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ABSTRACT As speed of communication data path is drastically improved in this decade due to the high data
rate, evolutional technology is demanded to address the fast communication implementation. In this paper,
we focus on data compression technology to speed up the communication data path. We have proposed a
stream-based data compression called ASE coding. It compresses data stream based on the instantaneous
data entropy without buffering and stalling for the compression processes. It is also suitable for hardware
implementation. However, the stream-based data compression works heuristically with sensitive parameters
that affect to the data compression ratio. If the parameters are statically configured, it does not follow
the dynamic data entropy, and thus, the data compression performance becomes unstable. In this paper,
we will disseminate the parameters, discuss the behaviors of those parameters and propose its autonomous
adjustment methods. We will also propose adjustment algorithms for those parameters that follow the data
entropy of the input data stream autonomously. Through experimental evaluations applying the algorithms,
we will confirm the parameters are adjusted with depending on the data entropy in the data stream. And then,
the compression ratio becomes stable as the compressor exploits the minimal entropy adaptively.

INDEX TERMS Lossless data compression, parameter adjustment, entropy coding.

I. INTRODUCTION
Due to the rapid growth of information systems, generation of
data is getting drastically promoted. Efficient processing such
Big Data, for example, generated from sensors, cameras and
humanmovements needs novel approach to overcome perfor-
mance fence due to the conventional approach. The advanced
researches regardingBigData processing are focusingmainly
on two aspects: One is the speed of data transfer between a
system that produce data at Giga or Tera Hz frequency and
the one consumes the data. Another is the amount of data
to be communicated among the systems. The former needs
to address the transfer speed by fast interconnections such
as PCI Express and Infiniband network. However, those are
now facing physical limit of the frequency. By increasing
the number of physical connections, those are still increasing
the speed. It is not scalable and makes a system larger and
larger. The latter case needs to reduce the amount of data
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generation. However, it is impossible to reduce it because the
resolution of producing data is getting higher and higher, for
example, like 4K, 8K and 16K image sizes and also 32bit
sensor data from motion devices. Especially, IoT systems
now equip sensing functions on the edge side and machine
learning algorithms such as DNN (Deep Neural Network) on
the cloud side. It inevitably needs to communicate the large
data for the accurate inference to process the learning process
of theDNNon the cloud side. To resolve such communication
overhead, [1], [2] are trying to employ lossy compression on
the communication. However, the lossy compression has a
tradeoff among the communication speed and the accuracy
of inference. Medical applications keep the use of lossy com-
pression at a distance. This problem does not have a good
solution except reducing the original data after the generation
from the source devices. Therefore, our research focuses on
lossless data compression that can reduce the amount of data
without racks of the original data. Lossless data compression
is able to keep the original data quality. Additionally, it also
has potential to accelerate the communication speed by
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reducing the data amount. However, the recent type of gen-
erating data used in a communication is stream-based. For
instance, camera application of MIPI standard needs to pro-
cess a video frame data stream in GHz order. Therefore, it is
necessary to compress/decompress such fast data stream in a
very small delay.

When we consider the conventional lossless data com-
pression algorithms, Shannon’s entropy is the first focus.
It derives the probabilities pi of each unit of data (called
symbol), calculates the entropy (−

∑
pi log2 pi) and assigns

bits in the length from the entropy. The total number of
bits of the encoded data results less than the original. This
mechanism needs to buffer all data and analyses whole data.
Therefore, the Shannon’s entropy inevitably does not fit to
process data stream. The arithmetic coding [3] is the next
generation of compression algorithm. It represents the target
data by numeric values. It assigns each data pattern to a value
in a domain where includes all symbols are presented. This
mechanism improves the compression ratio than Shannon’s
entropy. However, it needs to process all input data and must
decide the domain to express all symbols appeared in the
input data. This needs to derive the frequent information of
all symbols in the input data. Thus, the arithmetic coding does
not fit to compress stream data due to the domain calculation.
Huffman coding [4] is another lossless data compression.
It also has a disadvantage of the buffering problem against
processing data stream because it needs to create a binary tree
of whole data. To overcome it, the dynamic Huffman cod-
ing [5] was proposed. It arranges a binary tree dynamically
created during the compression process. However, it is too
heavy calculation to process very fast data stream. The second
generation of data compression algorithms works based on
the look-up table. LZW (Lempel-Ziv-Welch) [6], [7] is the
typical and well-known algorithm. The deflate (commonly
implemented as ZIP) employs it combining with Huffman
coding. However, LZ-based methods, so called, have prob-
lem on the table size that is not deterministic during the
compression. Therefore, it is not possible to implement it on
hardware with fixed resources. Our final goal of stream-based
data compression is to develop an effective algorithm that
processes a symbol at every clock and also that is completely
implementable on a compact and a fixed size hardware.

To speedup the conventional compression methods men-
tioned above, fast data compression methods are proposed
in the aspects of parallelization such as on GPU [8] and
hardware-based approach [9]. However, the algorithms and
implementations just improve the processing speed without
targeting to process data stream in real-time. Therefore, it is
not avoidable for such methods to spend multiple cycles to
compress/decompress original symbols in streamwith a large
hardware and also to buffer the original symbols during the
operations.

To address the problems above, we have developed
a stream-based data compression called Adaptive
Stream-based Entropy (ASE) Coding [10], [11]. It truly
compresses data stream by calculating instantaneous entropy

from the number of occupied entries in the look-up table
at the timing when a symbol is received by the com-
pressor. It works faster and provides 10 times smaller
implementation on FPGA than the previous version of our
stream-based data compression method [12]. However, those
stream-based method needs to adjust parameters to achieve
the best compression ratio depending on the data types.
In both algorithms, to reach the best compression ratio,
we need to adjust annoying parameters; the size of the
look-up table and the removing frequency of table entries.
Especially, ASE coding provides a solution for implementing
low latency and high bandwidth data path by compressing
data stream. However, it does have unstable data compression
performance due to the manual adjustment for the annoying
parameters. Potentially, the stream-based compression needs
to analyze data redundancy in a short time window. It is not
able to analyze the frequency of available data patterns from
whole input data. It can compress data in a short time window
in real-time. Therefore, the stream-based data compression
must exploit the redundancy from the instantaneous data
entropy with shifting the window through a data stream.
Thus, the compressor/decompressor are not able to decide the
best static settings of parameters manually and statically to
accept dynamic entropy changes of data stream. In the other
words, the parameters should be configured dynamically by
following the entropy of data stream.

