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ABSTRACT The technology advances of CPU (Central Processing Unit) architecture alternate between
generalization and specialization. In the past decade, the general performance has been enhanced while
addressing the new brick walls that include power, memory, and ILP (Instruction-Level Parallelism). Thus,
it will enter into the era of specialization called adaptable ISA (Instruction Set Architecture) for target
applications. Reconfigurable devices such as FPGAs (Field Programmable Gate Array) can offer a solution
if the two following issues are addressed. One is the FPGA design is not easy for non-hardware experts, and
the other is the process is iterative and lengthy. The most apparent solution to those problems is an overlay
that can abstract hardware details while providing a software-like interface. This article presents DRAGON
(Dynamically Re-programmable Architecture of Gather-scatter Overlay Nodes), demonstrates its general
aspects as well as the way it can be seamlessly integrated into any heterogeneous computing platform. The
experimental evaluation of DRAGON reports more than four times better computational efficiency when
compared to an Intel Core i9 CPU, in two stencil-based benchmarks.

INDEX TERMS EPR, FPGA, ISA, many-core, overlay architecture, power-efficiency, SIMD, VLIW.

I. INTRODUCTION
There are several metrics to evaluate the performance of
a given computer architecture. It can be anything from
power-efficiency, peak operations per second, cycles
per instruction, latency, and many more. Although
general-purpose processors offer the best-in-class versatility
to support a wide range of problems, they still lack behind
application-specific computer architecture when it comes to
sustained performance. Over-optimizing an architecture for
a specific set of tasks, would significantly hinder its flexi-
bility and shrink its market audience. Consequently, none of
the commercially available processors can efficiently tackle
high-performance computing workloads, such as stencil cal-
culations. While these devices are widely being deployed
in HPC (High-Performance Computing) systems to accel-
erate numerical simulations, their sustained performance
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remains limited in memory-bound computations, mainly
because of their poor scalability and inefficient interconnec-
tion topologies.

In contrast, FPGAs (Field Programmable Gate Arrays)
offer a more appealing feature than just a bare theoretical
peak performance number: They have the flexibility to be
re-programmed, at the hardware level, as many times as
required. Thanks to their versatile nature, they can be effi-
ciently tailored to target a set of new requirements for any
specific application needs. Generally, this efficiency allows
FPGAs to reach higher performance levels with fewer hard-
ware resources and less consumed power.

Nonetheless, unlike a CPU (Central Processing Unit),
FPGAs have abundant physical resources (LUTs, memories,
DSP, registers, etc.) that have to be connected on-the-field,
through a configuration file, to generate a compute-ready
device.

Here, we reach the first downside of FPGAs. In order
to produce that configuration file, designers must usually
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undergo a cumbersome iterative process, from the very first
step of elaborating the specifications until providing a fully
functional design. Often, this process can last for months, due
to the complex nature of HDL (Hardware Description Lan-
guage) based design as well as the lengthy FPGA compilation
steps (placement, routing, etc).

HLS (High-Level Synthesis) tools aim to alleviate hard-
ware design complexity by offering a software-friendly
method to generate the final configuration. Although this
approach facilitates the task of non-hardware experts, it still
generates HDL source files, that, again, have to undergo the
lengthy FPGA compilation process. Worse yet, HLS tools
are heavily tied to device vendors and thus hinders design
portability.

Processor-based overlays [1] are known to overcome these
issues by offering a simplified software/hardware inter-
face and even the possibility of dynamic reconfiguration.
A Processor-based overlay is a virtual abstraction layer,
on top of the physical FPGA fabric, that encapsulates its
hardware details while creating a more comprehensive pro-
gramming interface. In these overlays, the FPGA is statically
configured once, while hardware resources are shared in a
time-multiplexed manner and the behavior of the system is
dynamically changed during run-time through software-like
micro-instructions. This would presumably solve two prob-
lems simultaneously: The difficulty of programming FPGAs
using HDL and the long compilation time. Consequently,
this paves the way for non-hardware experts and large com-
munities of software developers to harness the power of
FPGAs without worrying about their fine-grained architec-
tural details.

Clearly, previously proposed processor-based overlay
architectures offer numerous advantages; yet, there are still
major challenges to be addressed. In fact, as explained in
details in the next section, these architectures are lacking ded-
icated hardware support for double-precision floating-point
operations. Besides, the complex nature of numerical simu-
lations has led overlay architectures as well as CPU and GPU
architectures to struggle to maintain their sustained perfor-
mance potential somewhere near their advertised theoretical
peak and their Effective to peak Performance Ratio (EPR) [2]
has generally remained low. In other words there remains
a large gap between the theoretical peak performance and
what can be really achieved in any given computation. With
the increasing challenges of scientific applications, the need
to address these issues has become primordial to satisfy the
growing computation, communication and precision require-
ments expected in complex future applications.

Here, we propose a highly-efficient and tightly-connected
many-core overlay architecture code-named DRAGON
(Dynamically Re-programmable Architecture for Gather-
scatter Overlay Nodes). DRAGON abstracts the FPGA fabric
details and can be controlled from an OpenCL-based host;
thus, facilitating its integration into a computing platform.
DRAGON can also be dynamically re-programmed using
its custom-designed ISA (Instruction Set Architecture) and

achieves higher EPR values when compared to previous
works.

DRAGONwas first introduced in [3] and is based upon our
cumulative work in [4], [5] where the design was partially
implemented on FPGA (accelerator part only). Back then,
the controller part was not yet finalized and its continually
changing behavior had only been emulated through a soft-
ware environment. Consequently, in order to evaluate the per-
formance outcome, we relied solely on simulations where we
abstracted all the details about the controller part and the way
in which the Global Memory is being accessed. In contrast,
here we provide analysis on the full architecture implementa-
tion on FPGA and therefore the sustained, on-chip, execution
results. While this renders a direct performance comparison
infeasible with our previous work, we still explain the major
architecture changes that can benefit the overall system. Our
main contributions are stated as follows:

• A highly modular and computationally-efficient overlay
architecture, that adopts a custom-design instruction set
and implements VLIW (Very Large Instruction Word)
and SIMD (Single Instruction Multiple Data) paradigms
as well as a custom DAE (Decoupled Access Execute)
approach.

• A versatile VLIW-based, processing element archi-
tecture that supports both 64-bit long integer and
double-precision floating-point fusedmultiply and accu-
mulate operations, as well as efficient data move-
ment (scatter/gather, broadcast) between nodes in a
many-core processor design.

• A base 2D-mesh, switchless, buffered, point-to-point
Network-On-Chip, that is both scalable and expandable
to higher dimensions.

• A seamless and easy way to integrate an FPGA over-
lay into a heterogeneous computing system through an
OpenCL host.

Finally, This paper focuses on the architectural aspects
of DRAGON and while the current implementation uses an
HBM2-enabled (High Bandwidth Memory) FPGA, a study
of the corresponding bandwidth is outside the scope of this
paper.

