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With the successful introduction of advanced driver
assistance systems, vehicles with driving automation
technologies have begun to be released onto the mar-
ket. Because the role of human drivers during au-
tomated driving may be different from the role of
drivers with assistance systems, it is important to de-
termine how general users consider such new tech-
nologies. The current study has attempted to con-
sider driver trust, which plays a critical role in form-
ing users’ technology acceptance. In a driving sim-
ulator experiment, the demographic information of
56 drivers (50% female, 64% student, and 53% daily
driver) was analyzed with respect to Lee and Moray’s
three dimensions of trust: purpose, process, and per-
formance. The statistical results revealed that female
drivers were more likely to rate higher levels of trust
than males, and non-student drivers exhibited higher
levels of trust than student drivers. However, no driv-
ing frequency-related difference was observed. The
driver ratings of each trust dimension were neutral
to moderate, but purpose-related trust was lower than
process- and performance-related trust. Additionally,
student drivers exhibited a tendency to distrust au-
tomation compared to non-student drivers. The find-
ings present a potential perspective of driver accept-
ability of current automated vehicles.

Keywords: driving automation, human-machine trust,
supervisory control, gender, acceptance of automation

1. Introduction

New technologies and smart interfaces have been suc-
cessfully introduced into a variety of automation domains,
such as healthcare [1], surgery [2], and manufacturing [3].
Among them, ground surface transportation is one of
the representative domains [4]. Over the last decades,
advanced driver assistance systems (ADAS) have con-
tributed to road safety, driving comfort, and energy con-
sumption reductions [5, 6]. With the development of

ADAS, vehicles with driving automation technologies
have been introduced through various media campaigns,
and some of them have been released onto the market.
Current commercialized vehicles with driving automation
technologies are at level 2 on the SAE scale [7], i.e.,
driving automation that executes primary vehicle controls,
such as maintaining longitudinal and lateral vehicle posi-
tion in limited driving situations. With these technologies,
human drivers are still expected to monitor the road condi-
tion and to resume control of the driving task when neces-
sary. As driving automation shifts the role of drivers from
a primary to supervisory role, automated vehicles are ex-
pected to have the potential to improve road safety and re-
duce human error [8]. Previous research on general users’
attitudes toward automated vehicles described a positive
intention to use automated vehicles and the expectation of
such benefits [9]. However, methods for examining the
social acceptability of automated vehicles remain a sub-
stantial concern today.

Demographic factors, such as age, gender, or national-
ity, have been utilized to investigate driver acceptance of
automated vehicles. Older drivers’ general attitude toward
self-driving cars is relatively negative compared to that of
younger drivers [10, 11, a]. Surveys in terms of driver age
such as that conducted by Lee et al. [12] have revealed
that younger drivers showed a more positive attitude to-
wards fully automated vehicles than older drivers. Payre
et al. [13] showed a contradictory view that older drivers
were likely to adopt automated vehicles. Rödel et al. [14]
reported that drivers’ intention to use automated vehicles
increased with increasing drivers’ age. With respect to
gender, female drivers are less likely to adopt automated
vehicles than male drivers, indicating that women were
uncertain about the use of autonomous cars rather than
men [a]. However, KMPG [b] found that females were
more interested in self-driving cars owing to their benefits
than males. Hulse and his colleagues [10] found no dif-
ferences in general attitudes toward self-driving cars be-
tween respondents, driver, and non-drivers. In addition,
the trip characteristics influence driver acceptance of au-
tomated vehicles [15–17, c]. Recent studies on driver ac-
ceptance in terms of demographic traits suggested recom-
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mendations for policymakers, but the exploration of driver
acceptance from various perspectives is still needed.

