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ABSTRACT Imitation learning has been studied as an efficient and high-performance method to generate
robot motion. Specifically, bilateral control-based imitation learning has been proposed as a method of
realizing fast motion. However, the learning approach of this method leads to the accumulation of prediction
errors during the prediction process and may not generate desirable long-term behavior. Therefore, in this
paper, we propose a method of autoregressive learning for bilateral control-based imitation learning to reduce
the accumulation of prediction errors. A new neural network model for implementing autoregressive learning
is also proposed. Three types of experiments are conducted to verify the effectiveness of the proposed
method, where the method is shown to have improved performance over those of conventional approaches.
Due to the structure and method of autoregressive learning employed by the developed model, the proposed
method can generate desirable long-term motion for successful tasks and has a high generalization ability

for environmental changes based on the human demonstrations of tasks.

INDEX TERMS Bilateral control, imitation learning, motion planning, robot learning.

I. INTRODUCTION

Robots that can execute various tasks automatically are
becoming an increasingly important focus of research in the
field of robotics. Recently, machine learning has exhibited
high performance in various fields, including image recogni-
tion [1], machine translation [2], expression recognition [3],
human activity recognition [4], and robotics [5]-[8]. Also,
approaches based on end-to-end learning for motion gener-
ation have also recently shown high performance [9]-[12].
Where approaches based on reinforcement learning require
a considerable number of trials [10], end-to-end learning
reduces the effort required for programming, and complex
robotic motion can be easily generated. Moreover, end-to-
end learning methods have a high generalization ability for
situation-related changes.

Among these approaches, imitation learning (IL) and
learning from demonstration have attracted attention as meth-
ods for efficiently learning robot motion [13], [15]-[18].
These learning-based methods use datasets derived from
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human demonstrations of tasks. Yang er al realized
autonomous robot operations using neural network (NN)
models [17], whereas another study proposed a method that
combines reinforcement learning and IL [18]. IL using force
information has also been proposed [19]-[25], where force
control improves the robustness against position fluctuations.
More specifically, force control increases the possibility of
adapting to complex tasks that require force information
and thus enables the accomplishment of a greater number
of various tasks. References [19], [20] used haptic devices
to collect force information during human demonstrations
of tasks. Rozo et al. realized cooperative work between a
human and robot using a Gaussian mixture model [21], and
Ochi et al. used NN models to integrate visual, position,
and force information to perform tasks [23]. In addition,
[25] used dynamic movement primitives to model human
demonstrations of tasks and realized the automated task of
writing letters. A common problem with these approaches
is that robot motion is extremely slow compared to that of
humans.

We previously proposed a bilateral control-based IL as
a method that uses force information [26], [27]. Bilateral
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FIGURE 1. Network model of our bilateral control-based IL.

control is a remote-control system that uses two robots,
namely, a master and slave [28]-[31]. We employed bilateral
control in a series of human demonstrations of tasks, where
a human operated the master robot, with the slave being
teleoperated and conducting tasks within the workspace. As
Fig. 1 shows, the NN model for motion generation predicted
the master state from the slave state. The NN model included
long short-term memory (LSTM) [32] to predict sequence
data. Here, S and M represent the slave and master, respec-
tively, the superscript res indicates the response values, and k
represents the step of the sequence data. Our bilateral control-
based IL can execute tasks requiring a force adjustment and
realize fast motion that a conventional IL [19]-[25] cannot.
As Fig. 2(a) shows, in conventional IL, the response values
collected during the demonstrations are given as the com-
mand values for autonomous operations, and delays among
the command and the response values are not strictly consid-
ered. However, in robot control, eliminating control delays
is virtually impossible. In addition, when performing tasks,
including contact with the environment, delays due to phys-
ical interactions occur. For this reason, a conventional IL
can achieve only slow motion where delays can be ignored.
Based on the foregoing, the following two conditions must be
satisfied to realize fast motion in the IL:

(i) command values must be predicted during autonomous
operation, i.e., collected during the demonstrations,

(ii) the same control system must be implemented during
the demonstrations and autonomous operations.

Our bilateral control-based IL can satisfy these two condi-
tions for the following reasons. First, in bilateral control, the
command values of the slave are the response values of the
master, and both of them can be measured independently.
As a result, the slave’s command values of the slave can be
predicted during autonomous operations. As Fig. 2(b) shows,
in our bilateral control-based IL, delays that occur during
the demonstrations also occur during autonomous operations.
Second, as Fig. 3 shows, in a bilateral control-based IL, the
system is designed to reproduce bilateral control during an
autonomous operation. Thus, the control system of the slave
can be the same during the demonstrations and autonomous
operations. In demonstrations using bilateral control, humans
collect data while considering delays, i.e., humans demon-
strate skills to compensate for delays. If the control system is
different during demonstrations and autonomous operations,
this compensation skill will be lost.