The problem regarding parameter adjustment discussed
above can be pointed out as a drawback also in the conven-
tional data compression. For example, the recent stream-like
data compression such as LZ4 [13] makes chunks of data
and compresses one chunk after another. The size of a data
chunk depends on the size of the look-up table. The advanced
researches such as [14] report coarse solutions based on pro-
cesses of OS-level. However, these are not perfect solutions
because they are not proposing the adjustment method for the
chunk size autonomously.

This paper proposes a novel technique to implement a
stream-based data compression method with autonomous
configuration for the parameters related to compression ratio.
This technique eliminates manual adjustment for the param-
eters. This paper contributes to the autonomous adjustment
algorithms and its implementations of;
• dynamicmanagement of look-up table tomaintain effec-
tive compression ratio, focusing on an algorithm for
removing occupied entries,

• dynamic management of look-up table to avoid exces-
sive removal of the entries,

• and adaptive modification of the look-up table size to
obtain high probability bymatching input symbols to the
registered entries

for stream-based data compression. These contributions are
applicable to also the conventional methods that use look-up
table.

This paper is organized as follows. The next section
describes the backgrounds and the definitions. The section III
will propose the techniques and the methods of autonomous

VOLUME 8, 2020 186891



S. Yamagiwa, S. Kuwabara: Autonomous Parameter Adjustment Method for Lossless Data Compression on ASE Coding

configuration for the parameters. In the section IV, we will
show evaluations using the proposed techniques and prove
the validity. Finally, we will conclude the paper.

II. BACKGROUNDS AND DEFINITIONS
The recent industrial applications demand to process enor-
mous amount of data. The type of data used in the systems
is generated continuously such as MIPI camera interface
and sensor devices. In this paper, we call this kind of data
streaming data. It becomes higher resolution and is pro-
cessed in a short time. We focus on reducing streaming data
by employing data compression technique. There are two
types of data compression mechanisms: Lossy and Lossless.
The lossy compression reduces amount of data by remov-
ing redundant part according to signal processing approach
such as high frequency part of discrete cosine transform
and wavelet filtering. For example, MPEG (Moving Picture
Experts Group) format is a typical example to compress video
frames by removing high frequency colors that can not be
sensed by human eyes. In these days, lossy compression
is evolved to apply DNN-based methods. It is used in IoT
system to reduce communication between the edge devices
and the cloud [15], [16]. However, the lossy compression is
not suitable for applications that does not accept losses in
the original data such as food industrial image inspection and
medical applications. Therefore, these applications inevitably
need to employ lossless data compression. We focus on the
lossless one in this paper.

A. LOSSLESS DATA COMPRESSION
Technological development of lossless data compression
origins on 1950s. The Shannon’s information entropy is the
original idea of the data compression and is used for a base-
line of the compression ratio. When we consider an ASCII
text string ‘‘AABABCABCD’’ that is 80bits, the entropy S is
calculated by the following equation:

S = −
∑

pi log2 pi (1)

where pi is a probability of the i-th symbol in a data pattern.
In the case above, the probabilities of ‘A’,‘B’,‘C’ and ‘D’
are 0.4, 0.3, 0.2 and 0.1 respectively. Here, S becomes 1.85.
The ceil of S is the number of bits to present a symbol,
which is 2 in the case here. The example data is compressed
to ‘00000100011000011011’, that is 20bits. Next, the arith-
metic coding [3] extends a pattern to a value in a domain
where all data patterns appeared in the target data aremapped.
It compresses the patterns to values in the domain. This
mechanism results better compression performance than the
Shannon’s entropy because it can translate a long pattern to
a value. The domain is derived from frequency statistics of
all data patterns appeared in the input data. For example,
A, B, C and D in the patterns here are mapped to 0, 0.25,
0.5, 0.75. Then, the patterns AA, AB, BA, BC and CD are
extended as 0.083, 0.166, 0.333, 0.416 and 0.625 by divid-
ing parts of domains defined in the previous level. Thus,
finally a value is derived and resulted as the compressed data.

Huffman coding [4] is also an well-known method that
encodes the input data to a shorter bit patterns. In the
case of example data above, Huffman coding assigns ‘1’,
‘01’, ‘001’, ‘000’ to the symbols from ‘A’ to ‘D’ respec-
tively by creating a binary tree and assigning ‘0’ and ‘1’
to the nodes. Thus, the example data pattern is compressed
to ‘1101101001101001000’, which is 19bits. On 1970s,
universal compression algorithms were proposed such as
well-known LZ-based methods [6], [7]. It creates a look-up
table and the index becomes the compressed symbol. In the
example case above, a table is created with entries of ‘‘A’’,
‘‘AB", ‘‘ABC’’, ‘‘ABCD’’. Here, the compressed symbol
becomes ‘‘A0B1C2D’’ in which the numbers are the indices
of the table. This is now becoming a major compression
mechanism combining with Huffman coding such as LZSS
(Lempel-Ziv-Storer-Szymanski), deflate [17], snappy [18],
LZO (Lempel-Ziv-Oberhumer). LZ-based compression algo-
rithms are eagerly investigated and many solutions were
proposed to accelerate the speed such as parallelization on
CPUs [19], [20] and GPUs [8], [21].

On the other hand, when we consider to compress stream
data, we need an algorithm that never buffers any part of
data and also never blocks the compression process. In the
decompression side, we need the same characteristics in
the algorithm. However, the conventional algorithms such
as Shannon’s entropy, the arithmetic coding and Huffman
coding mentioned above need to check whole data to cal-
culate frequency of symbols. This inevitably must block the
compression processes by buffering whole data in memory to
derive frequency available data patterns. This avoids the com-
pressor to process stream data. On the other hand, LZ-based
algorithms need a table memory which size is not determin-
istic because the compressor is not able to know frequency of
data patterns before it receives the patterns. This eliminates to
implement in hardware with a concrete architecture because
we are not able to decide the memory size maximally used
during compression processes. As mentioned above, the con-
ventional algorithms assume that compressor/decompressor
can use infinite processing time and also infinite hardware
resources. This does not need to consider parameters in
the algorithms. However, when the resource size is limited,
we need to setup parameters such as the size limitation of
the look-up table and the number of contiguous symbols in
LZ-basedmethods.Moreover, there do not exist any solutions
to optimize those parameters.