Other factors besides demographic traits influence
drivers’ intentions and willingness to adopt new technol-
ogy. Human-machine trust in automation is playing an
important role in shaping driver acceptance [18, 19]. In-
deed, Hillary et al. [20] investigated consumers’ trust,
finding a willingness to adopt autonomous vehicles as al-
ternatives to their vehicle. Trust is a multidimensional
concept, i.e., it is shaped by several bases, such as de-
pendability, predictability, or robustness [21–23], and it
dynamically changes through human-automation interac-
tion [24, 25] or by obtaining information about automa-
tion [26, 27]. To describe the basis of trust with respect
to goal-oriented information that needed to support ap-
propriate trust, Lee and Moray [28] proposed a three-
dimensional (3D) model: purpose, process, and perfor-
mance. Purpose refers to why the automation was de-
signed, the process represents how the automation func-
tions, and performance refers to how the automation is op-
erating. Therefore, automation designers are expected to
consider these three categories to determine an operator’s
trust in automation. Given that myriad studies are investi-
gating general users’ acceptance of and trust in automated
vehicles [29, 30], various insights have been suggested
with respect to the high levels of driving automation. To
the best of our knowledge, however, there has been lit-
tle discussion about relationships between demographics
and the trust dimension in contemporary automated ve-
hicles that are designed following the SAE level 2. In
addition, while the 3D model by Lee and Moray [28]
has been applied in many studies about human-machine
trust (e.g. [31]), the information that should be provided
to drivers during partially automated driving has not been
closely examined with empirical data.

The purpose of this study is to explore the relation-
ship between demographic factors and driver trust in driv-
ing automation. The driving simulator manipulated the
partial driving automation as well as situations that re-
quired drivers’ immediate intervention. Drivers’ subjec-
tive ratings of trust were interpreted regarding the 3D
model [28] to determine the information needs for appro-
priate automation design. Additionally, the attribute of
distrust, which is an opposite concept of trust and refers
to a negative expectation of consequences by automation,
was measured to explore comprehensive understandings
of trust.

2. Methods

This research complied with the University of
Tsukuba’s ethics code and was approved by the ethi-
cal review board. Informed consent was obtained from
each participant. The entire experiment was conducted in
Japanese.

 

Fig. 1. Fixed driving simulator.

2.1. Participants
56 participants with a valid driver’s license, aged be-

tween 19 and 75 years (M = 31.9, SD = 14.7 years), par-
ticipated in the current study. The participants were split
evenly in terms of gender (28 females). No participant
had taken part in a driving simulator or on-road experi-
ment in terms of driving automation. Furthermore, they
were comfortable speaking and reading Japanese. All the
participants were compensated with reimbursement for
their participation (JPY 1660).

The mean number and standard deviation of the years
of licensure was 12.6 and 14.4 years, respectively. In re-
sponse to the question regarding how often the partici-
pants drove per week, 16 drove every day, 10 drove 4–
6 days a week, 4 drove 1–2 days a week, and the re-
maining 26 never drove. With respect to the answer re-
garding how many kilometers the participants drove ev-
ery week, 15 participants reported over 100 km, 7 re-
ported between 50 and 100 km, 9 reported between 10
and 50 km, 1 reported 6 km, and the remaining 24 partic-
ipants reported that they did not drive after obtaining the
driver license. The average mileage driven per week was
63.32 km (SD = 107.87 km).

2.2. Apparatus
The experiment was carried out using a driving sim-

ulator at the University of Tsukuba, which consisted of
a driving sheet, a steering wheel, an accelerator, and a
brake pedal (Fig. 1). The driving scenarios generated
by the D3Sim (Mitsubishi Precision Co., Ltd.) were pro-
jected on five displays. A monitor was used to present the
speedometer and human-machine interface (HMI), and
the audio was paired with the driving environment and
played through two speaker systems.

2.3. System Description
Driving automation in the present study included both

longitudinal and lateral vehicle controls. The longitudi-
nal control resembled an adaptive cruise control system
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and followed indicated speed limits, maintaining the ve-
hicle speed at 80 km/h, which was the maximum velocity.
For instance, when a merging vehicle appeared in front
of a host vehicle, the automation automatically reduced
the speed of the host vehicle to avoid a rear-end collision.
The lateral control was designed like a lane-keeping as-
sistance system, and the automation was able to adjust
the position of the vehicle in the middle of the driving
lane. Furthermore, the automated driving system carried
out lane changes when there were slow leading vehicles
rather than when the vehicle velocity was 80 km/h. The
drivers were able to activate the automation by pressing a
button next to the driving seat. Each driver was instructed
to disengage the execution of driving control, e.g., grasp-
ing a steering wheel or pressing pedals. The highway road
with two lanes was simulated by the driving simulator,
and four trials were presented to all the participants. Each
trial encompassed several events that the automated driv-
ing system was able to handle.

