
INVERSE SPECTRAL THEORY

HIROSHI ISOZAKI

Abstract. Many self-adjoint operators appearing in mathematical physics
and geometry have their spectral data : eigenvalues, informations of eigen-
vectors, scattering matrices. A natural attempt is the reconstruction of the
original operator in terms of its spectral data. The precursor of this inverse
spectral problem goes back at least to the Sturm-Liouville theory of differen-
tial operators. The systematic study of inverse spectral problems has become

active from early 20th century, and the interest on this subject is unceasingly
growing up since then.

The aim of this article is to give a brief survey of the inverse spectral
problem for self-adjoint differential operators : boundary value problems and
scattering problems for Schrödinger opeartors, Laplace-Beltrami operators on
Riemannian manifolds. Both of the 1-dimensional and the multi-dimensional
problems are discussed. There is so extensive literature on the inverse problem
that our arguments must be restricted to limited aspects of the subject. The
basic feature I would like to stress is :

One-dimensional spectral problems are smoothly deformable like C∞-
functions, while multi-dimensional problems are rigid like analytic func-
tions (at least in Euclidean spaces).
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Part I 1-dimensional Problem

1. Inverse eigenvalue problem

Let us begin with this lecture by the 1-dimensional inverse eigenvalue problem.
In §1 and §2, we follow Pöschel-Trubowitz [66] and Deift [13].

1.1 Theorem of Borg-Levinson. Let us consider the simplest case of the Dirichlet
boundary value problem on (0, 1) :

−y′′ + V (x)y = λy, 0 < x < 1, (1.1)

y(0) = y(1) = 0. (1.2)
If V (x) is real-valued, this problem has a set of eigenvalues

λ1(V ) < λ2(V ) < · · · < λn(V ) < · · · .
The first question of the inverse eigenvalue problem is

Question If λn(V1) = λn(V2) for all n ≥ 1, does V1 coincide with V2?

The answer is easily seen to be negative. You have only to take V2(x) = V1(1 −
x) �= V1(x) as a counter example. A potential V (x) is said to be even if V (x) =
V (1 − x). This parity is the only symmetry that the above Dirichlet problem has.
The following theorem due to Borg and Levinson is the first uniqueness result up
to symmetry.

THEOREM 1.1 Suppose V1 and V2 are even and λn(V1) = λn(V2) ∀n ≥ 1. Then
V1 = V2.

If the potential is not even, one needs some auxiliary condition to prove the
uniqueness. The second theorem, also due to Borg and Levinson, shows that the
values of the derivatives at the boundary of eigenfunctions serve for this purpose.

Let y(x, λ) satisfy (1.1) and

y(0, λ) = 0, y′(0, λ) = 1. (1.3)

We put
kn(V ) = y′(1, λn(V )). (1.4)

THEOREM 1.2 Suppose λn(V1) = λn(V2), kn(V1) = kn(V2), ∀n ≥ 1. Then V1 =
V2.

1.2 Global structure of isospectral potentials. The set of potentials having the same
eigenvalues is parametrized by {kn(V )}∞n=1, which makes it possible to deform con-
tinuously the potential keeping the eigenvalues fixed. Let us formulate it rigorously.

Let L2
R(0, 1) be the set of all real-valued L2-functions on (0, 1). For V ∈ L2

R(0, 1),
λn(V ) has an asymptotic expansion

λn(V ) = n2π2 +
∫ 1

0

V (x)dx+ μn(V ),
∞∑

n=1

(μn(V ))2 <∞.

With this in mind, we put

μ0(V ) =
∫ 1

0

V (x)dx, (1.5)
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and let μ(V ) = (μ0(V ), μ1(V ), μ2(V ), · · · ). Then μ is a map

μ : L2
R(0, 1) → R × l2 =: S. (1.6)

We also put κ(V ) = (κ1(V ), κ2(V ), · · · ), where

κn(V ) = log(−1)nkn(V ) (1.7)

and let l21 be defined by

l21 � α = (α1, α2, · · · ) ⇐⇒
∞∑

n=1

(nαn)2 <∞. (1.8)

THEOREM 1.3 κ× μ : L2
R(0, 1) → l21 × S is a real analytic isomorphism.

Here a map between real Hilbert spaces is said to be real analytic if it is contin-
uouly Fréchet differentiable on the complexification of the real Hilbert spaces.

Theorem 1.3 characterizes the Dirichlet spectral data, the eigenvalues and the
derivatives at the boundary of the eigenfunctions.

For q ∈ L2
R(0, 1), let

M(q) = {V ∈ L2
R(0, 1) : λn(q) = λn(V ), ∀n ≥ 1}. (1.9)

THEOREM 1.4 M(q) is a real analytic submanifold of L2
R(0, 1) and κ is a global

coordinate system on M(q).

Therefore one can deform V (x) continuously keeping eigenvalues fixed, by vary-
ing k1(V ) for instance.

2. Isospectral deformation

It is well-known that for two bounded operators A and B

σ(AB) \ {0} = σ(BA) \ {0}, (2.1)

where σ(A) denotes the spectrum of A. The proof of (2.1) is elementary for the
finite dimensional case, and the infinite dimensional case uses the equation

λ(AB + λ)−1 +A(BA+ λ)−1B = 1. (2.2)

For unbounded operators, (2.1) is also true if A is a densely defined closed
operator and B = A∗. This is particularly useful in the application to 1-dimensional
problems. In fact, Crum [11] used this method, by a straightforward computation,
to deform and remove eigenvalues of Strum Liouville operators.

The commutation method has a long history, precursors of which are seen in the
works of Jacobi [41] and Darboux [12]. We elucidate it here formally.

Let V ∈ L2
R(0, 1) and ϕn be a Dirichlet eigenfunction of −d2/dx2 + V (x) with

eigenvalue λn. Ignoring the question of domain of all relevant operators, we put
formally

A = ϕn
d

dx
(

1
ϕn

·), A∗ = − 1
ϕn

d

dx
(ϕn·). (2.3)

Using −ϕ′′
n + V ϕn = λnϕn, we have

A∗A = − d2

dx2
+ V (x) − λn, (2.4)

AA∗ = − d2

dx2
+ V (x) − 2

d2

dx2
logϕn(x) − λn. (2.5)



4 HIROSHI ISOZAKI

Therefore we will get σ(A∗A) \ {0} = σ(AA∗) \ {0}. However, the potential of AA∗

is not in L2 in neighbourhoods of the zeros of ϕn(x). This causes troubles.
The remedy comes from the double commutation. Namely by taking

u =
1
ϕn

(a+ b

∫ x

0

ϕn(t)2dt) (2.6)

and putting

B = u
d

dx
(
1
u
·), B∗ = − 1

u

d

dx
(u·), (2.7)

we have
AA∗ = B∗B, (2.8)

BB∗ = − d2

dx2
+ V (x) − 2

d2

dx2
log(uϕn) − λn. (2.9)

Furthermore, we have

BB∗ 1
u

= 0. (2.10)

This shows that V (x) and V (x)−2 d2

dx2 log(uϕn) have the same Dirichlet eigenvalues
{λn}∞n=1.

Let us note that this commutation method does not work in multi-dimension.
We show in §4 that there is no analogue of isospectral deformation of −Δ + V like
Theorem 1.4.

3. Inverse scattering

3.1 Scattering problem. The concept of scattering experiment is as follows. One
puts a target and projects a beam of particles. By observing the scattered particles,
one tries to investigate the target. In the case of potential scattering in quantum
mechanics, this process is described by the following Schrödinger equation in R3

(−Δ + V (x))ϕ = Eϕ, (3.1)

where E > 0 denotes the energy of scattering particles and V (x) is a real function,
which is assumed to be rapidly decreasing.

The equation (3.1) has an infinite number of solutions. However, the solution
corresponding to the above scattering process can be chosen uniquely under a suit-
able boundary condition at infinity, and has the following asymptotic expansion

ϕ � ei
√

Eω·x +
ei

√
Er

r
f(E; θ, ω) (3.2)

as r = |x| → ∞, θ = x/r. Here the first term of the right-hand side of (3.2)
represents the incident plane wave having direction ω ∈ S2, and the second term
represents the scattered spherical wave. f(E; θ, ω) is called the scattering amplitude.
|f(E; θ, ω)|2 is called the differential cross section and denotes the ratio of number
of particles reflected to the θ direction to number of incident particles with direction
ω. This is the physically observed quantity.

Time-dependent picture visualizes the scattering process more clearly. Let H =
−Δ + V (x). Then the behavior of the particle is described by a solution of the
time-dependent Schrödinger eqiuation i∂tu = Hu, namely u(t) = e−itHu. In the
remote past and the remote future, this particle runs very far from the scattering
center. Since the potential V (x) decays rapidly, the behavior of the particle is
approximately goverened by H0 = −Δ as t → ±∞. More precisely, there exist u±
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such that ‖e−itHu − e−itH0u±‖ → 0 as t → ±∞. This means that the incoming
free particle e−itH0u− is scattered into e−itH0u+ after the collision. The operator

S : u− → u+ (3.3)

is called the scattering operator. The structure of S is seen more explicitly by
passing to the Fourier transformation

F0u(ξ) = û(ξ) = (2π)−3/2

∫
R3
e−ix·ξu(x)dx. (3.4)

In fact, we have

û+(
√
Eθ) = û−(

√
Eθ) −

√
E

2πi

∫
S2
f(E; θ, ω)û−(

√
Eω)dω, (3.5)

where f(E; θ, ω) is the scattering amplitude which appeared in (3.2). This means
that the operator

Ŝ = F0SF∗
0 (3.6)

acts only on the variable ω ∈ S2. This is physically natural, since F0H0F∗
0 = |ξ|2

and the energy is conserved during the scattering process.
Let Ŝ(E) be the integral operator on L2(S2) :

Ŝ(E)ψ(θ) = ψ(θ) −
√
E

2πi

∫
S2
f(E; θ, ω)ψ(ω)dω. (3.7)

Then Ŝ is written as
(Ŝu)(

√
Eθ) = (Ŝ(E)u(

√
E·)(θ). (3.8)

Ŝ(E) is a unitary operator on L2(S2) and is called the S-matrix.
The inverse problem of scattering is now formulated as follows :

Given the scattering amplitude f(E; θ, ω), reconstruct the potential V (x).
Physically, the differential cross section is the only observable quantity. However,

since Ŝ(E) is unitary, f(E; θ, ω) satisfies an integral equation. Using this equation
one can construct f(E; θ, ω) from the square of its modulus when |f(E; θ, ω)| is
sufficiently small. See Martin [52]. However, when the differential cross section is
not small, this is no longer true. See Newton [60]

3.2 Spherically symmetric potentials. When the potential V (x) is spherically sym-
metric, V (x) = V (|x|), the above problem is reduced to the one on the interval
(0,∞) by the well-known procedure of partial wave expansion.

Let k =
√
E and r = |x|. Then the solution ϕ of (3.1) depends only on r and

the angle between ω and x. Letting θ denote this angle, we expand ϕ as

ϕ =
1
kr

∞∑
l=0

il(2l + 1)ul(r, k)Pl(cos θ), (3.9)

where Pl is the Legendre polynomial. Then by (3.1) and (3.2), ul(r, k) satisfies

− d2

dr2
ul(r, k) +

[
V (r) +

l(l + 1)
r2

]
ul(r, k) = k2ul(r, k), (3.10)

ul(0, k) = 0, (3.11)

ul(r, k) � sin(kr − lπ

2
+ δl) as r → ∞ (3.12)
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for some δl ∈ R. This is called the phase shift and the scattering amplitude is
written as

f(k, θ) =
1
k

∞∑
l=0

(2l + 1)eiδl sin δlPl(cos θ). (3.13)

In the following we pick up the case l = 0.

