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The deformation theory of algebras byM. Gerstenhaber [Ann. Math. (2) 79, 59–103 (1964; Zbl 0123.03101);
Proc. Natl. Acad. Sci. USA 55, 690–692 (1966; Zbl 0136.31401); Ann. Math. (2) 84, 1–19 (1966; Zbl
0147.28903); Ann. Math. (2) 88, 1–34 (1968; Zbl 0182.05902); Ann. Math. (2) 99, 257–276 (1974; Zbl
0281.16016);M. Gerstenhaber and C. W. Wilkerson, Contemp. Math. 227, 89–101 (1999; Zbl 0918.16024)]
furnishes the guiding principle for algebraic deformation theory. For an algebra A, the Hochschild com-
plex C(A) is a dg Lie algebra governing the deformation theory of through the Maurer-Cartan formalism
and being the shadow of a rather richer operadic structure, which is summarized by saying that C(A) is
a homotopy G-algebra [M. Gerstenhaber and A. A. Voronov, Int. Math. Res. Not. 1995, No. 3, 141–153
(1995; Zbl 0827.18004)]. This structure capturing both the brace operations and the cup product is a
special case of a B∞-structure [E. Getzler and J. D. S. Jones, “Operads, homotopy algebra and iterated
integrals for double loop spaces”, Preprint, arXiv:hep-th/9403055], constituting a stepping stone in the
proof of the Deligne conjecture and leading to the proof that C(A) is an algebra over the chain little disk
operad [M. Kontsevich and Y. Soibelman, Math. Phys. Stud. 21, 255–307 (2000; Zbl 0972.18005); J. E.
McClure and J. H. Smith, Contemp. Math. 293, 153–193 (2002; Zbl 1009.18009)].
The deformation theory of algebras was later extended to presheves of algebras by M. Gerstenhaber and
S. D. Schack [Contemp. Math. 13, 193–197 (1982; Zbl 0507.18005); Trans. Am. Math. Soc. 279, 1–50
(1983; Zbl 0544.18005); Nato ASI Ser., Ser. C 247, 11–264 (1988; Zbl 0676.16022)] with an introduction
of a bicomplex computing the natural bimodule Ext groups. Since this GS-complex CGS(A) of a presheaf
A does not control deformation of A as a presheaf but as a twisted presheaf [H. D. Van and W. Lowen,
Adv. Math. 330, 173–228 (2018; Zbl 1408.18038); H. D. Van et al., Sel. Math., New Ser. 28, No. 3, Paper
No. 47, 63 p. (2022; Zbl 07498244); W. Lowen, Trans. Am. Math. Soc. 360, No. 3, 1631–1660 (2008; Zbl
1135.13008)], it is natural to develop deformation theory at once on the level of twisted presheves or,
more generally prestacks, that is to say, pseudofunctors taking values in the 2-category of linear categories
over some fixed commutative ground ring. H. D. Van and W. Lowen [Adv. Math. 330, 173–228 (2018;
Zbl 1408.18038)] established a Gerstenhaber-Schack complex for prestacks, involving a differential which
features an infinite sequence of higher components in addition to the classical simplicial and Hochschild
differentials. On top of that, for a prestack A, they have constructed a homotopy equivalence

CGS(A) ∼= CC(A!)

between the Gerstenhaber-Schack complexCGS(A) and the Hochschild complexCC(A!) of the Grothendieck
construction A! of A, which, through homotopy transfer, endows the GS-complex with an L∞-structure.
The result improves upon the existence of a quasi-isomorphism, which is a consequence of the Cohomoloy
Comparison Theorem for presheaves [M. Gerstenhaber and S. D. Schack, Nato ASI Ser., Ser. C 247,
11–264 (1988; Zbl 0676.16022)] and for prestacks [W. Lowen and M. Van den Bergh, Trans. Am. Math.
Soc. 363, No. 2, 969–986 (2011; Zbl 1268.16009)].
Although the GS-complex does not possess a B∞-structure, its elements are to be composed in an operadic
fashion, so that it makes sense to investigate this higher structure in its own right, using it directly so as
to establish an underlying L∞-structure. For particular types of presheaves, explicit L∞-structures on the
GS-complex have been established [S. Barmeier and Y. Frégier, J. Noncommut. Geom. 14, No. 3, 1019–
1047 (2020; Zbl 1479.16028); Y. Frégier et al., New York J. Math. 15, 353–392 (2009; Zbl 1183.14004)].
Let Brace be the brace operad (§2.1) and F2S the Gerstenhaber-Voronov operad encoding the homo-
topy G-algebras (§2.2). E. Hawkins [“Operations on the Hochschild bicomplex of a diagram of algebras”,
Preprint, arXiv:2002.00886] introduced, in the case of a presheaf (A, m, f), an operad