The HMI consisted of a visual display and acoustic
outputs. Instrument clusters were displayed on the dash-
board, and acoustic signals were projected by two speak-
ers. The visual cluster was projected at the onset of sys-
tem activation and changed depending on the situation:
detecting a leading vehicle and merging vehicle, and when
the system requested the driver to intervene in tasks owing
to system failure. In the event of system failure, an acous-
tic output was generated with a change in the presented
visual cluster.

2.4. Driving Scenario
The driving simulator generated a Japanese highway

road with two lanes, and four trials were presented to all
participants. The driver was required to supervise the sys-
tem status and situations during the simulation. In the
first, second, and fourth trials, the participants experi-
enced error-free automation, which indicates that the sys-
tem would be able to handle all situations safely. These
trials included several traffic events: overtaking slow lead-
ing vehicles, reducing vehicle speed, and changing lanes
when a merging vehicle appeared and reducing speed
when another vehicle attempted to cut ahead of the host
vehicle in the driving lane. Unlike these three trials, the
intervention task was presented to the driver in the third
trial. The system issued the request to intervene with the
drivers on the curve road.

2.5. Questionnaire
In the current study, the levels of trust were measured

with a questionnaire proposed by Muir and Moray [25].
This questionnaire has been frequently administrated in
studies on human-machine trust. All the drivers re-
sponded to the question “To what extent do you trust
the driving automation?” with scales between 0 to 100.
This study used the questionnaire of trust dimension pro-
posed by Chien et al. [31]. The participants were asked
to rate their likelihood using a seven-point rating scale

Table 1. Statement summing up four attitudes toward the
automated vehicle.

Construct Statement

Purpose

• I can rely on automation to ensure my

performance.

• I am confident in automation.

• Automation does not fail me.

Process

• It is easy to follow what automation does.

• Automation is friendly to use.

• Automation uses appropriate methods to

reach decisions.

• I understand how automation works.

Performance

• Automation improves my performance.

• Using automation increases my produc-

tivity.

• Using automation enables me to accom-

plish tasks more quickly.

Distrust

• Automation may result in unpredictable

situations.

• I believe automation could make errors.

• I am wary of automation.

• I am suspicious of automation’s intent.

• Automation is deceptive.

• Automation behaves in an underhanded

manner.

(where 1 = “Disagree completely,” 2 = “Disagree mod-
erately,” 3 = “Disagree somewhat,” 4 = “Neither agree
nor disagree,” 5 = “Agree somewhat,” 6 = “Agree moder-
ately,” 7 = “Agree completely”). The questions required
the participants to rate the automation on the following as-
pects: distrust, purpose, process, and performance. Chien
and his colleagues developed this questionnaire by adopt-
ing existing questionnaires in terms of technology accep-
tance [32] as well as human-automation trust [33]. They
performed the validations of the questionnaire to exam-
ine the relationship between cultural factors and the three
trust dimensions [34, 35]. Table 1 describes the constructs
and statements of the trust questionnaire.

2.6. Procedure
Upon arrival, the participants signed informed consent

forms and were then given instructions regarding driving
automation. Next, participants practiced a drive to famil-
iarize themselves with the simulated driving automation
for 5–7 min. Afterward, the participants moved onto tri-
als. All the participants carried out four trials, and the
trials included several traffic situations, such as a merg-
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ing car and overtaking events. In the first, second, and
fourth trials, flawless driving automation was simulated.
In the third trial, the automation alerted the driver through
a short notice that the system was going to disengage vehi-
cle controls and that the drivers should resume the control
immediately. It requested for the driver to intervene. Af-
ter completion of all the simulations, the participants re-
ported demographic information, filled out questionnaires
in terms of trust in the driving automation, and took a brief
interview on their general impressions of automation and
simulation. Interview questions included questions like
“What did you feel about driving automation throughout
this simulation?”