This paper is structured as follows: Section 2 reviews
previous related research and summarizes the motivation
behind this work. Section 3 gives an overview of the proposed
DRAGON architecture. Section 4 focuses on the hardware
aspects. Section 5 focuses on the software part and presents
the details of our custom Instruction Set Architecture (ISA).
Section 6 presents the conducted experiments to evaluate
the performance of the architecture through its implemen-
tation on an HBM2-enabled FPGA. Section 7 presents the
results and discusses the strengths and pitfalls of the proposed
DRAGON architecture. Finally, we draw our conclusion.

II. BACKGROUND AND MOTIVATION
Research about overlays has a long history, and several inno-
vative approaches have been proposed over the past years.
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TABLE 1. Review of some previous parallel processing overlays.

The work in [1] surveyed various kinds of overlays and
suggested that overlays can be either classified as spatially
configured or time-multiplexed. A spatially configured over-
lay means that the behavior of its functional units is unique
and cannot be changed during run-time. In contrast, in a
time-multiplexed overlay, these same units do have the ability
to adapt their behaviors over time.

Examples of such overlays are given in Table 1 and include
the SIMD-Octavo [8], which adopts the SIMD paradigm
to create a parallel processor-based overlay. SIMD-Octavo
was an extended version of the Octavo soft-processor [14],
in which a single stream of instructions was shared among
duplicated data-paths.

The most interesting implementation to date is the GRVI
Phalanx, which is a massively parallel FPGA overlay [9]
built around an efficiently hand-tuned version of the RISC-V
processor that uses only 320 LUTs and achieves a clock speed
of 375 MHz.

A recent update of GRVI Phalanx, the 2GRVI Phalanx
[10], targets a 64-bit version of the RISC-V processor and
implements 1332 cores on an HBM2-enabled Xilinx Alveo
acceleration board (U280-ES1). Nevertheless, both imple-
mentations omitted any computational performance analysis.

The reMORPH overlay is another unique idea that is
likely to have the most resource-efficient implementation [6].
With its functional units consuming just 1 DSP, 3 BRAMs,
196 LUTs, and 41 FFs, this makes it highly likely to be the
smallest overlay in terms of resource utilization. This allowed
reMORPH to target relatively small FPGAs (Xilinx Spartan
6 FPGA), where it was able to implement 40 tiles named
CGRM (Coarse-Grained Reconfigurable module).

The reMORPH approach was to map their ALU with a
5-stage pipeline into a hardened DSP unit (using the internal
DSP pipeline) while coupling it to Block RAMs that con-
tain the program instructions. This implementation idea has
allowed reMORPH to reach a relatively high clock speed
of 400MHz.

Previous work such as TILT proposed an overlay built with
VLIW in mind. TILT overlays comprise multiple pipelined
32-bit floating-point units, with a configurable depth, and
connected through a crossbar [7].

Generally speaking, these overlays had been proposed
for general-purpose computing using parallel processing
architectures. Their goal had been almost always the same:
decreasing the PE (Processing Element) size, increasing the
number of PEs and maximizing the operating frequency
in order to boost the overall computational performance.
Nonetheless, they all have one thing in common, they do not
offer dedicated hardware for double precision floating-point
operations and apart from TILT, they do not even offer sup-
port for single-precision floating-point operations, while at
the best case, they propose this feature as a possible exten-
sion [9]. The reason is simple, FPUs (Floating Point Unit) are
costly in hardware, mostly because of the required wide mul-
tipliers, that occupy large areas and limit the achievable clock
speed. Specialized overlays came along as an alternative that
offers that capability. In particular, specific-purpose archi-
tectures that target stencil-based computation acceleration,
have been proposed with execution units capable of doing
floating-point operations. Yet, in most cases, they remain lim-
ited to single-precision in order to maintain higher GFLOP/s
and do not offer any integer execution units [11], [12].

Ultimately, all these overlays were proposed without clar-
ifying how they would interact with a host in order to be
integrated for example in a computing platform.

Meanwhile, next generation computing would be rather
bottle-necked by energy consumption than computational
performance.

Seemingly, FPGAs are praised for their power efficiency
and may replace general purpose processors in future com-
puting platforms, if they are fast to use (no compilation time),
easy to integrate (software interface) and computationally
efficient (performance-oriented architectures that achieve a
sustained performance close to the theoretical peak) while
providing accurate results (at least double-precision floating-
point capability).

Here, our proposed DRAGON architecture tries to achieve
all these goals and comes as a possible alternative to
existing overlays. For example, DRAGON offers both
double-precision floating-point capability and 64-bit integer
execution units along with a minimal instruction set that is
versatile enough to cover a wide spectrum of application
domains.

Furthermore, the DRAGON architecture adopts most sort
of parallel processing concepts, such as pipeline parallelism,
a SIMD model as well as a VLIW design approach. Con-
densing these concepts into our general purpose architecture
allowed DRAGON to achieve high computational efficiency
(translated through EPR values) and to compete against spe-
cialized overlays and even fixed implementations tailored to
a specific problem, as shown in Table. 2.

In addition, DRAGON is programmable through a
custom-designed instruction-set and can be controlled from
an OpenCL-based host; thus, facilitating its deployment into
heterogeneous computing platforms.

Finally, while FPGA devices are increasingly gaining
their spot across numerous fields, they still remain far from

VOLUME 9, 2021 65279



R. Ben Abdelhamid et al.: Highly-Efficient and Tightly-Connected Many-Core Overlay Architecture

TABLE 2. Review of the Effective to Peak Performance Ratio (EPR) of some previous Processing Element-based architectures implementing scientific
kernel benchmarks on FPGA.

mainstream adoption because of all the previously stated
obstacles. In this paper, we hope, through our proposed over-
lay architecture and integration approach, to bring FPGA
closer to mainstream adoption.

III. A BIRD’s EYE VIEW ON THE DRAGON ARCHITECTURE
In this section, we provide insights on the general architec-
ture of DRAGON as well as its parallel processing features.
Later, we will discuss some of these features as well as the
architecture itself in more details.

A high-level overview of DRAGON is depicted by Fig. 1.
It shows that DRAGON is split into two main components
operating in tandem. The Controller part is responsible of
decoding and issuing instructions via a sequencer, interacting
with the GM (Global Memory) and transferring data back
and forth to and from the Accelerator part. The latter is the
computing core of DRAGON and executes those instructions
on an array of PEs (Processing Elements) grouped in rela-
tively small clusters (Broadcast Clusters). Then, it sends back
the results of the computation to the GM through the Con-
troller’s DMA (Direct Memory Access) interfaces. Dragon
communicates with the host through a PCIe interface. A PCIe
DMAengine exchanges the data between the host and theGM
while a dedicated custom DMA is used to transfer program
instructions from the GM to the IM (Instruction Memory).

