e) MSAVI.
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Figure 8. Ground reference rice yield distributions in the 36 subunits.

Figure 9. Regression analysis for vegetation indices and ground reference time series yield information. (a) SAVI, (b) ARVI,
(c) SARVI, (d) OSAVI, (e) MSAVI.
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Table 5. Yield estimation based on satellite remote sensing derived soil-vegetation indices for the 36 subunits.

No Name Longitude Latitude SAVI ARVI SARVI MSAVI OSAVI Yield

1 Rangpur Sadar 89◦12′38.681′′ E 25◦45′19.004′′ N 0.588 0.41 0.37 0.63 0.40 4.03

2 Badarganj 89◦3′3.041′′ E 25◦40′31.185′′ N 0.445 0.34 0.35 0.52 0.38 3.96

3 Kaunia 89◦23′36.554′′ E 25◦46′41.239′′ N 0.644 0.45 0.51 0.69 0.58 4.26

4 Gangachhara 89◦12′52.386′′ E 25◦51′42.764′′ N 0.69 0.66 0.51 0.87 0.63 4.37

5 Mithapukur 89◦15′9.443′′ E 25◦35′2.248′′ N 0.42 0.35 0.29 0.45 0.28 3.38

6 Taraganj 89◦1′54.513′′ E 25◦46′54.944′′ N 0.31 0.21 0.20 0.40 0.25 2.89

7 Pirganj 89◦16′17.972′′ E 25◦25′40.315′′ N 0.64 0.37 0.45 0.701 0.38 4.19

8 Pirgachha 89◦24′58.788′′ E 25◦40′31.185′′ N 0.681 0.61 0.50 0.79 0.63 4.34

9 Dinajpur Sadar 88◦40′39.883′′ E 25◦36′38.188′′ N 0.79 0.60 0.49 0.89 0.64 4.40

10 Birampur 88◦58′15.222′′ E 25◦22′55.846′′ N 0.50 0.36 0.31 0.43 0.39 3.94

11 Biral 88◦32′53.89′′ E 25◦38′55.245′′ N 0.68 0.47 0.42 0.74 0.44 4.20

12 Phulbari 88◦53′27.402′′ E 25◦27′2.549′′ N 0.54 0.49 0.49 0.78 0.56 4.25

13 Hakimpur 89◦2′49.336′′ E 25◦17′13.204′′ N 0.579 0.46 0.47 0.69 0.50 4.23

14 Khansama 88◦45′55.114′′ E 25◦52′51.292′′ N 0.58 0.39 0.41 0.72 0.46 4.16

15 Nawabganj 89◦5′33.804′′ E 25◦25′12.903′′ N 0.44 0.31 0.23 0.52 0.31 3.69

16 Parbatipur 88◦55′44.459′′ E 25◦37′19.305′′ N 0.39 0.32 0.24 0.50 0.26 3.60

17 Birganj 88◦37′28.004′′ E 25◦56′3.172′′ N 0.55 0.42 0.35 0.61 0.42 4.08

18 Kaharole 88◦35′38.358′′ E 25◦48′17.178′′ N 0.76 0.60 0.51 0.94 0.64 4.50

19 Chirirbandar 88◦47′3.643′′ E 25◦40′31.185′′ N 0.40 0.36 0.38 0.77 0.43 4.10

20 Ghoraghat 89◦12′52.386′′ E 25◦17′26.91′′ N 0.59 0.37 0.41 0.75 0.39 4.16

21 Bochaganj 88◦26′43.836′′ E 25◦47′22.356′′ N 0.761 0.62 0.50 0.86 0.60 4.35

22 Kurigram
Sadar 89◦41′39.304′′E 25◦49′39.413′′ N 0.77 0.61 0.54 0.91 0.66 4.50

23 Phulbari 88◦53′27.402′′ E 25◦27′2.549′′ N 0.33 0.12 0.25 0.42 0.31 3.06

24 Nageshwari 89◦44′37.478′′ E 25◦58′6.523′′ N 0.79 0.45 0.46 0.70 0.49 4.20

25 Rajarha 89◦32′44.782′′ E 25◦47′8.65′′ N 0.55 0.33 0.33 0.42 0.35 3.90

26 Bhurungamari 89◦41′39.304′′ E 26◦7′1.045′′ N 0.79 0.66 0.48 0.99 0.67 4.50

27 Ulipur 89◦40′3.364′′ E 25◦40′58.596′′ N 0.65 0.54 0.47 0.82 0.61 4.30

28 Char Rajibpur 89◦45′4.889′′ E 25◦30′55.546′′ N 0.59 0.38 0.38 0.71 0.45 4.10

29 Rowmari 89◦49′11.592′′ E 25◦33′53.72′′ N 0.52 0.45 0.36 0.50 0.37 4.02

30 Gaibandha
Sadar 89◦34′48.133′′ E 25◦57′11.701′′ N 0.61 0.53 0.49 0.88 0.58 4.30

31 Gobindaganj 89◦22′0.614′′ E 25◦10′8.327′′ N 0.65 0.51 0.48 0.77 0.59 4.28

32 Palashbari 89◦23′22.848′′ E 25◦16′18.381′′ N 0.39 0.24 0.26 0.45 0.32 4.34

33 Fulchhari 89◦39′35.953′′ E 25◦15′37.264′′ N 0.60 0.47 0.44 0.73 0.52 4.24

34 Saghatta 89◦34′34.427′′ E 25◦7′37.565′′ N 0.38 0.25 0.24 0.43 0.34 3.27

35 Sadullapur 89◦25′12.494′′ E 25◦24′4.375′′ N 0.71 0.59 0.47 0.88 0.64 3.34

36 Sundarganj 89◦33′39.605′′ E 25◦30′28.134′′ N 0.68 0.4 0.48 0.75 0.66 4.31
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Table 6. Yield prediction models based on satellite remote sensing derived soil-vegetation indices.

Forecasting Factors R2 Simple Regression

SAVI 0.773 Y = 2.6021 * SAVI + 2.5319

ARVI 0.689 Y = 2.726 * ARVI + 2.8479

SARVI 0.711 Y = 2.5832 * SARVI + 2.8184

MSAVI 0.7452 Y = 2.024 * MSAVI + 2.6627

OSAVI 0.812 Y = 4.0094 * OSAVI + 2.4039