Although our bilateral control-based IL can achieve a fast
and dynamic motion, it does have a drawback. Specifically,
the learning method of this approach is unsuitable for long-
term predictions because the NN model is trained with-
out autoregressive learning. This learning method is called
teacher forcing [33]. When the NN model is trained using
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teacher forcing, if prediction errors occur during the predic-
tion process, the errors will accumulate, and the robot will
not realize a desirable behavior. Autoregressive learning is
a method to solve this problem, in which the output at the
previous step is input to the model in the subsequent step. This
method is called free running [34]. Because autoregressive
learning predicts a series of motions continuously, the model
is learned to minimize the total errors of the long-term pre-
diction. To implement autoregressive learning, the input and
output of the model must be the same variables. In general,
the implementation of autoregressive learning is simple [35]
because the input and output of the model are the same
variables, i.e., response values. By contrast, in our bilateral
control-based IL, the output of the model cannot be used
as the next input because the input and output of the model
are different variables, i.e., the response values of the slave
and of the master (Fig. 1). Therefore, we propose a model in
which the input and output of the proposed model have both
master and slave response values to implement autoregressive
learning in a bilateral control-based IL. In summary, the main

contributions of this paper are as follows:
(i) A new NN model for autoregressive learning in our

bilateral control-based IL is proposed.
(i) The proposed model improves the ability to generate
long-term behavior, and it leads to improve the adapt-

ability to environmental changes.
In this study, the proposed model was compared with

conventional models. For the experiments, three tasks were
conducted to clarify the effectiveness of the proposed method.
The success rates of the tasks were used to evaluate the
performance of the method. In all experiments, the proposed
method showed an excellent performance equal to or greater
than that of previous conventional methods.

The remainder of this paper is organized as follows.
Section II introduces the control system and bilateral control,
and Section III describes the method of the bilateral control-
based IL. Section IV describes autoregressive learning and
the NN models for the proposed method and previous con-
ventional methods. Section V describes the experiments and
presents the results of the three tasks. Section VI provides
concluding remarks regarding this study and discusses areas
of future research.

Il. CONTROL SYSTEM

A. ROBOT

Two Touch ™, which are haptic devices manufactured by
3D Systems, were used in the experiments. Two robots were
used as master and slave, respectively. The robots had three-
degrees-of-freedom (DOF), as shown in Fig. 4. The robots
could measure only the joint angles 61, 8>, and 63 with the
encoders. Here, the subscripted numbers represent each joint
shown in Fig. 4.

B. BILATERAL CONTROL
Bilateral control is a type of remote-control system that uses
two robots, i.e., a master and slave [28]-[31]. In this study,
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FIGURE 2. Overview of general IL and our bilateral control-based IL. In general, the delays caused during the demonstration and
autonomous operation are different. Therefore, a general IL can realize only slow motion, thus ignoring delays. In the bilateral
control-based IL, the delays caused during the demonstration and autonomous operation are the same. Thus, in our bilateral control-based

IL, fast motion with delays can be achieved.
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FIGURE 3. 4ch bilateral controllers during the demonstrations and the
autonomous operation. The figure on the left side shows a 4ch bilateral
controller. This controller was used during the human demonstrations of
tasks. As the right side of the figure shows, the master robot and master’s
controllers were replaced with the NN model to virtually reproduce the
4ch bilateral controller during an autonomous operation. With the
method proposed in this study, both the master and slave response
values were input to the NN model. The same control system was applied
during the human demonstrations of tasks and autonomous operation.
Note that the system including the slave robot and slave’s controllers
(orange-colored lines) must be the same because the slave was used
during the autonomous operation.

FIGURE 4. Robot (Touch ™),

4ch bilateral control [36], [37] was used from among various
types of bilateral control because it offers the highest per-
formance and excellent operability, and the slave and master
consist of both position and force controllers. Therefore, 4ch
bilateral control is suitable for IL [27]. In bilateral control,
when the operator operates the master, the slave is teleop-
erated. The control goal is to synchronize the position and
satisfy the law of action and reaction forces between the two
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robots. The reaction force caused by the contact between
the slave and environment is presented to the master. Thus,
the operator can feel the interactions between the slave and
environment. The control law of the 4ch bilateral control is
expressed through the following equations using the angle
response values 6" and torque response values 77 of the
robots. A block is given on the left side of Fig. 3. Note
that the subscripts s and m represent the slave and master,
respectively, and the superscript res represents the response
values.

e — 01 = 0, 6))
) 2)

C. CONTROLLER

The control system consisted of position and force con-
trollers, as shown in Fig. 5. Here, 6, 9, and T represent
the joint angles, angular velocity, and torque of each joint,
respectively, the superscripts res, cmd, and ref indicate
the response, command, and reference values, respectively.
In addition, 67 was measured by the encoders of the robots,
and 67 was calculated using pseudo-differentiation. The
disturbance torque t%* was estimated using a disturbance
observer (DOB) [38] as . Furthermore, a reaction force
observer (RFOB) [39] was used to calculate the reaction
force 7. Details of the RFOB are provided in Section II-D.
The position controller also included proportional and deriva-
tive controllers, where the force controller comprised a
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TABLE 1. Gains and identified system parameters for the robot controller.