A. A SOFTWARE COUPLED HARDWARE DECOUPLED
ACCESS EXECUTE APPROACH
DRAGON adopts a programming model where data move-
mentmanagement logic is separated from the execution logic.
This approach is known as DAE (Decoupled Access Execute)
and was first proposed in [15]. The original work suggests a
high degree of decoupling between data movements and exe-
cution by implementing two separate streams of instructions
interacting with each other through hardware-based queues.
While this approach worked well at the moment of publica-
tion, it might not be suitable for today’s level of complexity

FIGURE 1. Overview of the DRAGON architecture.

in many-core processing systems. First, having two separate
and different types of instruction streams requires the imple-
mentation of two compilers to generate the machine binary
executable file for each stream. Even worse, deadlocks might
occur according to the same paper which requires a purge
of the program whenever a deadlock error is flagged. While
DRAGON adopts the same model, it implements a different
logic that solves these issues while keeping the benefits of
such an approach. Here, DRAGON uses the same sequencer
to issue the two different instruction streams, one computa-
tion stream targeting the accelerator and a data movement
control stream targeting the DMA engines. Consequently,
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a deadlock-free synchronization between both streams is
guaranteed while a single compiler is required to generate the
executable program. Furthermore, no queues are required and
the data is stored in BM (Broadcast Memory), which is an
intermediate level of memory that can be randomly accessed
from both Accelerator and Controller sides and that serves as
a buffer between GMs and LMs (Local Memories).

B. SIMD PARALLELISM
The DRAGON architecture adopts the SIMD data parallel
approach. This class of computer architecture consists of
broadcasting a single instruction (or operation) to multiple
compute units that will execute it, locally, on different sets
of data [16]. This paradigm was selected for many reasons.
First, it maps well to the fine-grained regular structure of
FPGAs. Second, parallelism is straightforward and program-
ming is fairly simple. Third, it simplifies the design (less
control is required) and finally andmost importantly, it allows
designers to fit more compute units thanks to the reduced
footprint of the control logic, hence, providing an efficient
way to harness the highest levels of performance. From a
software perspective, this is the go-to paradigm for many
large-scale computational workloads, in order to improve
their throughput while preserving, to some extent, simplicity
in the programming step. On the other hand, from a pure
hardware perspective, SIMD allows designs to consume less
power and area, by removing redundant control-dedicated
logic.

C. VLIW PARALLELISM
The VLIW approach is often referred to as a design style or
philosophy rather than an architectural approach of parallel
processing [17]. VLIW-based processing systems explicitly
expose instruction parallelism to the programmer, (in the
architecture level) rather than imitating ILP-oriented (Instruc-
tion Level Parallelism) processors and relying on the com-
piler to fulfill this task. The adopted VLIW design approach
consists of splitting the instruction on each processing ele-
ment into two packets. The first is dedicated to the compu-
tation slot while the second targets the memory slot. This
guarantees synchronized overlapping of computations with
data movements.

IV. HARDWARE ARCHITECTURE
A. THE DRAGON CONTROLLER
1) THE SEQUENCER
The sequencer is the brain of the DRAGON. As depicted
by Fig. 2, it consists of the IM (Instruction Memory) which
is a memory that stores program instructions on the FPGA,
an AXI (Advanced eXtensible Interface) Lite Control Inter-
face that is linked to the host to obtain or communicate
configuration parameters for proper functioning (program
size, global memory pointers, start, done and program re-use
flags) and a Control Unit that orchestrates the overall oper-
ations, both inside the Controller and the Accelerator parts.

The host triggers the overlay by setting a start bit into a
dedicated register of the AXI Lite Control Interface. The
Control Unit continuously polls that bit to check if it was
set by the host. Once this start bit is set, the Control Unit
starts the boot sequence, when there is a request from the
host to store the program instructions into the IM. In the
case where the same program is being used with differ-
ent data, the Control Unit bypasses the boot sequence and
directly starts normal operation. During the boot sequence,
only one DMA is active. This DMA moves instructions from
GM to IM. The size of the program in bytes is set through
the host and is used by the Control Unit to configure the
IM-dedicated DMA.

After all the program instructions had been stored into
the IM, the Control Unit moves into the normal operation
state. During this state, a PC (Program Counter) increments
every clock cycle to read the program instructions from the
IM. These instructions are sent back to the Control Unit that
decodes them and issues specific control streams, depending
on the decoded opcodes. When the decoded instruction is a
data movement operation between GM and BM, the Control
Unit will output a DMA control stream to configure the data
DMAs while setting NOPs (No Operation) on the dual com-
pute slot stream (DC_slot_stream), the memory slot stream
(mem_slot_stream) and the BMC (Broadcast Memory Con-
troller) stream (MC_stream) shown in Fig. 2.

FIGURE 2. Overview of the DRAGON Sequencer.

The sequencer handles loops inside the program and can
implement up to seven levels of nesting. The end of the
program is flagged by a special instruction (STOP instruc-
tion). This instruction should be used when all the data had
been processed and sent back to GM. After encountering this
instruction, the Sequencer will set a special control register
bit into the AXI Lite Control Interface to notify the host about
the completion of the program execution.

2) THE INSTRUCTION MEMORY
The IM (Instruction Memory) shown in Fig. 3 stores the exe-
cutable program loaded from GM during the boot sequence.
It uses 16 Ultra RAM banks offering a combined storage
capacity of 512 KiB. These banks are arranged into 8 logical
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FIGURE 3. Physical and logical layout of the Instruction Memory.

memory banks that can store up to 4096 VLIW instructions,
each. A VLIW instruction is 128 bits wide and is composed
of 2 64-bit slots.

A physical PC (Program Counter) is used to increment the
current IM address at which the program is pointing. This PC
is split into two logical parts. The first is the LP (Line Pointer)
and is aligned to 128 Bytes. The LP points to the same address
line of the 8 logical memory banks. The second is the OP
(Offset Pointer) and is used to extract the effective VLIW
instruction, among 8 VLIW instructions pointed to by the
LP. A specific DMA engine is dedicated to store the program
instructions into the IM during the boot sequence. This means
that currently the program size is limited to 512 KiB.

As DRAGON evolves, this IM will serve as a program
cache and the program instructions will be cached during
execution time from on-chip HBM or from an external
DDR4 bank that can offer a larger storage.

The current physical layout of the IM was chosen to match
the adopted AXI bus width connected to the GM and which is
1024 bits wide. By placing 16 Ultra RAM memories in True
Dual Port (TDP)mode, 16 ports can load the program instruc-
tions from GM, while the 16 other ports are connected to the
bank select multiplexer, that transfers the read instructions to
the Control Unit.

3) THE DMAs
ADMA is a data mover engine that can transfer data between
the Accelerator’s BMs and their respective GM banks.
A DMA is configurable through the Control Unit following
a request from a DMA-specific instruction. The configura-
tion frame contains the direction of the transfer (read/write
from/to GM), the address offset of GM, the address offset of
BM and the number of byte bursts that have to be transferred.
A single request can result in a maximum of 4 KB of data
being transferred.