2.7. Statistical Analysis
As mentioned, data collection of drivers’ subjective

rating of trust and self-reported demographic informa-
tion after the driving simulation was achieved. We clas-
sified three factors affecting their trust: gender (female
and male), occupation (student and non-student), and fre-
quency of driving (daily and non-daily). In this study, the
occupations of the participants were used to categorize the
participants. Because the driving simulator experiment
was conducted at the University of Tsukuba, 36/56 par-
ticipants were students at this university (64%). To test
the hypothesis that students are likely to have an affin-
ity to technology, including driving automation [36], we
divided the participants into two groups: student and non-
student drivers. Furthermore, the drivers’ affinity toward
acts of driving was considered an important factor affect-
ing their trust. Regarding the frequency of driving a week,
the drivers were classified into two groups: daily and non-
daily drivers. Daily drivers (53%) had their own cars or
used a family car and had driven the car at least once a
week. Non-daily drivers did not have their own car, and
most of them had not driven a car after getting the driver’s
license. The driven mileages a week of the daily and non-
daily drivers were 116.2 and 2.31 km, respectively.

We carried out independent-samples t-tests to deter-
mine the differences in driver age, years of licensure, and
driven mileage across the three demographic factors. A
2× 3 analysis of variance (ANOVA) was conducted with
the demographic factors as the between-subject factors
and the three dimensions as the within-subject factors.
For the analysis of the levels of trust and distrust in au-
tomation, the independent-samples t-test was conducted.

3. Results

Table 2 shows the number of drivers and descriptive
values of the drivers’ ages and years of licensure across
their genders, occupations, and frequencies of driving.

3.1. Gender
Independent-samples t-tests revealed no significant dif-

ferences of age (t(54) = 1.06, p = 0.29), driving experi-
ence (t(54) = 1.01, p = 0.32)), and driving mileage per

Table 2. Descriptive values of drivers’ ages and driving ex-
perience across gender, occupation, and frequency of driv-
ing.

Age
Years of
licensure

N M (SD) M (SD)
Gender Female 28 33.96 14.58

(15.10) (14.96)

Male 28 29.79 10.69
(14.30) (13.75)

Occupation Student 36 22.42 3.43
(1.65) (1.58)

Non-student 20 48.90 29.2
(12.15) (12.02)

Frequency Daily 30 40.17 20.82
(15.98) (15.52)

Non-daily 26 22.31 3.21
(1.69) (1.57)

Fig. 2. Female and male drivers’ trust across the dimensions
of purpose, process, and performance, and the attribute of
distrust.

week (t(54) = 1.64, p = 0.11) between female and male
drivers.

The 2 × 3 repeated-measures ANOVA revealed a
main effect of the three trust dimension on driver trust
(F(2,108) = 6.55, p = 0.002, η2

G = 0.04). Post-hoc tests
showed significantly lower levels of trust for the dimen-
sion of purpose than for the dimensions of process and
performance (ps = 0.01). There were no effects of gender,
(F(1,54) = 0.01, p = 0.93, η2

p < 0.001) and no interac-
tion between gender and dimension factors (F(2,162) =
1.22, p = 0.30, η2

p = 0.01). Fig. 2 describes the mean
ratings of distrust and trust for each dimension across the
gender factor.

Female drivers rated higher levels of trust than male
drivers (t(54) = 2.04, p = 0.046, M = 73.11 vs. 62.41).
An independent-samples t-test did not reveal significant
differences in distrust ratings between female and male
drivers (t(54) = 0.18, p = 0.86, M = 4.58 vs. 4.55).
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Fig. 3. Student and non-student drivers’ trust across the
dimensions of purpose, process, and performance, and the
attribute of distrust.

3.2. Occupation
As shown in Table 2, non-student drivers’ ages and

driving experience were significantly higher than stu-
dent drivers’ ages (t(54) = 12.96, p < 0.001) and
driving experience (t(54) = 12.76, p < 0.001). The
independent-samples t-test revealed that the non-student
drivers drove more frequently per week than the student
drivers (t(54) = 3.63, p < 0.001).