Parameter Value
J1 Joint 1’s inertia [mkgm?] 2.55
Ja Joint 2’s inertia [mkgm?] 4.30
J3 Joint 3’s inertia [mkgm?] 1.12
G1 Gravity compensation coefficient 1 [mNm] 79.0
Ga Gravity compensation coefficient 2 [mNm] 55.0
Gs Gravity compensation coefficient 3 [mNm] 33.0
D Friction compensation coefficient{mkgm? /s] 4.55
Ky Position feedback gain 121
Ky Velocity feedback gain 22.0
Ky Force feedback gain 1.00
g Cut-off frequency of pseudo differentiation [rad/s] 40.0
9gpoB Cut-off frequency of DOB [rad/s] 40.0
JRFOB Cut-off frequency of RFOB [rad/s] 40.0

proportional controller. The torque reference values t’% of
the slave and master were calculated as follows:

J
e = _E(K,, + Kgs)(0)° — 01°5)

1
- EKf(r,:fS + 7)), 3)

s

J
7 = E(Kp + Ky5)(01 — 07%)

1 - .
—EKf(T,Z“ + 7%, “4)

where s represents the Laplace operator, J is the inertia,

and K,, K, and Ky represent the position, velocity, and

force control gain, respectively. The gain values and cut-off

frequencies used in the experiments are listed in Table 1.
Also, robot dynamics are represent as follows:

5o = o9 — s — peres, (5)
Lo = o — o — Gy cos 05 — Gy sin65,  (6)
LG5 = o7 — o — Gy sin 65, )

where D and G represent the friction compensation and grav-
ity compensation coefficients, respectively, and the subscripts
represent the different joints of the robots. Also, § means
angular acceleration. The off-diagonal term of the inertia
matrix was ignored because it was negligibly small.

D. SYSTEM IDENTIFICATION
The parameters of the control system were identified based
on [40]. Friction D and gravity G were identified under

free motion, assuming ¥ = 0. The DOB calculated the
estimated disturbance torque 79 as follows:
_Edis — _L,ref _Jé‘res. (®)

‘When the RFOB is used, each force can be measured without
using a force sensor, and the torque response values of each
joint were calculated as follows:

res __ »dis \res
o = &5 _ D ©)
_L,Zres — féizs — Gy cos ezres — Gy sin 93res’ (10)
T = 5 — Gy sin 5. Y

All identified parameters used in the experiment are listed in
Table 1.
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Ill. METHOD OF BILATERAL CONTROL-BASED
IMITATION LEARNING

In our experiments, the robots learned behaviors from
human demonstrations of tasks and then conducted the tasks
autonomously. In the demonstrations, the desired tasks were
conducted using 4ch bilateral control. A human operated
the master, and the slave performed the tasks in the given
workspace. The joint angles, angular velocity, and torque
response values of the two robots were used as the dataset
for model training. Both the control and data-saving cycles
were 1 ms long.

The NN model was then trained using the dataset derived
from the demonstrations. The NN model consisted of LSTM
and fully connected layers to learn the time-series data. The
number of LSTM layers was set for each task by trial and
error. Details are described in Section V. The activation
functions for the LSTM and fully connected layers were a
hyperbolic tangent function and identity mapping, respec-
tively. Essentially, the model was trained to input the state at
time ¢ and output the state at time 7 + 20 ms. Whether either
the input or output were the master or slave state depended
on each model described in Section IV. The state consisted of
the joint angles, angular velocity, and torque response values.
The loss function is the mean squared error (MSE) between
the model output values and true values of the dataset. The
model was learned to minimize the loss function with Adam
optimization [41]. The dataset values were normalized to
[0, 1] before the input to the model.

Finally, the trained model generated the motion, and the
robot autonomously conducted the tasks. The control system
was designed to reproduce 4ch bilateral control during the
autonomous operation. The joint angle, angular velocity, and
torque response values of the slave were measured in real
time and input to the learned model. The command values
predicted by the model were normalized before the input
to the slave controller. Note that the prediction and control
cycles of the model and robot were 20 and 1 ms, respectively.

IV. NEURAL NETWORK MODEL

A. AUTOREGRESSIVE LEARNING

Fig. 6 shows the LSTM model developed in the time direc-
tion. Here, x represents an arbitrary value used for the input
and output, the superscript #r represents teacher data, and O
represents the predicted values of the model. Fig. 6(a) shows
the learning method without autoregressive learning. With
this method, the teacher data are input at each step during the
learning process, i.e., the input values are completely unaf-
fected by the prediction in the previous steps. More precisely,
the output error used to train the NN model is based only on
a one-step prediction.