B. STREAM-BASED LOSSLESS DATA COMPRESSION
To address drawbacks in the conventional lossless data com-
pression algorithms, we have developed a new data compres-
sion mechanism for streaming data. The main concepts of
the compression mechanism are; 1) to compress streaming
data without buffering and stalling, 2) to have architecture for
easy hardware implementation and 3) to decompress without
buffering as soon as receiving the compressed data. Our first
trial is LCA-SLT (Lowest Common Ancestor-Static Lookup
Table) [22]. It is based on a look-up table that statically
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FIGURE 1. System organization of ASE coding.

maintains frequent symbol pairs. The symbol pair in the table
is converted to an index of the table. The pairs are selected
from a sample data exploited from the target data to be
compressed. This mechanism works on a hardware and the
resource size becomes very small. However, it is not flexible
against change of data entropy. Thus, we confirmed that an
adaptive table management is indispensable.

We have added a dynamic table management to the
stream-based data compression and developed LCA-DLT
(Lowest Common Ancestor-Dynamic Lookup Table)
[12], [23]. It receives symbol pairs in data stream and com-
presses to an index of the look-up table as well as LCA-SLT.
The table management employs an adaptive mechanism to
replace table entries based on frequency of the input data
stream. The table management has a usage counter per table
entry. The counter is incremented when a symbol pair is
matched to its entry. In addition, a remove pointer is rounding
around the entries in the table and if the counter becomes
zero, the entry is purged. This allows to dynamically replace
table entries depending on data entropy of data stream.
We have proposed an effective hardware implementation of
this mechanism [12], [24]. However, we still had a problem
that the symbol is not compressed to smaller than the index
width of the table. Moreover, the number of entries (i.e.
the number of bits of the table index) must be fixed during
compression/decompression process. Therefore, when the
symbol size is typically 8bit, the index is 8bit wide. Thus,
the pair can be reduced to only 50%. It is the bottleneck
to contribute to the compression ratio. The compressed data
should consist of a variable number of bits.

C. ADAPTIVE STREAM-BASED ENTROPY CODING
To overcome the potential drawback of LCA-DLT that the
compressed symbol is fixed size, we have developed a new
stream-based data compression mechanism called ASE Cod-
ing [10], [11]. It is elegant data compression dedicated for
data stream using a look-up table by compressing it according
to an entropy calculation. The entropy calculation returns the
shortest code bits from the number of occupied entries in
the table. The table maintains frequent symbols. The table
management includes effective removingmethod of occupied
entries called entropy culling. The entropy culling contributes
to reduce the number of bits from the entropy calculation as
the number of matching to the look-up table increases.

Figure 1 shows the system organization of ASE coding.
The compressor consists of a look-up table, an entropy cal-
culation and a serializer. When a symbol in a data stream is
received by the compressor, it is compared to the entries in
the look-up table. When it matches to an entry in the table,
its index is selected as the compressed symbol. The index is
shrunk to m bits by the result from the entropy calculation:

m = log2 e (2)

where e is the number of occupied entries of the look-up
table. Finally, the lowest m bits of the table index is selected
as the compressed symbol. Because this is variable length,
the serializer reforms a stream of the compressed symbols to
a width of an interface to communicate with its decompressor.
Here, again, let us explain this in formal. A symbol s which
widthN is converted to the index I of the look-up table which
width is log2 E bits where E is the total number of entries in
the table. I is shrunk to m bits according to the equation (2).
A Cmark bit ( = 1) is added to the MSB of the m bits.
On the other hand, when the symbol s misses any entry in
the table, the symbol is registered to the table. A Cmark bit
( = 0) is added to the MSB of the symbol and finally the
N + 1 bits are passed to the serializer. The serializer aligns
the stream that includes bothm+1 bit compressed and N +1
bit original symbols to K bit wide and outputs the stream to
the decompressor side from the MSB of the symbols.

The decompressor is organized with a deserializer,
a look-up table and an entropy calculation. The parameters
K , E and N are the same as the compressor’s. When the K
bit wide compressed stream is received by the deserializer,
the first bit is exploited. It is the Cmark bit. When the Cmark
bit is 1, m bits calculated by the equation (2) are exploited
from the subsequent output of the deserializer. The bits are
extended to log2 E bits as ‘0’s are added to theMSB. It is used
as an index of the look-up table and a symbol is associated
from the table. The symbol is the decompressed symbol s.
When the Cmark bit is 0, N bits are exploited from the dese-
rializer and treated as the original symbol s. It is registered to
the table and outputted from the decompressor.

Here, the look-up table management is a key feature
in ASE coding. The registration of a symbol to the table
consists of typical operations. When the compressor misses
the search in the table or when the decompressor receives
a compressed symbol with the Cmark = 0, it pushes the
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FIGURE 2. Look-up table operaitions on ASE coding.

symbol to the table from the top like LRU (Least Recently
Used) manner as depicted in Figure. 2a) and b). When the
table becomes full, the registration operation pushes out the
entry in the bottom of the table. This allows that the table
is implemented by a fixed size E . Additionally, this mech-
anism contributes that the table index can be shrunk from
log2 E bits to m bits because all registered entries are always
placed in the upper part of the table. However, if we employ
only this table operation, the table becomes always full
as the compression/decompression operations are repeated.
To avoid this situation, we introduce a removing mechanism
from occupied entries in the table, called entropy culling as
illustrated in Figure. 2c). The entropy culling invalidates an
occupied entry placed in the bottom after the replacement of
the matched entry is invoked. This mechanism is performed
independently in both compression/decompression sides.
We have a concrete reason why the entropy culling activates
the removal of occupied entry at the matching timing because
the shorter code bits should be assigned as a compressed
symbol according to m derived from the entropy calculation
as long as the table hits are repeated. Here, we need to decide
a parameter d that is the number of matchings to the look-up
table until the entropy culling is activated. The parameter d
is defined as a velocity to remove occupied entries. The
smaller d accelerates to assign shorter code bits. According
to the table operations above, the number of entries in the
table is reduced by the entropy culling. And then, the number
of bits of a compressed symbol is reduced because the m
resulted by the entropy calculation can become less than
log2 E . Thus, ASE coding canmaintain adaptive compression
ratio depending on entropy of data stream.

The algorithm of ASE coding is suitable for hardware
implementation. We have implemented it on an FPGA at
200MHz clock frequency reported in [10]. The resource size
is almost 1 of 10th against the one of LCA-DLT. Therefore,
ASE coding provides a truly stream-based variable compres-
sion method that can perfectly be implemented on hardware.
And also it can achieve very high bandwidth.