Driver trust ratings differed across the dimension of
trust (F(2,108) = 6.46, p = 0.002, η2

G = 0.04). The post-
hoc comparison also revealed that trust ratings for the di-
mension of purpose were significantly lower than trust
ratings for the dimensions of process and performance
(ps = 0.02). The remaining effect and interaction were
not significant. Fig. 3 illustrates the mean ratings of dis-
trust and trust for each dimension across the occupation
factor.

There was a significant difference in driver trust
(t(54) = 2.81, p < 0.01). Non-student drivers exhibited
higher levels of trust than student drivers (M = 4.72 vs.
4.28). Accordingly, the t-test also revealed that the at-
tribute of distrust did differ significantly (t(54) = 2.64,
p = 0.01). The student drivers rated higher levels of
distrust toward driving automation than the non-student
drivers (M = 4.72 vs. 4.28). These two statistical re-
sults are consistent in revealing that non-student drivers
are more likely to trust automated vehicles than student
drivers.

3.3. Frequency of Driving
The t-test revealed that the daily drivers’ ages were

significantly higher than those of the non-daily drivers
(independent-samples t(54) = 5.67, p < 0.001). The year
of licensure and mileage of the daily driver were longer
and higher than those of the non-daily driver (t(54) =
5.76, p < 0.001, and t(54) = 4.61, p < 0.001, respec-
tively).

The trust dimension has a significant effect on driver
trust (F(2,108) = 6.49, p = 0.002, η2

p = 0.04). The

Fig. 4. Daily and non-daily drivers’ trust across the dimen-
sions of purpose, process, and performance, and the attribute
of distrust.

levels of trust for the dimensions of process and perfor-
mance were higher than those for the dimension of pur-
pose (ps = 0.01). The data did not provide substantial ev-
idence for a significant effect of the frequency of driving
(F(1,54) = 0.09, p = 0.76, η2

p = 0.001) as well as inter-
action between the frequency of driving and the trust di-
mension (F(2,108) = 0.67, p = 0.51, η2

p = 0.01). Fig. 4
describes the mean ratings of distrust and trust for each
dimension across the frequencies of the driving factor.

No significant difference in trust was found between
daily and non-daily drivers (t(54) = 1.26, p = 0.25, M =
70.9 vs. 64.15). For the attribute of distrust, the same
result was found (t(54) = 0.95, p = 0.35, M = 4.49 vs.
4.65).

4. Discussion

The current study examined driver trust in driving au-
tomation with respect to drivers’ gender, occupation, and
frequency of driving. In the driving simulator experiment,
all the participants experienced driving automation that
executed lateral and longitudinal controls, and lane chang-
ing on the highway. The 3D model proposed by Lee and
Moray [28] and the attribute of distrust were used to ex-
plore which basis of trust most influences driver trust and
how demographic factors affect trust. Demographic char-
acteristics, such as age, duration of driver’s license pos-
session, and driver mileage, significantly differed across
the three demographic factors.

The results of statistical analyses revealed substantial
differences in trust ratings across the three demographic
factors. This result indicates that driver gender and occu-
pation influence driver trust in driving automation. As
mentioned previously, recent studies found that higher
trust in automated vehicles is observed in males than in fe-
males [10–13, a]; however, opposite results have also been
found [b]. In Feldhütter et al. [37], driver trust varied with
gender, and male drivers showed higher levels of trust of
and intention to use highly automated vehicles than fe-
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male drivers. Furthermore, females found highly auto-
mated driving more uncomfortable compared to males.
However, our data revealed that females are more likely
to trust driving automation than males. Moreover, the fre-
quency of driving did not affect their trust. This result
agrees with the results of Hulse et al. [10], who found that
drivers and non-drivers showed similar attitudes toward
an autonomous car. Most non-daily drivers in our present
study had not driven since they obtained their driver li-
censes. The effect of daily driving on driver trust may
therefore be minimal. Future studies can expand on the
sample sizes and the current experimental design used in
the current study.

