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Bringing a Vehicle to a Controlled Stop:
Effectiveness of a Dual Control Scheme for

Identifying Driver Drowsiness and Preventing Lane
Departures under Partial Driving Automation

Requiring Hands-on-Wheel
Yuichi Saito, Member, IEEE, Makoto Itoh, Member, IEEE, and Toshiyuki Inagaki, Senior Member, IEEE

Abstract—Partial driving automation systems execute sus-
tained lateral and longitudinal control, while humans are re-
quired to supervise the automated driving features. Similar with
drivers using manual driving settings, those using automated
driving systems may also experience drowsiness. However, ex-
isting systems that aim to detect driver drowsiness tend to be
unreliable. This study applies a dual-control scheme in the partial
driving automation context in which the driver must keep their
hands on the vehicle’s steering wheel. This scheme executes a
partial steering control when a vehicle lane departure is antici-
pated (because of inappropriate torque input) and then activates
a deceleration control if the driver does not properly perform the
required action. To determine whether the driver is supervising
the partial driving automation, the scheme attempts to create
an opportunity for driver-automation interactions. Thus, the
controller’s objectives are twofold: safety control and driver
state identification. This study investigated the effectiveness of
the scheme for identifying driver drowsiness and preventing
lane departures using only vehicle information. Twenty drivers
participated in a fixed-base driving simulator experiment in a
sleep-inducing environment. While we observed cases in which
the system could effectively bring the vehicle to a controlled
stop, the timeliness and accuracy of the driver state identification
remained as issues owing to indirect links between the drivers’
drowsiness level and controller activation. We conclude that
although the dual-control scheme is a useful mechanism to
avoid lane departures, the driver state identification needs to
be improved to ensure timely and effective detection of driver
drowsiness.

Index Terms—Driving safety, partial driving automation,
human-machine interaction, driver monitoring, dual control.

I. INTRODUCTION

S imilar to drivers using manual driving settings, those
using driving automation systems may also suffer from

sleepiness and fatigue [1]–[3]. Daytime sleepiness can be
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attributed to the time of day (circadian rhythms), extended
duration of wakefulness, and sleep deprivation [4], [5]. Fatigue
can be classified into types, active fatigue and passive one [4],
which are produced by the characteristics of driving, such as
task demands. Active fatigue is produced by increased task
load situations (e.g., high-density traffic and poor visibility),
whereas passive fatigue is produced by task underload (e.g.,
monotonous and predictable drives [6], [7], and supervision of
automated driving systems [1]). The effects of sleepiness and
fatigue on driving performance decrements have been widely
discussed in experimental studies [8]–[10], and sleepiness
and fatigue symptoms have been found to contribute to the
deterioration of driving performance [10].

The Society of Automotive Engineers (SAE) defined five
levels of driving automation (LoDA) [11] from the perspective
of function allocation between the driver and the automation. It
defined LoDA 2 (i.e., partial driving automation) as a system in
which automation executes sustained lateral and longitudinal
vehicle motion control, but not complete object/event detection
and response (OEDR). In partial driving automation, humans
engage in a combination of automated driving features, and
are required to supervise the automated driving features and
complete OEDR subtasks. Thus, humans must fulfill the role
of the driver and be responsible at all times to complete
strategic, tactical, and operational tasks [11], [12].

Partial driving automation systems can be divided into two
types: hands-on automated driving systems that require drivers
to hold the vehicle’s steering wheel (e.g. Autopilot [13])
and hands-off automated driving systems that do not (e.g.,
Super Cruise [14] and ProPilot 2.0 [15]). In general, a hands-
off automated driving system is capable of accurate vehicle
localization using a digital map [15]. By contrast, a hands-
on automated driving system without a digital map is less
capable of localizing the vehicle’s position. Therefore, hands-
on automated driving systems expect that OEDR subtasks
can be completed through the driver’s active involvement via
shared control [16]. However, even in hands-on automated
driving systems, the drivers are passive operators. While the
system actively performs lateral control, drivers are required to
maintain a light grip on the wheel so as not to input unneces-
sary steering torque. Although drivers remain in command of
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their driving, it would be unrealistic to expect that drivers are
always ready to respond as needed [17]–[19]. Thus, sleepiness
and passive fatigue, which deteriorate driving performance [4],
[5], are highlighted as issues of human factors in the context
of hands-on partial driving automation.

Driver monitoring for detecting sleepiness and fatigue can
be categorized into two methodologies [20]: direct driver-
related and indirect driving-related measurements. The former
approach can be classified into physiological measurements,
such as Electroencephalogram (EEG) [21], [22] and Electro-
cardiogram (ECG) [23]; behavioral measurements, such as
frequent driver body movements [24] measured by pressure
distribution sensors, nodding or swinging heads [25]–[27],
slow eyelid closure [28], eye blink frequency and eye closure
duration [29], and percentage of eyelid closure (PERCLOS)
[30], [31] as determined by camera sensors; and facial expres-
sion recognition [32]–[34]. Non-intrusive systems are suitable
to detect drowsiness of drivers during automated driving [35].
The latter approach involves vehicle-based measurements,
such as movements of the steering wheel and vehicle lateral
motion [29], [36]–[38]. For example, as the drowsiness level
of the driver increases, the standard deviation of the lateral
position (SDLP) increases [29]. However, existing methods
tend to be unreliable, particularly because of individual varia-
tions in physiological and behavioral properties. Classification
methods, such as artificial neural networks [23], and support
vector machines [39], have not adequately addressed the indi-
vidual variation problem. Ingre et al. [29] found that individual
drivers have different SDLPs, even at similar drowsiness
levels. It is not easy to adjust a threshold that is applicable
to all drivers for classifying drivers’ drowsiness levels. Facial
expression recognition does not properly work if a mask or
sunglasses cover the driver’s face. Hence, a reliable approach
based on both direct driver-related and indirect driving-related
measures is one of the trends in technological development
[40].