Quilt ⊆ F2S ⊗H Brace

which he later extended to an operadmQuilt acting on the GS-complex, where these operads are naturally
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endowed with L∞-operations, as desired. Nevertheless, the way in which functoriality of f is built into
these actions does not allow for an extension to twisted presheaves or prestacks.
The principal objective in this paper is to establish a natural operadic structure with underlying L∞-
structure on CGS(A) in the case of a general prestack (A, m, f, c) with twist c. A synopsis of the paper
goes as follows.
§2 describes the morphisms of operads underlying the results in [M. Gerstenhaber and A. A. Voronov,
Int. Math. Res. Not. 1995, No. 3, 141–153 (1995; Zbl 0827.18004)] which defined a brace-algebra
structure on the totalization of a non-symmetric operad O, delineating a homotopy G-algebra on O
with due regard to the cup product and the Gerstenhaber bracket. To this end, the colored operad
NSOp encoding non-symmetric operads is recalled, and its natural extension mNSOp adding a
multiplication is described (§2.3). Let NSOps and mNSOpst be their totalized graded (uncolored)
operads with suspended, respectively standard degree (§2.5 and §2.6). The principal objective in
this section is the definition of morphisms of dg-operads (Theorems 2.16 and 2.34)

ϕ : Brace → NSOps

and
ϕ : F2S → mNSOpst

In these definitions, the authors have to pay particular attention to the choice of signs, for which
they make use of morphisms of operads

(m)NSOp → Multi ∆

landing in the multicategory associated to the simplex category ∆ (Proposition 2.11).
§3 captures the higher structure of CGS(A) by introducing the operad (§3.3)

Patch ⊆ mNSOpst ⊗H NSOps

over which the bicomplex C∗,∗(A), of which CGS(A) is the totalization, is shown to be an algebra
(Theorem 3.24). The authors then construct a morphism (Proposition 3.27)

Quilt → Patchs

as a restriction of
ϕ ⊗H ϕ : F2S ⊗H Brace → mNSOpst ⊗H NSOps

The resulting composition (Corollary 3.28)

R : Quilt → End(sCGS(A))

incorporates the multiplicationm and the restrictions f . The auxiliary operad Patch used here is the
counterpart of the operad ColorQuilt from [E. Hawkins, “Operations on the Hochschild bicomplex
of a diagram of algebras”, Preprint, arXiv:2002.00886, Def. 4.6].

§4 incorporates the twist c by adding a formal element with certain relations, resulting in the bounded
powerseries operad Quiltb[[c]], while the above morphism R only involves the multiplication m and
the functors f of the data of a prestack (A, m, f, c). The morphism R is extended to a morphism
(Theorem 4.17)

Rc : Quiltb[[c]] → End(sCGS(A))

The operad Quiltb[[c]] is the counterpart of the operad mQuilt from [E. Hawkins, “Operations on
the Hochschild bicomplex of a diagram of algebras”, Preprint, arXiv:2002.00886, Def. 5.2]. Just
as Hawkins constructed a morphism

L∞ → Quilt

the authors construct a more involved morphism (Theorem 4.10)

L∞ → Quiltb[[c]]

by extending to an infinite series of higher components incorporating the element c. Putting Theorem
4.10 and 4.17 together, sCGS(A) is endowed with an L∞-structure. In the case of presheaves, this
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coincides on reduced and normalized cochains with the L∞-structure from [E. Hawkins, “Operations
on the Hochschild bicomplex of a diagram of algebras”, Preprint, arXiv:2002.00886, Theorem 7.13].

Reviewer: Hirokazu Nishimura (Tsukuba)
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