For the distrust attribute, the student drivers showed
higher levels of distrust of the driving automation than
non-student drivers. Furthermore, the analysis of trust
ratings also revealed that non-student drivers were more
likely to give higher trust ratings than student drivers,
which does not agree with the result that student drivers
are likely to trust and have an affinity for vehicle technol-
ogy [34]. Interestingly, although most non-daily drivers
were student drivers, driving-related differences in both
trust and distrust were not observed. The result in terms of
the occupation may differ according to drivers’ affiliation.
The students at the University of Tsukuba perhaps strictly
rated their trust compared to the non-student drivers. If
more students from the engineering departments partici-
pated in the next study, the data may reveal higher levels
of trust in automated cars for the student drivers than for
the non-student drivers. For example, an engineering stu-
dent driver reported that his previous work on developing
sensors led to a distrust of automation; however, a non-
student driver who has used advanced driver assistance
systems for many years expected rapid commercialization
of automated vehicles. A future study should consider
drivers with a wide range of occupations. Additionally,
detailed participant interviews need to clarify why drivers
trust or distrust automation in the next study.

This study investigated the relationship between three
aspects of trust in automation. As shown in Figs. 2–4,
trust across the three dimensions was moderate, with most
drivers rating trust with 4 or 5 on the seven-point scale
(“Neither agree nor disagree” and “Agree somewhat”).
Therefore, this result implies that drivers’ attitudes to-
ward driving automation are slightly favorable. The rat-
ings of trust were collected after all trials had been com-
pleted in the driving simulator. All the drivers completed
four trials with the simulated driving automation, and in
one of the trials, the drivers were asked to intervene by
the automation. Because the driver was informed about
the failure of the automated vehicle, it may be consid-
ered that the driver’s trust rating was not quite high. In
particular, according to the responses given by the drivers
in the short interview conducted after completion of the
questionnaire, several drivers were concerned about driv-
ing safety when unexpected system failures occurred in
the urban road because the driving scenario in the present
study is less hazardous than the real-life driving situation
on an urban road with a high car density. This suggests

that automation designers should be concerned about how
to ensure driving safety for drivers.

Differences in the levels of trust between each dimen-
sion were found in this study. The driver ratings for the
purpose dimension were significantly lower than those of
the process and performance dimensions across all demo-
graphic factors. Information about the three dimensions
could be used to determine appropriate levels of trust.
This result may be interpreted to mean that information
relevant to what the automation is supposed to do needs
to be provided to drivers in comparison with information
relevant to the actual performance of automation and how
the automation works. The finding perhaps suggests that
it can make recommendations for automation designers as
well as is helpful for maintaining the vigilance of drivers
who already purchased contemporary automated vehicles.
However, this result should be interpreted cautiously be-
cause the number of items varied across each dimension.
Therefore, each questionnaire item should be considered
to discuss the trust dimension with the basis of trust, such
as reliability or understanding. In line with the discus-
sion about the occupation result, further studies require
specific questionnaire items to clarify the dimension that
most affects driver trust.

The present finding should be discussed considering
several limitations. This result may not be necessarily
expanded to generalize driver trust in the partially auto-
mated vehicle. As mentioned, the driving simulator ex-
periment was conducted at the University of Tsukuba, and
over half of all participants were students at the univer-
sity. Future studies should be designed with a larger num-
ber of drivers and a wide variation in driver occupation
and frequency of driving. Furthermore, 53 of all partici-
pants were Japanese; therefore, this finding may only be
generalizable to Japanese populations. Notwithstanding
these limitations, this study provides a new perspective
in terms of the relation between trust and demographic
factors. Most of the studies on the acceptance of auto-
mated vehicles have been conducted through online sur-
veys; however, our present study measured the attitudes
of drivers who had the experience of simulated driving au-
tomation as well as regarded the automated vehicle in the
current market. The current study adapted the 3D model
to the domain of partial driving automation with empirical
data collected by the driving simulator. Our findings may
provide insights into the automation design and training
method design. In future work, we shall consider not only
the factors in the current study but also different factors,
such as nationality, driving habits, trip characteristics, or
automation experience.

5. Conclusion

The current study explored drivers’ trust in current au-
tomated vehicles with respect to demographic informa-
tion and attributes of trust. Overall, the drivers were likely
to trust driving automation, and gender- and occupation-
related differences in trust were observed. The demo-
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graphic factors were considered as they were expected to
provide additional information about driving automation
design for drivers to lead to appropriate levels of human-
machine trust. The present finding is an important contri-
bution to literature about driver acceptance of automated
vehicles and highlight a need for further study of the in-
fluences of other factors affecting driver acceptance.