Vehicle lateral control, which comprises most partial driv-
ing automation systems, includes the following functions:
lane centering systems (LCSs) and lane departure prevention
(LDP). These lateral controls provide haptic feedback to the
drivers, and haptic driver–system interactions can be created
at the operational level [41]. However, current partial diving
automation systems, which implement sustained lateral and
longitudinal vehicle motion control, do not account for the
driving context or the behavioral characteristics of drowsy
drivers. Thus, when an inappropriate steering action is de-
tected, the system performs LDP to return the vehicle to
the center of the driving lane. Although drivers can perceive
and recognize the machine’s intention via force feedback, the
condition with which a driver who is drowsy still tries to
continue driving still warrants further examination. Vehicles
equipped with partial driving automation systems may have
an additional function designed to bring the vehicle to a
controlled stop if the driver fails to supervise the feature’s
performance. Tesla’s Autosteer [13] has a mechanism used to
detect situations in which the driver takes their hands off the
wheel; if Autosteer does not detect the driver’s hands on the
wheel for a period of time, a flashing light is presented to

the driver with an auditory alert, and the following message is
displayed: “Apply slight turning force to steering yoke.” If the
driver repeatedly ignores prompts to take the wheel, Autosteer
slows the vehicle to a complete stop. This technological
development motivated us to design a haptic driver–system
interaction method to identify the driver drowsiness and bring
the vehicle to a controlled stop under the context of hands-on
partial driving automation.

A. Strategy to bring the vehicle to a controlled stop

In previous studies, the SAVE (System for effective
Assessment of the driver state and Vehicle control in
Emergency situations) project [42], which aimed at reducing
crashes due to driver states (e.g., states of low arousal and
degradation of mental and physical functions), has developed
a system that detects impaired driver states and undertakes
emergency handling in real time. The system functions to take
over control if the driver does not perform properly and fails
to respond to warnings [43]. In a similar design concept, we
proposed a haptic driver–system interaction method with a
dual-control scheme that attempts to execute vehicle control
and driver state identification in the context of manual driving
[44]. In the domain of control theory, dual control deals with
the control of uncertain systems whose characteristics are
unknown [45] and considers the dual role of control signals
for control and real-time estimation. The control signals of
adaptive systems have the following features: (i) the controlled
variable cautiously tracks the target value and (ii) the signals
excite the controlled object to enhance the process of parame-
ter identification, so that the control performance improves in
future intervals [46]. The controller has two objectives: action
—to perform safety control based on current information—
and investigation —to experiment with the system to know
and/or learn its behavior. In our previous study, this dual-
control scheme was applied to human–machine systems. Thus,
the controlled object is a vehicle and the object to be identified
via the signal is the driver’s state. The present study applies the
proposed dual-control scheme to a partial driving automation
that requires the driver’s hands on the wheel.

We now briefly describe the proposed scheme, which is
based on our previous study [44], [47]. The hands-on partial
driving automation does not change lanes or overtake other
vehicles autonomously without driver input (i.e., turn signal,
and then steering), and the drivers are responsible for the
steering input even when an LCS is active. Thus, they can
override the lateral control by inputting the steering torque.
Suppose that a vehicle deviates from a straight driving lane.
When the system anticipates that lane departure will occur in
1 s, it implements partial control as the first stage of safety
control to prevent lane departure from occurring, as shown in
Fig. 1. This first-stage safety control is sufficiently powerful
in keeping the vehicle in the driving lane, but it does not
bring the vehicle back to the center of the lane, resulting in
the vehicle being 0.5 m inside the lane markers, parallel to
them. Normally, if the driver supervises the partial driving
automation system appropriately, they will implement the
steering action to return the vehicle to the center of the driving
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lane in the event of approaching the lane boundary, as shown
in Fig. 2. If the driver implements the proper action within
10 s after the initiation of the first-stage control, the system
determines that “the driver has supervised the partial driving
automation.” By contrast, if the driver does not implement
the proper action within 10 s, the system determines that “the
driver failed to supervise the partial driving automation.” Then,
it implements the remaining steering control (second-stage
control) to return the vehicle to the center of the driving , as
shown in Fig. 3. In addition, the system executes deceleration
control to bring the vehicle to a controlled stop.

Control of first stage

0.5 m
1 sec

2.7 m

0.5 m

Target line

Fig. 1. Control of the first stage to prevent the lane departure.

Driver’s steering action

10 sec

Fig. 2. Driver’s action to return to the center of the lane.

Control of second stage10 sec

Fig. 3. Control of the second stage to return to the center of the driving lane.

B. Hypotheses

In previous studies, Naujoks et al. [48] assessed the relation-
ship between the driver’s reactions to the braking lead vehicle
and drowsiness level in the context of hands-on partial driving
automation, and one predictor for increased reaction time was
drowsiness. However, our understanding of the behavioral
patterns of a driver who feels sleepy when using hands-on
partial driving automation is still limited. Thus, this study aims
to evaluate the effectiveness of our dual-control scheme for
identifying driver drowsiness and preventing lane departures
in the context of hands-on partial driving automation, without
relying on direct driver-related measures. In this study, we
examined the following hypotheses:

(a) The driver will input inappropriate torque to the steering
wheel in conjunction with head pose movements due to
driver drowsiness. Moreover, the driver will be unable to
maintain a light grasp on the wheel when falling asleep,
which may lead to a hands-off-the-wheel situation with
improper torque input.

(b) Lane departure occurrence will be predicted due to the
conditions under (a). Thus, the proposed approach can
prevent lane departures.

(c) If a driver falls asleep, then proper actions to bring
the vehicle back to the center of the lane after the
activation of first-stage control cannot be implemented.
Accordingly, the system deems that “the driver failed
to supervise the partial driving automation” and hence
activates the deceleration control to bring a controlled
stop.

The remainder of this paper is organized as follows: In
Section II, we describe an experiment in which data are
collected on the driver state and behaviors when the proposed
scheme is activated. In Section III, we present the experimental
results. Finally, in Section IV, we discuss the effectiveness of
the proposed approach.

II. METHOD

The experiment was conducted with the approval of the
ethical review board of the University of Tsukuba.