However, to acquire the best data compression ratio (i.e.
compressed data size divided by the original one), we need
to decide manually the parameters that dominate to the com-
pression mechanism. ASE coding has two unstable parame-
ters: One is the velocity d of the entropy culling and another
is the number E of look-up table entries. The first parameter

affects not only to the number of bits of compressed symbol
decided by the result from the entropy calculation but also
to the hit ratio of a symbol searched through the table. If the
entropy culling removes entries too much (i.e. d is too small),
it degrades the hit ratio and then brings worse compression
ratio. Besides, if it removes few (i.e. d is too large), the table
becomes always full. This provides the longer code bits to
a compressed symbol. Another parameter E affects also to
the number of bits in the compressed data because the com-
pressed symbol is decided by the result of entropy calculation.
The smaller the number of the entries is, the smaller the num-
ber of bits of compressed symbol is generated. Thus, the two
parameters above must be adjusted to fit to the input data
stream before compressor receives the stream. But it is almost
impossible and there is no concrete strategy to decide those.
Therefore, an autonomous mechanism to configure such
parameters adaptively should be added to the ASE coding.

There exist advanced researches based on hardware loss-
less data compression mechanism such as nx842 [9]. It is
implemented on POWER processor as a data compression
accelerator of the processor functions. Applications utilize
the function for various accessing data on the memory bus
controlled by the instructions of the processor. The compres-
sor also uses the algorithm based on the look-up table and
supports data stream from the data path of the processor.
It outputs a template for compressed data that matches to a
combination of compressed and original symbols. The larger
size of look-up table is allocated, the better compression
performance the nx842 can achieve. Therefore, the adjustable
parameter is just the number of entries of the look-up
table. It is easy to resolve the parameter setting because it
depends on the available hardware resources targeted for the
implementation. However, the larger number of table entries
increases required hardware resources and eliminates com-
pact implementation.

D. DISCUSSION
As we have discussed above, data stream is not acceptable
by the conventional lossless data compression algorithms.
Those compress/decompress the data by multiple cycles with
buffering the chunk or whole of the data. To overcome such
drawbacks, we have proposed a stream-based data compres-
sion with the adaptive entropy coding mechanism called
ASE coding. However, we need to decide indispensable
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two parameters before the compression processes to achieve
the best data compression ratio. But there is no concrete
method to decide a promised parameter set before a data
stream, which can be continuously generated from equip-
ment, is inputted to the compressor. To address this problem,
we need to develop an autonomous method to configure the
parameters. Thus, in this paper, we will propose a novel
entropy coding algorithm for data stream that automatically
and adaptively adjusts the key parameters related to the
compression ratio.

III. AUTONOMOUS PARAMETER ADJUSTMENT METHOD
FOR STREAM-BASED DATA COMPRESSION
We propose methods to dynamically and adaptively optimize
the parameters discussed above in stream-based data com-
pression. We will focus on ASE coding. The optimization
techniques must work autonomously while the input data
symbols in a data stream are compressed one after another.
Here, let us begin to focus on the behaviors of the parameters
on ASE coding.

A. METHODS FOR AUTONOMOUS PARAMETER
ADJUSTMENT
The first parameter is related to the removing mechanism of
occupied entries in the look-up table. It is the entropy culling
mechanism. The entropy culling can reduce the number of
bits for a compressed symbol due to the entropy calculation
associated from the number of occupied entries. However,
if the entropy culling works at highly frequent, the number of
occupied entries in the look-up table decreases toomuch. This
degrades the matching probability in the opposite. To avoid
this situation, we introduce a new mechanism called entropy
culling limit.

The entropy culling limit defines two areas in the look-up
table by a limit line as depicted in Figure 3. The protected
area inhibits the entropy culling. Besides, the entropy culling
can remove occupied entries in the free area. The entropy
culling removes the entry from the higher index of the table
to the lower one and stops removing occupied entry when it
reaches to the line. This mechanism reserves protected entries
in the top of the look-up table from the culling operation. This
affects to the matching probability and finally controls com-
pression ratio. However, because it is impossible to decide
the best position of the entropy culling limit we need to add
another parameter L that is the border index in the look-up

FIGURE 3. Entropy culling limit.

table between the protected area and the free one. In this
paper, we also try to automate adaptive decision of L.

The last parameter is related to the number of entries in
the look-up table. The entropy calculation in ASE coding
uses the number of occupied entries when it matches to the
look-up table. Therefore, we need to find a method to keep
smaller number of occupied entries E in the table. However,
if the number of table entries is too small, the compressor
matches few original symbols to any entry in the table. Here,
we introduce a new method, called dynamic look-up table,
to adjust the number of look-up table entries E adaptively.

The entropy culling limit protects occupied entries
obtained in the lower indices of the look-up table. However,
the maximal number of protected entries is limited to the
table size E . Therefore, the E should be increased when the
data entropy is high because there exists a possibility that
the subsequent input symbols should be maintained in the
table for the near future matchings. This is the same concept
as the entropy culling limit. Therefore, the dynamic look-up
table contributes to support the effect of the entropy culling
limit. Thus, when the number of mishits in the look-up table
increases, it increases the number of table entries E . On the
other hand, when the matchings in the table repeat, the num-
ber of table entriesE should be decreased because the number
of bits of a compressed symbol should be shrunk to a shorter
code bits while frequent patterns are continuously coming to
the compressor. This is the same characteristic as the entropy
culling. Here, when the velocity of its removing operation is
too slow to follow the frequency, the decreasing E accelerates
the removing operation. Thus, the dynamic look-up table
mechanism helps the effects from the entropy culling and the
entropy culling limit.

According to the discussion above, we will propose
autonomous adjustment techniques for the three parameters
d , L and E respectively in the following sections. In this
paper, we also consider hardware implementation of the
adjustment algorithms. Therefore, the algorithms have to be
implemented as simple as possible.

B. AUTONOMOUS ADJUSTMENT FOR ENTROPY CULLING
The entropy culling is performed after d hits in the look-up
table. Here, our final goal is to design an algorithm that
autonomously adjust d by following entropy of a data stream.
Before explaining the adjustment algorithm, let us discuss the
strategy to optimize d dynamically during the compression.

During the compression operations, d works as the velocity
to remove the occupied entries in the look-up table. When
the number is large, the removing speed is low, vice versa.
As we have discussed in the previous section, the occupied
entries should be removed fast because the number of bits in
the compressed symbol can be shrunk as short as possible.
This means that decreasing d during repeated hits to the table
works effectively to acquire the low entropy of the input data
stream. On the other hand, when the number of hits to the
table is few, the data entropy is high. In the other words,
the data stream consists of low frequent data. In this situation,
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the table should save much symbols as possible for the future
hits. This cause ASE coding to generate compressed symbols
with almost M bits where M = log2 E . However, it will
become an advantage when the repeated hits begin again.
Thus, we can control the entropy culling by decreasing d at
the hit operation in the table or by increasing d at the mishit
one.