3.3 Gel’fand-Levitan theory. Let us consider the scattering theory on the half line
described by the following equation

− d2

dx2
ψ(x, k) + V (x)ψ(x, k) = k2ψ(x, k), 0 < x <∞, (3.14)

ψ(0, k) = 0, k ∈ R. (3.15)
If V (x) decays sufficiently rapidly at infinity, the solution ψ(x, k) has the follow-

ing asymptotics

ψ(x, k) � C(k) sin(kx− δ(k))

=
C(k)
2i

(e−iδ(k)eikx − eiδ(k)e−ikx)

as x → ∞. The term eikx represents the outgoing wave and the term e−ikx rep-
resents the incoming wave. The correspondence eiδ(k) → e−iδ(k) then defines the
S-matix. Hence we put

S(k) = e−2iδ(k). (3.16)
The inverse scattering problem is rephrased as

Given δ(k), reconstruct V (x).
The first complete solution of the 1-dimensional inverse problem was given by

Gel’fand-Levitan [26]. They reconstructed V (x) from the spectral function, which is
the density function in the generalized eigenfunction expansion theory for Sturm-
Liouville operators. Krein and Marchenko completed the inverse scattering by
showing the passage from S(k) to the spectral function. The completed theory
contains a characterization of the scattering matrix and the reconstruction proce-
dure. It is summarized in the folllowing theorem.

THEOREM 3.1. In order that a C-valued function S(k) defined on R be the
scattering matrix of a Schrödinger operator H = −d2/dx2 + V (x) on (0,∞) with
Dirichlet boundary condition at 0 and a real-valued potential V (x) satisfying∫ ∞

0

x|V (x)|dx <∞,

it is necessary and sufficient that

(1)
S(k) ∈ C(R), |S(k)| = 1, S(k) = S(−k),

(2)

S(k) − 1 =
∫ ∞

−∞
e−ikt(F1(t) + F2(t))dt,

where F1(t) ∈ L1(R), F2(t) ∈ L2(R) ∩ L∞(R) and∫ ∞

0

t|F ′
1(t) + F ′

2(t)|dt <∞,
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(3)

arg S(+0) − arg S(+∞) +
π

2
(S(0) − 1) = 2πm,

where m is a non-negative integer.

If m = 0, the potential V (x) is uniquely determined. If m > 0, there exists an
m-parameter family of potentials having the same S(k) as the S-matrix.

In the above theorem, m is the number of discrete eigenvalues of −d2/dx2+V (x).
The deformation of the potential keeping the S-matrix fixed is carried out by the
method of commutation in §2.

For the proof, see e.g. Faddeev [20], or Marchenko [51].

3.4 Generalized sine transformation. To study the spectral structure of H and the
properties of S-matrix, the generalized sine transformation plays a key role. Let
us recall that for a self-adjoint operator A, the absolutely continuous subspace for
A, Hac(A), is the set of all u such that (E(λ)u, u) is absolutely continuous with

respect to dλ, where A =
∫ ∞

−∞
λdE(λ).

Now let ϕ(x, k) be the solution of the equation

−ϕ′′(x, k) + V (x)ϕ(x, k) = k2ϕ(x, k), x > 0, (3.17)

ϕ(0, k) = 0, ϕ′(0, k) = 1, (3.18)
where ′ = d/dx. Then ϕ(x, k) behaves like

ϕ(x, k) =
A(k)
k

sin(kx− δ(k)) + o(1) (3.19)

as x→ ∞. We define

Fu(k) =
∫ ∞

0

u(x)ψ(+)(x, k)dx, (3.20)

ψ(+)(x, k) = ϕ(x, k)/M(k), M(k) = A(k)eiδ(k). (3.21)

Then F is a unitary from Hac(H) to L2((0,∞);
2k2

π
dk), and we have the inversion

formula for u ∈ Hac(H)

u =
2
π

∫ ∞

0

ψ(+)(x, k)Fu(k)k2dk. (3.22)

Moreover F diagonalizes H :

(FHu)(k) = k2(Fu)(k). (3.23)

When V (x) = 0, F reduces to the sine transformation

F0u(k) =
∫ ∞

0

u(x)
sin kx
k

dx. (3.24)

3.5 The core of Gel’fand-Levitan theory. Let us explain the essence of Gel’fand-
Levitan theory. Let ϕ(x, k) be as in (3.17), (3.18). Then ϕ(x, k) is an even and
entire function of k ∈ C satisfying

ϕ(x, k) =
1
k

sin kx+ o(
e|Im k|x

|k| ), |k| → ∞. (3.25)
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Here we recall the Paley-Wiener theorem. An entire function F (z) is said to
be of exponential type σ if for any ε > 0, there exists Cε > 0 such that |F (z)| ≤
Cεe

(σ+ε)|z|, z ∈ C.

Theorem 3.2 (Paley-Wiener). F (x) ∈ L2(R) is extended to an entire function of
exponential type σ if and only if there exists h ∈ L2(−σ, σ) such that

F (z) =
∫ σ

−σ

h(ξ)eizξdξ.

By virtue of Paley-Wiener theorem and (3.25), ϕ(x, k) has the following repre-
sentation

ϕ(x, k) =
sin kx
k

+
∫ x

0

K(x, y)
sin ky
k

dy. (3.26)

We insert this expression to the equation (3.17). Then K is shown to satisfy the
equation

(∂2
y − ∂2

x + V (x))K(x, y) = 0. (3.27)

The crucial fact is

2
d

dx
K(x, x) = V (x). (3.28)

One can further derive the following equation

K(x, y) + Ω(x, y) +
∫ x

0

K(x, t)Ω(t, y)dt = 0, x > y, (3.29)

where Ω(x, y) is a function constructed from the S-matrix and informations of bound
states. This is called the Gel’fand-Levitan equation.

Thus the scenario of the reconstruction of V (x) is as follows. From the scatter-
ing matrix and the bound states, one constructs Ω(x, y). Solving (3.29) one gets
K(x, y). The potential V (x) is obtained by (3.28).

3.6 What is the hidden mechanism? This is truely an ingenious trick and it is not
easy to find the key fact behind their theory. It is Kay and Moses [43] who studied
an algebraic aspect of the Gel’fand-Levitan method.

Let H0 and H be two self-adjoint operators. A unitary operator U from Hac(H0)
to Hac(H) is said to intertwine H0 and H if it satisfies

HU = UH0. (3.30)

An important example of intertwining operator for H0 = −Δ and H = −Δ+V (x)
is the wave operator

W± = s − lim
t→±∞ eitHe−itH0 . (3.31)

Another important example of intertwining operator is the so called spectral
representation. Let A be salf-adjoint and I be its absolutely continuous spectrum,
I = σ(A|Hac(A)). A unitary operator T from Hac(A) to L2(I;h), h being an
auxiliaray Hilbert space, is called a spectral representation of A if

(TAu)(λ) = λ(Tu)(λ), λ ∈ I, u ∈ Hac(A).

For H0 = −d2/dx2 and H = −d2/dx2 + V (x) on (0,∞), the above (generalized)
sine transformations F0 and F are spectral representations. It is obvious that
U = F∗F0 intertwines H0 and H.
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It is also evident that if U intertwines H0 = −d2/dx2 and H = −d2/dx2 +V (x),
its kernel U(x, y) satisfies

(−∂2
x + V (x))U(x, y) = −∂2

yU(x, y).

The spectral representation for the 1-dimensional Schrödinger operator H has
the following distinguished property. Let ψ(+)(x, k) be as in (3.21). Let

U(x, y) =
∫ ∞

0

ψ(+)(x, k)
sin ky
k

ρ(k)dk, ρ(k) =
2k2

π
(3.32)

be the integral kernel of the intertwining operator F∗F0. In view of the formula
(3.26), we have

U(x, y) = δ(x− y) + η(x− y)K(x, y),

where η(t) is the Heaviside function. Namely, U is an integral operator of Volterra
type. The key fact discovered by Kay-Moses is the following theorem.

THEOREM 3.3 Let H0 = −d2/dx2 be defined on (0,∞) with Dirichlet boundary
condition, and let H = H0 + Q be a self-adjoint perturbation of H0. Suppose
U = I+K intertwines H0 and H and that U is Volterra, i.e. K(x, y) = 0 if x < y.
Then Q is an operator of multiplication by

q(x) = 2
d

dx
K(x, x). (3.33)

For x > y, the following equation holds

(∂2
x − ∂2

y)K(x, y) = q(x)K(x, y). (3.34)

Proof. Let us content ourselves by the formal proof, since we are mainly interested
in the algebraic or operator theoritical aspect of the Gel’fand-Levitan theory.

Since U(x, y) = δ(x− y) + η(x− y)K(x, y) satisfies the wave equation

(∂2
x − ∂2

y)U(x, y) =
∫ ∞

0

Q(x, z)U(z, y)dz,

we have∫ ∞

0

Q(x, z)U(z, y)dz = 2δ(x− y)
d

dx
K(x, x) + η(x− y)(∂2

x − ∂2
y)K(x, y).

Since U is Volterra, so is U−1. Hence by multiplying U−1 to the above equation
we have

Q(x, y) = 2δ(x− y)
d

dx
K(x, x) + η(x− y)C(x, y).

However, since Q is self-adjoint, C(x, y) = 0, which proves

Q(x, y) = 2δ(x− y)
d

dx
K(x, x).

This means that Q is the operator of multiplication by 2
d

dx
K(x, x).

Let us summarize the above arguments. In the 1-dimensional case, the gener-
alized eigenfunction ϕ(x, k) of the Schrödinger operator H = −d2/dx2 + V (x) has
the triangular expression (3.26). This makes the intertwining operator F∗F0 into
Volterra type. The potential V (x) is reconstructed from the kernel of this Volterra
operator.
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An excellent exposition of the 1-dimensional inverse scattering is the one given
by Faddeev [20]. A historical survey by Newton in the foreword of the monograph
of Chadan-Sabatier [8] contains an extensive literature up to 1977.

Part II Multi-dimensional Problem

4. n-dimensional Borg-Levinson theorem

The simplest multi-dimensional spectral problem is the Dirichlet problem. Let
Ω be a bounded domain in Rn, n ≥ 2, with smooth boundary S. Consider the
boundary value problem

(−Δ + V (x))u = λu in Ω, (4.1)

u|S = 0, (4.2)
where V (x) is a real-function. Then there exists an infinite number of eigenvalues

λ1(V ) < λ2(V ) ≤ · · · .
The smallest eigenvalue is always simple.

As can be proved easily, even if λi(V1) = λi(V2) for all i ≥ 1, V1 is not neces-
sary equal to V2. The 1-dimensional Borg-Levinson theorem suggests that the set
of normal derivatives of eigenfunctions are a candidate of the auxiliary condition
to guarantee the uniqueness of the potential. Let us mention parenthetically that
Gel’fand raised this problem in 1954 [25]. If one considers the Neumann problem,
the auxiliary condition will be the values of eigenfunctions at the boundary. How-
ever we have to be careful in choosing the eigenfunctions, since the eigenvalues are
not simple in general.