A. Apparatus

As shown in Fig. 4, the experiment was performed with a
fixed-base driving simulator (Mitsuibishi Precision Co.,Ltd.),
which consists of an accelerator, a brake pedal, and a steer-
ing wheel (Moog, Inc.). Five computers, connected to the
simulation software (D3sim), generated the driving view (ap-
proximately 180◦). The scenario was presented to the drivers
with five monitors (SHARP 42-inch 1920×1080 monitors).
The self-aligning torque, which is part of the tire force, was
generated by D3sim and was fed back to the steering wheel.
In addition, two cameras (Smart Eye) were mounted on the
left and right sides of the desk, regarded as the cabin, and they
were used to detect eyelid and head pose activities.

B. Participants

A total of 20 students (Participants 1–20; 14 males and 6
females) aged between 20 and 28 years (mean (M) = 23.1,
standard deviation (SD) = 2.05 years) participated in this study.
The reward for participation was provided by the university.
All the participants possessed a valid driver’s license, and they
drove a vehicle at least once a week. They had corrected visual
acuity of 0.7 or higher based on the Landolt–ring vision test.

C. Partial driving automation with the dual–control scheme

A partial driving automation was implemented: a longitudi-
nal control system that automatically maintained the vehicle at
a target speed and an LCS that attempted to keep the vehicle’s
position in the center of the driving lane. In this experiment,
the participants remained in command of their driving, and
they could override the lateral control by inputting a torque of
at least 0.5 Nm. Thus, the maximum amount of torque assisted
by the LCS was set to ±0.5 Nm in the context of straight-line
driving.

The methods for lane departure prediction, lateral vehicle
control, and driver action detection were identical to those



4

Smart eye cameras

Fig. 4. Fixed-base driving simulator.

used in a previous study [44]. When the predicted value of
the time margin for lane departure became less than 1 s,
the system initiated the first-stage control to prevent the lane
departure, where the target line for the lateral vehicle control
was changed from the center of the lane to 0.5 m inside the
lane markers. The maximum amount of torque assisted by
the first-stage control was set to ±3 Nm. When the driver’s
steering action was not detected within 10 s after the initiation
of the first-stage control, the system initiated the second-stage
control, where the target line for the lateral vehicle control
was changed from 0.5 m inside the lane markers to the center
of the lane. The maximum amount of torque assisted by the
second-stage control was set to ±3 Nm. At the same time, the
system executed deceleration control to bring the vehicle to a
controlled stop with a target deceleration of 0.1 G.

D. Driving tasks

As in the previous study [44], a 100 km, two-lane, straight
expressway with 3.7 m-wide lanes was used. The participants
were required to drive in the left-hand lane. The task was
to keep the vehicle at the center of the driving lane while
gripping the wheel. To create a monotonous environment,
the desired speed of the longitudinal control was set to 100
km/h. In connection with the proposed dual-control scheme,
the participants were instructed to take steering action to
bring the vehicle back to the center of the lane when they
recognized the execution of the first-stage control. In addition,
the participants were instructed to consider the accelerator
action to return to the normal condition when they recognized
the execution of the deceleration control to bring the vehicle
to a controlled stop. When the participants stepped on the
accelerator while the deceleration control activation, the target
speed for longitudinal control was reset to 100 km/h.

E. Procedure

The experimental procedure was very similar to that used
in a previous study [44]. The experiment was performed for
one day for each participant. All the participants came to the
experiment room at 11:30 AM on the specified date. Informed
consent was obtained from all the participants. The participants
then completed practice runs to familiarize themselves with
the driving simulator. In the trial, the participants freely drove

TABLE I
DROWSINESS SCALE [33]

Level Description
1 Not Drowsy: Eye movement is rapid, and the

time between blinks remains stable.
2 Slightly Drowsy: Eye movement is slow.
3 Moderately Drowsy: Blinks are slowly, the

mouth moves, or the driver touches his/her face.
4 Significantly Drowsy: Number of blinks in-

creases noticeably, motions unnecessary for
driving are observed, yawns are frequent, deep
breathing is detected.

5 Extremely Drowsy: Eyelids are almost closed,
or the driver’s head inclines to the front or rear.

using a simulator equipped with the partial driving automation
using the proposed dual–control scheme. Consequently, all
the participants experienced the operation of the proposed
dual–control scheme. Afterward, all the participants were
required to take a lunch break between 12:00 and 12:50 and
were instructed not to consume caffeine. The calibration for
measuring eyelid opening with the Smart Eye camera was
conducted between 12:50 and 13:00. The experimental session
was scheduled from 13:00 to 14:00. Therefore, at least one and
a half hours had passed since the instruction to refrain from
caffeine since the beginning of the experimental session. All
the participants initiated the experimental session by depress-
ing the accelerator pedal, which activated the partial driving
automation system. In this experiment, the temperature of the
experiment room was adjusted to approximately 26 ◦C, which
is a temperature known as thermal comfort (thermally neutral)
[49], using an air conditioner to maintain a comfortable,
drowsiness-inducing environment.

F. Measurements and data processing

The measurement items were recorded with the driving
simulator at a sampling frequency of 120 Hz: the time at which
the first- and second-stage controls were executed, speed
[km/h], vehicle lateral position [m], steering angle [degrees],
steering angular velocity [degrees/s], steering torque input by
the drivers [Nm], steering torque input by the system [Nm],
and accelerator pedal stroke [%]. The distance between eyelids
[mm] and the pitch and roll angles of the head pose [degrees]
were recorded with the Smart Eye camera at a sampling rate
of 60 Hz.

Facial expression: The arousal state was assessed based on
the drowsiness scale [33] every 20 s by three evaluators who
assessed the participants’ drowsiness level using the criteria
listed in Table I. In this experiment, falling asleep indicated
level 5 drowsiness. The drowsiness levels were averaged and
rounded off for each rating.

Eyelid activity and head movement: The preprocessing of
the raw data of the distance between the eyelids and head
pose directions (pitch and roll angles), such as filtering, was
conducted. The distance between the eyelids was normalized
to [0, 100], and the value was treated as the degree of eyelid
opening. In this study, eyelid closure was defined as eyelid
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opening less than 20%, and the percentage of eyelid closure
time within a 60-second moving window was then calculated.

The data of the eyelid opening and the roll and pitch angles
of the head pose were segmented into 20-s sections to evaluate
the driver behavior over a short timeframe. The number of
blinks per 20 s and the SD of the roll and pitch angles of the
head pose per 20 s were calculated.