Algorithm 1 Autonomous adjustment of entropy culling
a) Initialization:
d_shift_bits← D_MIN_BITS
d ← INITIAL_CULLING_VAL

b) When a symbol is missed in the look-up table:
d ← d + 1
if d > (1� d_shift_bits) then
if d_shift_bits < D_MAX_BITS then
d_shift_bits← d_shift_bits+ 1

else
d ← 1� d_shift_bits

end if
end if

c) When a symbol is matched in the look-up table:
d ← d − 1
if d == 0 then
Remove an occupied entry in the highest index (when the
index is lower than the entropy culling limit).
if d_shift_bits > D_MIN_BITS then
d_shift_bits← d_shift_bits− 1

end if
d ← 1� d_shift_bits

end if

According to the discussion above, Algorithm 1 demon-
strates an implementation of the adjustment control for the
velocity d of the entropy culling autonomously while an
input symbol is searched in the table. In the algorithm,
we use a shift function depicted by� to increase d based on
2d_shift_bits. At the reset timing of ASE coding, the a) initial-
ization is executed. The D_MIN_BITS is the initial number
of shifts to be applied to d . The INITIAL_CULLING_VAL
is any number for the initial value of d . This can be
d_shift_bits (i.e. D_MIN_BITS). After ASE coding starts,
as the compressor registers every symbol to the look-up table,
the code of b) or the one of c) is executed. When a symbol is
missed in the look-up table as demonstrated in b), by aligned
to 2d_shift_bits, the d is incremented up to 2D_MAX_BITS. Here,
the d_shift_bits is incremented when the d becomes more
than the current (1� d_shift_bits). This makes the operation
of removing an occupied entry slow. On the other hand,
when a symbol hits to the table, the code of c) is exe-
cuted. As following the rule of the entropy culling operation,
the d is decremented at every table hit. When d equals zero,
an entry in the look-up table at the highest index is removed.
Here, the d_shift_bits is also decremented. This means that

repeating hits in the table accelerates the removing speed.
Finally, the d is set by the decreased d_shift_bits. Due to
this algorithm, the velocities for removing and accumulating
entries in the look-up table are balanced.

We have another method to adjust the velocities of the
removing and the accumulating the look-up table entries
using a hit ratio in the table. This mechanism accumulates
the number of hits in the table in a T symbols. If the num-
ber of hits is more than T/2, for example, it increments
d_shift_bits vice versa. However, because we need to define
a constant number T , this needs to increase the number of
parameters again. Therefore, Algorithm 1 uses every timing
when a symbol is registered to the table. According to the
algorithm, we do not need to define any interval of a data
stream. Additionally, the velocity control will follow entropy
of the data stream instantaneously.

The autonomous adjustment of d proposed in this section
removes the occupied entry as fast as the entropy becomes
low. However, when all table entries are removed, the com-
pression does not work efficiently because it iterates the regis-
trations and the removals of symbols to the table. To avoid this
situation, we apply the entropy culling limit. Let us discuss
the autonomous adjustment for the mechanism in the next
section.

C. AUTONOMOUS ADJUSTMENT FOR ENTROPY CULLING
LIMIT
The entropy culling limit works as a protection from exces-
sive removal of occupied entries in the look-up table. It avoids
the removal operations against the entropy culling. The pro-
tected area defined by L, which is the highest index of the
area, should be extended or shrunk by depending on entropy
of the data stream to the compressor. The fundamental strat-
egy of modifying L is the same as d . When high frequent
symbols in a data stream are coming to the compressor (i.e.
the data entropy is low), the L should be decreased. On the
other hand, when low ones are coming (i.e. the data entropy is
high), it should be increased. The merit of the entropy culling
limit is to protect a minimal number of occupied entries saved
in the lower indices of the look-up table. This eliminates
an effect that a compressed symbol and an original one are
alternately outputted from the compressor by repeating a hit
and a mishit in the look-up table due to the frequent removal
of the entropy culling. However, it is very hard to define the
minimal number of L statically because the number can be
defined due to the data entropy. Therefore, we propose an
algorithm that autonomously adjusts L following the data
entropy from a data stream.

Algorithm 2 shows an implementation of our strategy
for L in the entropy culling limit. Initially before the com-
pressor starts, a) initialization is executed to reset L to
the initial constant value INITIAL_CULLING_LIMIT.
The value is any number less than E . In the algorithm,
we use a shift left operation for increasing/decreasing L. This
means that L is always between MIN_CULLING_LIMIT
and E , where the MIN_CULLING_LIMIT is a constant
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Algorithm 2 Autonomous adjustment of entropy culling
limit L

a) Initialization:
L ← INITIAL_CULLING_LIMIT

b) When a symbol is missed in the look-up table:
if (L � 1) ≤ E then
L ← L � 1

else
L ← E

end if

c) When a symbol is matched in the look-up table:
if (L � 1) ≥ MIN_CULLING_LIMIT then
L ← L � 1

else
L ← MIN_CULLING_LIMIT

end if

fence value for limiting the entropy culling limit not to
decrease the number of occupied entries in the look-up table
than the value. The MIN_CULLING_LIMIT must be any
value from 1 to E . Note that MIN_CULLING_LIMIT ≤
INITIAL_CULLING_LIMIT. However, we can not set
zero to MIN_CULLING_LIMIT because repeating hits in
the look-up table induces that L becomes zero. After that,
the entropy culling limit does not work at all according to
the Algorithm 2c). The typical MIN_CULLING_LIMIT is 1,
which is the minimal valid L. The L is modified right after
the look-up table operation. The code b) is executed when a
symbol is missed in the table. It extends the protected area for
the entropy culling limit up to E . On the other hand, the code
c) is executed when a symbol is hit in the look-up table.
It decreases L down to MIN_CULLING_LIMIT by shifting
one bit to right. We avoid to use multiplication/division or
summation/subtraction due to decreasing calculation over-
head. When we perform the algorithm on hardware, it can
be implemented by smaller number of resources than other
arithmetic calculations such as adding some offset or multi-
plying some factor to L. Additionally, the offset or the factor
will become another parameter for the compression perfor-
mance. The algorithm is executed in both the compressor and
the decompressor at the same timings right after the table
operations has been finished. This makes the contents of the
look-up tables in both sides equivalent. Thus, the compressed
data from the compressor will be decoded to the original data
in the decompressor.

As we have seen in this section, while the entropy culling
limit works with the interaction of d , the proposed algorithm
protects the excessive removal of the occupied entries by
the entropy culling operation. This mechanism will follow
autonomously data entropy of a data stream inputted to the
compressor.

