

Berman, John D.

THH and traces of enriched categories. (English) Zbl 07487081 Int. Math. Res. Not. 2022, No. 4, 3074-3105 (2022)

The topological Hochschild homology (THH) of a ring or ring spectrum R is an object much studied in recent years. If C is a spectral ∞ -category, then THH(C) is the geometric realization of the simplicial spectrum

$$\operatorname{THH}(\mathcal{C})_n = \coprod_{X_0, \dots, X_n \in \mathcal{C}} \operatorname{Hom}(X_0, X_1) \otimes \dots \otimes \operatorname{Hom}(X_n, X_0)$$

It is known [J. A. Campbell and K. Ponto, Algebr. Geom. Topol. 19, No. 2, 965–1017 (2019; Zbl 1460.16010); D. Kaledin, Contemp. Math. 643, 227–262 (2015; Zbl 1346.18027)] that THH is a trace functor.

The principal objective in this paper is

1. to present a combinatorial, model-independent framework for enriched higher category theory, describing enriched categories as symmetric monoidal functors

$$\operatorname{Bypass}_S \to \mathcal{V}$$

where S is a set of objects, \mathcal{V} is a symmetric monoidal ∞ -category, and Bypass_S denotes the category of directed graphs on the fixed set S of vertices as objects and bypass operations as morphisms with the monoidal product $\Gamma \otimes \Gamma'$ of $\Gamma, \Gamma' \in \text{Bypass}_S$ denoting the graph whose edges are the disjoint union of those in Γ and those in Γ' ,

- 2. to present a universal construction of THH, using this framework, in which THH is the pushforward along Bypass_S $\rightarrow \mathcal{V}$ of a certain presheaf \mathcal{O}_{thh} on Bypass_S obtained as a push-pull construction applied to the circle, and
- 3. to explicitly calculate the presheaf $\mathcal{O}_{\rm thh}$.

A synopsis of the paper goes as follows.

- §2 gives the above combinatorial description of enriched categories. Gepner-Haugseng's enriched categories have underlying spaces of objects, while the author's having underlying sets of objects. Both are equivalent beholden to [D. Gepner and R. Haugseng, Adv. Math. 279, 575–716 (2015; Zbl 1342.18009), Theorem 5.3.17].
- §3 reviews A. Connes' [C. R. Acad. Sci., Paris, Sér. I 296, 953–958 (1983; Zbl 0534.18009)] cyclic category Λ or, roughly speaking, the category of cyclically ordered finite sets. It is observed crucially that

Lemma (Lemma 3.4). There are canonical equivalences

$$\Lambda \cong \operatorname{Bypass}_{S}^{\operatorname{Eul}} \cong \Lambda^{\operatorname{op}}$$

where $Bypass_S^{Eul}$ denotes the category of nonempty graphs in $Bypass_S$ with specified Eulerian tour.

- §4 defines the presheaf $\mathcal{O}_{\rm thh}$
- §5 identifies \mathcal{O}_{thh} when S = *. Let Ass denote the associative PROP [https://people.math.harvard. edu/~lurie/papers/HA.pdf, 4.1.1 The Associative ∞ -Operads]. There is a functor $\Lambda \xrightarrow{k} Ass$ that forgets the cyclic ordering. The classifying space of Λ is BS^1 , so that there is a functor of ∞ categories $\Lambda \xrightarrow{r} BS^1$ formally inverting all the morphisms of Λ . Therefore we have the following diagram

$$\begin{array}{ccc} \Lambda & \stackrel{k}{\to} & \mathrm{Ass} & \stackrel{\mathcal{C}}{\to} & \mathcal{V} \\ & & & \\ r \downarrow \\ BS^{1} \end{array}$$

It is shown (Theorem 5.3) that

Theorem. If \mathcal{V} is presentable and A is an associative algebra in \mathcal{V} , we have

$$THH(A) \equiv A_*k_*r^*(S^1)$$

where

- (i) S^1 is the circle with the free S^1 -action, regarded as an -space thus a presheaf $(BS^1)^{\text{op}} \to \text{Top}$;
- (ii) $r^* : \mathcal{P}(BS^1) \to \mathcal{P}(\Lambda)$ denotes precomposition of a presheaf by r with $\mathcal{P}(\mathcal{C}) = \operatorname{Fun}(\mathcal{C}^{\operatorname{op}}, \operatorname{Top});$
- (iii) $k_* : \mathcal{P}(\Lambda) \to \mathcal{P}(Ass)$ denotes left Kan extension along k;
- (iv) $A_* : \mathcal{P}(Ass) \to \mathcal{V}$ is the unique functor extending A to $\mathcal{P}(Ass) \supseteq Ass$, which preserves small colimits.
- §6 identifies $\mathcal{O}_{\text{thh}} \in \mathcal{P}(\text{Bypass}_S)$ for an arbitrary set S. It is shown as a generalization of Theorem 5.3 that

Theorem (Theorem 6.3). If \mathcal{C} : Bypass_S $\to \mathcal{V}$ is a \mathcal{V} -enriched category with set S of objects, then we have

$$THH(A) \equiv \mathcal{C}_* k_* r^* (S^1)$$

with maps as in the diagram

$$\begin{array}{cccc} \mathrm{Bypass}_{S}^{\mathrm{Eul}} & \stackrel{k}{\to} & \mathrm{Bypass}_{S} & \stackrel{A}{\to} & \mathcal{V} \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

where the functor $r: Bypass_S^{Eul} \to BS^1$ is that which exhibits as the unifying space of $Bypass_S^{Eul}$, and $k: Bypass_S^{Eul} \to Bypass_S$ is the forgetful functor.

§7 aims to establish that the following data are equivalent.

- a graph $\Gamma \in \text{Bypass}_S$ with a chosen Eulerian tour;

- a cyclically ordered set of edges $E \in \Lambda$ with a labeling of its vertices in S.
- §8 identifies the presheaf $\mathcal{O}_{\text{thh}} \in \mathcal{P}(\text{Bypass}_S)$ explicitly, restricted away from the empty graph (Theorem 8.6).

Reviewer: Hirokazu Nishimura (Tsukuba)

MSC:

18D20 Enriched categories (over closed or monoidal categories)

18N99 Higher categories and homotopical algebra

Full Text: DOI arXiv