Lateral vehicle motion: The data of the steering torque
input by the drivers and the vehicle lateral position were also
segmented into 20-s sections. The mean and SD of the driver’s
input torque per 20 s, and the SD of the lateral position per
20 s were calculated.

G. Statistical analysis

To verify the hypotheses provided in Section I-B, we
investigated the following points:

1) Influence of the drowsiness level on the driver behavior:
We wished to focus on analyzing how the proposed dual con-
trol scheme was activated during which drivers were sleepier.
In a comfortable environment (approximately 26 ◦C) that
induces drowsiness in the early afternoon (13:00–14:00), the
participants were required to perform the monotonous 60-min
driving task using partial driving automation. The symptoms of
sleepiness and passive fatigue can be combined over a period
of time. In this study, we investigated the influence of drowsi-
ness level on the driver behavior, rather than the influence of
elapsed time on the driver behavior. A one–way analysis of
variance (ANOVA) was performed to investigate the influence
of one categorical independent variable (five-point drowsiness
level) on six dependent variables. The dependent variables
were the number of blinks [count], SD of head roll and pitch
angles [degrees], mean and SD of driver torque [Nm], and
SD of the vehicle lateral position [m]. The drowsiness level
over a period of time is an uncontrollable factor, and thus,
the drowsiness level has an unbalanced sample size across the
five levels. First, the dependent variables were sorted according
to the drowsiness level for each participant. Then, the mean
values of the dependent variables sorted by the drowsiness
level were calculated for each participant. In this analysis,
the drowsiness level was treated as a within-subject factor.
In the ANOVA, if the violation of the sphericity occurred in
Mauchly’s sphericity test, the Greenhouse–Geisser correction
was used to adjust for the lack of sphericity assumption. Post
hoc comparisons were performed using Bonferroni correction.
For these analyses, the statistical package for social science
(SPSS) was used, and we set alpha levels at p < .01 to interpret
significant results in the ANOVA procedure.

2) Effectiveness of safety control: The number of first-
and second-stage controls activated across participants was
counted and categorized under each drowsiness level. To
visualize the effect of lane centering control on the vehicle
lateral position, the histograms of the vehicle lateral position
for the previous (manual condition [44]) and present (hands-on
partial driving automation) studies were compared.

The probable causes of first-stage control activation were
investigated. The analysis focuses on the period 5 s immedi-
ately before the first-stage control in the approach phase for

lane departure. The eyelid opening and percentage of eyelid
closure when the system initiated the first-stage control were
extracted, and the maximum values of the driver input torque
and steering angular velocity in the 5 s were calculated.

The driver response to the first-stage control was also ana-
lyzed. The driver reaction time was defined as the time elapsed
before the driver performed a steering action or accelerator
action after the system implemented the first-stage control, and
it was categorized under each drowsiness level. Because of the
unbalanced sample size across the five drowsiness levels and
the violation of homogeneity of variance, a Kruskal–Wallis
rank-sum test was performed, and pairwise comparisons were
examined using the Dunn–Bonferroni method.

3) Effectiveness of driver state identification: To evaluate
the accuracy of the system, four possible outcomes [50] were
evaluated: correct, false, missed detections, and correct rejec-
tion. In this analysis, facial expression results were used to
determine the true state of the participants. A correct detection
occurred when the system determined that “the driver failed
to supervise the partial driving automation system,” when in
fact the driver’s drowsiness was at level 5. A false detection
occurred when the system determined that “the driver failed
to supervise the partial driving automation system,” when the
driver’s drowsiness was less than that at level 5. By contrast,
a missed detection occurred when the system determined
that “the driver had supervised the partial driving automation
system” when in fact the driver’s drowsiness was at level
5. A correct rejection occurred when the system determined
that “the driver had supervised the partial driving automation
system,” when the driver’s drowsiness was less than that at
level 5. The accuracy, precision, recall, and specificity were
also calculated, respectively.

Finally, the timeliness of the judgments was assessed as the
time elapsed before the system judged that “the driver failed
to supervise the partial driving automation system” after they
reached level 5 of drowsiness for the first time.

III. RESULTS

Data from 16 of the 20 participants were used in the
analysis. We excluded the data from four participants because
of the suspension of the experiment due to simulator sickness
and a calibration failure to measure their eyelid opening.

A. Drowsiness and driver behavior

Although individual differences were observed in the ten-
dency to be drowsy, all the participants’ drowsiness was rated
as level 5 at least once. The total driving time for each
drowsiness level across the participants is presented in Table
II. As a result of creating a monotonous and comfortable
environment, the participants’ drowsiness was rated as level
5 for approximately 171 min, which is approximately 17.9 %
of the total driving time (960 min). The statistical descriptions
(mean and SD) of the number of blinks [count], SD of the head
roll and pitch angles [degrees], mean and SD of the driver
torque [Nm], and SD of the vehicle lateral position [m] are
listed in Table III. The results of the one-way ANOVA are
summarized in Table IV. In the statistical analyses, data from
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TABLE II
TOTAL DRIVING TIME FOR EACH DROWSINESS LEVEL ACROSS PARTICIPANTS

Drowsiness level
1 2 3 4 5 Total

Total driving time [min] 72.0 159.0 275.3 281.9 171.8 960
[%] 7.5 16.6 28.7 29.3 17.9 100

TABLE III
DESCRIPTIVE STATISTICAL VALUES FOR DRIVER STATE AND BEHAVIOR.