All the DMAs operate in parallel, apart from a single DMA
that is only active during the boot sequence and that is used
exclusively to store program instructions into the IM. Using
a separate DMA for loading program instructions had been
adopted because future generation DRAGON is expected to

cache its instruction continuously from the GM, not only
during the boot sequence.

4) OpenCL-READY FPGA OVERLAY
DRAGON is designed to offer a convenient alternative for
non-hardware experts that intend to use FPGAs for accel-
erating their applications. While FPGA overlays are a good
mean to abstract physical fabric details, mostly, they do not
do a great job when it comes to managing the communication
with a host. Some very low-level details about firmware pro-
gramming are obviously required, for instance, when moving
data between a host and the FPGA through a PCI-express
interface.

Here, we introduce a new approach, that allows to abstract
these communication details as well. For this purpose,
we packaged our design as an OpenCL kernel as defined and
required by Xilinx Vitis RTL kernel flow. This tool considers
a carefully packaged RTL (Register Transfer Level) design
as a software function prototype that has global memory
arguments and scalar arguments.

The global memory arguments are in fact pointers to the
address ranges allocated into the HBMmemory banks (which
are connected to the DMAs as depicted by Fig. 1).

On the other hand, the scalar arguments are the configu-
ration parameters that are transferred to the design through
the AXI Lite Control Interface. These scalar inputs provide
for example, the necessary information about the size of
the program to be stored into the IM, the AXI pointers for
every global memory bank or even a set of control signals
that can trigger the system in some custom user-defined
ways.

The design implements an AXI4 compliant interface to
communicate with the GM and was packaged as an RTL
kernel along with its XML (Extensible Markup Language)
interface definition file. The Vitis framework recognises the
packaged IP (Intellectual Property) and prepares the FPGA
shell with a static and a dynamic regions as depicted by Fig. 4.

FIGURE 4. Overview of the OpenCL-Host/DRAGON control and
communication scheme.

The dynamic region is where the design should be placed
and is completely accessible to the IP designer, whereas the
static region contains all the infrastructure required by the
host to communicate with the packaged IP.

Once the FPGA compilation had been completed,
the DRAGON IP can be enqueued as a standard OpenCL
task using an OpenCL-based host program. This program
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can initialize the data into the GM, instructs the DRAGON
‘‘kernel task’’ to start its execution and moves back the
results of the computation to the host. All the PCI-express-
based communication details between the host and the
GM as well as the details of the AXI interconnect are
abstracted and automatically implemented by the Vitis
framework.

Here, we consider DRAGON program instructions to be
part of the data. First, OpenCL buffers are allocated into the
host for all the data that are to be processed as well as the
program instructions that are to be stored into the IM. Then,
the content of these buffers are transferred to the GM (into
the FPGA) and the host sets the start signal (a single-bit
register) into the overlay, right after the host OpenCL pro-
gram enqueues the kernel task. Here, the DRAGON kernel
acknowledges the start bit through a handshaking mechanism
then triggers the boot sequence when required. The boot
sequence allows storing the program instructions into the IM
and can be bypassed when the program has to be reused. Once
the boot step is completed, the overlay starts the execution of
its stored instructions, the input data are read through DMAs,
processed into the accelerator and finally, the results of the
computation are written back to GM.

To finalize the operation of the kernel, a STOP instruction
sets an ’end of program’ notification signal that generates an
interrupt to the host. This interrupt signal informs the host
that the kernel task has been completed and that data are
finally ready to be moved from GM to the host memory. This
approach offers a higher abstraction scheme for the FPGA
and completely hides the communication details from the
end users.

B. THE DRAGON ACCELERATOR
1) THE BROADCAST CLUSTER, THE BROADCAST MEMORY
AND THE BROADCAST MEMORY CONTROLLER
A modular design requires one or more levels of gran-
ularity. The BC (Broadcast Cluster) enhances the modu-
larity of DRAGON and eases its maintenance by imple-
menting a small cluster of 16 tightly-connected PEs (here
2D Mesh interconnection), organized in a 2D grid, and

FIGURE 5. Architecture of the Broadcast Cluster.

communicating with the BM through a BMC (Broadcast
Memory Controller). The BM is at the 3rd level in the
memory hierarchy of the DRAGON architecture, the first
being the Register File, the second being the LM and the
last being the GM. In [3]–[5], the BM was implemented
as a single dual-ported block that is composed of 16 Ultra
RAMs. The inputs and outputs of the first port were shared
by all PEs. The data was loaded from BM to LMs of the
same BC in a sequential time-multiplexed manner using
masks. This port-sharing scheme was adopted to preserve
the broadcast functionality in which the same data could be
sent from one location of BM to all LMs in the same clock
cycle. Unfortunately, this method hinders a valuable resource
which is the higher number of ports that can be used if the
BM was split into 16 banks of equal sizes. In the current
implementation, we adopted this approach to maximize the
internal bandwidth. In fact, every BM is connected to its own
HBM bank through a data bus that has a width of 1024 bits.
This width was selected to allow transfer of 16 64-bit data to
BM, through the DMA side, at every clock cycle. To match
this bandwidth within the Accelerator, every single BM bank
port was connected to a single PE. In order to preserve the
broadcasting feature, we implemented a two stage multiplex-
ing logic as depicted by Fig. 6. The first stage multiplexer
has a selector called offset whose value is extracted from the
BrOffset field in Fig. 9. It selects a single datum among the
16 outputs of the different BM banks. The second stage has
16 multiplexers, one for each BM bank. These multiplexers
will then select between the output of the first stage or the
output of the BM bank with the same rank, in which case,
all PEs can access their corresponding BM banks separately
and concurrently. Nonetheless, in the first case, the broadcast
feature is still preserved while the same datum is broadcasted
to all PEs through different wires. This datum can come
from any BM bank, thus all these banks are accessible to
all PEs and the original BM size in previous implementa-
tion can be emulated by combining storage capacity of all
16 BM banks.

FIGURE 6. Implementation of the data broadcasting feature.

Moreover, in [3]–[5], since the BM data input was shared
by all the 16 PEs in the cluster, storing data to BM was done
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in a sequential manner. A sampler was used to register the PE
data outputs and to serialize them to the BM input port. Here,
since the BM is split into 16 different banks, each one of those
banks has its own input port and every PE can be connected to
that port as depicted by Fig. 5; thus, the PE output bandwidth
is 16 times higher. This implementation profits from the large
number of HBM banks and can still be implemented on
non-HBM FPGAs with the latency cost of time-sharing. The
only downside of this approach is that the size of BM is now
reduced to 1/16 of its original size. Nonetheless, using the
broadcast feature, all data, in all 16 banks can be accessed
from any PE, which emulates the original BM size. Finally,
The BMC acts as a half duplex DMA that manages bulk
data transfers from BM to LM following a call to an LDBM
instruction. Similarly to previous implementations in [3]–[5],
the same data management logic had been preserved, except,
now, the BMC manages 16 separate channels, one for every
BM bank/PE pair.