D. AUTONOMOUS ADJUSTMENT BY DYNAMIC LOOK-UP
TABLE
The last parameter is the number of entries E in the look-up
table. The E is related to m from the entropy calculation.
Therefore, if the E is modified appropriately and dynami-
cally, the number of bits in the compressed symbol can be
reduced, and thus, the compression ratio can become better
with following data entropy of the input data stream. The
number of the table entries E should be shrunk when the data
entropy is low. On the other hand, the E should be extended
when the data entropy is high. We called this mechanism the
dynamic look-up table. The table size should not be changed
often because the entropy culling does not work well when
the table is shrunk fast. Therefore, we introduce a counter to
moderate changing E . The counter is incremented at every
hit in the look-up table. If the hit counter is more than a
threshold value after a number of symbols, theE is decreased.
Otherwise, E is incremented.

Here, we need to resolve two more parameters: the number
of symbols for the statistical calculation and the threshold
value to decide if E is increased or not. First, let us discuss
the number of symbols to evaluate the hit counter. It is not
easy to decide the value intuitively. Therefore, we use the
E for the number of symbols. Accumulating the results if
symbols are hit or mishit in the look-up table with count-
ing the number of symbols, after the number becomes E ,
the compressor/decompressor modifies E . In this case, E is
decided with depending on the data entropy of data stream.
This means that E is an adaptive number that follows the
data entropy. Second, let us consider the threshold value for
increasing/decreasing the table entries. This can be decided
based on the table size.We use the half number of symbols for
evaluating the table size (i.e. E/2) as discussed above. This
can be easily implemented by shifting one bit of E to right.
The threshold value can be sensitive to the compression ratio.
However, this method is suitable to decide the best value for it
dynamically because it follows data entropy of a data stream
adaptively. Therefore, we use the half number of symbols for
evaluating the table size.

Algorithm 3 demonstrates an implementation of the
dynamic look-up table. The codes are executed on both the
compressor and the decompressor and the same table sizes
are kept and the equivalent table operations are performed
between those with respect to the corresponding symbol.
In the algorithm, we employ two valuables hit_counter and
try_counter . The former is used for counting the number
of hits in the table. The latter is used as a counter for the
one of symbols until evaluating the table size E . At the
initialization shown in a), the E is reset to a constant value
INITIAL_TABLE_SIZE. The value is the maximal table
size physically allocated. After a symbol registration is per-
formed, the code b) is executed. If the symbol is hit in
the table, the hit_counter is incremented. The try_counter
is always decremented. When the try_counter equals zero,
the code changes the table size with making E half or double
by shifting 1 bit to right or left. And then, the hit_counter and
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Algorithm 3 Autonomous adjustment of dynamic look-up
table E

a) Initialization:
E ← INITIAL_TABLE_SIZE
hit_counter ← 0
try_counter ← E

b) when a symbol registration is performed:
if a symbol is missed in the look-up table then
try_counter ← try_counter − 1

else
hit_counter ← hit_counter + 1
try_counter ← try_counter − 1

end if
if try_counter == 0 then
if hit_counter < (E � 1) then
if (E � 1) ≤ INITIAL_TABLE_SIZE then
E ← (E � 1)

else
E ← INITIAL_TABLE_SIZE

end if
else if hit_counter > (E � 1) then
if (E � 1) ≥ MIN_TABLE_SIZE then
E ← (E � 1)
if E < L then
L ← E

end if
else
E ← MIN_TABLE_SIZE

end if
end if
hit_counter ← 0
try_counter ← E

end if

the try_counter are reset to zero and the newly modified E .
Here, we need to care also the entropy culling limit because
the E can be less than L. When the table size E is less than
the entropy culling limit L, the code modifies the L to the E
because the L must be included in the index domain of the
table. The MIN_TABLE_SIZE controls the minimal table
size. This can be any constant value more than zero.

As explained above, the dynamic look-up table will work
dynamically to optimize the code bits of a compressed sym-
bol by changing E that related to the m from the entropy
calculation. The proposed algorithm will also work with
the entropy culling limit. Thus, the dynamic look-up table
will contribute to the compression ratio with following data
entropy of the input data stream.

E. TIMING AND ORDER FOR APPLYING AUTONOMOUS
ADJUSTMENTS
Now, let us discuss the timing and the order to evaluate the
parameters. The timing when we can change the parame-
ters exists at the right after the compression/decompression

operations are finished. The modifications of d , L and E will
be performed after a compressed/original symbol is outputted
from the compressor/decompressor. These three parameters
can be changed in any order. However, note that the entropy
culling limit L is dominant to the table size E . It must follow
the relationships L≤E . The compression ratios will become
different when L is modified after changing E vice versa
because L is shrunk to E if E < L. For example, assume
that a case when E is changed from 128 to 64 and when L
was 128. Applying the autonomous parameter adjustments
mentioned above, if L is modified first, L will be modified
to 64. However, if E is modified first, L will be changed to
32 after E is modified to 64. In the latter case (i.e. changing
L after E), L is changed twice. This invalidates the effect of
the entropy culling limit. Therefore, we have to follow the
order of modifications for L and E in this order. Regarding
the order of d and L, we do not need to care it because
those are diagonal parameters with respect to the look-up
table size. Therefore, we will apply the evaluation of d
first, then will do the one of E . According to the discussion
above, in our implementation, we invoke the evaluation of the
parameters d , L and E in the order.

IV. EXPERIMENTAL EVALUATION
A. EXPERIMENTAL SETUP
This section will show evaluations for the algorithms pro-
posed above focusing on the compression ratios. We will
perform three evaluations: evaluation for the entropy culling
regarding d , the one of the entropy culling limit regarding L
and the one of the dynamic look-up table for E . During
the evaluations, we use benchmark data available from
[25]–[27] and [28]. From the benchmarks, we use two ASCII
text data and two image data. The text data potentially
includes some rules based on ASCII code. This provides
frequency that makes the entropy low. On the other hand,
the image data is randomly generated depending on the image
sensor or the graphics rendering algorithm. This provides
high entropy than the text data. Here, we will use single frame
data from the video files available in the sites because it is
easy to compare data which entropies are statically known.