Drowsiness level
1 2 3 4 5

Number of blinks [count] 9.83 (2.60) 10.18 (1.19) 9.03 (0.99) 6.05 (0.44) 3.83 (0.58)
SD of head roll angle [degrees] 0.42 (0.07) 0.59 (0.07) 0.82 (0.04) 0.90 (0.05) 1.01 (0.12)
SD of head pitch angle [degrees] 0.92 (0.12) 1.24 (0.19) 1.87 (0.12) 1.86 (0.21) 1.85 (0.33)
Mean of driver torque [Nm] 0.34 (0.07) 0.34 (0.06) 0.27 (0.04) 0.22 (0.02) 0.22 (0.03)
SD of driver torque [Nm] 0.07 (0.02) 0.11 (0.01) 0.14 (0.01) 0.15 (0.02) 0.16 (0.04)
SD of vehicle lateral position [m] 0.08 (0.02) 0.13 (0.02) 0.12 (0.03) 0.12 (0.02) 0.13 (0.05)

TABLE IV
THE RESULTS OF UNIVARIATE ANALYSIS OF VARIANCE FOR DRIVER STATE AND BEHAVIOR.

df F p Partial η2

Number of blinks [count] 1.09, 15.25 86.98 < 0.01 0.86
SD of head roll angle [degrees] 1.94, 27.24 228.51 < 0.01 0.94
SD of head pitch angle [degrees] 2.04, 28.61 145.18 < 0.01 0.91
Mean of driver torque [Nm] 1.21, 17.02 75.53 < 0.01 0.84
SD of driver torque [Nm] 1.07, 15.02 33.12 < 0.01 0.70
SD of vehicle lateral position [m] 1.53, 21.42 23.33 < 0.01 0.62

15 participants were used; for one participant, the data under
level 1 of drowsiness were not available. The main effect of
drowsiness level on these dependent variables was statistically
significant (p < .01). For the number of blinks, the pairwise
comparisons indicated statistically significant differences for
all levels except levels 1 and 2 and levels 1 and 3 (p < .01).
For the SD of the head roll angle, the pairwise comparisons
indicated statistically significant differences between all levels
(p < .01). For the head pitch angle, the pairwise comparisons
indicated statistically significant differences between all levels
except levels 3 and 4, 3 and 5, and 4 and 5 (p < .01).
For the mean steering torque input, the pairwise comparisons
indicated statistically significant differences between all levels
except levels 1 and 2, and levels 4 and 5 (p < .01). For
the SD of the steering torque input, the pairwise comparisons
indicated statistically significant differences between all levels
except levels 3 and 5 and levels 4 and 5 (p < .01). For the
SD of the lateral position, the pairwise comparisons indicated
statistically significant differences between levels 1 and 2, 1
and 3, 1 and 4, 1 and 5, and 2 and 3 (p < .01).

B. Safety control performance

Fig. 5 shows the histograms of the lateral position; (a) is
the result obtained from the previous study [44] under the
manual driving condition and (b) is the result obtained from
this study’s experiment under the partial driving automation
condition. On the horizontal axis, the center of the lane
was at 0 m, lane markers were at ±1.85m, and the desired
positions for activating the first-stage control were at ±1.35
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Fig. 5. Histograms of the vehicle’s lateral position for (a) manual [44] and
(b) partial driving automation conditions. Gray denotes the lateral positions at
which the first-stage control was not activated and purple denotes the lateral
positions at which the first-stage control was activated.

m. This figure reveals that the LCS performance was sufficient
(SD = 0.38 (manual) vs. 0.25 (partial driving automation)).
In addition, Fig. 5 clearly shows that the lane departure
occurrences were prevented by the first-stage control even
under partial driving automation condition.

The total number of safety controls activated across the
participants is summarized in Table V. The first-stage control
was executed 5, 34, 57, and 33 times under drowsiness levels
2, 3, 4, and 5, respectively. In 123 of the 129 instances in
which the first-stage control was implemented (95.3%), the
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TABLE V
TOTAL NUMBER OF SAFETY CONTROLS ACTIVATED ACROSS PARTICIPANTS

Drowsiness level
1 2 3 4 5 Total

The system implemented the 1st stage control. 0 5 34 57 33 129
The system implemented the 2nd stage control. 0 1 6 11 12 30
The system brought the vehicle to a complete stop. 0 0 0 0 4 4

A

0 25 50 75 100
Percent

0% <= PERCLOS <= 20%

20% < PERCLOS <= 40%

40% < PERCLOS <= 60%

60% < PERCLOS <= 80%

80% < PERCLOS <= 100%

A

0 25 50 75 100
Percent

0% <= Eyelid opening <= 20%

20% < Eyelid opening <= 40%

40% < Eyelid opening <= 60%

60% < Eyelid opening <= 80%

80% < Eyelid opening <= 100%

67.512.45.411.63.1

31.8 23.2 25.6 15.5 3.9A

0 25 50 75 100
Percent

0% <= PERCLOS <= 20%

20% < PERCLOS <= 40%

40% < PERCLOS <= 60%

60% < PERCLOS <= 80%

80% < PERCLOS <= 100%

Percentage of eyelid closure
Percentage of eyelid closure

Percentage of eyelid closure

Percentage of eyelid closure

Percentage of eyelid closure

Fig. 6. Classifications of the eyelid opening and percentage of eyelid closure in a 60-second moving window at time when the system initiated the first-stage
control.

D
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ss

Fig. 7. Time-series data of 3500 s in trial of Participant 18. In the torque data, the red dash line shows assisting torque by the system and the black solid
line shows the driver’s input torque. The areas shaded in green and blue denote the time interval in which the system executed first- and second-stage control,
respectively.

participants’ drowsiness levels were between levels 3 and 5.
Fig. 6 shows the five classifications for the eyelid opening
and percentage of eyelid closure when the system initiated
the first-stage control. In 87 of the 129 instances of the
first-stage control activation (67.5%), the participants’ eyelids
were between 0% and 20% open, indicating that control was
activated in while the participants’ eyelids were closing. In
124 of the 129 instances (96.1%), the participants’ percentage
of eyelid closure in a 60 s moving window were more than
20%. Of the 129 first-stage control activations, the second-
stage control needed to be implemented 1, 6, 11, and 12 times

under drowsiness levels 2, 3, 4, and 5, respectively. Thus, in
these cases, the deceleration control was activated. In four of
the 12 instances (33.3%) in which the second-stage control was
implemented under level 5 of driver drowsiness, the system
brought the vehicle to a complete stop.