2) THE PROCESSING ELEMENT
While the Sequencer is the brain of DRAGON, the PE is
its heart and the core part of its architecture. This PE was
designed as a pure computational unit and evolved over time
to implement new instructions and adapt to new requirements.
It consists of a 64-bit micro-coded programmable compute
unit designed with versatility in mind. It provides support for
both integer and double-precision floating-point operations
as well as a handful set of memory and neighbor communi-
cation operations. The PE implements a 7-stage-pipeline and
executes statically scheduled VLIW instructions that are split
into two parallel execution slots.

The PE contains two compartments as depicted by Fig. 7.
In fact, The upper compartment is the DCS (Dual Compute
Slot) and the latter is theMS (Memory Slot). The DCS imple-
ments a Register File capable of addressing 256 different
64-bit wide registers, a 64-bit integer ALU (Arithmetic and
Logic Unit) as well as a double-precision FPU (Floating Point
Unit) whose details are illustrated by Fig. 8. This FPU is
capable of a low-latency fused multiply-accumulate opera-
tion (Only 3 cycles required). This behavior is implemented
by chaining a double-precision floating-point multiplier to a

FIGURE 7. Micro-architecture of the Processing Element.

FIGURE 8. Details of the Floating Point Unit.

double-precision floating-point adder. To accommodate for
the short latency, the default rounding mode implemented for
all operations is truncation.

The FPU, as the totality of the implemented system,
is completely written in pure SystemVerilog and do not use
any vendor-specific library. This applies also to memory
resources such as Ultra RAM that are inferred and not instan-
tiated. The goal is to ensure a better portability and more
design freedom.

While the DCS is mostly a computational block, the MS
manages incoming and outcoming data operations as well as
LM operations. The LM is capable of reading and writing
to the Register File in the same clock cycle. The MS con-
tains a set of input buffers that are implemented as cyclic
FIFOs capable of continuously storing incoming data from
adjacent PEs. The DCS and MS compartments of the PE
provide a vessel to implement VLIW-based multiple-issue
of instructions (up to 2). For example, A PE can execute a
computation through the FPU, scatter the result to adjacent
PEs, while loading a new data from LM to the Register File
or from BM to LM. This overlapping of computation with the
memory transfers allows the PE to achieve the highest levels
of efficiency.

A total of 28 instructions are supported by DRAGON.
These instructions cover computational integer-based and
floating-point-based operations. They also provide support
for memory operations such as loads and stores as well
as neighbor communication operations such as scatter and
gather.

The PE architecture allows operations on operands arriving
from the broadcast memory or even from the input FIFO
buffers that contain gathered data from the neighboring PEs.

3) THE NETWORK TOPOLOGY
DRAGON is a tightly-coupled architecture where all PEs are
inter-connected through a direct network. This interconnec-
tion follows a switchless topology, where each PE represents
a node and each node has a set of connected neighbors whose
number is defined by the dimension level of the network.
The DRAGON network interconnection approach is based
on buffers that store the incoming data from adjacent or
even distant PEs. In the current implementation, a 2D Mesh
topology had been adopted to simplify the design in order
to allow it to fit into a packaged RTL kernel as described
earlier. Nevertheless, we have shown in [4], [5] how the base
architecture could implement a 3D Torus or even achieves a
4D Torus interconnection as presented in [3]. The limitation
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here comes from the number of physical SLLs (Super Long
Lines) that has to cross the SLRs (Super Logic Regions) in
the FPGA [18], in order to transfer the data from the HBM
banks to their corresponding BCs.

In fact, the current version of DRAGON assigns every BC
to a single HBM bank (or a few contiguous banks), through a
1024-bit wide AXI port to transport 16 64-bit data to every
16 PEs in a BC. However, the number of available SLLs
was not sufficient for our original implementation with four
by four BCs and 4D Torus. This limitation, along with the
reduced resources that are automatically allocated by the
FPGA shell to the static region in Vitis RTL kernel flow,
constrained us to resize our implementation to a grid of three
by three BCs and a 2D Mesh network.

Regardless of hardware resource count and from a pure
architectural perspective, every PE has to embed a specific
number of input buffers, depending on the dimension of the
desired topology.

Hence, a 2D Mesh/Torus requires 4 input buffers to accept
incoming data from 4 directions, namely North, West, East
and South neighboring PEs.

In a 3DMesh/Torus topology, there are 2 additional distant
PEs that would impose adding 2 extra input buffers, one for
each newly connected PE.

Similarly, A 4DMesh/Torus topology requires another two
additional input buffers to store the incoming data from the
extra two distant PEs, which makes the total input buffers
count elevates to eight, four from local and four from remote
North, East, West and South directions.

V. THE INSTRUCTION SET ARCHITECTURE
The proposed DRAGON ISA (Instruction Set Architecture)
uses just 28 instructions that are stored in a little-endian
order and formatted in a 64-bit wide format. The formatting
of these instructions is designed in a way that mostly pre-
serves the position of their fields. This is extremely impor-
tant to reduce critical path issues for high-fanout signals
across many implementations [19]. The fixed width of these
instructions, in contrast to dynamically variable CISC-style
instructions, forces its effects to be determined at compile
time.

Depending on the type of the operation, there are currently
five formats to encode the instructions, out of which, there
are four being dedicated to the Accelerator and one solely
to the Controller. These formats are classified as follows:
R-type, LM-type, BM-type, N-Type and a Controller-
specific C-Type. Fig. 9 illustrates the different formats used
for encoding the DRAGON instructions.

A. R-TYPE INSTRUCTION
TheR-type refers to Register-type format and regroups all the
instructions that deal with computational operations. In these
operations, the first operand comes always from the Regis-
ter File, whereas the second operand is selected through a
multiplexer and can either originate from this Register File,

TABLE 3. The DRAGON Instruction Set.

from one of the communication buffers (that store inputs from
adjacent PEs) or directly from the BM.

Pseudo-instructions involving an immediate operand could
be realized by setting the ‘‘OPSrc’’ field of the instruction to
a specific value as shown by Fig. 9.

A computational instruction can be followed immediately
by a local store to LM or even a scatter-gather operation by
setting the ‘‘mode’’ field of the instruction.

The R-Type includes as well the (LDimm) instruction that
allows to load a 64-bit immediate value into the Register File.
(LDimm) uses the first VLIW instruction slot to load the
upper 16 bits of the immediate value and the second slot to
load the remaining bits.

B. LM-TYPE INSTRUCTION
The LM-type refers to Local-Memory-type and deals with
memory transfer operations that move the data between the
LM and the Register File (ST and LD). While R-Type opera-
tions can implement pseudo-instructions that store computed
results into the LM, the latter can allow a concurrent load
operation when the second VLIW slot is set to an (LD)
instruction. In other words, storing data to the LM while
loading from it to the Register File can be done in the same
clock cycle.
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FIGURE 9. DRAGON ISA formatting.