However, as Fig. 6(c) shows, the model’s prediction values
are used as the next input during the prediction process.
Therefore, without autoregressive learning, the input prob-
ability distributions are different between the learning and
prediction processes. If prediction errors occur because of
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FIGURE 7. Network version of the $2S model (conventional method).

this difference, they will accumulate step by step. Therefore,
although the model is learned with high accuracy during
the learning process, it cannot generate desirable behavior
during the prediction process. This problem similarly occurs
in the field of natural language processing when using a
recurrent NN [42]-[45]. It is known that the gap in input
distributions can be filled by autoregressive learning, which
uses the model’s predicted values as input during the learning
process, as shown in Fig. 6(b). In addition, during autoregres-
sive learning, prediction errors accumulate step by step during
the learning process, and the model is optimized to reduce
these errors. Therefore, the model is learned to behave prop-
erly throughout the continuous-time series. Autoregressive
learning prevents error accumulation during the prediction
process, and the model is more likely to generate desirable
behavior in the long-term to execute tasks.

In a conventional bilateral control-based IL [26], [27],
autoregressive learning cannot be implemented. This is
because the input and output of the model are different vari-
ables, i.e., the slave and master have different response values
(Fig. 1). In this study, the SM2SM model is proposed to solve
this problem. In addition, the performances of three models
are compared with that of the proposed method. Summary
information about the different models is provided in Table 2.
The general IL [19]-[25] predicts the next response values
from the current ones. Therefore, the S2S model that predicts
the next slave state from the current one is used as a compar-
ison method that replicates the general IL. The S2M model
is used as the conventional bilateral control-based IL [26],
[27] and the SM2SM model is used as the proposed method.
Details of each model are provided in the following sections.

B. S2S MODEL (CONVENTIONAL MODEL)

As Fig. 7 shows, the S2S model predicts the next slave state
from the current one. The input and output consist of the joint
angles, angular velocity, and torque response values of the
slave with three DOFs. In other words, the S2S model has
nine inputs and nine outputs.

20512

1) LEARNING

During the learning process, the slave’s response values were
input, and the slave’s response values 20 ms later were out-
put. The S2S model was trained without or with autore-
gressive learning. The cases without and with autoregressive
learning were called S2S-w/0-AR and S2S-AR, respectively.
The number of autoregressive steps was set to 10 to allow
the prediction errors to converge quickly. In other words,
every 10 steps, the values of the training dataset were input
instead of the predicted values from the previous step.

2) AUTONOMOUS OPERATION

The model predicted the response values of the slave. The
predicted values of the model were used as the command
values of the slave.

C. S2M MODEL (CONVENTIONAL MODEL)

As Fig. 1 shows, the S2M model predicted the next state
of the master from the current state of the slave. The input
consisted of the joint angles, angular velocity, and torque
response values of the slave with three DOFs. The output
consisted of these response values of the master with three
DOFs. Therefore, the S2M model had nine inputs and nine
outputs.

1) LEARNING

During the training, the response values of the slave were
input, and the model output the response values of the master
20 ms after the input was applied. In the case of the S2M
model, the model was trained without autoregressive learning
because it could not be implemented. The S2M model without
autoregressive learning is called S2M-w/o-AR.

2) AUTONOMOUS OPERATION

The model predicted the response values of the master; these
predicted values were used as the command values of the
slave.

D. SM2SM MODEL (PROPOSED MODEL)

SM2SM was the proposed model applied to adapt autore-
gressive learning to a bilateral control-based IL. As Fig. 8(a)
indicates, the SM2SM model predicted the next state of the
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TABLE 2. Details of the NN model.

Neural network model

Model Input Output Autoregressive learning
S2S-w/o-AR Slave (9 dims.) Slave (9 dims.) -
S2S-AR Slave (9 dims.) Slave (9 dims.) v
S2M-w/o-AR Slave (9 dims.) Master (9 dims.) -
SM2SM-w/0-AR Slave and master (18 dims.) | Slave and master (18 dims.) -
SM2SM-AR (Proposed model) Slave and master (18 dims.) | Slave and master (18 dims.) v
S: Slave’s values tr: Response values collected as training dataset k: step
M: Master's values  res: Response values ~: Predicted values Each value consists of #, 6, and ©
STk + 1) MT(k + 1) ST+ 2)MT(k +2) STk +3) MT(k+3) preey grey ooy
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(a) Network model

(b) Learning Process

(c) Prediction Process

(During the autonomous operation)

FIGURE 8. Learning process and prediction process of the SM2SM model (proposed method).

slave and master from their respective current states. In con-
trast to the S2M model, the input and output of the SM2SM
model consisted of both slave and master states. Therefore,
autoregressive learning could be implemented. In addition,
the structure of this model was shown to have another advan-
tage. In bilateral control-based IL, the relationship between
the slave and master must be learned accurately to reproduce
the demonstrations. During the learning of the S2M model,
only one relationship was used, which was the prediction
from the slave to the master state. By contrast, in the SM2SM
model, four relationships were used: predictions from the
slave to the slave state, from the slave to the master state,
from the master to the slave state, and from the master to the
master state. These improved the learning of the dynamics of
bilateral control. Based on the foregoing, because interactions
between master and slave robots could be implicitly learned
by the SM2SM model, it was expected that the SM2SM
model would be a suitable model for bilateral control-based
IL. The input and output for the SM2SM model consisted of
the joint angles, angular velocity, and torque response values
of the slave and master with three DOFs. In other words, the
SM2SM model had 18 inputs and 18 outputs.