Let m be the multiplicity of λi(V ) and u1, · · · , um be a syetem real-valued or-
thnormal eigenfunctions associted with λi(V ). We set

Ei(V ) =
{(∂u1

∂ν
, · · · , ∂um

∂ν

)∣∣∣
S

}
, (4.3)

ν being the outer unit normal to S. It is easy to see that for two such system of
eigenfunctions {u1, · · · , um}, {v1, · · · , vm}, there exists an orthgonal matrix T such
that (

∂u1

∂ν
, · · · , ∂um

∂ν

) ∣∣∣
S

=
(
∂v1
∂ν

, · · · , ∂vm

∂ν

) ∣∣∣
S
T.

This defines an equivalent relation ∼ in the space of functions on the boundary
S, and for the set Ei(V ), there corresponds only one equivalence class, which we
denote by Wi(V ) :

Wi(V ) = Ei(V )/ ∼ . (4.4)
The following theorem is due to Nachman-Sylvester-Uhlman [58].

Theorem 4.1. Suppose V1, V2 ∈ C∞(Ω) and

λi(V1) = λi(V2), Wi(V1) = Wi(V2), ∀i ≥ 1.

Then V1 = V2.

Apparently, this theorem is a first step of generalization of the 1-dimensional
inverse spectral theory to the multi-dimensional case. However, unlike the 1-
dimensional problem, neither the map : V → {λi(V )}×{Wi(V )} is an isomorphism,
nor {Wi(V )} is a system of coordinates of the manifold of isospectral potentials.
This can be seen most easily, perhaps, in the following theorem [32].
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Theorem 4.2. Let V1, V2 ∈ C∞(Ω). Suppose there exists N > 0 such that

λi(V1) = λi(V2), Wi(V1) = Wi(V2), ∀i ≥ N.

Then V1 = V2.

In the 1-dimensional case, it is possible to deform continuouly the potential V (x)
by varying W1(V ) keeping all λi(V ) fixed. This is not true in the multi-dimensional
case.

Let us breifly explain the proof of Theorem 4.2. We use the Dirichlet-Neumann
map N(λ, V ) :

N(λ, V )f =
∂u

∂ν

∣∣∣
S
, (4.5)

where u is a solution to the Dirichlet problem

(−Δ + V − λ)u = 0 in Ω, (4.6)

u|S = f. (4.7)

We are assuming that λ �∈ σp(−ΔD +V ). N(λ, V ) has, formally, the integral kernel

N(λ, V ;x, y) =
∞∑

i=1

1
λi − λ

∂ui

∂ν
(x)

∂ui

∂ν
(y), (4.8)

ui being the eigenfunctions associated with λi.
Let ( , ) and 〈 , 〉 be the inner product of L2(Ω) and L2(S), respectively. Letting

ϕλ,ω(x) = ei
√

λω·x, ω ∈ Sn−1, we put

S(λ, θ, ω;V ) = 〈N(λ, V )ϕλ,ω, ϕλ,−θ〉. (4.9)

Then by integration by parts one can show

S(λ, θ, ω;V ) = −λ
2
(θ − ω)2

∫
Ω

e−i
√

λ(θ−ω)·xdx

+
∫

Ω

e−i
√

λ(θ−ω)·xV (x)dx− (R(λ)V ϕλ,ω, V ϕλ,−θ), (4.10)

where R(λ) = (−ΔD +V −λ)−1. From S(λ, θ, ω;V ), one can reconstruct V (x). In
fact for 0 �= ξ ∈ Rn, choose η ∈ Sn−1 such that η ⊥ ξ. For a large parameter N ,
we put

θN = CNη + ξ/(2N), CN = (1 − |ξ|2/(4N2))1/2,

ωN = CNη − ξ/(2N),√
tN = N + i.

Then we have

lim
N→∞

S(tN , θN , ωN ;V ) = −|ξ|2
2

∫
Ω

e−ix·ξdx+
∫

Ω

e−ix·ξV (x)dx. (4.11)

This proves Theorem 4.1, since S(λ, θ, ω;V ) is determined by {λi(V )} and {Wi(V )}.
Moreover from the formal formula (4.8), one can show that if V1 and V2 satisfy the
assumption of Theorem 4.2,

‖N(λ, V1) −N(λ, V2)‖B(L2(∂Ω)) ≤ C/|λ|,
for large |λ|. This and (4.11) imply V̂1(ξ) = V̂2(ξ), which proves Theorem 4.2.
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The expression (4.10) is very close to the S-matrix in potential scattering, and
the above proof is inspired by the Born approximation in scattering theory, which
will be discussed later.

5. Generalized Gel’fand problem

Let us recall the problem raised by Gel’fand.

Gel’fand problem. Do the eigenvalues and the eigenfunctions at the boundary
determine the potential part of the following Neumann problem uniquely ?{

(−Δ + V )u = λu in Ω,
∂u
∂ν = 0 on ∂Ω.

As has been seen in the previous section, the answer is affirmative. Belishev and
Kurylev observed this problem from a more general view point.

Let M be an m-dimensional Riemannian manifold with boundary S = ∂M ,
equipped with Riemannian metric gjkdx

jdxk. Let g = det(gjk). In L2(M,
√
gdx),

consider the following differential operator

A = − 1√
g
(∂j + ibj)

√
ggjkμ(∂k + ibk) + q (5.1)

with boundary condition
(∂ν + ibν + σ)u|S = 0, (5.2)

where b = (b1, · · · , bm), μ, q, σ are real-valued and μ ≥ μ0 for a constant μ0 > 0.
The ∂ν is the normal derivative and bν is the normal component of b at S. In the
application to electromagnetism, μ is a conductivity, σ is a boundary impedance.
In quantum mechanics, b and q are megnetic and electric potentials.

The operator A has the discrete spectrum

λ1 ≤ λ2 ≤ · · · → ∞.

Let ϕk(x) be the associated orthonormal eigenfunctions. The boundary spectral
data (BSD) of A is the triple (S, {λk}, {ϕk|S}). Belishev-Kurylev posed the follow-
ing question.

Generalized Gel’fand problem. Does BSD (S, {λk}, {ϕk|S}) determine the mani-
fold M and the operator A?

Let us call the triple (M, (gjk), A) the operator system. Belishev and Kurylev
gave an affirmative answer to this question by a constructive procedure, which they
call BC (boundary controll) method [45], [2]. Their starting point is to allow the
equivalence by conformal diffeomorphism.

Definition 5.1. Two BSD (S, {λk}, {ϕk|S}) and (R, {μk}, {ψk|R}) of the operator
systems (M, g,A) and (N, h,B) are said to be equivalent if

(1) λk = μk, ∀k ≥ 1,
(2) there exists a conformal diffeomorphism φ : S → R and a real-valued function
κ0 > 0 on S such that

φ∗(ψk|R) = κ0ϕk|S , (5.3)

φ∗(h|R) = κ
4/m
0 g|S . (5.4)



INVERSE SPECTRAL THEORY 13

The conditions (5.3), (5.4) are assumed to allow the generalized gauge transfor-
mation u→ αeiβu.

Theorem 5.2. The BSD’s (S, {λk}, {ϕk|S}) and (R, {μk}, {ψk|R}) of the operator
systems (M, g,A) and (N, h,B) are equivalent if and only if there exists a conformal
diffeomorphism Φ : M → N and a complex-valued function κ �= 0 such that

B = Φ ◦ (κAκ−1) ◦ Φ−1,

Φ|S = φ, κ|S = κ0.

If μ = 1 in (5.1), it is natural to call A a Schrödinger operator on M . The
Schrödinger operator A adimits a gauge transormation, i.e. eicAe−ic is again a
Schrödinger operator with magnetic field bk + ∂kc.

Theorem 5.3. For a BSD (S, {λk}, {ϕk|S}), there exists a unique operator system
(M, g,A), where A is a Schrödinger operator on M , up to gauge transformation.

The original interest of Gel’fand was the determination of potential term from
the Dirichlet-Neumann map of the Schrödinger operator. Let us return to this
problem in the anisotropic case.

Let Ω be a bounded domain in Rm with smooth boundary S and consider the
following boundary value problem

∂i(aij(x)∂ju) = 0 in Ω,

u = f on S,

where A = (aij(x)) is a positive definite C∞-matrix and n = (n1, · · · , nm) is the
outer unit normal to S. Let ΛA be the Dirichlet-Neumann map

ΛAf = ρnia
ij∂ju|S ,

where ρ is a positive function determined by the metric and S. If Φ : Ω → Ω is a
diffeomorphism which fixes the boundary and we define

Φ∗A =
t(DΦ)A(DΦ)

det(DΦ)
◦ Φ−1,

then ΛΦ∗A = ΛA. The converse is also true.

Theorem 5.4. Let Ω be a bounded open set in R2 with C3-boundary. Suppose
two C3-metrics A and B satisfy ΛA = ΛB. Then there exists a diffeomorphism
Φ : Ω → Ω such that

B = Φ∗A and Φ|∂Ω = I.

If dim Ω ≥ 3, this theorem is proved under the additional assumption of analyt-
icity.

Theorem 5.5. Let Ω be a compact, simply connected real-analytic manifold of di-
mension ≥ 3 with real-analytic boundary. Let A and B be real-anlytic metrics on
Ω such that ΛA = ΛB. Suppose one of the following condition holds :

(a) Both of the metrics have the following property. For any two points p, q ∈ Ω,
there is a unique minimal geodesic joining p and q whose interior lies in Ω.
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(b) Either A or B extends to a complete real analytic metric on a non-compact
real-anlytic manifold without boundary containing Ω.

Then there exists a real-analytic diffeomorphism Φ : Ω → Ω such that

B = Φ∗A and Φ|∂Ω = I.

For the proof, see [49], [70] and [56]. More recent results are seen in [48] and
[47].

6. Kac problem

In 1966 M. Kac raised the following problem with an impressive title ”Can one
hear the shape of a drum?” and an interesting episode of D.Hilbert and H.Weyl
[42]

Problem. What we can know about the geometry of a Riemannian manifold from
the knowledge of eigenvalues of its Laplace-Beltrami operator?

Suppose we are given two compact Riemaniann manifolds whose all eigenvalues
of Laplace-Beltrami operators coincide. Are they isometric? The answer is negative.
There is a counter example of 16-dimensional tori due to Milnor. Thus the next
aim is to extract geometric properties as much as possible from the knowledge
of eigenvalues. Kac computed the asymptotic expansion of the trace of the heat
kernel of a planar domain and showed that one can know the area of the domain,
the length of the boundary and in the case of polygonal region the number of
holes in the domain. Kac’s paper stimulated two directions of research, isospectral
manifolds and spectral invariants.

6.1 Isospectral manifolds. These problems attracted so many people that an exten-
sive literature has been devoted to them. Let us cite important contributions of
Japanese mathematicians. Ikeda-Yamamoto [30] proved that 3-dimensional isospec-
tral lens spaces are isometric. Ikeda [29] constructed non isometric isospectral lens
spaces of dimension ≥ 5. Urakawa [72] constructed non congruent regions in Eu-
clidean space with the same Dirichlet (and Neumann) eigenvalues. Sunada [69]
developed a general method of constructing isospectral manifolds. An exposition
of Sunada’s theory is given by Bérard [4]. For more details on this subject, see a
review article of Urakawa [73].