C. BM-TYPE INSTRUCTION
The BM-type refers to Broadcast-Memory-type and consists
of the instructions that deal with memory transfers between
LM and BM (LDBM and STBM). An (STBM) instruction
stores the data into BM, either from the Register File, from
LM or directly from the output of either the FPU or the ALU.
A single call to (LDBM) can load a burst of data to LM.
The ‘‘data_count’’ field of the instruction, shown in Fig. 9,
sets the amount of the data to be transferred. The ‘‘Bmaddr’’
and ‘‘Lmaddr’’ fields set the base addresses of BM and LM,
respectively.

A single memory bank can be used to broadcast the data to
all PEs by setting the ‘‘mode’’ and ‘‘BrOffset’’ fields to the
adequate values.

The ‘‘Mask_load’’ field of the instruction allows targeted
data transfer to a subset of PEs inside the BC. The lower four
bits of this field instructs the starting PE, whereas the upper
four bits instructs the number of PEs to be targeted, counting
from the starting PE.

D. N-TYPE INSTRUCTION
The N-Type deals with neighbor communication operations
such as scatter-gather (NSG), loading data from the input
buffers into LM (NST), flushing the read/write pointers of
the communication buffers (input FIFO buffers) (BFLUSH)
as well as providing the possibility of passing data between
2 PEs (NPASS) in a controlled direction.

The combination of the ‘‘NSrc’’ field bits selects the source
adjacent PE data for (NPASS) and (NST) instructions, while

the ‘‘NDst’’ field selects the destination buffer for (NSG)
instruction.

E. C-TYPE INSTRUCTION
The C-Type is a special type that is solely dedicated to the
Controller and which regroups just 5 instructions. The corre-
sponding Opcode field is fixed as shown in Fig. 9, whereas
the ‘‘Function’’ field is used instead to denote the behavior
of the instruction. The (REPEAT) instruction implements a
loop over a number of iterations, while the (BNZ) instruction
checks the content of the loop counter and exits the loop when
it reaches zero. A hardware stack is used to store the values
of each loop counter and can implement up to seven levels of
nesting.

The (RDGMEM) and (WRGMEM) are two instructions
that configure the DMA engines to read (from GM to BM)
and write (fromBM to GM) data. These two instructions span
across two slots because the address offset for the GM has to
be on a 64-bit format. Therefore, the first slot contains the
upper 32-bit of the GM address offset while the second slot
embeds the lower 32-bit part.

The ‘‘BMOffset’’ field from Fig. 9 contains, as its name
suggests, the address offset for BM. The number of trans-
action bursts to be transferred is indicated by the ‘‘Burst
Size’’ field and allows up to 256 transaction beats to be
issued, which is the maximum allowed by the AXI4 pro-
tocol. In the current implementation we use 1024-bit wide
(128 Bytes) AXI4 master controllers to interface with the
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HBM memories, therefore, we cannot exceed 32 beats (Given
that an AXI burst cannot exceed a 4 KB boundary [20]).

Finally, the (STOP) instruction flags the end of the pro-
gram and notifies the host through a handshakingmechanism,
to allow it to start reading the computed results.

Note that, whenever a C-Type instruction is encoun-
tered, the instruction streams towards the accelerator contain
just (NOP) opcodes. Moreover, since no branch prediction
mechanism is being implemented at the current time, an extra
(NOP) have to be inserted after each call to (BNZ), in order
to stall the pipeline for one cycle, until the branch is solved.
We plan to improve these aspects in future iterations.

F. BINARY GENERATION
Since a compiler is still under development, we currently
program DRAGON in a challenging yet interesting way.
We developed a set of C-based function prototypes that
describe all the DRAGON instructions. These function pro-
totypes take as parameters the fields of each instruction,
concatenate them and then dump the equivalent hexadecimal
value to the generated program file. We use these function
prototypes into a C-based program and make use of the pow-
erful constructs of the C language to generate our final target
executable. The contents of this file can then be loaded into
the FPGA through OpenCL buffers. This code is independent
from the number of BCs in the architecture and is the same
for configurations implementing any number of BC.

VI. EXPERIMENTAL EVALUATION
A. EXPERIMENTAL ENVIRONMENT
The current implementation of DRAGON targets a Xilinx
Alveo U280 acceleration card, featuring a 16 nm Ultrascale+
XCVU37P FPGA with 8 GB of on-chip HBM2 memories
split into 2 stacks of 4GB each [21].

We created multiple DRAGON assembly programs that
compute the two stencil computation benchmarks shown
in Table. 6 and map their execution among all PEs in parallel,
for different problem sizes and different number of itera-
tions. Then, for comparison purpose, we created an optimized
parallel version (using C++ with OpenMP pragmas and
AVX2 compiler directives) of the equivalent computations on
both Intel Core i9 and Core i5 CPUs. At first, wewill compare
the obtained sustained performance of DRAGON as well as
its power efficiency to those of the Intel Core i5 and Core

TABLE 4. Environment setup used in the experiments.

i9 CPUs. Later, we will expand our evaluation to compare the
computational efficiency of DRAGON to other architectures
such as GPUs or even FPGAs from other vendors.

Details about the experimental setup, are given through
Table. 4. The current FPGA implementation clocks at
130 MHz.

B. STENCIL-BASED BENCHMARKS
Molecular dynamics, electromagnetism and particle interac-
tions are examples among many other scientific computing
applications that require solving complex partial differential
equations. Stencil computing [2] is a powerful tool that is
widely used to solve such kind of equations. Stencils operate
on a regular N-dimensional grid and iteratively update their
cells (grid points) over a certain count of iterations. This
process is repeated over a number of successive time iter-
ations where the current cells use exclusively their updated
neighborhood points from the previous time-step. This yields
a time-step-dependency-free relation between cells which
means that the grid cells can be easily partitioned in space
andmapped to different computing units provided an efficient
communication mechanism to allow them to exchange the
partitioned cells boundaries between each other, at every time
iteration. Here, the experimental evaluation of DRAGON is
based on the sustained performance and power efficiency
results of the stencil-based benchmarks whose computational
models are given by Table. 6.

VII. RESULTS AND DISCUSSION
A. RESOURCE UTILIZATION
Table. 5 shows the resource utilization of the FPGA, for
both the static region (percentages are given relatively to all
available resources) and the dynamic region (percentages are
given relatively to remaining resources, after excluding those
allocated for the static region) in the FPGA.

TABLE 5. FPGA resource utilization summary.
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TABLE 6. Benchmarks used for the experimental evaluation.

The current implementation of DRAGON consists of a grid
of three by three BCs and consumes less than half the LUT
and BRAM resources available on the dynamic region of
the FPGA. BRAMs are used for the Register File and FIFO
buffers, whereas URAMs are used for LMs and BMs.