1) LEARNING

An overview of the learning process of the SM2SM model is
shown in Fig. 8(b). During the learning process, the response
values of the slave and master were input, and the response
values of the slave and master 20 ms later were output. The
SM2SM model was learned without or with autoregressive
learning. The cases without and with autoregressive learning
were called SM2SM-w/0-AR and SM2SM-AR, respectively.
In this study, the number of autoregressive steps was set
to 10 to ensure that the prediction errors converged quickly.
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2) AUTONOMOUS OPERATION

Overview during the autonomous operation is shown in
Fig. 8(c). The slave state among the input to the model was
the slave response values measured in real time. By contrast,
the master state among the inputs of the model was that
predicted by the model one step before. The states of the
master predicted by the model were used as the command
values of the slave.

V. EXPERIMENT

In the experiment, three types of tasks were conducted to clar-
ify the effectiveness of the proposed method. The following
abilities were verified in the three tasks:

(i) Adaptability to environmental changes (confirmed in
experiment 1 [V-A]).
(i) Ability to realize fast motion (confirmed in experiment
2 [V-B)).
(iii) Ability to generate desirable long-term behavior (con-
firmed in experiment 3 [V-C]).

Three types of NN models were compared for each experi-
ment. Only the S2M model was conducted without autore-
gressive learning, whereas the S2S and SM2SM models were
compared with and without autoregressive learning, thus
resulting in five types of models being compared. The success
rates of the tasks verified the performance of each model.

A. EXPERIMENT 1 (DRAWING A LINE USING A PEN AND
RULER)

1) TASK DESIGN

Fig. 9(a) shows the setup of this experiment. A mechanical
pencil was fixed to the slave. Initially, the slave moved from
the initial position toward the ruler. After touching the ruler,
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FIGURE 9. Setup and training data of the drawing task when drawing a 40 degree line: (b) The response values of the slave did
not include large fluctuations. (c) By comparison, the response values of the master included large fluctuations (Fig. c).
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FIGURE 10. Outline of the drawing task.

the slave then drew a straight line to the right along the ruler.
The goal of this task was to draw lines according to various
inclinations. As Fig. 10(a) shows, the inclination was defined
by the angle at which the ruler was rotated around the point
where the pen first contacted the ruler. Zero degrees is rep-
resented by the “reference line” in the figure. To succeed in
this task, a proper adjustment of the contact force between the
pen and ruler or paper was required. In addition, adaptability
to unknown inclinations or unknown positions of the ruler
was required.

2) HUMAN DEMONSTRATIONS AND DATASET FOR
LEARNING

We collected data using ruler inclinations of zero, 20,
and 40 degrees, as shown Fig. 10-(a). Eight trials were con-
ducted for each inclination, and the total number of trials was
24. The time for one trial was 3 s. The slave began moving
from the initial position and, within 3 s, drew a line of 5 cm
or longer along the edge of the ruler.

3) NURAL NETWORK ARCHITECTURE

The NN model consisted of six LSTM layers, followed by
a fully connected layer. The unit size of all layers was 50.
The mini-batch consisted of 100 random sets of 150 time-
sequential samples corresponding to 3 s. The loss graph
for each model is given as Fig. 11. As Figs. 11(b) and (e)
show, models with autoregressive learning required many
learning epochs to converge the loss function. Note that the
performance of the autonomous operation did not neces-
sarily depend on the value of the loss function. Although
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FIGURE 11. Relationship between loss and epoch number in the drawing
task. The vertical axis shows the prediction loss calculated by MSE. The
maximum value was set to 5 to enlarge the graph. The horizontal axis
shows the number of learning epochs, and the maximum value of each
model is the number of epochs used for the validation. In addition, the
epoch and loss in the graph represent the number of epochs used for the
validation and the value of the MSE at each epoch, respectively.

the loss value was useful for roughly identifying the high-
performance model, we identified the optimal number of
learning epochs by comparing the performance of the
autonomous operation in trial and error.

4) TASK VALIDATION

To verify the autonomous operation, the performance of
the ruler inclinations from —30 to 80 degrees was verified
every 10 degrees. Success was defined by those cases in
which the robot drew a line of 5 cm or longer along the edge
of the ruler. Verification was conducted through three trials
for the inclination of each ruler. In addition, the performance
was validated when the ruler’s position was shifted back and
forth. Here, the position of the ruler was defined based on the
point where the pen first contacted the ruler. As Fig. 10(b)
shows, the validation was conducted by shifting 0.8 cm back
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TABLE 3. Success rates of the drawing task.