Fig. 7 illustrates the data for 3500 s over the interval [100 s,
3600 s] during the trial of Participant 18. It shows the system
states [1: implementing the first-stage control, 2: implementing
the second-stage control], lateral position [m], system’s torque
[Nm], driver’s torque [Nm], blink frequency per 20 s [count],
eyelid opening [%], and drowsiness level. The areas shaded
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Fig. 8. Inappropriate torque input to the steering wheel.

in green and blue denote the time interval in which the
system executed first- and second-stage control, respectively.
The blink frequency was visualized by a 20 s moving time
window. The eyelid opening data in Fig. 7 confirm that the
amount of time that the driver’s eyelids were lowered increased
in the 1700 s interval [500 s, 2200 s]. A decline in blink-
related activities was evident. Drowsiness levels show that the
participant’s arousal levels were low during this time interval.
The system repeatedly performed first-stage control to prevent
lane departure and activated second-stage control four times.
By contrast, at the time interval from approximately 2500 s to
3600 s, the participant’s drowsiness levels ranged between 1
and 3. The torque data in Fig. 7 show clear differences in the
participant’s torque observed during the two time intervals.

C. Probable causes for first-stage control activation

The probable causes for the activation of the first-stage con-
trol were investigated using the drivers’ behavior data obtained
5 s immediately before the first-stage control, focusing on
the approach toward lane departures. The relationship between
the maximum value of the steering angular velocity and the
maximum value of the driver’s input torque is shown as a
scatter plot in Fig. 8. In this experiment, the maximum amount
of torque produced by the LCS was set to ± 0.5 Nm. Thus,
lane departure occurrence was predicted when the participant
inputs a torque of 0.5 Nm or more to the wheel. As can be
seen in the histograms of the driver’s maximum torque and
the maximum steering angular velocity, although the most
frequent values fell between 0.6 and 0.8 Nm and between
0 and 10 degrees/s, respectively, both values were widely
distributed. This result implies a mixture of several driver
behaviors.

A typical example of a participant’s inappropriate steering
behavior is shown in the time-series data (from Participant 2)
in Fig. 9. One graph is for the interval [1050 s, 1150 s], and
the other is for the interval [1200 s, 1300 s]. In both cases, the

Fig. 9. Time-series data during the trial of Participant 2: The top graph shows
the interval [1050 s, 1150 s] and the bottom graph shows the interval [1200
s, 1300 s]. The areas shaded in green and blue denote the time interval in
which the system executed first- and second-stage control, respectively. In the
torque data, the red dash line shows assisting torque by the system and the
black solid line shows the driver’s input torque.

system initiated the first-stage control to prevent lane departure
in while the participant’s eyelids were closing. In the interval
[1050 s, 1100 s], several instances of opening the eyelids
were observed. In conjunction with this activity, the torque
input to the wheel increased. When the participant inputted
an undesirable torque (greater than 0.5 Nm) at approximately
1090 s, the vehicle was clearly going to deviate from the
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TABLE VI
ACCURACY OF DRIVER STATE ESTIMATION

System’s judgment
“The driver failed to supervise the

partial driving automation system”
“The driver had supervised the partial

driving automation system”

True state The driver’s drowsiness was at level 5 12 21
The driver’s drowsiness was less than level 5 18 78

n=0 n=5 n=34 n=57 n=33
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Fig. 10. The time elapsed before the participants performed steering or
acceleration actions after the activation of first-stage control. The blue dashed
line indicates the time at which the deceleration control was initiated, and the
red dashed line shows when the vehicle’s speed reached zero [km/h] through
the execution of the deceleration control.

driving lane. In this event, the system carried out deceleration
control and stopped the vehicle in the driving lane because
the participant could not perform the proper action after the
first-stage control activation.

By contrast, at approximately 1230 s, the participant in-
putted an undesirable torque to the steering wheel, which
was completely different from that in the interval [1050 s,
1150 s]. The maximum value of the angular velocity reached
approximately 100 degrees/s. The recorded video confirmed
that the balance of the torque applied to the wheel was lost
because the participant’s hand slipped off the wheel. This type
of data was observed in multiple cases, as shown in Fig. 8.
Angular velocity exceeding 50 degrees/s essentially indicates
situations in which one of the participants’ hands slipped off
the wheel because of drowsiness and was not a rare event.

D. Driver actions under the activation of first-stage control

Fig. 10 shows a boxplot for the time elapsed before the
participants performed steering or acceleration action after
the activation of the first-stage control. The blue dashed
line indicates the time at which the deceleration control was
initiated, and the red dashed line shows when the vehicle’s
speed reached zero [km/h] through the execution of the
deceleration control. The median values were 4.5, 3.9, 4.4,
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Fig. 11. Time elapsed before the system initiated first- and second-stage
control after the drowsiness level reached 5 for the first time.

and 5.4 s under drowsiness levels 2, 3, 4, and 5, respectively.
The Kruskal–Wallis rank-sum test indicated no significant
difference across drowsiness levels (χ(3) = 5.54, p = 0.135).
In many cases, the participants recognized first-stage control
through haptic feedback and initiated the steering action within
10 s. This result was consistent with that obtained under the
manual driving condition [44]. However, as the drowsiness
level increased, the percentage of cases in which the driver
failed to respond appropriately increased (Table. V).

E. Accuracy and timeliness of the system’s judgement

The four possible outcomes of the system’s judgement are
listed in Table VI. Of the 129 instances in which the first-
stage control was activated, correct detection occurred in 12
instances (9.3%), correct rejection in 78 instances (60.5 %),
false detection in 18 instances (13.9%), and missed detection
in 21 instances (16.3%). Using Table VI, we calculated the
system’s accuracy, precision, recall, and specificity, which
were 0.70, 0.40, 0.36, and 0.81, respectively. Among the 12
instances of correct detection, in four cases, the vehicle was
completely stopped in the driving lane through the implemen-
tation of the deceleration control. In the 12 cases, the mean
time to implement accelerator action after the second-stage
control activation was 23.16 s (SD = 17.01). Among the 18
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instances of false detection, in 11 instances (61%), the drivers’
drowsiness level was rated as 4. In the false detection cases, the
mean time to implement accelerator action after the second-
stage control activation was 12.57 s (SD = 7.34). Among the
21 missed detections, in 15 instances (71%), the participants
had one hand slipping off the wheel because of drowsiness.
In the 21 cases, steering action was implemented at a mean of
4.41 s (SD = 1.27) after the first-stage control activation owing
to the improper torque input applied. Among the 78 correct
rejection cases, in 46 instances (59%), the drivers’ drowsiness
level was rated as 4. The time to implement steering action
after the first-stage control activation was 4.56 s (SD = 1.93)
on average.