All Combination 0.839 Y = 0.534 * SAVI + 0.226 * ARVI − 0.907 *
SARVI + 0.0922 * MSAVI + 3.264 * OSAVI

The developed yield map indicated that in 2017, the maximum yield was 4.59 MT/ha
(Figure 10). Furthermore, in 2018 and in 2019, it was 4.9 MT/ha and 5.08 MT/ha, re-
spectively. For 2020, the predicted yield range appeared to be between 0.269 MT/ha and
4.537 MT/ha.

Figure 10. Yield prediction map (MT/ha) (a) 2017, (b) 2018, (c) 2019, (d) 2020.

4. Discussion

This research provided a comprehensive strategy to create agricultural land use plans
for cultivation considering suitable conditions, which were derived from satellite remote
sensing data. Previously, much of the research conducted only reported land suitability
for site-specific plans or single-cropping plans [66,67]. However, this research attempted
to develop an overall land suitability assessment using soil-vegetation representative
variables that extracted only satellite remote sensing data from the GIS platform when
field soil sampling is inconvenient and expensive. Applying only remote satellite datasets
to assess suitable land conditions was a source of concern that added a new feature to
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MCDM-land suitability analyses. In this study, the reliability of five vegetation indices was
verified by a regression analysis that incorporated ground truth yield data, and the results
were used for yield map preparation. Vegetation phenology analyses have potential [11,14]
in estimating yield prediction with good accuracy in highly suitable areas. In addition,
two topological factors (slope and elevation) and another environmental parameter, land
surface temperature, were extracted from the USGS, which ensured better performance of
the results in land use planning.

Either the AHP-based weighted overlay or equal-overlay technique is typically applied
in most studies [68–70]; few studies have conducted fuzzy membership methods employed
in the GIS platform by incorporation with the AHP technique [69,71,72]. Some studies have
conducted farmland assessments based on soil testing [73,74]; however, considering the
preparation of a suitable map for agricultural land using soil-represented remote sensing
data for the linear combination of the F-MCDM approach is a new dimension of this
research. A multicriteria decision-making system was applied to reduce the biases in
the analysis. Variation in the land surface temperature was an important factor in this
area and influenced the locations considered most suitable for crop cultivation. Moreover,
atmospherically restricted vegetation indices (ARVI) and soil adjusted atmospherically
restricted vegetation indices (SARVI) were used to reduce the biases associated with
atmospheric effects.

Most of the suitable lands were located in the northern part, and marginally suitable
lands were mostly located in the northwestern part; this result was likely due to the
influence of high elevation. In addition, unsuitable zones were found mostly in the eastern
part due to the presence of water bodies that are not arable for cultivation along with other
adverse edaphic factors. Previous studies had the limitation of obtaining inappropriate
validation results due to inadequate ground reference information. In this research, the
validation of the results was accomplished by physical verification with the corresponding
time series yield data of the most cultivated crop, dry season irrigated rice, which usually
grows over 70% [65] of the agricultural land area. The suitable conditions were not verified
by the other crop yield data, which was the main limitation of this research.

