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This paper is concerned with consideration on the relation between 2-Segal objects in an co-category C and
algebra objects in an co-category Span (C) whose morphisms are spans in C. Precursors in this direction
were T. Dyckerhoff and M. Kapranov [Higher Segal spaces. Cham: Springer (2019; Zbl 1459.18001)], who
constructed monads and algebra objects in (0o, 2)-categories of spans from 2-Segal objects, and M. D.
Penney [‘Simplicial spaces, lax algebras and the 2-Segal condition”, Preprint, arXiv:1710.02742], who
defined lax algebras in spans coming from simplicial objects, demonstrating that the associativity of these
lax algebras was equivalent to the 2-Segal condition. Restricting to co-categories of spans, the former half
of this paper establishes

Theorem 2.25. Let C be an co-category with small limits. There is an equivalence between oo-categories

Algebra objects ] 2-Segal simplicial objects
in Span (C) - inC

T. Dyckerhoff and M. Kapranov [Contemp. Math. 643, 37-110 (2015; Zbl 1373.18015), §V.2] constructed
invariants X (S, M) of stable marked surface (S, M) with boundary, associated to a 2-Segal cyclic object
X : A°? — C. On top of that, the X (S, M) comes equipped with coherent actions of the mapping class
group. It is consequently natural to ask whether the invariants X (S, M) form an open, oriented, oo-
categorical topological field theory in Span (C). K. Costello [Adv. Math. 210, No. 1, 165-214 (2007; Zbl
1171.14038)] considered open oriented theories equipped with a set of D-branes and valued in the dg-
category of chain complexes, showing that such field theories are equivalent to Calabi-Yau A, categories.
A similar classification was that of Lurie.

Theorem 4.2.11. [J. Lurie, in: Current developments in mathematics, 2008. Somerville, MA: International
Press. 129-280 (2009; Zbl 1180.81122)]. Let C be a symmetric monoidal co-category. The following types
of data are equivalent:

1. Open oriented topological field theories in C.
2. Calabi-Yau algebra objects in C.

Based on this theorem, the latter half of this paper seeks to related cyclic 2-Segal objects to Calabi-Yau
algebras, demonstrating that

Theorem 3.29. Let C be an co-category with small limits. There is an equivalence between co-categories

Calabi-Yau Algebra objects ] 2-Segal cyclic objects
in Span (C) inC

Once the correspondence in Theorem 3.29 is established, a wealth of avenues to construct topological
field theories open up.

e The Waldhausen S-construction gives rise to many cyclic 2-Segal spaces [T. Dyckerhoff and M.
Kapranov, J. Eur. Math. Soc. (JEMS) 20, No. 6, 1473-1524 (2018; Zbl 1403.18011)].

e 1-Segal cyclic objects provide a zoo of interesting exmaples.

e An intriguing incarnation of the cyclic Cech nerve construction is its application to a morphism
f * — X into a connected space X, where the Cech nerve has the loop space 2X based at as
its space of 1-simplices, and the author expects the resulting surface invariants to relate to string
topology.

Theorem 2.25 and Theorem 3.29 bear an intriguing relation to another construction in the literature.
Following [D.-C. Cisinski and I. Moerdijk, J. Topol. 6, No. 3, 675-704 (2013; Zbl 1291.55004)|, T. Walde
[Algebr. Geom. Topol. 21, No. 1, 211-246 (2021; Zbl 1469.18031)] defined a notion of a cyclic co-operad,
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showing that there are equivalences of co-categories

~

{ invertible cyclic }

2-Segal cyclic objects
oo-operads

inS
and

invertible ] 2-Segal simplicial objects
oo-operads | inS

which now has the immediate implications of relating invertible (cyclic) oo-operads to (Calabi-Yau)
algebras in Span (S).
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