The gene DNA sequences and the English text are picked
up from [25]. The contents of the files are organized with
ASCII text data sequences. We use the first 10Mbyte of
the downloadable file from the site. The Beauty is picked
up from the second website. It is provided by a file with
a video frame sequence in YUV420 format in 8bit depth.
Note that in the YUV420 format, Y:U:V is 4:1:1. It stores
8bit Y element for every pixel. It also stores U andV elements
that are also 8bits respectively derived from 2 × 2 pixel
block. We use the 100th frame of the sequence in the video
file. The size of the frame data is 12Mbyte. The Sintel is
picked up from [28]. It is a video file of a computer graphics
amination which frame size is 10MByte. We use the 1000th
frame of the Sintel formatted in YUV420 of 8bit depth by
converting from the TIFF file. Here, let us explain the reason
why we have chosen these data sequences as the benchmark.
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The gene DNA sequences consist of only four characters (A,
T, G, C) of eight bit wide. This case is a good example that
we can image an effective configuration of static parameters.
For instance, the d can be four due to the number of patterns
appeared in the data sequence. The L can be also four to
protect the four patterns. Finally, the E can be also four
because it is the maximal number of patterns appeared in
the sequence. Using the sequence, we can see how effective
the algorithms for the autonomous adjustment works with
comparing the static settings. The English text is an example
of a more complex data patterns of alphabets and some other
symbols with eight bit wide. The evaluation using this will
show a compression performance of a data sequence with
higher entropy than the gene DNA sequence. The Beauty
is an example of a natural image data which resolution is
3840× 2160 based on YUV420 format. The evaluation with
this data sequence will show effects of the algorithms in the
case of high entropy data stream. On the other hand, the Sintel
is an example of a data sequence based on an artificial image
which resolution is 4096× 1744 formatted in YUV420. The
data size is 10MB. This includes frequent color patterns due
to the creation algorithm of the computer graphics. Therefore,
the evaluation using this image data will show effects when
we apply the algorithms to such data sequencewith lower data
entropy than the natural image.

As we have discussed in the section III-E, we will apply
the algorithms 1, 2 and 3 in the order. Additionally, we will
use the default settings of E = 16 for the ASE coding in the
case without autonomous adjustment for the dynamic look-up
table. To compare performance impacts among the different
input symbol widths, we apply 8bit and 16bit symbol widths
to the settings for the evaluations. The other parameters are
varied as depending on the evaluation. During the evaluations
from the next section, we will use the compression ratio cal-
culated by (compressed data size)/(original data size)×100.
When we compare the compression ratios, if a ratio is smaller
than the others, the compression ratio is the best among the
ratios. This means the method of the best ratio compresses
data to the minimal size among those comparisons.

Table 1 summarizes the entropies of the benchmark data
used in the following evaluations calculated from the equa-
tion 1. The table shows two entropies when the symbol sizes
are 8bit and 16bit respectively. As we have discussed above,
the complexities of data are proved numerically according to
the comparisons in the table. In addition, as reference perfor-
mances derived from ZIP (deflate) compression, Table 1 also
shows the compression ratios. The performances are better
than the ones of ASE coding because the stream-based com-
pression can only refer frequency in a limited time window
performed by the look-up table. On the other hand, ZIP tries
to compress with scanning whole data as much as possible
applying Huffman coding also. Therefore, the performances
of ZIP will become better than ASE coding. However, some
will be near to the performances of ASE coding. Now,
let us evaluate the effects of the algorithms from the next
section.

TABLE 1. Entropy and reference compression ratio of benchmark data
sets.

B. EFFECT OF AUTONOMOUS ADJUSTMENT OF ENTROPY
CULLING
The first evaluation focuses on the autonomous adjustment of
the entropy culling by comparing the cases with static and the
autonomous settings of the parameter d . Figure 4 shows the
evaluationwhen the d is varied from 1 to 16 and the casewhen
the autonomous algorithm is applied. The parameter for the
entropy culling limit L is also varied from 1 to 16 statically.
Note that theE is fixed to 16 during this evaluation. The graph
shows both cases of 8bit and 16bit symbol widths.

According to the graphs, each benchmark seems to have
an optimal setting of the d and the L statically. When the
d is increased from a small number to a large one, we can
find the best setting. For example, there are the best setting
when we change d with fixing L. A typical example is the
result when d = 16 during L = 1 and 8bit symbol of gene
DNA sequences. In the same manner, we can find the best L.
For instance, all the cases of L = 4 in gene DNA sequences
result the best performances when the symbol size is 8bit.
However, the problem here is that we can not decide the best
setting for d and L statically for the compressor because there
is no guarantee that data entropy of the data stream does not
constantly continues with respect to the static configuration.

Let us discuss the detailed compression performances of
each benchmark. We can confirm that almost all cases when
the symbol width is 16bit show bad compression ratios
because E = 16 is too small for the setting. The large
symbol size causes high probability of data patterns due to the
large number of bits. This affects to high entropy data such
as Beauty and English text. Therefore, we can consider the
symbol size also as a parameter to be adjusted autonomously.
However, if we change it dynamically, we need to change N
in the compressor and the decompressor at everymodification
of the symbol width. This means that the organization of
the look-up table (i.e. the width of an entry) and the data
paths must be reconfigured dynamically. Unfortunately, it is
inevitably impossible for the current ASE coding to transform
the organization dynamically. In the case of 8 bit symbol,
the performance is less than 100%. This means that ASE cod-
ing compresses the data stream effectively when the symbol
size is small.

Let us focus on the effect of d . In the case of a) gene
DNA sequences, we can expect the best performance when
the d and the L are configured to both 16. The compression
performance when the symbol width is 16 bits shows better
than the one of 8 bits when L = 16. In this case, almost
all ASCII data patterns appeared in the data sequence are
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FIGURE 4. Evaluation of autonomous adjustment of entropy culling.

saved in the look-up table. The compression ratio becomes
the best by increasing the number of hits in the table due to the
protected occupied entry by the entropy culling limit. Here,
we focus on the effect when the d is too large or too small.
Those cases make the compression ratios worse as shown
in the cases of b) English text with 8bit symbol width and
d) Sintel. The case of English text shows the effect that the
small d degrades the compression performance. Because such
small d accelerates to invalidate occupied entries, mishits
increase and thus, the compression ratio becomes worse.
In the case of Sintel, on the other hand, the number of bits
in compressed symbols becomes larger because the large d
makes the speed to invalidate occupied entry slow. These
facts mean that the static settings do not follow the dynamic
data entropy of the input data stream. The performances of
c) Beauty show the same tendency as the one of b) English
text. On the other hand, the case of d) Sintel shows that the
compression ratio becomes worse when we increase d at a L.
Comparing to the performances of the static settings of d as
observed above, the autonomous adjustment of d results the
middle performance between the best and the worst cases
even if the L is changed. Therefore, we confirmed that the
algorithm 1 works to follow the dynamic data entropy of the
data sequence. And thus, it results the adaptive performance
effectively.