5. Conclusions

This research established a method to identify the most suitable agricultural land
by using the potentiality of satellite remote sensing data integrated with weighted linear
combinations and fuzzy multicriteria analyses in a GIS platform. The multicriteria decision
analysis was performed for suitability assessment using eight criteria: elevation, slope,
and LST vegetation indices (SAVI, ARVI, SARVI, MSAVI, and OSAVI). To derive a more
accurate result, a land use/land cover layer was also used to mask restricted zones. The
land suitability analysis with equal weights showed that 43% of the land (1832 km2) was
highly suitable, 41% of the land (1747 km2) was moderately suitable, and 10% of the land
(426 km2) was marginally suitable. Conversely, expert knowledge was also considered,
along with consistent assessments when using the fuzzy membership function; 48% of the
land (2045 km2) was highly suitable, 39% of the land (2045 km2) was moderately suitable,
and 7% of the land (298 km2) was marginally suitable. The yield estimation using SAVI
(R2 = 77.3%), ARVI (R2 = 68.9%), SARVI (R2 = 71.1%), MSAVI (R2 = 74.5%), and OSAVI
(R2 = 81.2%) showed a good accuracy. In addition, every combination of these five indices
represented the best accuracy (R2 = 0.839), which was used to develop the yield maps for
the corresponding years (2017–2020). The results of the land suitability evaluation for field
crops will be very useful in the decision-making process to increase production as well as
for the sustainable management of agricultural lands. Thus, the influence of vegetation
index evaluations, suitable condition assessments, and yield prediction models is essential
for understanding future land use and production trends in the agricultural crop sector in
Bangladesh, as well as other applications.
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Appendix A

Table A1. SAVI, ARVI, SARVI, MSAVI and OSAVI from 2017–2020 for 36 subunits.

Ground
Points

SAVI ARVI SARVI MASAVI OSAVI

2017 2018 2019 2020 2017 2018 2019 2020 2017 2018 2019 2020 2017 2018 2019 2020 2017 2018 2019 2020

1 0.501 0.557 0.698 0.593 0.388 0.42 0.398 0.43 0.388 0.42 0.418 0.303 0.688 0.582 0.668 0.602 0.388 0.402 0.458 0.401

2 0.445 0.54 0.35 0.42 0.405 0.303 0.355 0.32 0.345 0.34 0.385 0.32 0.545 0.54 0.55 0.452 0.415 0.394 0.435 0.302

3 0.534 0.65 0.71 0.69 0.414 0.525 0.501 0.39 0.544 0.475 0.531 0.49 0.684 0.785 0.739 0.59 0.544 0.595 0.591 0.589

4 0.643 0.67 0.682 0.77 0.69 0.66 0.71 0.57 0.539 0.506 0.51 0.47 0.869 0.866 0.919 0.827 0.69 0.66 0.61 0.57

5 0.408 0.519 0.417 0.375 0.42 0.35 0.29 0.355 0.282 0.285 0.309 0.2655 0.442 0.475 0.4729 0.3949 0.292 0.295 0.329 0.195

6 0.321 0.401 0.315 0.227 0.251 0.201 0.224 0.19 0.221 0.21 0.235 0.2 0.31 0.41 0.501 0.4 0.631 0.621 0.6827 0.62

7 0.472 0.597 0.698 0.784 0.394 0.397 0.385 0.301 0.448 0.447 0.47 0.421 0.674 0.707 0.745 0.681 0.364 0.397 0.377 0.5501

8 0.595 0.671 0.772 0.689 0.681 0.661 0.5 0.59 0.4801 0.51 0.54 0.439 0.7981 0.7981 0.829 0.739 0.681 0.61 0.5 0.79

9 0.799 0.797 0.779 0.769 0.669 0.577 0.67 0.539 0.479 0.508 0.529 0.449 0.799 0.896 0.99 0.859 0.379 0.386 0.49 0.289

10 0.479 0.621 0.631 0.303 0.33 0.366 0.431 0.31 0.33 0.32 0.31 0.303 0.415 0.436 0.4831 0.423 0.5 0.436 0.431 0.383

11 0.748 0.699 0.692 0.598 0.48 0.487 0.49 0.44 0.48 0.39 0.42 0.404 0.68 0.747 0.842 0.724 0.608 0.547 0.642 0.474

12 0.584 0.394 0.733 0.4387 0.54 0.49 0.539 0.387 0.454 0.49 0.49 0.487 0.754 0.749 0.89 0.707 0.54 0.49 0.49 0.487

13 0.519 0.603 0.645 0.538 0.479 0.46 0.47 0.439 0.479 0.46 0.507 0.45 0.679 0.686 0.747 0.669 0.479 0.46 0.497 0.4069

14 0.688 0.789 0.667 0.582 0.38 0.439 0.41 0.312 0.408 0.415 0.478 0.37 0.718 0.739 0.741 0.702 0.358 0.309 0.371 0.252