Success Rate [%]
Inclination [deg]
Model Reference line —30 —20 —10 0* 10 20% 30 40* 50 60 70 80 Subtotal Total

A 0 100 100 100 100 100 100 100 100 100 100 100 91.7

S2S-w/o-AR B#* 0 100 100 100 100 100 100 100 100 100 100 100 91.7 88.0 (95/108)
C 0 0 100 100 100 100 100 100 100 100 100 66.7 81.0
A 0 100 100 100 100 100 100 100 100 100 100 100 91.7

S2S-AR B#* 0 100 100 100 100 100 100 100 100 100 100 100 91.7 93.5 (101/108)
C 100 100 100 100 100 100 100 100 100 100 100 66.7 97.2
A 0 0 0 66.7 100 100 100 100 100 100 100 66.7 69.4

S2M-w/o-AR B 0 0 0 100 100 100 100 100 100 100 | 66.7 0 63.9 66.7 (72/108)
C 0 0 0 100 100 100 100 100 100 100 100 0 66.7
A 0 0 100 100 100 100 100 100 0 100 100 100 75.0

SM2SM-w/o-AR B 0 0 100 100 100 100 100 100 100 100 100 100 83.3 81.0 (87/108)
C 0 0 100 100 100 100 100 100 100 100 100 100 83.3
A 100 100 100 100 100 100 100 100 100 100 100 100 100

SM2SM-AR B* 100 100 100 100 100 100 100 100 100 100 100 100 100 100 (108/108)
(Proposed method) C 100 100 100 100 100 100 100 100 100 100 100 100 100

*: Learned inclination of the ruler *#; Learned position of the ruler

and forth from the learned position. The learned position
was “‘reference line B,” and the unlearned positions were
“reference line A” and “‘reference line C.”

5) EXPERIMENTAL RESULTS
The success rates of each model are shown in Table 3. First,
when the models without autoregressive learning were com-
pared, S2S-w/0-AR had a higher success rate than S2M-w/o-
AR and SM2SM-w/o-AR. As mentioned in Section III, the
S2M model was more suitable than the S2S model for IL,
including for fast motion with delays. However, this task was
not particularly fast. In addition, during the drawing task, the
motion of the slave was restrained by the ruler. The dataset
of the slave’s response values was easy to learn because it did
not include large fluctuations, as shown in Fig. 9. By contrast,
fluctuations may have been contained in the master responses
because the master was not restrained by anything, as shown
in Fig. 9. Therefore, when the master responses were used
in the input or output of the model, such as in the S2M and
SM2SM models, learning was difficult. In addition, SM2SM-
w/o-AR exhibited a higher performance than S2M-w/o-AR.
As described in Section IV-D, the structure of the SM2SM
model was more suitable than that of the S2M model because
accurately understanding the relationship between the master
and slave was necessary for bilateral control-based IL.
Furthermore, SM2SM-AR had a higher success rate than
SM2SM-w/o-AR as well as the highest success rate among all
models. In particular, compared to other methods, SM2SM-
AR had a high adaptability to changes in the ruler’s position
and extrapolation inclinations. As described in Section IV,
autoregressive learning is a method that was evaluated not by
the prediction error of only a single step, but by the prediction
errors of all consecutive steps. Therefore, the model could
properly generate a series of motions to perform a task even
for unknown environments, and the effects of the fluctua-
tion of the master’s responses were negligible. These results
indicate that the proposed model’s structure and autoregres-
sive learning improved the generalization performance for
unknown environments, even with fluctuating responses. The
generalization of the proposed method, which can achieve
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FIGURE 12. Experimental setup of the erasing task. During human
demonstrations of tasks, training data were collected for the task of
erasing the area inside the solid red line shown in the figure. In verifying
the autonomous operation, success was defined as the case in which the
movement was switched in the opposite direction in the area indicated
by the blue diagonal line.

high success rates even in unknown environments, is expected
to be applied to other tasks.

B. EXPERIMENT 2 (ERASING A LINE USING AN ERASER)
1) TASK DESIGN

Fig. 12 shows the steps of this experiment. An eraser was
fixed to the slave. In the initial condition, the eraser was in
contact with the paper at the solid red line on the left shown
in Fig. 12. Then, the slave moved horizontally and erased a
line written on the paper with the eraser. The goal of this task
was to erase a line according to various paper heights. Adapt-
ability to unknown paper heights was required. To succeed in
this task, proper adjustment of the contact force between the
eraser and paper was required. In this task, the robot had to
operate quickly and utilize the inertial force, as considerable
friction occurred between the eraser and paper.

2) HUMAN DEMONSTRATIONS AND DATASET FOR
LEARNING

We collected data with paper heights of 35, 55, and 75 mm.
Five trials were conducted for each paper height, and the total
number of trials was 15. The time for one trial was 10 s. The
dataset was collected to erase the area inside the solid red line
shown in Fig. 12. In the figure, the slave moved horizontally
and repeatedly in the opposite direction at the solid red line.
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TABLE 4. Success rates of the erasing task.