Let us cite an example of two non-congruent polygonal regions having same
Dirichlet and Neumann eigenvalues due to Chapman [9].
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6.2 Spectral invariants. Spectral invariants are the quantities determined only by
the spectrum. The trace of the heat kernel is often employed to compute them.
Let M be a compact n-dimensional Riemannian manifold without boundary. Let

Z(t) = tr etΔ =
∞∑

j=1

e−tλj ,

where λ1 ≤ λ2 ≤ · · · are eigenvalues of the Laplace-Beltrami operator −Δ on M .
Mckean-Singer [50] proved that as t→ 0

(4πt)n/2Z(t) = Vol(M) +
t

3

∫
M

K +
t2

180

∫
M

(10A−B + 2C) + · · · ,

whereK is the scalar curvature and A,B,C are polynomials of the curvature tensor.
If n = 2, this fomrula reads

Z(t) =
|M |
4πt

+
E

t
+
πt

60

∫
M

K2 + · · · ,

where |M | = the area of M , E = 1
2π

∫
M
K = the Euler characteristics of M .

If M has a boundary S, the above formula is modified as follows. Let ΔD and
ΔN be the Dirichlet and Neumann Laplacians on M . Let

Z+(t) = tr etΔN , Z−(t) = tr etΔD .

Then as t→ 0

(4πt)n/2Z±(t) = Vol(M) ±
√
πt

2
|S| + t

3

∫
M

K − t

6

∫
S

J + · · · ,

where |S| = the surface area of S and J = the mean curvature.
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We also have the complete asymptotic expansion. Let M be a compact manifold
and let H = −Δ + V . Then

(4πt)n/2tr e−tH �
∞∑

j=0

tjaj(V ),

where aj(V )’s are integrals of certain functions over M which are universal poly-
nomials in the covariant derivatives of V and of the curvature tensor of M .

By this asymptotic expansion one can prove (see e.g. Brüning [6], Brooks-Perry-
Petersen [5]) that the set of Riemaniann metrics on M isospectral to (M, g) is
compact with respect to C∞-topology on Riemaniann metrics. See also a survey
of Perry [64].

7. Overdeterminacy

7.1 High energy Born approximation. Let us return to the inverse scattering problem
in Rn, n ≥ 2, for the Schrödinger operator H = −Δ + V (x). If the potential V (x)
satisfies

|V (x)| ≤ C(1 + |x|)−1−ε, ε > 0, (7.1)

the scattering operator S in (3.3) is well-defined and unitary on L2(Rn). One can
also allow certain local singularities for V , which is omitted for the sake of simplicity.
To write down the scattering amplitude, we need the limit of R(z) = (H − z)−1

when z approaches to λ ∈ σcont(H) = [0,∞). For s ∈ R, let L2,s be the function
space defined by

u ∈ L2,s ⇐⇒ ‖u‖2
s =

∫
Rn

(1 + |x|)2s|u(x)|2dx <∞. (7.2)

Then if s > 1/2 and λ > 0, there exists a limit

R(λ± i0) = lim
ε↓0

R(λ± iε) ∈ B(L2,s;L2,−s). (7.3)

Here for Banach spaces X and Y , B(X ;Y ) denotes the set of all bounded operators
from X to Y .

We basically assume that

|V (x)| ≤ C(1 + |x|)−n−ε, ε > 0. (7.4)

Then the scattering amplitude is a continuous function of λ > 0, θ, θ′ ∈ Sn−1 and
is written as, up to a constant depending only on λ > 0

A(λ; θ, θ′) =
∫
Rn

e−i
√

λ(θ−θ′)·xV (x)dx

−
∫
Rn

e−i
√

λθ·xV (x)R(λ+ i0)(V (·)ei
√

λθ′·)dx.
(7.5)

The first rigorous mathematical result for the multi-dimensional inverse scattre-
ing is due to Faddeev [19]. For 0 �= ξ ∈ Rn, choose η ∈ Sn−1 such that η ⊥ ξ and
put

θ = (1 − |ξ|2
4λ

)1/2η +
ξ

2
√
λ
, (7.6)

θ′ = (1 − |ξ|2
4λ

)1/2η − ξ

2
√
λ
. (7.7)
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Theorem 7.1. Let n ≥ 2 and θ, θ′ be as above. Then we have

lim
λ→∞

A(λ; θ, θ′) =
∫
Rn

e−ix·ξV (x)dx.

In fact, this theorem folows from (7.5) and the high-energy resolvent estimate

‖R(λ± i0)‖B(L2,s;L2,−s) ≤ C/
√
λ, (7.8)

for s > 1/2 and λ > λ0 > 0.

This is usually called the Born approximation, since it neglects the second-term
of the right-hand side of (7.5). This method is a powerful tool to derive the unique-
ness of the perturbation term with given scattering amplitude for large λ > 0.
It is extended to general short-range potentials (V (x) = O(|x|−1−ε)) by Saito
[68], long-range potentials by Isozaki-Kitada [38] (V (x) = O(|x|−1/2−ε)), magnetic
Schrödinger operators by Nicoleau [62], Dirac operators by Ito [39] and even for
N -body Schrödinger operators by Wang [74].

7.2 Time-dependent inverse scattering. Enss [14] invented a beautiful method for
proving the asymptotic completeness of wave operators by localizing solutions of
Schrödinger equations along the orbit of scattering particles in classical mechanics.
He also used this idea to prove the uniqueness of the potential with a given scattering
operator S. This method is simple, has a wide range of applicability and can be
extended easily to N -body problems as well as time-dependent potentials. See [15],
[77], [40].

7.3 Overdeterminacy. The above Theorem 7.1 already reveals the characteristic fea-
ture of the multi-dimensional inverse scattering problem. Unlike the 1-dimensional
case, the potential is determined by the scattering matrix, moreover only its high-
energy part is necessary to reconstruct V (x). This apparently convenient fact is at
the same time a cause of difficulties in multi-dimensional inverse problem.

In the 1-dimensonal case, both of the potential and the S-matrix are functions
of one variable. The Gel’fand-Levitan-Marchenko theory gives a necessary and
sufficient condition for a function S(k) to be the scattering matrix of a Schrödinger
operator −d2/dx2 + V (x).

In the n-dimensional case, the scattering amplitude A(λ; θ, θ′) is a function of
2n − 1 parameters, while the potential V (x) is a function of n variables. This
overdeterminacy requires a sort of compatibility condition for a function A(λ; θ, θ′)
of 2n−1 parameters to be the scattering amplitude of associated with a Schrödinger
operator −Δ + V (x). To find this compatibility condition or at least to seek a
necessary condition which weakens this overdeterminacy is the very question of
multi-dimensional inverse problems.

7.4 Inverse back scattering. The back scattering amplitude A(λ; θ,−θ) is a function
of n parameters. Therefore to reconstruct the potential V (x) from A(λ; θ,−θ)
seems to be a natural attempt. This was studied by Moses [54] and Prosser [65]
in a rather formal manner. Eskin and Ralston [17] continued this direction and
studied the bijectivity of the map

V (x) → A(
|ξ|
2

; ξ̂,−ξ̂), ξ̂ = ξ/|ξ|.
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They show that this map is a local diffeomorphism on a certain open set of the
Banach space of real potentials.

Part III Inverse scattering in n-dimensions

8. Key idea of Faddeev

8.1 Spectral representation. The remaining part of this paper is devoted to dis-
cussing the Faddeev theory of inverse scattering for multi-dimensional Schrödinger
operators and its developments. We basically assume (7.4).

Consider the equation

(−Δ + V − λ)u = f ∈ L2,s, (8.1)

for s > 1/2, λ > 0. A solution u of (8.1) is said to satisfy the outgoing radiation
condition if for some 0 < α < 1/2 < s

u ∈ L2,−s, (
∂

∂r
− i

√
λ)u ∈ L2,−α. (8.2)

An outgoing spherical wave r−(n−1)/2ei
√

λr satisfies (8.2). It is known that the
solution of (8.1) satisfying (8.2) is unique and is given by u = R(λ+ i0)f . Moreover
this u admits an asymptotic expansion

u � r−(n−1)/2ei
√

λrψ0(x̂), x̂ = x/r (8.3)

as r → ∞. Therefore the solution ϕ(x,E, ω) of (3.1) having the asymptotic expan-
sion (3.2) is given by

ϕ(x,E, ω) = ei
√

Eω·x −R(E + i0)(V (·)ei
√

Eω·). (8.4)

Let us call this ϕ(x,E, ω) the physical eigenfunction of H. We also put

Φ(x, ξ) = ϕ(x, |ξ|2, ξ/|ξ|). (8.5)

Using this Φ, we define a spectral representation for H by

(Fu)(ξ) = (2π)−n/2

∫
Rn

Φ(x, ξ)u(x)dx. (8.6)

When V = 0, this reduces to the usual Fourier transformation

(F0u)(ξ) = (2π)−n/2

∫
Rn

e−ix·ξu(x)dx. (8.7)

The operator F defined for u ∈ C∞
0 (Rn) is uniquely extended to a bounded

operator on L2(Rn). Let Hac(H) be the absolutely continuous subspace for H,
and let Hpp(H) the closure of the linear hull of eigenvectors of H. We then have
the orthogonal decomposition

L2(Rn) = Hac(H) ⊕Hpp(H). (8.8)

For u ∈ Hpp(H), Fu = 0. F is unitary from Hac(H) onto L2(Rn). For u ∈
Hac(H) = E((0,∞))L2(Rn), where E(λ) denotes the spectral measure for H, the
following inversion formula holds

u = s − lim
N→∞

(2π)−n/2

∫
1
N <|ξ|<N

Φ(x, ξ)Fu(ξ)dξ. (8.9)

8.2 Higher dimensional Volterra operator. The Volterra integral operator played
an important role in the 1-dimensional problem. Therefore it would be useful to
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generalize the notion of Volterra operator to higher dimension. Let γ ∈ Sn−1 be
arbitrarily fixed. An integral operator K is said to be triangular with respect to γ
if its kernel K(x, y) satisfies

K(x, y) = 0 if x · γ < y · γ. (8.10)

T = I + K is called the Volterra type with respect to γ if K is triangular with
respect ro γ.

The following theorem is proved in the same way as in Theorem 3.3.

Theorem 8.1. Let L0 = −Δ on Rn, and let L = L0 +Q be a self-adjoint pertur-
bation of L0. Suppose U = I + K intertwines L0 and L. If K is triangular with
respect to (1, 0, · · · , 0), Q is the multiplication operator with respect to x1, and its
kernel is give by

Q(x1, x
′, y′) = 2

d

dx1
K(x1, x

′, x1, y
′).

Moreover for x1 > y1

(Δx − Δy)K(x, y) =
∫
Rn−1

Q(x1, x
′, z′)K(x1, z

′, y1, y′)dz′

holds.

We have now arrived at a crucial point of Gel’fand-Levitan theory. In the 1-
dimensional case, we constructed the generalized sine transformation F by using
the solution of (3.17), (3.18). Then the intertwining operator F∗F0 becomes the
Volterra type, and the potential V (x) is reconstructed from its kernel.