Fig. 11 shows the time elapsed before the system initiated
first- or second- stage control after the participants’ drowsiness
level reached 5 for the first time. The label n denotes the
number of participants for whom first- or second-stage control
was activated while driving. For the second-stage control,
the result is the time elapsed before the system determined
that “the driver failed to supervise the partial driving au-
tomation system” through the driver automation interaction
opportunities triggered by the drivers’ inappropriate torque
input after the participants’ drowsiness level reached 5 for the
first time. The mean time for initiating the first-stage control
was 285.8 s (4.76 min), with a minimum of 6.59 s (0.11 min)
and a maximum of 778.6 s (12.97 min). The mean time for
initiating the second-stage control was 393.0 s (6.55 min), with
a minimum of 16.59 s (0.28 min) and a maximum of 788.6 s
(13.14 min).

IV. DISCUSSIONS

In hands-on automated driving systems (i.e., SAE Level
2 [11]), drivers are expected to complete monitoring tasks
via continuous interactions that keep drivers in the loop.
However, in a comfortable and monotonous environment, the
participants clearly suffer from drowsiness. The statistical
analyses revealed substantial differences in the driver behav-
ior across drowsiness levels. As drowsiness levels increased,
the frequency with which drivers’ head inclined in the roll
direction tended to increase, and they tended to input a lower
mean torque. The steering torque input by the participants with
drowsiness level 4 or higher was significantly less than that
of participants with a drowsiness level of 3 or less. Moreover,
no significant difference in the SD of the steering torque was
found between drowsiness levels 3 and 5 and between 4 and 5.
This trend is similar to that of the SD of the head pitch angle
of the driver. The SDs of both the driver’s steering torque and
head pitch angle increased in the process of reaching level
3 of drowsiness. Owing to the increased SD in the steering
torque, the SD of the lateral position also increased. However,
a significant difference was observed between level 1 and the
rest. This observation differs from the results of a previous
study [44]. In this experiment, the partial driving automation
assisted the participants in implementing actions by keeping
the vehicle in the center of the lane, and the LCS was evidently
sufficient to keep the vehicle in the lane.

Throughout the recorded driving time (960 min), 129 lane
departures were predicted, and first- or second-stage controls

were activated. No complete lane departure was observed
owing to the execution of safety controls. The probable causes
of the predicted lane departures were investigated. From the
time interval 5 s immediately before the first-stage control,
in the approach phase of a lane departure, the participants
inputted inappropriate torque to the wheel due to drowsiness.
Surprisingly, the maximum value of the observed steering
angular velocity exceeded 120 degree/s in a case in which
one of the participant’s hands slipped off the wheel because
of drowsiness. As can be seen in the relationship between the
drowsiness level and mean driver input torque, the amount of
torque input was significantly lowered at levels 4 and 5 of
drowsiness. The participants were not able to maintain a light
grasp on the wheel while falling asleep. Owing to the hands-
off situation and improper torque input, lane departures were
predicted. Most importantly, the proposed approach prevented
lane departures, even when such a phenomenon occurred.
Thus, the creation of an lane departure prevention (LDP) is
vital for attaining safety in the context of hands-on partial
driving automation.

In the predicted lane departures, the proposed scheme
executed partial steering control, which gave the participants
a chance to voluntarily perform the action needed. If the
participant could not perform the action needed within 10 s,
the system determined that “the driver failed to supervise the
partial driving automation system” and executed a strategy
to bring the vehicle to the controlled stop. To evaluate the
effectiveness of the driver state identification, we considered
four possible outcomes for the system’s judgment: correct,
false, missed detections, and correct rejection. The accuracy,
i.e., the ratio of the sum of the correct detection and correct
rejection for the total number of cases, was 0.70. The number
of correct rejections was the highest among the four possible
outcomes. Among the 129 instances in which the first-stage
control was initiated, in 96 times (74.4 %), the participants’
drowsiness levels were all lower than level 5. This result could
be related to the significant increase in the SD of the steering
torque. In many cases, the participants could implement the
proper action, and the system determined that “the driver
had supervised the partial driving automation.” These unsafe
behaviors were a prelude to extreme drowsiness. Of the correct
detections, in four instances in which participants fell asleep
completely, the vehicle was brought to a complete stop. When
the participants fell asleep completely while driving, they
could not take proper action. However, the precision and
recall were 0.40 and 0.36, respectively. Thus, the numbers of
false and missed detections were greater than that of correct
detections. The missed detections were attributed to cases in
which the participants’ hands left the wheel, producing an
improper torque input. As shown in the time elapsed before
the system initiated first- and second-stage control after the
drowsiness level reached 5 for the first time (Fig. 11), the result
mainly comes from the fact that the drivers’ drowsiness level
and controller activation have indirect links. In these hands-off
cases, the participants whose drowsiness had reached level 5
were immediately aware of the situation due to their behavior.
Thus, the participants could perform a steering action to bring
the vehicle back into the driving lane. Although the system
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could prevent lane departures, the occurrence of this situation
is undesirable. This issue is related to the timeliness of drowsy
driving detection. The time needed for drowsiness detection
widely varied, i.e., 0.28–13.14 min. In the experiment, the
lane centering system always provided steering assistance to
compensate for the drivers’ steering action in the range of
±0.5 Nm. In the context of manual driving, letting go of the
steering wheel completely, producing improper torque input,
is unlikely. Normally, a lane departure would occur before
such a situation could be triggered. However, because partial
automation balanced the driver and system torque, there were
some cases where the driver state was not identified at an early
stage. To reduce the missed detections that occurred when the
driver’s hands left the wheel, we should identify the driver state
at an earlier stage. Moreover, the steering torque input by the
significantly or extremely drowsy participants was very small.
Thus, deviations from normality may be determined using the
driver’s torque information. Furthermore, the number of false
detections may be due to inaccurate classification based on
the subjective rating of driver drowsiness. This was because
we observed several cases where the driver was not able to
quickly respond to the situation by stepping on the accelerator
pedal, even when their drowsiness level was rated as 3 or 4
(Fig. 10). In this analysis, although the facial expression results
were used to determine the true state of the participant, the
objective verification of driver state identification that does not
rely on subjective ratings is necessary.