Success rate based on the success area [%)] Total rate of robot
The number of Height [mm] continued to perform the task

Model LSTM layer 35% 45 55% 65 75% Total during the trial [%]
2 0 0 0 66.7 | 33.3 20.0 (3/15) 40.0 (6/15)
S2S-w/o-AR 4 0 0 0 100 100 40.0 (6/15) 100 (15/15)
2 333 0 0 0 0 6.67 (1/15) 80.0 (12/15)
S2S-AR 4 0 0 0 0 0 0 (0/15) 100 (15/15)
2 100 100 | 66.7 100 100 | 93.3 (14/15) 100 (15/15)
S2M-w/0-AR 4 100 | 66.7 | 66.7 100 100 | 86.7 (13/15) 100 (15/15)
2 0 0 0 0 33.3 6.67 (1/15) 100 (15/15)
SM2SM-w/o-AR 4 100 | 66.7 100 100 100 | 93.3 (14/15) 100 (15/15)
SM2SM-AR 2 100 100 100 | 66.7 100 | 93.3 (14/15) 100 (15/15)
(Proposed method) 4 100 100 | 33.3 | 66.7 100 | 80.0 (12/15) 100 (15/15)

*: Learned height

The slave robot was teleoperated to reciprocate left and right
within the area at approximately constant cycles.

3) NEURAL NETWORK ARCHITECTURE

The NN model consisted of two or four LSTM layers, fol-
lowed by a fully connected layer. During this task, two types
of NN architectures were used because the robot behavior
differed depending on the number of LSTM layers, and the
different architectures affected the results. The unit size of all
layers was 50. The mini-batch consisted of 100 random sets
of 300 time-sequential samples corresponding to 6 s.

4) TASK VALIDATION

In verifying the autonomous operations, the performances for
paper heights of 35, 45, 55, 65, and 75 mm were validated.
The paper heights of 45 and 65 mm were the untrained
heights. Success was defined as the case in which the robot
erased the line within the specified area. We defined the area
of success to exclude cases in which the robot movements
were too narrow or too wide as compared to successful
demonstrations. In Fig. 12, when the robot reciprocated to the
left and right, the success was defined as the case in which the
movement was switched to the opposite direction in the area
indicated by the blue diagonal line. The ability to erase the
line with the appropriate force according to changes in height
was an essential condition for success. The robot executed the
task for 8 s during each trial, and the case in which the robot
stopped during the trial was defined as a failure. Verification
was conducted through three trials for each paper height.

5) EXPERIMENTAL RESULTS

The success rates of each model are shown in Table 4. The
rates in the rightmost column of the table were determined
using a different evaluation criterion than the aforementioned.
These results show the percentages of trials in which the robot
could continue erasing the line without stopping, regardless
of whether the success criteria were satisfied based on the
success area previously described. During this experiment,
the results differed with the number of LSTM layers. The
performance was validated by changing the number of LSTM
layers of each model. As the table shows, the S2S model
generally had low success rates. Many of the failures were
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FIGURE 13. Training data and results of the erasing task. The results of
the S2S-AR and SM2SM-AR are shown as examples.

cases in which the robot stopped due to friction between the
eraser and paper, or the robot went outside the workspace.
During this task, the robot had to move extremely quickly. In
addition, considerable friction occurred between the eraser
and paper. Thus, control delays and delays due to physical
interactions occurred during the demonstrations. The training
data and results are shown in Fig. 13. We focused on 6%
because joint 1 moved mainly during the erasing task. In
addition, the bottom of the figure shows 7,;%°, which was the
force exerted primarily in the vertically downward direction.
Fig. 13(a) shows that a delay between the response values of
the master and slave occurred. Therefore, the skill required to
compensate for the delays performed by humans during the
demonstrations had to be reproduced during the autonomous
operation. The results of the S2S-AR model, as an example
of task failure, are shown in the center of the figure. In the
middle of the operation, 7{* and 7,** became greater than
the appropriate force, and the robot could not move. The S2S
model lost this compensation skill and could not complete
this task requiring fast motion.

By contrast, both the S2M and SM2SM models showed
high success rates. The SM2SM-AR model could reproduce
the fast motion with delays while maintaining the same level
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Verifications of “A” with paper height of 556 mm (Learned height)
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FIGURE 14. Training data and the results of the task of writing the letter “A." The figures on the far left are the letters written by a human during the
demonstrations. Those from the training data appeared as thick because they were written on a single sheet of paper through all trials.

of appropriate force as the training data. In addition, the robot
could properly erase the line without stopping during all tri-
als. The robot applied the appropriate force even at unlearned
heights. Most failures occurred when the movements were
slightly beyond the success area. Although none of the mod-
els exhibited a perfect performance, as the success area was
strictly defined, the S2M and SM2SM models achieved excel-
lent performances in realizing fast motion while maintaining
the proper force. Because this task involved a reciprocating
motion with a short cycle, a long-term prediction was not
required, and it was a relatively easy task for bilateral control-
based IL. Therefore, even the conventional S2M model with-
out autoregressive learning showed as high a success rate
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as that of the proposed model. It was confirmed that the
proposed method with autoregressive learning achieved an
excellent performance even for a short-cycle task without
adverse effects.