This is not the case for the multi-dimensional problem. If one constructs the gen-
eralized Fourier transformation by using the physical eigenfunction, the intertwining
operator F∗F0 does not have a direction with respect to which it becomes Volterra.
One can easily convince oneself by thinking of the fact that in the 1-dimension one
is on the real line, the straight line, which has clearly a distinguished direction,
while in the 3-dimensions there is no special direction.

What shall we do? The idea is to abandan the physical eigenfunction and to
look for non physical eigenfunction by which the intertwining operator becomes
Volterra. Kay and Moses tried to find a good non physical eigenfunction. But they
could not succeed in getting it. It is Faddeev who found an essential idea ([21],
[22], [23]).

8.3 Faddeev’s Green operator. For a solution ϕ of (−Δ + V − E)ϕ = 0, take
ζ = (ζ1, · · · , ζn) ∈ Cn such that ζ2 =

∑n
j=1 ζ

2
j = E and let ϕ = eix·ζ(1 + v). Then

v satisfies
(−Δ − 2iζ · ∇ + V )v = −V (x).

With this in mind let us start with the equation

(−Δ − 2iζ · ∇ + V )u = f. (8.11)

We first consider the case V = 0. Among infinite number of solutions of (8.11), we
select the one written by the Fourier transformation

u(x) = (2π)−n/2

∫
Rn

eix·ξ

ξ2 + 2ζ · ξ f̂(ξ)dξ =: G̃(ζ)f. (8.12)

This is the Green operator introduced by Faddeev. Here we note that the integrand
of (8.12) is absolutely convergent if f ∈ S = the Schwartz space of rapidly decreasing
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functions, and Im ζ �= 0. In fact the zeros of the denominator form a sphere of
codimension 2 and hence the denominator can be rewritten near zeros in the form
ξ1 + iξ2 if we choose suitable coordinates. This yields the absolute convergence.

For the moment, let us proceed formally. Let u = (1 + G̃(ζ)V )−1G̃(ζ)f , which
is a solution to (8.11). Any ζ ∈ Cn with Im ζ �= 0 can be uniquely written as
ζ = η + zγ, where η ∈ Rn, γ ∈ Sn−1, η · γ = 0 and z ∈ C+ = {Im z > 0}. This z
will play an important role. We let z tend to t ∈ R. Then G̃(ζ) converges to G̃(k),
where k = η+ tγ ∈ Rn with k2 = E. We have thus obtained the following solution

ψ = eik·x − eik·x(1 + G̃(k)V )−1G̃(k)V (8.13)

of (−Δ+V −E)ψ = 0. This is a non-physical eigenfunction. This is different from
ϕ which behaves like (3.2) and was utilized to define the S-matrix. An important
feature of Faddeev’s Green operator is that G̃(η + zγ) is analytic in z ∈ C+.
Therefore the second term of the right-hand side of (8.13) is the boundary value of
a function analytic in the upper-half plane. Therefore by the Paley-Wiener theorem,
it has the following expression

ψ = eik·x −
∫ ∞

γ·x
Aγ(x, η, s)eistds. (8.14)

THEOREM 8.2 (Paley-Wiener). A function f(x) ∈ L2(R) is a boundary value
of an analytic function f(x+ iy) in the upper-half plane such that

sup
y>0

∫ ∞

−∞
|f(x+ iy)|2dy <∞,

if and only if

f(x) =
1√
2π

∫ ∞

0

f̂(λ)eiλxdλ.

.

The formula (8.14) is a multi-dimensional counter part of (3.26). With this eigen-
function ψ, one can construct a spectral representation of H and the associated
intertwining operator for H0 and H. Since ψ has the triangular expression, this
intertwining operator will be Volterra. One can thus expect an analogy to the
1-dimensional Gel’fand-Levitan theory.

Faddeev proceeds as follows. The basic strategy is to replace the usual Green
operator by the direction dependent Green operator as above. Let Rγ(E, t) be the
direction dependent Green operator for H = −Δ+V . (We shall explain it precisely
later.) Using the non-physical eigenfunction

Ψγ(x,E, θ) = ei
√

Eθ·x −Rγ(E,
√
Eθ · γ)(V (·)ei

√
Eθ·), (8.15)

we define a new scattering amplitude

Ãγ(E, θ, θ′) = (2π)−n2−1E(n−2)/2

∫
Rn

e−i
√

Eθ·xV (x)Ψγ(x,E, θ′)dx. (8.16)

We put
Q(±)

γ (E, θ, θ′) = 2πiF (±γ · (θ − θ′) ≥ 0)Ãγ(E, θ, θ′), (8.17)

where F (· · · ) denotes the characteristic function of the set {· · · }. Let Q(±)
γ (E) be

the integral operator with kernel Qγ(E, θ, θ′). Then the main results are as follows
:
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(I) Factorization of the S-matrix.

Ŝ(E) = (1 −Q(−)
γ (E))(1 +Q(+)

γ (E))−1. (3.18)

(II) Volterra operator. Let Φγ(x, ξ) = Ψγ(x, |ξ|2, ξ/|ξ|) and put

Uγ(x, y) = (2π)−n

∫
Rn

Φγ(x, ξ)e−iy·ξdξ. (8.19)

Then we have
Uγ(x, y) = δ(x− y) −Kγ(x, y), (8.20)
Kγ(x, y) = 0 if x · γ > y · γ. (8.21)

(III) Gel’fand-Levitan equation. For x · γ < y · γ, we have

Kγ(x, y) + Ωγ(x, y) +
∫

(x−y)·γ<0

Kγ(x, z)Ωγ(z, y)dz = 0, (8.22)

where Ωγ(x, y) is a function constructed from the scattering data.

The scenario of the reconstruction of V (x) will be as follows. From the scattering
matrix Ŝ(E), construct Q(±)

γ (E), and then Ωγ(x, y). Solve the Gel’fand-Levitan
equation to get Kγ(x, y). Since 1 −Kγ is a Volterra operator intertwining H0 and
H, the potential V (x) will be obtained from Kγ(x, y).

Faddeev goes further. He observes that the analyticity of G̃(η + zγ) plays a key
role to guarantee that V (x), reconstructed from Ãγ , is independent of the artificially
introduced direction γ. This will be crucial in the characterization of the physical
scattering amplitude.

9. Changing Green operators

In the following sections, we examine the Faddeev theory in detail. The first
question we address is ”What occurs when one changes the Green operator in
scattering theory?” The stationary scatteing theory is composed of the usual Green
operator (−Δ−E− i0)−1 of the Laplacian. Since there are many Green operators,
it would be worthwhile to consider the effect of changing Green operators.

We shall discuss in a general setting. Let H0 be a self-adjoint operator in a
Hilbert space H. Let I be the spctrum of H0. Suppose there are two Banach
spaces H± such that

H+ ⊂ H ⊂ H−, (9.1)
and the inclusions from H+ to H, from H to H− are dense and continuous. Moreover
we assume that the inner product ( , ) on H is uniquely extended to a sesqui-linear
form on H− ×H+. We assume that for any λ ∈ Iint = { the interior points of I },
there exists a strong limit

R0(λ+ i0) = (H0 − λ∓ i0)−1 ∈ B(H+;H−) (9.2)

and R0(λ ± i0) is a B(H+;H−)-valued continuous function of λ ∈ Iint. Suppose
there exists an auxiliary Hilbert space h such that for any λ ∈ Iint, there exists a
bounded operator F0(λ) ∈ B(H+;h) satisfying

F0(λ)H0u = λF0(λ)u, ∀u ∈ D(H0) ∩H+. (9.3)

We finally assume that the operator

F0u(λ) = F0(λ)u
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defined on H+ is uniquely extended to be a unitary operator from H to L2(I, h; dλ).

Example. Let H0 = −Δ in H = L2(Rn), and H± = L2,±s with s > 1/2. Let
I = [0,∞), h = L2(Sn−1) and

F0(λ)u = (2π)−n/22−1/2λ(n−2)/4

∫
Rn

e−i
√

λω·xu(x)dx. (9.4)

Let V be a bounded self-adjoint operator on H such that V ∈ B(H+;H+), and
let H = H0 + V .

Definition 9.1. Let E ∈ Iint. An operator G(0) ∈ B(H+;H−) is said to be a
Green operator of H0 − E if

(H0 − E)G(0) = I on H+. (9.5)

An operator G ∈ B(H+;H−) is called a perturbed Green operator associated with
G(0) if it satisfies

G = G(0) −G(0)V G = G(0) −GV G(0). (9.6)

Note that (H − E)G = I on H+ by virtue of (9.5) and (9.6).

With a perturbed Green operator G, we define the scattering amplitude associ-
ated with G by

A = F0(E)(V − V GV )F0(E)∗. (9.7)

Now suppose that we are given two Green operators G(0)
1 , G

(0)
2 for H0 − E. Let

G1, G2 be the associated perturbed Green operators. Let A1, A2 be the scattering
amplitudes associated with G1, G2. What is the relationship between A1 and A2?

Theorem 9.2. Suppose there exists M ∈ B(h; h) such that

G
(0)
2 −G

(0)
1 = F0(E)∗MF0(E). (9.8)

Then we have
A2 = A1 − A1MA2. (9.9)

The above theorem follows from the equation

G2 = G1 + (1 −G1V )T (1 − V G2), (9.10)

where T = G
(0)
2 −G

(0)
1 .

Let us next discuss the solvability of the equation (9.9). We need the following
assumptions :

G
(0)
1 V,G

(0)
2 V : H− → H− are compact,

A1 : h→ h is compact.

Theorem 9.3. Under the above assumptions, the equation (9.9) is uniquely solv-
able with respect to A2 :

A2 = (1 +A1M)−1A1.
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The proof again follows from simple algebraic manipulations. Letting K̃ =
(1 −G1V )TV , we have

1 +G
(0)
2 V = (1 +G

(0)
1 V )(1 + K̃). (9.11)

The existence of the perturbed Green operator Gj is equivalent to −1 �∈ σp(G
(0)
j V ).

Here for an operator A in a Hilbert space H, σp(A) means the set of eigenvalues of
A. Putting

S1 = (1 −G1V )F0(E)∗M, S2 = F0(E)V,
we have

K̃ = S1S2, A1M = S2S1.

Since σp(S1S2) \ {0} = σp(S2S1) \ {0}, we have

−1 �∈ σp(K̃) ⇐⇒ −1 �∈ σp(A1M). (9.12)

Theorem 9.3 follows from (9.11) and (9.12).

Theorem 9.3 means that for a certain pair of Green operators there is a linear
equation between the corresponding scattering amplitudes, which is solvable.

Now the question is : What kind of property of Green operator is useful in
inverse scattering? According to Faddeev, it is analyticity. We elucidate it in the
next sections.

10. Direction dependent Green operators

We summarize various properties of Faddeev’s Green operator in this section. It
is a little simpler to consider the following operator

Gγ,0(λ, z)f(x) = (2π)−n/2

∫
Rn

eix·ξ

ξ2 + 2zγ · ξ − λ2
f̂(ξ)dξ, (10.1)

where γ ∈ Sn−1, λ > 0, z ∈ C+. If ζ = η + zγ, η ∈ Rn, η · γ = 0, we have

e−ix·ηGγ,0(|η|2, z)eix·η = G̃(ζ). (10.2)

Theorem 10.1. Let s > 1/2.
(1) As a B(L2,s;L2,−s)-valued function, Gγ,0(λ, z) is continuous with respect to
λ ≥ 0, γ ∈ Sn−1, z ∈ C+ except for (λ, z) = (0, 0).
(2) Gγ,0(λ, z) is a B(L2,s;L2,−s)-valued analytic function of z ∈ C+.
(3) For any ε0 > 0 there exists C > 0 such that for λ+ |z| ≥ ε0,

‖Gγ,0(λ, z)‖B(L2,s;L2,−s) ≤ C(λ+ |z|)−1.