C. EFFECT OF AUTONOMOUS ADJUSTMENT OF ENTROPY
CULLING LIMIT
Next, we evaluate the autonomous adjustment of the
entropy culling limit as proposed in the algorithm 2 regard-
ing L. In this evaluation, we preform experiments by using
the ASE coding with the algorithm 1. The remaining

two parameters L and E are statically varied from
1 to 16. We compare those performances with the one
with the autonomous adjustment of the L. Figure 5
shows the compression performances of the benchmarks.
We apply 4 and 1 to the INITIAL_CULLING_LIMIT
and the MIN_CULLING_LIMIT respectively used in the
algorithm 2. The former constant value can be set to any small
number because the compressor/decompressor accumulates
data symbols in the beginning of the data stream into entries
of the look-up table due to increasing L caused by the mishits.
We have tried to change the constant value from 1 to 16.
However, the performances did not change significantly.
Therefore, we apply 4 to the INITIAL_CULLING_LIMIT
in this evaluation.

The graphs in Figure 5 show the compression perfor-
mances when the L and the E are varied. The cases of b)
English text and c) Beauty show stable compression ratios
when the L is varied during an E . In the cases when L = E
and L is statically configured, all entries in the look-up table
are protected by the entropy culling limit. This reason is
because the look-up table is always full due to many mishits
in the table. Therefore, we confirm that the L did not affect to
a data sequence with high data entropy. On the other hand,
the cases of a) gene DNA sequences and d) Sintel show
different compression ratios when the L is varied during an E .
The case of a) indicates the worse compression ratios when
the L is too large or too small. However, the case of d)
illustrates that the compression ratio becomes worse when
the L increases. Comparing with those, we can confirm that
the compression ratios with the autonomous adjustment of
L show the middle performances between the best and the
worse ones. This means that the algorithm 2 follows dynamic
data entropy and the compressor assigns adaptively the small
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FIGURE 5. Evaluation of autonomous adjustment of entropy culling limit.

FIGURE 6. Evaluation of dynamic look-up table.

numbers of bits to the compressed symbols. Thus, according
to this evaluation, we have confirmed that the proposed
method regarding L works effectively.

D. EFFECT OF AUTONOMOUS ADJUSTMENT OF DYNAMIC
LOOK-UP TABLE
Finally, we perform evaluation regarding the autonomous
adjustment for the dynamic look-up table. This evaluation
compares the compression ratios among the cases when
the static table size is set to an E and the one when the
autonomous method is applied. We use the ASE coding
in which the algorithms 1 and 2 are embedded. We vary
the table size E from 1 to 64 for each benchmark. In this
evaluation, two types of evaluations for each E : one is
the evaluation with a static E . This does not change the
look-up table size dynamically. Another is the one with the
autonomous adjustment regarding the E . This case changes
the table size with following the algorithm 3. Regarding the
autonomous adjustment of E , the INITIAL_TABLE_SIZE

and MIN_TABLE_SIZE are set to the corresponding E for
the experiment and 1 respectively.

The graphs in Figure 6 show the compression ratios of
the benchmarks when we apply 8bit and 16bit to the symbol
size. When a large number of E is applied to the experiment,
in the case of 16bit symbol, the compression ratio becomes
better than the ones shown in Figure 5 because the table size
is larger than those. In the cases except d) Sintel, the com-
pression ratios become better as the E is increased, and also
the cases when the autonomous adjustment of E is applied
shows a slightly worse than the one without the autonomous
adjustment. However, the case of d), as the E is increased,
the compression ratios become worse. When we focus on
the compression ratios with the adjustment method of E ,
it becomes better than the ones without the adjustment. This
shows clearly the good effect of the algorithm 3. In the cases
of a), b) and c), the larger number of the look-up table entries
brings the better compression ratios. However, the effect of
increasing the number of table entries saturates when the E is
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large because the frequencies of registering symbols to the
table and the one of removing the occupied entries from it are
balanced. Therefore, the compressor and the decompressor
should allocate the number ofE as large as possible before the
compression starts. While the compression process proceeds,
the number of occupied entries in the table is optimized by
the adjustment algorithm. Here, the most important point on
which we should focus is to decide the best number of the
table entries. But, it is impossible to decide it before the
compressor starts its processes for a data stream. Therefore,
if the INITIAL_TABLE_SIZE in the algorithm 3 is set
to a number as large as possible, the algorithm optimizes
the actual number of entries used during the compression
autonomously. Thus, we have confirmed that the algorithm 3
works effectively to shrink the number of bits in a compressed
symbol and provides the good compression ratios adaptively.
According to the graphs, we can see the effect of the algo-
rithm that the compression ratio can be adjusted to the middle
performance between the best and the worst cases.

Through the experiments in this section, we have tried to
see the effects of the proposed algorithms for the autonomous
adjustments of the unstable parameters in ASE coding. The
parameters d and L are adaptively adjusted by the algo-
rithm 1 and 2 even if we set any small numbers to the initial
values. Additionally, the parameter E can be initialized to
the available number of allocated entries for the look-up
table. The actual number of occupied entries in the table is
autonomously adjusted to the data entropy of the input data
stream. According to the discussion in this section, we con-
clude that the proposed strategies and the algorithms in this
paper works effectively with contributing to the optimal data
compression ratio.

V. CONCLUSION
This paper focused on autonomous adjustment method for
stream-based data compression. We focused on ASE coding
to optimize the compression performance that was heuristi-
cally determined by the parameters. There were three major
parameters to be adjusted in ASE coding. The first parameter
is the entropy culling that removes occupied entries in the
look-up table. This mechanism works to reduce the number
of bits in a compressed symbol if the setting follows the data
entropy. The second parameter is the entropy culling limit that
protects from excessive removal of the occupied entry by the
entropy culling. The entropy culling limit contributes to raise
probability of the table hit. The last parameter is related to the
number of entries in the table.We proposed a newmechanism
called the dynamic look-up table. It helps to shrink the com-
pressed symbol by limiting the number of available entries
in the table. We have proposed new algorithms regarding
these three parameters. According to the evaluations using the
algorithms, we have confirmed that the ASE coding with the
autonomous parameter adjustment follows the data entropy
dynamically and compresses data stream into between the
best and the worst compression ratios. Thus, we conclude

that the proposed autonomous adjustment algorithms worked
effectively.

For the future work, according to the evaluations regarding
the compression ratios, we have confirmed that the symbol
width is sensitive to the compression ratio. However, it is
related to the organization of the compressor and the decom-
pressor of ASE coding. Therefore, we need to consider a new
mechanism to decide the symbol width dynamically. We will
investigate this problem for the next step of our research
regarding the stream-based entropy coding.
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