Acknowledgements
This research was funded by JSPS KAKENHI 17H00842. We
would like to thank the anonymous reviewers for their supportive
comments.

References:
[1] T. L. Mitzner, L. Tiberio, C. C. Kemp, and W. A. Rogers, “Under-

standing healthcare providers’ perceptions of a personal assistant
robot,” Gerontechnology, Vol.17, No.1, pp. 48-55, 2018.

[2] S. Maeso, M. Reza, J. Mayol, J. B. M. Guerra, E. Andradas, and
M. Plana, “Efficacy of the Da Vinci Surgical System in Abdom-
inal Surgery Compared with that of Laparoscopy: A Systematic
Review and Meta-Analysis,” Ann. Surgery, Vol.252, No.2, pp. 254-
262, 2010.

[3] A. Negiz, A. Cinar, J. E. Schlesser, P. Ramanauskas, D. J. Arm-
strong, and W. Stroup, “Automated control of high temperature
short time pasteurization,” Food Control, Vol.7, No.6, pp. 309-315,
1996.

[4] Y. Yamani and W. J. Horrey, “A theoretical model of human-
automation interaction grounded in resource allocation policy dur-
ing automated driving,” Int. J. Hum. Factors Ergon., Vol.5, No.3,
pp. 1-15, 2018.

[5] S. Kato, N. Hashimoto, T. Ogitsu, and S. Tsugawa, “Driver As-
sistance Systems with Communication to Traffic Lights – Config-
uration of Assistance Systems by Receiving and Transmission and
Field Experiments –,” J. Robot. Mechatron., Vol.22, No.6, pp. 737-
744, 2010.

[6] Y. Fujinami, P. Raksincharoensak, D. Ulbricht, and R. Adomat,
“Risk Predictive Driver Assistance System for Collision Avoidance
in Intersection Right Turns,” J. Robot. Mechatron., Vol.30, No.1,
pp. 15-23, 2018.

[7] J3016 201806, “Taxonomy and definitions for terms related to driv-
ing automation systems for on-road motor vehicles,” Warrendale,
PA, USA: SAE Int., 2016.

[8] D. J. Fagnant and K. Kockelman, “Preparing a nation for au-
tonomous vehicles: Opportunities, barriers and policy recommen-
dations,” Transp. Res. Part A Policy Pract., Vol.77, pp. 167-181,
2015.

[9] C. Ward, M. Raue, C. Lee, L. D’Ambrosio, and J. F. Coughlin,
“Acceptance of automated driving across generations: the role of
risk and benefit perception, knowledge, and trust,” M. Kurosu (Ed.)
“Human-Computer Interaction. User Interface Design, Develop-
ment and Multimodality,” HCI 2017, Lecture Notes in Computer
Science, Vol.10271, Springer, Cham, pp. 254-266, 2017.

[10] L. M. Hulse, H. Xie, and E. R. Galea, “Perceptions of autonomous
vehicles: Relationships with road users, risk, gender and age,”
Safety Science, Vol.102, pp. 1-13, 2018.

[11] C. Lee, B. Seppelt, B. Reimer, B. Mehler, and J. F. Coughlin, “Ac-
ceptance of Vehicle Automation: Effects of Demographic Traits,
Technology Experience and Media Exposure,” Proc. of the Human
Factors and Ergonomics Society Annual Meeting, Vol.63, No.1,
pp. 2066-2070, 2019.

[12] C. Lee, C. Ward, M. Raue, L. D’Ambrosio, and J. F. Coughlin,
“Age differences in acceptance of self-driving cars: a survey of
perceptions and attitudes,” J. Zhou and G. Salvendy (Eds.), “Hu-
man Aspects of IT for the Aged Population. Aging, Design and
User Experience,” ITAP 2017, Lecture Notes in Computer Science,
Vol.10297, Springer, Cham, pp. 3-13, 2017.

[13] W. Payre and J. Cestac, “Fully Automated Driving : Impact of Trust
and Practice on Manual Control Recovery,” Hum. Factors, Vol.58,
No.2, 2013.
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