(4) For t ∈ R, let R̃γ,0(λ, t) = eitγ·xGγ,0(λ, t)e−itγ·x. Then

(−Δ − λ2 − t2)R̃γ,0(λ, t) = 1.

For the proof, see [75].

The most important features of the Green operator of Faddeev are the analyticity
in z ∈ C+ and the following formula

R̃γ,0(λ, t) = R0(E − i0)M (+)
γ (t) +R0(E + i0)M (−)

γ (t), (10.3)

where E = λ2 + t2, R0(E ± i0) = (−Δ − E ∓ i0)−1, and

M (±)
γ (t) = (Fx→ξ)−1F (±γ · (ξ − tγ) ≥ 0)Fx→ξ. (10.4)



24 HIROSHI ISOZAKI

The equation (10.4) is intuitively obvious, since

R̃γ,0(λ, t)f = (2π)−n/2

∫
Rn

eix·ξ

ξ2 + 2i0γ · (ξ − tγ) − E
f̂(ξ)dξ,

R0(E ± i0)f = (2π)−n/2

∫
Rn

eix·ξ

ξ2 − (E ± i0)
f̂(ξ)dξ,

Namely, R̃γ,0(λ, t) is outgoing in the half-space γ · ξ < t and incoming in the half-
space γ · ξ > t.

The analyticity of Gγ,0(λ, z) in z ∈ C+ follows from the following lemma (see
Lemma 3.2 of [36]).

Lemma 10.2. Let D be an open set in C. Let p(ξ, z) be a C-valued function which
is smooth in ξ ∈ Rn and analytic in z ∈ D. Let Mz = {ξ ∈ Rn; p(ξ, z) = 0} and
assume that for z ∈ D, ∇ξRe p(ξ, z) and ∇ξIm p(ξ, z) are linearly independent on
Mz. Then the distribution S(z) defined by

S(z)f =
∫
Rn

f(ξ)
p(ξ, z)

dξ, f(ξ) ∈ C∞
0 (Rn)

satisfies

∂zS(z)f = π

∫
Rn

f(ξ)∂zp(ξ, z)δ(p(ξ, z))dξ,

where ∫
Rn

g(ξ)δ(p(ξ, z))dξ =
∫

Mz

g(ξ)dMz,

and dMz is the induced measure on Mz.

Let E = λ2 + t2. Then the integral kernel of Gγ,0(λ, t) is formally written as

(2π)−n

∫
ei(x−y)·ξ

ξ2 + 2(t+ i0)γ · ξ + t2 − E
dξ.

To find an analytic continuation with respect to t of this kernel is an important
problem. Apparently it should be

(2π)−n

∫
ei(x−y)·ξ

ξ2 + 2zγ · ξ + z2 − E
dξ.

However this is not analytic! Eskin-Ralston [18] found the analytic continuation of
the above operator. They formulated it by passing to the Fourier transformation.
Let us show its expression in x-space.

The Green operator of Eskin-Ralston consists of two parts :

Uγ,0(E, z) = Vγ,0(E, z) +Wγ,0(E, z). (10.5)

Let us first explain Vγ,0(E, z). Let

Dε = {z ∈ C+; |Rez| < ε/2}.
Let ϕ1(t) ∈ C∞(R) be such that ϕ1(t) = 1 if |t| > 2ε, ϕ1(t) = 0 if |t| < ε. For
z ∈ Dε, Vγ,0(E, z) is defined by

Vγ,0(E, z)f = (2π)−n/2

∫
Rn

ei(x−y)·ξϕ1(γ · ξ)
ξ2 + 2zγ · ξ + z2 − E

f̂(ξ)dξ. (10.6)

This is B(L2;L2)-valued analytic in z ∈ Dε.
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To explainWγ,0(E, z), let γ = (1, 0, · · · , 0). We write x ∈ Rn as x = (x1, x
′), x′ ∈

Rn−1, and let Δ′ =
∑n

j=2(∂/∂xj)2. For a ∈ R, let

H′
a = {f ;

∫
Rn−1

e2a|x′||f(x′)|2dx′ <∞},

Ha = {f ;
∫
Rn

e2a|x||f(x)|2dx <∞}.
It is well-known that for any δ > 0, (−Δ′ − z)−1 defined on C± has an analytic
continuation across the positive real axis (0,∞) into the region {z;±Im

√
z > −δ}

as a B(H′
δ;H′

−δ)-valued function. Denoting this operator by r±(z), we define

Wγ,0(E, z) = (Fx1→ξ1)
−1{r+(E − (ξ1 + z)2)F (ξ1 < 0)

+r−(E − (ξ1 + z)2)F (ξ1 > 0)}ϕ0(ξ1)Fx1→ξ1 , (10.7)
where ϕ0(t) = 1 − ϕ1(t).

Theorem 10.3. Let E > 0.
(1) For any δ > 0, there exists ε > 0 such that Uγ,0(E, z) is B(Hδ;H−δ)-valued
analytic on Dε.
(2) Uγ,0(E, z) has a continuous boundary value for z ∈ Dε ∩ R, and for t ∈
(−ε/2, ε/2),

Uγ,0(E, t) = Gγ,0(
√
E − t2, t).

(3) For τ > 0
Uγ,0(E, iτ) = Gγ,0(

√
E + τ2, iτ).

(4) For 0 < s < 1

‖Uγ,0(E, iτ)‖B(L2,s;L2,s−1) ≤ C/τ, τ > 1.

(5) Let Rγ,0(E, t) = eitγ·xUγ,0(E, t)e−itγ·x. Then

(−Δ − E)Rγ,0(E, t) = 1.

For the proof see Isozaki [34]. As is seen from (2) and (3) an important role of
the Green operator of Eskin-Ralston is to connect the Green operator of Faddeev
on the real axis Gγ,0(

√
E − t2, t) to that on the imaginary axis Gγ,0(

√
E + τ2, iτ)

via the analytic continuation.

11. Inverse scattering at a fixed energy

We shall discuss in this section the reconstruction of the potential V (x) from
the scattering amplitude at a fixed energy E > 0. This is a physically reasonable
problem, and demonstrates the utility of direction dependent Green operators.

11.1 Perturbed Green operators. We first construct the direction dependent Green
operator for H = −Δ + V . Assume that

|V (x)| ≤ Ce−δ0|x|, (11.1)

for some δ0, C > 0. Then for δ < δ0/2, Uγ,0(E, z)V is compact on H−δ. We
define the set of exceptional points, Eγ(E), to be the set of z ∈ Dε such that
−1 ∈ σp(Uγ,0(E, z)V ). It is easy to see that Eγ(E) is independent of δ < δ0/2.

Lemma 11.1. Eγ(E) ∩ C+ is discrete and there exists C > 0 such that {iτ ∈
Eγ(E); τ > C} = ∅. Moreover Eγ(E) ∩ R is a closed set of measure zero.
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SinceRγ,0(E, t) = eitγ·xUγ,0(E, t)e−itγ·x, t ∈ Eγ(E) is eqivalent to −1 ∈ σp(Rγ,0(E, t)V ).
We define for E > 0 and t ∈ (−ε/2, ε/2) \ Eγ(E),

Rγ(E, t) = (1 +Rγ,0(E, t)V )−1Rγ,0(E, t). (11.2)

11.2 Faddeev scattering ampliude. The scattering matrix has the following expres-
sion

Ŝ(E) = 1 − 2πiA(E),
A(E) = F0(E)(V − V R(E + i0)V )F0(E)∗, (11.3)

where F0(E) is defined by (9.4), and R(E + i0) = (H − E − i0)−1. Replacing
R(E + i0) by Rγ(E, t), we define

Aγ(E, t) = F0(E)(V − V Rγ(E, t)V )F0(E)∗, (11.3)

It follows from (10.3) and Theorem 10.3 (2), Rγ,0(E, t) satisfies

Rγ,0(E, t) = R0(E + i0) − Tγ , (11.4)

where
Tγ = 2πiF0(E)∗Fγ(t)F0(E), Fγ(t) = F (γ · θ > t√

E
). (11.5)

Therefore by Theorem 9.2, we have the following equation

Aγ(E, t) = A(E) + 2πiA(E)Fγ(t)Aγ(E, t). (11.6)

For t ∈ (−ε/2, ε/2)\Eγ(E), the perturbed Green operator Rγ(E, t) exists. Therefore
by virtue of Theorem 9.3, the equation (11.6) is solvable with respect to Aγ(E, t) :

Aγ(E, t) = (1 − 2πiA(E)Fγ(t))−1A(E), t ∈ (−ε/2, ε/2) \ Eγ(E). (11.7)

Thus one can construct the Faddeev scattering amplitude from the physical scat-
tering amplitude.

11.3 Inverse scattering at a fixed energy. One can now reconstruct the potential
from the scattering amplitude.

Theorem 11.2. Let n ≥ 3. Suppose V (x) satisfy (11.1). Then one can reconstruct
V (x) uniquely from the scattering matrix of an arbitrarily fixed energy E > 0.

Proof. From the physical scattering amplitude A(E), construct the Faddeev
scattering amplitude Aγ(E, t). Up to a constant, it has the following integral kernel∫

e−i
√

E(θ−θ′)·xV (x)dx−
∫
e−i

√
Eθ·xV (x)Rγ(E, t)(V (·)ei

√
Eθ′·)dx.

We take
√
Eθ =

√
E − t2ω + tγ,

√
Eθ′ =

√
E − t2ω′ + tγ, where ω, ω′ ∈ Sn−1 and

ω · γ = ω′ · γ = 0. Then the above kernel is written as

Bγ(ω, ω′, t) =
∫
e−i

√
E−t2(ω−ω′)·xV (x)dx

−
∫
e−i

√
E−t2ω·xV (x)Uγ(E, t)(V (·)ei

√
E−t2ω′·)dx,

where

Uγ(E, t) = e−itγ·xRγ(E, t)eitγ·x = (1 + Uγ,0(E, t)V )−1Uγ,0(E, t).

Uγ(E, t) has a unique meromorphic extension to Dε and for large τ > 0

‖Uγ(E, iτ)‖B(L2,s;L2,s−1) ≤ C/τ, 0 < s < 1.
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Therefore as τ → ∞
Bγ(ω, ω′, iτ) �

∫
e−i

√
E+τ2(ω−ω′)·xV (x)dx.

We now use the assumption n ≥ 3. Take any ξ ∈ Rn. Take γ, η ∈ Sn−1 such
that ξ · γ = ξ · η = γ · η = 0. We put

ω = ω(τ ) = (1 − ξ2

4τ2
)1/2η +

ξ

2τ
,

ω′ = ω′(τ ) = (1 − ξ2

4τ2
)1/2η − ξ

2τ
.

Then
√
E + τ2(ω − ω′) → ξ. Therefore

Bγ(ω(τ ), ω′(τ ), iτ) → V̂ (ξ).