C. EXPERIMENT 3 (WRITING LETTERS)

1) TASK DESIGN

A ballpoint pen was fixed to the slave. The goal of this task
was to write the letters “A” and “B” on paper. The initial
position was the start point of the first stroke of each letter.
The letter was written according to specified stroke order,
and then the robot went back to the first stroke again and
wrote it repeatedly. Compared to the erasing task, this writing
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FIGURE 15. Training data and the results of the task of writing the letter “B."

task was a long-term operation and required a correct long-
term prediction. To succeed in this task, reproducing the
proper force between the paper and pen was necessary. In
addition, the robot had to reproduce the stroke order learned
from the human demonstrations. In other words, the ability
to generate correct behavior based on past and current states
was necessary.

2) HUMAN DEMONSTRATIONS AND DATASET FOR
LEARNING

We collected data with paper heights of 35, 55, and 75 mm.
The letters “A” and “B” were collected as separate trials.
One 15-s trial included writing the same letter four times in
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a row. In other words, the number of training data in one trial
was four. Ten trials were conducted for each paper height. In
total, 120 sets of training data were collected for each letter
(40 sets of training data x three heights). The letters were
written inside the solid red lines shown in Figs. 14 and 15. The
letters were written by humans in demonstrations such that
the shape would be roughly the same during all trials without
using any restraining tools including a ruler.

3) NEURAL NETWORK ARCHITECTURE
The NN model consisted of six LSTM layers, followed by a
fully connected layer. A unit size of 50 was used for all layers.
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TABLE 5. Success rates of the writing task.

Success Rate [%]
Model Letter “A” Letter “B” Total
S2S-w/o-AR 0 (0/4) 0 (0/4) 0 (0/8)
S2S-AR 0 (0/4) 0 (0/4) 0 (0/8)
S2M-w/o-AR 75.0 (3/4) 75.0 (3/4) 75.0 (6/8)
SM2SM-w/o-AR 75.0 (3/4) 100 (4/4) 87.5 (7/8)
SM2SM-AR (proposed method) 100 (4/4) 100 (4/4) 100 (8/8)

The mini-batch consisted of 100 random sets of 200 time-
sequential samples corresponding to 4 s.

4) VALIDATION OF THE TASK

For autonomous operations, the performances for paper
heights of 55 and 65 mm were verified. In addition, verifi-
cation was conducted for the cases in which 4 and 40 sets
of training data were used for each paper height. Success
was defined as cases in which the robot wrote the letter
five times continuously inside the solid red lines shown in
Figs. 14 and 15 and with the correct stroke order. Verification
was conducted for each height and each number of train-
ing data. Therefore, four verifications were performed (two
heights x two training datasets).

5) EXPERIMENTAL RESULTS

The success rates of the different models are listed in Table 5.
Only the proposed method was successful for all validations.
The results of continuously writing the letter five times are
shown in Figs. 14 and 15. With the conventional methods, the
trajectory of the letters was unstable every time. By contrast,
with the proposed method, the letters were written with the
same trajectory every time. In particular, in the case in which
the training data were few, the difference from the other meth-
ods was noticeable. Only the proposed method could generate
a trajectory with little fluctuation. This result indicated that
the proposed method generated motion with little fluctuation
in the long-term thanks to autoregressive learning, i.e., the
model learned to minimize the total errors of the long-term
prediction.

VI. CONCLUSION
In this study, we proposed a method of autoregressive learn-
ing for a bilateral control-based IL. Due to the structure and
autoregressive learning of the proposed model, the perfor-
mance was improved compared to the conventional methods.
During the experiments, three types of tasks were performed,
and the proposed method had the highest success rate. In addi-
tion, the proposed method improved the generalization for
unknown environments not included in the training dataset.
However, the proposed method must be improved in terms
of model structure. In the proposed SM2SM model, the mas-
ter state predicted by the model in the previous step was input
to the model during an autonomous operation, and thus the
master state used in the input could be regarded as a virtual
master state. This is because the slave executes tasks alone
during the autonomous operations. If sudden environmental
changes occur during the execution of the task, this state
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of the virtual master is likely to differ from the that of the
actual master. For example, a sudden environmental change
is a situation in which the paper height is changed during the
operation of the writing task. This error affects the prediction
of the model, and therefore this issue has to be solved in the
future. We plan to further improve the performance of autore-
gressive learning for bilateral control-based IL by changing
the structure of the SM2SM model or implementing systems
to correct the error.
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