The present study applied the proposed dual-control scheme
to hands-on partial driving automation. We found that in
drowsy driving, in which participants’ eyelids were completely
closed and their heads frequently inclined in the directions of
roll and pitch angles, they inputted inappropriate torque to
the wheel. When the participants fell asleep, they could not
maintain a light grasp on the wheel, leading to a hands-off sit-
uation with an improper torque input. The proposed approach
prevented lane departures and deemed that “the driver failed
to supervise the partial driving automation system,” essentially
supporting the hypotheses. Nonetheless, the findings of this
study should be considered with the following limitations:
The dual-control scheme was a useful mechanism to avoid
lane departures and to create driver-automation interaction
opportunities, even under hands-on partial driving automation.
However, we need to enhance the driver state estimation to
identify the driver state at an earlier stage. In this experiment,
the maximum amount of torque assisted by the LCS was set
to ±0.5 Nm because drivers must be in command of their
driving owing to the system’s limited ability. If the system is
more capable of supporting lane centering, then fewer lane
departures that trigger action and investigation would occur.
A driver monitoring approach based on the combination of
the dual-control scheme and direct driver-related measures
should be considered in future studies. Although this study
was focused on using steering signals for safety control and
real-time identification, deceleration control signals can also
be effective for these goals. The proposed scheme, which
also utilizes direct driver-related measures, can execute the
first-stage control in a timely and effective manner. Although
the driver response was observed repeatedly over a period of

time, the driver drowsiness and response over a period of
time were not considered in testing the hypotheses because
the symptoms of sleepiness and passive fatigue can co-occur,
which makes it difficult to separate the underlying mechanisms
with the method used in this study. In addition to the objective
verification of driver state identification, an analysis approach
that incorporates the repeated nature of dependent measures
for each participant over time should be considered. This
study assumed that the road is straight, but the possibility
of lane departure accidents may be high along the curves.
Therefore, the control algorithm should be improved for it
to be applied to more complex situations. In this experiment,
when the predicted value of the time margin for lane departure
became less than 1 s, the system initiated the first-stage
control. Generally, drivers have a boundary of acceptable
limits within which they operate [51]. The safety margin that
can effectively trigger the first-stage control should also be
explored in the context of partial driving automation. To bring
the vehicle to a complete stop, the vehicle can be stopped
in the driving lane or it can be pulled over and stopped
on the side of the road. The choice of strategy depends on
the road traffic context as well as the driving automation’s
capability for sensing the surroundings to localize the vehicle’s
position. When the vehicle is running in the lane adjacent
to the shoulder of the road, stopping on the shoulder may
be done in a straightforward manner. On the other hand, if
the vehicle was running in the passing lane, automatic lane
change maneuvers would be required to bring the vehicle to
the shoulder for a complete stop, especially when the driver
fails to respond to the situation. If it was hard to be sure of the
driving automation’s capability for sensing the surroundings,
it may be one of realistic options to make the vehicle stop
on the currently driving lane while giving some emergency
notifications to the surrounding vehicles. However, this may
involve risks associated with rear-end collisions with other
vehicles. Thus, stopping a vehicle in the lane should be the last
resort, and the capacity to encourage drowsy drivers to stop
driving at an early stage is needed. As previously described,
our experiment simulated a 100 km, two-lane, straight express-
way. Our research is limited by the constraints of the fixed-
base simulator environment. Such investigations have limited
physical, perceptual, and behavioral fidelity [52], [53]. Käppler
[53] has pointed out that the lack of real danger in driving
simulators can induce a false sense of safety, responsibility, or
competence. Hence, further studies are necessary to investigate
whether drivers will accept the system’s behavior in a more
realistic driving context.

V. CONCLUSIONS

This study examined the effectiveness of a dual-control
scheme to identify the driver drowsiness and bring the vehicle
to a controlled stop. The proposed system executed a first-
stage control (partial steering control) when it anticipated a
vehicle lane departure and then activated deceleration control
if the driver could not perform the required action properly
(and failed to respond to the partial steering control). To
determine whether the driver is supervising partial driving
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automation, the proposed system attempted to create an op-
portunity for driver–automation interactions in the context
of hands-on partial driving automation. This study aimed
to demonstrate the feasibility of the proposed system using
only vehicle information. In a sleep-inducing environment,
a fixed-base driving simulator experiment was designed to
investigate the effectiveness of the dual control scheme in
identifying driver drowsiness and preventing lane departures.
For driver monitoring via the proposed system, the accuracy,
precision, recall, and specificity were 0.70, 0.40, 0.36, and
0.81, respectively. While we observed cases in which the
system could effectively bring the vehicle to a controlled stop
through the driver–automation interaction opportunities via
the dual-control scheme, the timeliness and accuracy of the
driver state identification remained as issues owing to indirect
links between the drivers’ drowsiness level and controller
activation. Although the dual-control scheme is a useful mech-
anism to avoid lane departures and to create driver-automation
interaction opportunities even under hands-on partial driving
automation, the driver state identification needs to be improved
to ensure timely and effective detection of driver drowsiness.
Thus, in future works, it should be paired with a direct driver-
related measurement system. More research is needed, and
we encourage further exploration of cooperative interactions
between humans and machines.
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[29] M. Ingre, T. Åkerstedt, B. Peters, A. Anund, and G. Kecklund, “Sub-
jective sleepiness, simulated driving performance and blink duration:
examining individual differences,” Journal of Sleep Research, vol. 15,
no. 1, pp. 47–53, 2006.

[30] D. F. Dinges and R. Grace, “Perclos: A valid psychophysiological
measure of alertness as assessed by psychomotor vigilance (no. fhwa-
mcrt-98-006),” US Department of transportation: Federal Highway Ad-
ministration, 1998.

[31] B. Mandal, L. Li, G. S. Wang, and J. Lin, “Towards detection of bus
driver fatigue based on robust visual analysis of eye state,” IEEE Trans.
Intell. Transport. Sys., vol. 18, no. 3, pp. 545–557, 2017.



13
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