11.4 Slowly decreasing potentials. When the potential is not exponentially decreas-
ing, it cannot be determined from the scattering amplitude of a fixed energy (see
e.g. Regge [67]). However one can construct V̂ (ξ) for |ξ| < 2

√
b from the scattering

amplitude for energy interval (a, b). More precisely, we have the following theorem.

THEOREM 11.3 Let n ≥ 2. Suppose V (x) satisfies

|∂αV (x)| ≤ C(1 + |x|)−3/2−ε−|α|, |α| ≤ n− 1

for ε > 0. Let S be a set of positive measure on R such that b = ess.sup S > 0.
Suppose we are given the scattering amplitude A(E) for all E ∈ S. Then we can
reconstruct V̂ (ξ) for all |ξ| < 2

√
b. If S is a half-line : S = [E0,∞), for any

ω, ω′ ∈ Sn−1 such that ω · γ = ω′ · γ = 0 and ω �= ω′, and for a sufficiently large
λ > 0, one can construct a function Cγ(λ, t, ω, ω′) such that

V̂ (
√
λ(ω − ω′)) = Cγ(λ, t0;ω, ω′) + p.v.

1
π

∫ ∞

−∞

Cγ(λ, t;ω, ω′)
t− t0

dt

holds for all t0 ∈ R.

This theorem is proved by using Faddeev’s Green operator instead of Eskin-
Ralston’s Green operator. For the proof see [44] or [33].

12. Faddeev theory

12.1Exceptional points. Let us look closer at the Faddeev theory. By Theorem
10.3 (2), Rγ,0(E, t) = R̃γ,0(λ, t) if E = λ2 + t2 and |t| < ε/2. So, we re-define
Rγ,0(E, t) for |t| ≥ ε/2 by this formula. The perturbed Green operator is defined
by

Rγ(E, t) = (1 +Rγ,0(E, t)V )−1Rγ,0(E, t). (12.1)

If we assume that |V (x)| ≤ C(1 + |x|)−1−ε0 , ε0 > 0, Rγ,0(E, t)V = R̃γ,0(λ, t)V
= eitγ·xGγ,0(λ, t)V e−itγ·x is compact on L2,−s for 1/2 < s < (1 + ε0)/2. For λ ≥ 0,
the set of exceptional points Ẽγ(λ) is defined to be the set of z ∈ C+ such that
−1 ∈ σp(Gγ,0(λ, z)V ).

Lemma 12.1. For λ ≥ 0, Ẽγ(λ)∩C+ is a discrete set, and Ẽγ(λ)∩{|z| > C0} = ∅
for large C0 > 0. Moreover Ẽγ(λ) ∩ R is a closed set of measure zero.



28 HIROSHI ISOZAKI

The existence of real exceptional points is a first barrier of the Faddeev theory.
For small potentials, they do not exist. However Lavine-Nachman [46] and Khenkin-
Novikov [44] proved that real exceptional points do exist if −Δ+V has bound states.

Theorem 12.2. If σp(−Δ + V ) �= ∅, for any γ ∈ Sn−1, there exist λ ≥ 0 and
t ∈ R such that −1 ∈ σp(Gγ,0(λ, t)V ).

Let us continue our arguments under the assumption that

−1 �∈ σp(Rγ,0(E, t)V ), ∀E > 0, −
√
E ≤ ∀t ≤

√
E. (12.2)

This assumption is satisfied when V is sufficiently small. We let

Ψγ(x,E, θ) = ei
√

Eθ·x −Rγ(E,
√
Eθ · γ)(V (·)ei

√
E·), (12.3)

Ãγ(E, θ, θ′) = (2π)−n2−1E(n−2)/2

∫
Rn

e−i
√

Eθ·xV (x)Ψγ(x,E, θ′)dx. (12.4)

Q(±)
γ (E, θ, θ′) = 2πiF (±γ · (θ − θ′) ≥ 0)Ãγ(E, θ, θ′). (12.5)

Let Q(±)
γ (E) be the integral operator with kernel Q(±)

γ (E, θ, θ′).

12.2 Factorization of S-matrix. We show that

Ŝ(E) = (1 −Q(−)
γ (E))(1 +Q(+)

γ (E))−1. (12.6)

This is proven mainly by algebraic manipulations. In fact, letting

L(±)
γ (t) = 2πiF (±γ · (θ − tγ√

E
) ≥ 0)Aγ(E, t),

we have
Ŝ(E)(1 + L(+)

γ (t)) = 1 − L(−)
γ (t). (12.7)

The integral kernel of (12.7) reads∫
Sn−1

Ŝ(E, θ, θ′)(δ(θ′′ − θ′) + L(+)
γ (t, θ′′, θ′))dθ′′ = δ(θ − θ′) − L(−)

γ (t, θ, θ′).

Letting t =
√
Eθ′ · γ in the above formula, we get

Ŝ(E)(1 +Q(+)
γ (E)) = 1 −Q(−)

γ (E). (12.8)

On the other hand, we can show that (Q(±)
γ (E))2 = 0. Therefore 1 + Q

(+)
γ (E) is

invertible, which proves (12.6).

12.3 Volterra operator. We shall prove (8.20), (8.21). The proof requires involved
computations using resolvent estimates. As far as the author knows, the rigorous
proof has not been presented yet, and we also have to omit the detailed proof here
due to the lack of space.

Let
Φγ(x, ξ) = Ψγ(x, |ξ|2, ξ/|ξ|). (12.9)

Then we have
Φγ(x, ξ) = eix·ξ − K̃γ(x, ξ), (12.10)

K̃γ(x, ξ) = R̃γ(|ξ′|2, ξ · γ)(V (·)eiξ·), ξ′ = ξ − (ξ · γ)γ. (12.11)

Here R̃γ(λ, t) is defined by

R̃(λ, t) = (1 + R̃γ,0(λ, t)V )−1R̃γ,0(λ, t).
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Let us put γ = (1, 0, · · · , 0) for the sake of simplicity. We assume that n ≥ 3 and

|V (x)| ≤ C(1 + |x|)−ρ, ρ > max{2, (n+ 1)/2}. (12.12)

Then one can show that if |ξ′| ≥ ε0 > 0

|K̃γ(x, ξ1, ξ′)| ≤ C(1 + |ξ|)−1, (12.13)∣∣∣ ∂

∂ξ1
K̃γ(x, ξ1, ξ′)

∣∣∣ ≤ C|ξ′|(1 + |ξ|)−1. (12.14)

We let

Kγ(x, y1, ξ′) = (2π)−1/2

∫ ∞

−∞
e−iy1ξ1K̃γ(x, ξ1, ξ′)dξ1, (12.15)

where the integral is taken in the limit in the mean. One can then show that

(1 + |y1|)Kγ(x, y1, ξ′) ∈ L2(Ry1).

This implies that
Kγ(x, y1, ξ′) ∈ L1(Ry1). (12.16)

Noting that

Kγ(x, y1, ξ′) = (2π)−1/2

∫ ∞

−∞
e−i(y1−x1)ξ1Gγ(|ξ′|2, ξ1)(V (x)eix′·ξ′

)dξ1,

and that Gγ(λ, z) is analytic in z ∈ C+, we have by the Paley-Wiener theorem,
Kγ(x, y1, ξ′) = 0 if y1 − x1 < 0. Therefore

Ψγ(x, ξ) = eix·ξ − (2π)−1/2

∫ ∞

x1

eiy1ξ1Kγ(x, y1, ξ′)dy1. (12.17)

This proves (8.20).

12.4 Gel’fand-Levitan equation. We have no longer sufficient estimates to guarantee
the validity of the remaining arguments. Therefore the following arguments are
formal, although very interesting.

Let us introduce three types of integral operaors :

T0f(ξ) = (2π)−n/2

∫
Rn

e−ix·ξf(x)dx, (12.18)

Tf(ξ) = (2π)−n/2

∫
Rn

Φ(x, ξ)f(x)dx, (12.19)

Tγf(ξ) = (2π)−n/2

∫
Rn

Φγ(x, ξ)f(x)dx, (12.20)

where Φ(x, ξ) = eix·ξ −R(|ξ|2 + i0)(V (·)ei·ξ). We define

Q(+)
γ f(ξ) =

(
Q(+)

γ (|ξ|2)f(|ξ|·)
)

(ξ/|ξ|). (12.21)

Then we can show
T ∗ = T ∗

γ (1 −Q(+)
γ ). (12.22)

Now let us derive the Gel’fand-Levitan equation (8.22). For the sake of simplicity
we assume that σp(−Δ + V ) = ∅. In view of (8.20), we let

Uγ = T ∗
γ T0 = 1 +Kγ .

From T ∗T = 1 and (12.22), we have

T ∗
γ (1 + Q̃γ)Tγ = 1, (12.23)
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where
Q̃γ = Q(+)

γ Q(+)
γ

∗ −Q(+)
γ −Q(+)

γ

∗
.

Replacing Tγ in (12.23) by T0U
∗
γ = T0(1 +K∗

γ), we have

1 +Kγ + Ωγ +KγΩγ = (1 +K∗
γ)−1,

where
Ωγ = T ∗

0 Q̃γT0.

Now K∗
γ(x, y) is supported in {(x − y) · γ ≥ 0}. Therefore, letting (1 + K∗

γ)−1 =
1 + Cγ , we see that Cγ(x, y) is also supported in {(x − y) · γ ≥ 0}. Then for
(x− y) · γ < 0 we have

Kγ(x, y) + Ωγ(x, y) +
∫

(x−y)·γ<0

Kγ(x, z)Ωγ(z, y)dz = 0.

This is the Gel’fand-Levitan equation.

Little is known about the solvability of this equation. When the scattering
amplitude is small, Ωγ(x, y) is also small. Therefore the above equation might
be solved with respect to Kγ . By differentiating Kγ(x, y), one might get V (x).
However, the estimates of this V (x) (e.g. the spatial decay) would be hard to
prove.

Putting these difficulties aside, Faddeev further stepped into the characterization
problem of the scattering amplitude. According the above procedure, starting from
the scattering amplitude, one can get Kγ(x, y). By differentiating this Kγ(x, y), one
can get an integral kernel depending on γ containing the δ-function (see Theorem
8.1). What guarantees that it is the operator of multiplication independent of γ?
Faddeev observed that it is the analyticity of Bγ(ω, ω′, t), which appeared in the
proof of Theorem 11.2, with respect to t.

Newton [61] analyzed Faddeev’s arguments and encountered the above difficulty.
He tried to find another route to obtain V (x) based on the dispersion relation, and
pointed out that in this case a sort of miraculous condition must be imposed ([61]
p.150).

13. ∂-approach

In 1980’s ∂-approach was introduced as a new view point of the inverse scatter-
ing by Beals-Coifman [1] and Nachman-Ablowitz [57]. In this approach Faddeev’s
method is rewritten as follows. Let G̃(ζ) be as in (8.12).

Lemma 13.1. Let ∂j = ∂/∂ζj. Then for Im ζj �= 0

∂jG̃(ζ)f = (2π)1−n/2

∫
Rn

eix·ξ f̂(ξ)ξjδ(ξ2 + 2ζ · ξ)dξ. (13.1)

and ∂jG̃(ζ) ∈ B(L2,s;L2,−s), s > 1.