15 0.484 0.411 0.583 0.292 0.312 0.301 0.391 0.282 0.22 0.291 0.23 0.212 0.44 0.31 0.623 0.52 0.24 0.31 0.33 0.182

16 0.419 0.372 0.44 0.36 0.35 0.312 0.34 0.30 0.29 0.22 0.254 0.22 0.39 0.32 0.24 0.5 0.39 0.432 0.424 0.405

17 0.45 0.562 0.685 0.541 0.43 0.502 0.425 0.341 0.35 0.373 0.385 0.31 0.655 0.642 0.635 0.5601 0.645 0.622 0.735 0.621

18 0.786 0.699 0.794 0.744 0.676 0.604 0.6144 0.544 0.56 0.504 0.5144 0.4944 0.976 0.904 0.991 0.904 0.476 0.404 0.4744 0.384

19 0.401 0.36 0.548 0.297 0.4 0.36 0.38 0.307 0.349 0.395 0.418 0.3279 0.74 0.736 0.858 0.77 0.34 0.426 0.434 0.377

20 0.487 0.601 0.751 0.475 0.387 0.397 0.441 0.25 0.487 0.37 0.431 0.375 0.787 0.797 0.794 0.695 0.587 0.607 0.641 0.595

21 0.788 0.692 0.789 0.774 0.696 0.652 0.66 0.501 0.531 0.502 0.53 0.464 0.761 0.862 0.85 0.824 0.661 0.692 0.695 0.584

22 0.787 0.793 0.8013 0.699 0.617 0.771 0.535 0.505 0.507 0.56 0.575 0.505 0.977 0.9161 0.8535 0.905 0.337 0.301 0.335 0.29

23 0.4027 0.212 0.45 0.222 0.127 0.102 0.165 0.102 0.2277 0.262 0.275 0.222 0.4377 0.432 0.425 0.382 0.477 0.462 0.5495 0.442

24 0.795 0.806 0.799 0.708 0.415 0.45 0.506 0.427 0.485 0.45 0.476 0.44 0.6725 0.65 0.816 0.697 0.385 0.385 0.346 0.27
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Table A1. Cont.

Ground
Points

SAVI ARVI SARVI MASAVI OSAVI

2017 2018 2019 2020 2017 2018 2019 2020 2017 2018 2019 2020 2017 2018 2019 2020 2017 2018 2019 2020

25 0.65 0.393 0.693 0.492 0.35 0.343 0.33 0.302 0.325 0.33 0.373 0.302 0.35 0.533 0.493 0.342 0.55 0.733 0.783 0.642

26 0.79 0.762 0.818 0.799 0.69 0.662 0.68 0.598 0.479 0.469 0.498 0.4998 0.979 0.9662 0.998 0.998 0.609 0.622 0.648 0.591

27 0.75 0.54 0.77 0.55 0.45 0.54 0.67 0.52 0.475 0.488 0.479 0.4022 0.795 0.854 0.847 0.782 0.465 0.454 0.497 0.382

28 0.693 0.487 0.688 0.491 0.39 0.418 0.418 0.281 0.39 0.408 0.408 0.321 0.709 0.718 0.738 0.701 0.39 0.398 0.398 0.2971

29 0.512 0.605 0.586 0.36 0.491 0.425 0.56 0.35 0.32 0.35 0.36 0.395 0.45 0.52 0.603 0.495 0.52 0.55 0.66 0.5

30 0.701 0.503 0.629 0.635 0.51 0.523 0.619 0.485 0.497 0.453 0.509 0.4785 0.761 0.853 0.849 0.785 0.61 0.53 0.649 0.585

31 0.622 0.731 0.687 0.547 0.512 0.501 0.591 0.47 0.492 0.501 0.489 0.437 0.7652 0.751 0.848 0.697 0.552 0.591 0.648 0.547

32 0.339 0.44 0.486 0.295 0.27 0.224 0.256 0.235 0.249 0.247 0.299 0.225 0.439 0.474 0.486 0.385 0.37 0.324 0.326 0.295

33 0.568 0.647 0.704 0.503 0.48 0.47 0.49 0.43 0.46 0.44 0.44 0.43 0.6 0.747 0.844 0.73 0.56 0.47 0.644 0.43

34 0.392 0.45 0.44 0.23 0.28 0.235 0.314 0.193 0.28 0.205 0.294 0.213 0.438 0.445 0.424 0.403 0.32 0.35 0.324 0.33

35 0.791 0.59 0.787 0.686 0.57 0.59 0.607 0.586 0.471 0.593 0.457 0.389 0.871 0.859 0.947 0.786 0.51 0.79 0.6747 0.586

36 0.598 0.697 0.778 0.609 0.38 0.403 0.458 0.395 0.488 0.447 0.549 0.435 0.688 0.582 0.668 0.602 0.68 0.694 0.6948 0.575
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