To provide an OpenCL control interface, the design is
packed as an RTL-based kernel. This flow instructs the
Vivado tool to place a static region inside the FPGA called
shell. This shell comprises multiple additional necessary
logic for managing HBMmemory interfaces and PCIe DMA
engine to communicate datawith the host.Moreover, thewide
AXI buses (1024 bits) used to communicate data between
HBM banks and its corresponding BCs limit the number of
BCs that can be deployed, due to the limitation of inter-die
wires. In fact, the current FPGA uses SSI (Stacked Silicon
Interconnect) to connect 3 different chip dies named SLR [18]
(Super Logic Region) through the usage of special wires
known as SLLs (Super Long Lines). FPGA designs with high
connectivity between PEs such as DRAGON, will be mostly
bottle-necked by the available amount of SLLs, instead of
the available logic resources. Consequently, this complicates
placement and routing steps which degrades the performance
by negatively impacting the clock speed (currently 130MHz),
in particular when multiple BCs are deployed. In contrast,
when a single BC was implemented, the operating frequency
could reach 180 MHz. While outside the scope of this paper,
it is also interesting to note that our implementation is flexible
enough to support multiple types of global memories such
as HBM2, DDR4 or even on-chip URAM and BRAM. It is
also possible to combine usage of these memories. The only
requirement here is to use AXI4 as the external memory
interface protocol. Following our OpenCL-based approach,
Vitis will automatically implement the necessary memory
subsystem to connect the different BCs to the chosen type
of global memory.

B. COMPUTATIONAL PERFORMANCE AND POWER
EFFICIENCY
Reference [22] shows that Intel Core i9 9900K has a peak
performance of 460.8 GFLOP/s and that Intel Core i5
6360U has a peak performance of 64 GFLOP/s. Nonetheless,
there is no mention for which clock speed (both proces-
sors have dynamic turbo boost feature) or whether this is a
single-precision or double-precision performance.

Therefore, we computed the TPP (Theoretical Peak Perfor-
mance) of the CPU through ‘‘(1)’’.

TPPCPU = FREQCPU × CORESCPU × #OPCPU (1)

where FREQCPU is the clock frequency of the processor,
CORESCPU is the number of processor cores and #OPCPU is
the number of double-precision operations allowed per clock
cycle in every core and which is equal to 8. In fact, both
CPUs support AVX2which allows operations on 256-bit vec-
tors. Therefore, both CPUs allow four 64-bit or eight 32-bit
data to be packed; thus, four 64-bit or eight 32-bit parallel
operations. They also support fused multiply-add operations
which doubles the number of operations to a total of eight
for double-precision and sixteen for single-precision. Given
the base clock frequency of each CPU, we can verify that
the TPP in [22] is given for single-precision. This confirms
our approach to calculate it for double-precision and we can
deduce that TPPCorei9 = 230.4 GFLOPs and TPPCorei5 =
32 GFLOP/s. Similarly, each PE of DRAGON has the ability
to produce a result for either one 64-bit integer operation or
up to 2 double-precision floating-point operations (floating-
point multiply-accumulate instruction). Hence, the TPP of
DRAGON for FP (Floating-Point) operations TPPDRAGON is
given by ‘‘(2)’’.

TPPDRAGON = 2× FREQ× NPE × NBC (2)

where FREQ is the system clock frequency in GHz and
is equal to 0.130 GHz (130 MHz), NPE is the number of
PEs per BC and is equal to 16 and NBC is the number of
BCs in the FPGA and is equal to 9. In current implementa-
tion, TPPDRAGON = 37.44 GFLOP/s (double-precision) and
18.72 GOPs for 64-bit integer operations.

In order to update every cell (stencil point), Laplace
benchmark requires in average 1 multiplication and
3 multiply-accumulate operations (in total 4 multiplications
and 3 additions). On the other hand, the 2D 5-point Jacobi
benchmark requires 1 extra multiply-accumulate operation
for the central cell point. Consequently, the 2D Laplace
benchmark requires 7 operations per cell update, whereas
the 2D 5-point Jacobi requires 9 operations. The EP (Effec-
tive Performance) is obtained by dividing the number of
required operations by the execution time. The calculated EP
is depicted by Fig. 10.

Besides, Dragon consumes 35.44W whereas the corre-
sponding TDP (Thermal Design Power) values of the Core
i9 and the Core i5 are shown in Table. 4. Consequently,
the power efficiency is obtained by dividing the EP by the
corresponding power drop. Fig. 11 illustrates the computed
power efficiencies based on the EP depicted by Fig. 10.

DRAGON has the ability to accumulate intermediate
results in its FPU and can execute computation while
scattering and gathering data continuously through reading
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FIGURE 10. Effective Performance of Dragon, Intel Core i9 and Core
i5 CPUs with different problem sizes and different number of iterations
for 2D Laplace and 2D 5-point Jacobi computations.

FIGURE 11. Power efficiency of Dragon, Intel Core i9 and Core i5 CPUs
with different problem sizes and different number of iterations for 2D
Laplace and 2D 5-point Jacobi computations.

and writing into its FIFO buffers; thus, effectively overlap-
ping computation with memory transfers. This explains the
fact that DRAGON achieves higher computational efficiency
when compared to the Core i9 and the Core i5 processors as
shown through EPR values of Table. 7. Overall, DRAGON
achieves a higher power efficiency when compared to the
Core i9 and the Core i5 CPUs as depicted by Fig. 11. On the
other hand, the Core i5 CPU has a low TDP of just 15W and
thus manages to have higher power efficiency than that of the
Core i9.

The work in [2] reports the single-precision peak per-
formance of a GTX960 GPU which is 2,308.1 GFLOPS.
Based on the reported EPRs for single-precision 5-point
Jacobi and Laplace benchmarks (7.1% and 3.2%, respec-
tively), the sustained performance is 163.87 GFLOPS
and 73.85 GFLOPS, respectively. Given that the TDP is
equal to 120W, the corresponding power-efficiencies are
1.36 GFLOPS/W and 0.61 GFLOPS/W, respectively. The
number of double-precision cores on this GPU has a rate
of 1/32 as compared to single-precision cores which lead
to a peak performance of just 72.12 GFLOPS. Assum-
ing the same EPRs are maintained in double-precision
computation, the corresponding sustained performances
for the 5-point Jacobi and Laplace benchmarks become
5.12 GFLOPS and 2.3 GFLOPS, respectively. Further-
more, the power efficiencies become 0.042 GFLOPS/W
and 0.019 GFLOPS/W, respectively. In contrast, DRAGON
can achieve 33.66 GFLOPS and 32.74 GFLOPS in
double-precision performance for these respective bench-
marks. DRAGON consumes 35.44 W at 130 MHz which
yields the power efficiency of 0.94 GFLOPS/W and
0.92 GFLOPS/W for these respective benchmarks. This
clearly shows the merit of DRAGON in double-precision as
compared to GTX960GPU sustained performance and power
efficiency for these benchmarks.

C. COMPARISON WITH RELATED WORKS
The work in [9] and [10] implements a resource-efficient
RISC-V overlay, supports only integer computations and
abstains from providing any application performance anal-
ysis. While RISC-V is an attractive choice for instruction-
set-based overlays, we believe it is not adequate for
compute-intensive or memory-bound applications found in
scientific calculations. While possible ISA extensions might
address this kind of computations, they would still require
specialized compilers and remain bound by the space of
usable instructions, which is intrinsically limited, both in
number and width. Clearly, the Load-Store, register-register
based approach is not efficient enough to handle data
exchange between PEs while consuming a minimal amount
of clock cycles.