Let us rewrite the Faddeev scattering amplitude. We define for ζ = η + iτγ

G̃V (ζ) = (1 + G̃(ζ)V )−1G̃(ζ). (13.2)

If iτ �∈ Eγ(E) it satisfies

G̃V (η + iτγ) = e−ix·ηUγ(E, iτ)eix·η. (13.3)



INVERSE SPECTRAL THEORY 31

For ω, ω′ ∈ Sn−1 satisfying ω ·γ = ω′ ·γ = 0, we let η =
√
E + τ2ω, η′ =

√
E + τ2ω′.

Then Bγ(ω, ω′, iτ) has the follwing expression

Bγ(ω, ω′, iτ) =
∫
e−i(η−η′)·xV (x)dx−

∫
e−i(η−η′)·xV (x)G̃V (ζ)V dx,

where ζ = η′ + iτγ. Let us note that ξ = η − η′ satisfies ξ2 + 2ζ · ξ = 0. Starting
from the scattering amplitude A(E), we have thus constructed

T (ξ, ζ) =
∫
e−ix·ξV (x)dx−

∫
e−ix·ξV (x)G̃V (ζ)V dx, (13.4)

on the set {(ξ, ζ)} where ξ ∈ Rn and ζ ∈ Cn satisfy ζ2 = E, |ζ| > C, Im ζ �= 0 and
ξ2 + 2ζ · ξ = 0, C being a large constant. This set has a structure of fibred space
and each fibre

Vξ = {ζ ∈ Cn; ζ2 = E, |ζ| > C, Im ζ �= 0, ξ2 + 2ζ · ξ = 0}. (13.5)

is a complex manifold of dimension 2n−4. On this complex manifold, the function
T (ξ, ζ) satisfies a ∂-equation.

Theorem 13.2. As a 1-form on Vξ, we have

∂T (ξ, ζ) =
n∑

j=1

Aj(ξ, ζ)dζj,

Aj(ξ, ζ) = −(2π)1−n/2

∫
Rn

T (ξ − η, ζ + η)T (η, ζ)ηjδ(η2 + 2ζ · η)dη.

There are two important applications of Theorem 13.2. Recall the generalized
Cauchy formula

f(z) =
1

2πi

∫
∂D

f(ζ)
ζ − z

dζ − 1
2πi

∫
D

∂f(ζ)
ζ − z

dζ ∧ dζ,

where D is a domain in C. Using a similar formula on the complex manifold
Vξ, Nachman [55] derived the following representation formula of the potential by
means of T (ξ, ζ) :

V̂ (ξ) = T (ξ, ζ0) +
∫

∂Vξ

T (ξ, ζ)K(ζ, ζ0) +
∫
Vξ

n∑
j=1

Aj(ξ, ζ)dζj ∧K(ζ, ζ0), (13.6)

where ζ0 ∈ Vξ and K(ζ, ζ0) is a suitable 2n− 5 form on Vξ.
Another important application is the characterization of the Faddeev scatter-

ing amplitude. Namely the ∂-equation in Theorem 13.2 gives a necessary and
sufficient condition for a function T (ξ, ζ) defined on the fibred space {(ξ, ζ); ζ2 =
E, ξ2 + 2ζ · ξ = 0} to be the Faddeev scattering amplitude associated with some
Schrödinger operator −Δ+V (x). This interesting fact was fully discussed by Beals-
Coifman [1] and Khekin-Novikov [44]. The advantage compared to Faddeev’s char-
acterization is that in the ∂-approach, one can get the precise estimates of T (ξ, ζ)
and also specify the associated class of potentials. See also Weder [76]. However,
the characterization of the physical scattering amplitude itself is still open, though
it is linked with the Faddeev scattering amplitude through the equation (11.6).
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14. Inverse conductivity problem

It is an interesting fact that inverse eigenvalue problems are reduced to inverse
scattering problems. Let Ω be a bounded domain in Rn and consider the following
boundary value problem

∇ · (c(x)∇u) = 0 in Ω, (14.1)

u = f on ∂Ω,

where c(x) ≥ c0 > 0. In electromagnetism, c(x) corresponds to the conductivity.
Let λc be the Dirichlet-Neumann map

Λcf = c(x)
∂u

∂ν
,

ν being the outer unit normal to the boundary. A.P. Calderón posed the following
problem

Question. Does Λc determine c?

By the substitution v = c1/2u, the above problem is transferred to

−Δv + qv = 0 in Ω, (14.2)

v = c1/2f on ∂Ω,

where q = c−1/2Δc1/2. Let Λ be the D-N map

Λg =
∂v

∂ν
,

where v is a solution to (14.2) satisfying v = g on ∂Ω.

Theorem 14.1. Let n ≥ 2. Suppose q ∈ L∞(Ω) and 0 �∈ σp(−ΔD + q). Then q is
uniquely determined form the knowledge of the D-N map.

The above theorem is proved by Sylvester-Uhlmann for n ≥ 3 ([71]) in the cate-
gory of pure boundary value problem by using the method of complex geometrical
optics. Here we discuss its relation to the scattering problem.

The following observation is useful to see how the interior boundary value prob-
lem and the scattering problem are related.

Take a constant E > 0 and let

V (x) =
{
q(x) + E, x ∈ Ω

0, x �∈ Ω.

Let ψ+ be a solution to the Schrödinger equation

(−Δ + V (x) − E)ψ+ = 0 in Rn

satisfying

ψ+ � ei
√

Eω·x +
ei

√
Er

r(n−1)/2
f(E; θ, ω) r = |x| → ∞, θ = x/r.

Then by Green’s formula we have∫
∂Ω

e−i
√

Eθ·x(
∂

∂ν
+ i

√
Eθ · ν)ψ+dS =

∫
Ω

e−i
√

Eθ·x(Δ + E)ψ+dx = A(E; θ, ω),
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where A(E; θ, ω) is the scattering amplitude associated with −Δ + V . Since ψ+

satisfies (14.2) we have
∂

∂ν
ψ+ = Λψ+. (14.3)

We follow Isakov-Nachman [31]. Let Ωe = Rn \ Ω. Then the D-N map Λe for
the exterior Dirichlet problem is defined in the same way as in the interior problem
:

Λef =
∂ue

∂ν
,

where ue is a unique solution to

(−Δ − E)ue = 0 in Ωe,

ue = f ∈ H3/2(∂Ω) on ∂Ω

satisfying the outgoing radiation condition

(
∂

∂r
− i

√
E)ue ∈ L2,−α(Ωe)

for some 0 < α < 1/2.
Another tool is the simple layer potential associated with −Δ+V . LetR(+)(E, x, y)

be the resolvent kernel of (−Δ + V − E − i0)−1, and let

K(E)f(x) =
∫

∂Ω

R(+)(E, x, y)f(y)dSy. (14.4)

We define B(E) ∈ B(H1/2(∂Ω);H3/2(∂Ω)) by

B(E)f = K(E)f |∂Ω. (14.5)

The relations between these operators are summarized in the following lemma.

Lemma 14.2. Suppose E is not an eigenvalue of the interior problem for −Δ+V .
Let ΛV −E and Λe be the D-N maps of −Δ+V −E in Ω and −Δ−E in Ωe. Then
(1) ΛV −E − Λe is an isomorphism from H3/2(∂Ω) to H1/2(∂Ω).
(2) (ΛV −E − Λe)−1 = B(E).

Let ϕe
±(x,E, ω) be the generalized eigenfunctions for the exterior Dirichlet prob-

lem. Namely
(−Δ − E)ϕe

± = 0 in Ωe,

ϕe
± = ei

√
Eω·x on ∂Ω,

ϕe
± � ei

√
Eω·x +

e±i
√

Er

r(n−1)/2
f±(E, x̂, ω) r → ∞.

One can then show

Theorem 14.3.∫
∂Ω

∂

∂ν
ϕe−(x,E, θ)B(E)ϕe

+(·, E, ω)dSx = C(E)(A(E, θ, ω)−Aext(E, θ, ω)),

where A(E, θ, ω) and Aext(E, θ, ω) are the scattering amplitudes of −Δ + V in Rn

and −Δ in Ωe, respectively.
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By the above two lemmas, one can construct the scattering amplitude A(E, θ, ω)
from the knowledge of the D-N map of the interior boundary value problem. By
Theorem 11.2, one can reconstruct V (x) if n ≥ 3.

Conversely, the inverse scattering problem for the compactly supported poten-
tial can be reduced to the inverse boundary value problem. In fact, Nachman
[55] directly constructed a counterpart of Faddeev scattering amplitude from the
knowledge of the D-N map. The potential V (x) is then reconstructed by the formula
(13.6).

The 2-dimensional problem is much harder, because in this case the problem is
no longer overdetermined. Nachman [56] proved Theorem 14.1 when q comes from
the conductivity problem, i.e. q = c−1/2Δc1/2. He used the ∂-operator method and
the theory of quasi analytic functions.

15. Other applications

Direction dependent Green operators are now used in various problems other
than Schrödinger operators, for example Dirac equations by [34] and Goto [27],
Maxwell equations by Ola-Päivärinta-Sommersalo [63] and also elastic equations
by Nakamura-Uhlmann [59].

Let us also mention the application to wave equation in layered media

∂2
t u = c(x, y)2Δx,yu, x ∈ Rn, y ∈ R,

where Δx,y =
∑n

i=1(∂/∂xi)2 + (∂/∂y)2. In this case the unperturbed equation is
c0(y)2Δx,y and the coefficient c0(y) is piecewise constant with discontinuities at the
interfaces. Even in this case one can accomodate Faddeev’s apparoach. See Isozaki
[35], Weder [78], Guillot-Ralston [28] and Beltita [3].

In [3], the coefficients are assumed to satisfy

|c0(y) − c±| ≤ Ce−α|y|, for ± y > 0,

|c(x, y) − c0(y)| ≤ Ce−α(|x|+|y|),

for a constant α > 0. This allows any number of interface for the background
medium. One can then reconstruct the sound speed c(x, y) from the knowledge of
the scattering matrix at a fixed energy. In the works of [35] and [3], to construct
the direction dependent Green operator the commutator calculus is used, which
was developed in the study of N -body Schrödinger operators and has now become
a basis of spectral and scattering theory.

Let us finally mention that Melin [53] is preparing a multi-dimensional inverse
scattering theory based on the ultra-hyperbolic equation (Δx − Δy)U = V (x)U .
His starting point is a fundamental solution to the free ultra-hyperbolic equation
(Δx −Δy)U = 0, and has an advantage that it directly constructs the intertwining
operator with triangular kernel. We also remark that [37] proposes a new approach
to the inverse boundary value problem in Euclidean space by imbedding the problem
to hyperbolic manifolds.

Although there remain difficulties in the characterization of scattering ampli-
tudes, Faddeev’s method gives a deep insight to the multi-dimensional inverse scat-
tering problem. This theory seems to have much room to accept highly developed
tools of partial differential equations and spectral theory for further developments.
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[63] P.Ola, L.Päivärinta and E.Sommersalo, An inverse boundary value problem in electrodynam-

ics, Duke Math. J. 70 (1993), 617-653.
[64] P.A.Perry, Inverse spectral problems on compact Riemaniann manifolds, Lecture Notes in

Physics 345, Schödinger Operators, Eds. H.Holden, A.Jensen, Springer-Verlag (1989).
[65] R.T.Prosser, Formal solutions of inverse scattering problems III, J. Math. Phys. 21 (1980),

2648-2653.
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