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By Tannaka duality, a compact group G is equivalent to its category of finite-dimensional representations
Rep(G), with canonical unitary monoidal fiber functor

F : Rep(G) → Hilb

where Hilb is the category of finite-dimensional Hilbert spaces and linear maps. One can generalize this
notion of representation to C∗-tensor categories with conjugates, which, as well as their fiber functors, are
to be described by the representation theory of compact quantum groups and their associated Hopf-Galois
objects. The author [“Unitary pseudonatural transformations”, Preprint, arXiv:2004.12760] introduced
a notion of unitary pseudonatural transformation relating two monoidal functors, or more generally two
pseudofunctors, demonstrating that the 2-category Fun(C, Hilb) of unitary fiber functors, unitary pseudo-
natural transformations and modifications is of certain nice properties. The principal objective in this
paper is to study unitary pseudonatural transformations of C∗-tensor categories with conjugates, or
equivalently, provided that a fiber functor exists, representation categories of compact quantum groups.
A synopsis of the paper goes as follows.
§2 provides necessary background material for this paper.
§3 addresses the relationship between unitary pseudonatural transformations and Hopf-Galois theory.
Let C be a C∗-tensor category with conjugates. Whenever a fiber functor F : C → Hilb exists, one
can construct a monoidal equivalence

C ≃ Rep(G)

for a compactquantum group G, which means that the category C is to be understood in terms
of the compact quantum group G, or rather its dual Hopf ∗-algebra AG. Let F1, F2 : C → Hilb
be fiber functors corresponding to compact quantum groups G1, G2. Then one can construct an
AG2 -AG1 -bi-Hopf-Galois object Z linking the two fiber functors. As a generalization of the known
fact [T. Banica, “Symmetries of a generic coaction”, Preprint, arXiv:math/9811060, Theorem 4.4.1]
claiming that the 1-dimensional ∗-representations of an AG2 -AG1 -bi-Hopf-Galois object correspond
to unitary monoidal natural transformations F1 → F2, it is shown (Theorem 3.14) that there is an
isomorphism of categories between
– The category Rep(Z) of finite-dimensional ∗-representations of and intertwining linear maps.
– The category Hom(F1, F2) of unitary pseudonatural transformations F1 → F2 and modifica-
tions.

§4 discusses the Morita classification/construction of accessible unitary pseudonatural transformations
and fiber functors. Given a fiber functor F : C → Hilb, the author exploits Morita theory to classify
– unitary fiber functors accessible from F by a unitary pseudonatural transformation in terms
of Morita equivalence classes of simple Frobenius monoids in Rep(AG), and

– unitary pseudonatural transformations from F in terms of ∗-isomorphism classes of simple
Frobenius monoids in Rep(AG).

§5 shows that finite-dimensional quantum graph isomorphisms are unitary pseudonatural transforma-
tions. The author establishes an equivalence between the following 2-categories (Theorem 5.20):
– The 2-category QGraphX of quantum graphs quantum isomorphic to X as objects, quantum
isomorphisms as 1-morphisms, and intertwiners as 2-morphisms.

– The 2-category Fun(Rep(GX), Hilb)X of fiber functors accessible by a unitary pseudonatural
transformation from the canonical fiber functor on Rep(GX) as objects, unitary pseudonatural
transformations as 1-morphisms, and modifications as 2-morphisms.
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