In contrast, our proposed ISA extends the register-register
approach to allow PEs to operate directly on incoming data
from external inputs, such as adjacent PEs (through FIFO
buffers), or even from an external larger memory (such
as BM), through a broadcasting approach. Moreover, our
VLIW-based micro-architecture implementation allows PEs
to execute more operations with less instructions as depicted
by Fig. 12; thus, efficiently overlapping data movements with
computations and consequently boosting the computational
efficiency. For example, Fig. 12 illustrates how a single
VLIW instruction with two slots, can hide data transfer cost
between adjacent PEs as well as between the local memory
and the Register File (in both directions), by overlapping
these memory operations with effective computations; thus,
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TABLE 7. Comparison of the EPR(%) with CPU, GPU and FPGA using 2D stencil computation benchmarks.

reducing overall requirement for five different operations to
a single clock cycle.

FIGURE 12. VLIW in action: more operations with less instructions.

The work in [12] claims to introduce the concept of
domain-specific programmable design for stencil computa-
tion. This work aims to create a specialized multi-FPGAs
overlay for pipelined, iteration-parallel 2D and 3D sten-
cil calculations. This overlay implements a master and
multiple slave FPGAs and uses multiple sequencers to
interpret custom instruction-set micro-instructions to con-
trol PE operation. While this enhances problem-size flex-
ibility, it introduces an extra burden on programmers by
forcing them to configure corner-case sequencers using dif-
ferent micro-instruction programs. In contrast, our archi-
tecture is able to implement the same 2D benchmarks
using a single program and a single sequencer. Fur-
thermore, while the authors in [12] claim that their
approach applies to double-precision floating-point compu-
tations, their implementation and evaluation focus only on
single-precision floating-point. Their implementation uses
Terasic DE3 boards (ALTERA Stratix III EP3SL150) and
achieves a TPP of 25.5 GFLOP/s for master FPGA (with
96 PEs) and 34 GFLOP/s for slaves (with 128 PEs)
at 133 MHz for both. Our work, not only adopts a
double-precision implementation but extends that to sup-
port 64-bit integer operations as well. While the current

implementation of DRAGON uses a higher precision and
reaches 37.44 GFLOP/s (with 144 PEs) at just 130 MHz,
a direct performance comparison may be unfair because of
the gap in FPGA technology and size. Besides, despite not
being tailored to a specific application, DRAGON managed
to achieve the same EPR for a 4-point Jacobi benchmark
(87.4% for both DRAGON and the work in [12]). In addition,
the work in [12] adopts a USB interface to transfer data from
the host to the FPGA, which may limit the sustained perfor-
mance for a streaming architecture. In contrast, our work not
only uses a faster PCIe interface for host-FPGA transfers,
but also allows controlling the FPGA overlay through an
OpenCL host program; thus, ensuring easy integration within
computing platforms.

The work in [2] proposes a customized OpenCL-based
design for single-precision FPGA implementation of the
benchmarks in Table. 6. Generally, a target-specific imple-
mentation achieves higher performance than general pur-
pose overlays. This gap in performance comes at the cost
of a fixed problem-size as well as a longer design and
performance tuning time. Compared to our benchmark imple-
mentation, the work in [2] achieves a higher clock fre-
quency (296 MHz for 2D 5-point Jacobi benchmark on
DE5), implements larger problem sizes and reports better per-
formance when targeting single-precision (181.9 GFLOP/s,
at best, for a 2D laplace benchmark). Nonetheless, a direct
performance comparison may be unfair because of the
impact of doubling the floating-point precision on the overall
area and operating frequency. The authors in [2] reported
the double-precision floating-point performance for a sin-
gle benchmark (2D 5-point Jacobi) while noticing that,
in general, the double-precision performance do not exceed
25% of what single-precision could achieve. For example,
the implementation of the 2D 5-point Jacobi benchmark on
a DE5 board [2] reached 27.2 GFLOP/s in double-precision,
while on a 395-D8 board [2] it reached 40.7 GFLOP/s.

Equation ‘‘(12)’’ in [2] defines the Effective to Peak
Performance Ratio (EPR) as the ratio of EP to TPP.
This performance metric directly points to the computa-
tional efficiency of a given architecture, regardless of the
underlying implementation details. The single-precision TPP
of the Nallatech 385 board used in [13] is given by [23]
and is equal to 1366 GFLOP/s; hence, we estimated the
double-precision performance to nearly one fourth of that
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and thus to 341.5 GFLOPs. Using these two values, we com-
puted the EPR for the floating-point performance of the
work in [13] (using skewed grid) and reported our findings
in Table. 7. Note that a higher estimation on this value would
reduce further the calculated EPR of the FPGA. By default,
Table. 7 shows the EPR percentage based on the reported
double-precision performance. A note was added to indicate
where the EPR is based instead on the single-precision
performance.

Interestingly, despite not being tailored to a specific appli-
cation, Table. 7 shows that our best measured EPR achieves
comparable or even higher results than those reported in [2]
and [13], regardless of the implemented floating-point preci-
sion. This highlights the merit of our overlay architecture and
in particular the efficiency of its underlying custom-designed
instruction-set.

VIII. CONCLUSION
This work presented a high-performance computing architec-
ture codenamed DRAGON (Dynamically Re-programmable
Architecture for Gather/scatter Overlay Nodes). This archi-
tecture implements a custom instruction set specifically
designed for extracting the highest levels of parallel per-
formance while preserving domain flexibility. DRAGON
offers both 64-bit integer and double-precision floating-
point computing capability in the same PE. DRAGON is a
promising architecture that leverages benefits from CPU and
GPU worlds, condenses an overload of parallel execution
paradigms and is in a continuous evolution process. Themerit
of DRAGON was demonstrated through two memory-bound
stencil-based benchmark which show that the implemented
version with only 144 PEs can outperform an Intel Core
i9 under certain conditions, and achieves better power effi-
ciency as well as higher EPR while operating at a clock speed
that is nearly 28 times lower. This offers promises that an
ASIC (Application-Specific Integrated circuit) implementa-
tion would exceed the sustained performance of even the
most performing CPUs by at least an order of magnitude.
Ultimately, DRAGON is implemented on an HBM2-enabled
FPGA and exploits Vitis RTL kernel flow to seamlessly inte-
grate any heterogeneous platform as an acceleration kernel
that can be controlled with an OpenCL-based host. Arguably,
this is an extremely significant milestone in the great chal-
lenge towards bringing FPGAs closer to mainstream adop-
tion. Our future goals will include developing a compiler to
ease the programming task, scaling the architecture into a
multi-FPGA implementation and finally exploring the pos-
sibility of an ASIC tapeout.
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