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1 Introduction

A common feature of high-dimensional data is that the data dimension is high,
however, the sample size is relatively low. We call such data “HDLSS” data.
The current work handles the classification problem in the HDLSS framework.
Suppose we have two independent populations, Πi, i = 1, 2, having a d-variate
distribution with unknown mean vector µi and unknown covariance matrix
Σi. We do not specify any distributional function for Πi. We have independent
and identically distributed (i.i.d.) observations, xi1, . . . ,xini

, from eachΠi. We
assume ni ≥ 2. Let x0 be an observation vector of an individual belonging to
one of the Πis. We assume x0 and xijs are independent. Let N = n1 +n2. We
consider the HDLSS context in which d→∞ while N is fixed or N/d→ 0 as
d,N →∞.

In the HDLSS context, Hall et al. (2005), Marron et al. (2007) and Qiao
et al. (2010) considered distance weighted classifiers. Hall et al. (2008), Chan
and Hall (2009) and Aoshima and Yata (2014) considered distance-based clas-
sifiers. Aoshima and Yata (2018b) considered a distance-based classifier based
on a data transformation technique. Aoshima and Yata (2011) and Aoshima
and Yata (2015) considered geometric classifiers based on a geometric rep-
resentation of HDLSS data. Aoshima and Yata (2018c) considered quadratic
classifiers in general and discussed an optimality of the classifiers under high-
dimension, non-sparse settings. On the other hand, Hall et al. (2005), Chan
and Hall (2009), Qiao and Zhang (2015) and Nakayama et al. (2017) investi-
gated asymptotic properties of the linear support vector machine (SVM) in the
HDLSS context. Huang (2017) investigated the SVM in the high-dimension,
large-sample-size context as d/N → c > 0. Vapnik (2000), Schölkopf and
Smola (2002), Hall et al. (2005) and Qiao and Zhang (2015) investigated the
versatility of the SVM both for low-dimensional and high-dimensional data.
Hall et al. (2005), Chan and Hall (2009) and Qiao and Zhang (2015) showed
that the misclassification rates of the linear SVM tend to zero as d→∞ under
certain strict conditions in the HDLSS context. Under mild conditions in the
HDLSS context, Nakayama et al. (2017) pointed out the strong inconsistency
of the linear SVM when nis are imbalanced. Nakayama et al. (2017) gave
a bias-corrected linear SVM and showed its superiority to the linear SVM.
As long as we know, asymptotic properties of non-linear SVMs seem not to
have been sufficiently studied in the HDLSS context. In the current paper, we
investigate non-linear SVMs in the HDLSS context.

We introduce a high-dimensional geometric representation. Let us consider
the following condition for Σi, i = 1, 2:

tr(Σ2
i )/tr(Σi)

2 → 0 as d→∞. (1)

We note that the ratio, tr(Σ2
i )/tr(Σi)

2, is a measure of sphericity and (1) is
equivalent to “λmax(Σi)/tr(Σi)→ 0 as d→∞”, where λmax(Σi) denotes the
largest eigenvalue of Σi. See Ahn et al. (2007) and Aoshima and Yata (2018b).
If we assume (1) and (A-ii) given in Sect. 3, we have that

‖x0 − µi‖ = tr(Σi)
1/2{1 + oP (1)} as d→∞ when x0 ∈ Πi
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from the fact that Var(‖x0 − µi‖2) = O{tr(Σ2
i )} when x0 ∈ Πi, where ‖ · ‖

denotes the Euclidean norm. Thus, the centroid data concentrate near on the
surface of an expanding sphere with radius, tr(Σi)

1/2, when the dimension
is large. See Hall et al. (2005) for the details of the geometric representa-
tion. We consider a toy example to see the geometric representation. We set
Πi : Nd(µi,Σi), i = 1, 2, having Σ1 = Id and Σ2 = 2Id, where Id de-
notes the d-dimensional identity matrix. Note that (1) and (A-ii) are met.
Thus, for a large d, we expect that ‖x0 − µ1‖/d1/2 ≈ 1 when x0 ∈ Π1 and
‖x0−µ2‖/d1/2 ≈ 21/2 when x0 ∈ Π2. Independent pseudorandom 2000 obser-
vations of ‖x0−µi‖/d1/2 were generated when x0 ∈ Πi for i = 1, 2. In Fig. 1,
we gave histograms of ‖x0−µi‖/d1/2 for x0 ∈ Πi, i = 1, 2, when d = 16, 80, 400
and 2000. We observed that ‖x0 − µi‖/d1/2s converge to tr(Σi)

1/2/d1/2 for
each case as d increases. In other words, x0 concentrates on the surface of the
d-dimensional sphere with centre µi and radius tr(Σi)

1/2 as in Fig. 2. In this
paper, we focus on the geometric representation for high-dimensional classifi-
cation.

[Figs. 1 and 2 should be inserted here]

In Sect. 2, we consider non-linear SVMs in a general framework and study
their asymptotic properties in the HDLSS context. We show that non-linear
SVMs are heavily biased in the HDLSS context especially for imbalanced data.
In order to overcome such difficulties, we propose a bias-corrected SVM (BC-
SVM). In Sect. 3, we give asymptotic properties of the BC-SVM both for
the linear and Gaussian kernels. We show that the BC-SVM with the Gaus-
sian kernel draws information about heteroscedasticity thorough the geometric
representation of expanding two spheres having different radii, tr(Σi)

1/2s. In
Sect. 4, we show that the performance of the BC-SVM is influenced by the
scale parameter involved in the Gaussian kernel. We discuss a choice of the
scale parameter yielding a high performance. Finally, in Sect. 5, we examine
the performance of the BC-SVM with the Gaussian kernel for several choices
of the scale parameter by numerical simulations and actual data analyses.

2 SVM in HDLSS settings

In this section, we consider the SVM in a general framework. We give asymp-
totic properties of the SVM under the following divergence condition:

(D) d→∞ either when N →∞ as d→∞ or N is fixed.

2.1 Setup of SVM

Since HDLSS data are mostly separable by a hyperplane, we first consider the
hard-margin SVM:

y(x) = wTφ(x) + b, (2)
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where φ(·) is a feature map, w is a weight vector and b is an intercept term.
Let us write that (x1, . . . ,xN ) = (x11, . . . ,x1n1 ,x21, . . . ,x2n2). Let tj = −1
for j = 1, . . . , n1 and tj = 1 for j = n1 + 1, . . . , N . By differentiating the
Lagrangian formulation with respect to w and b, we obtain the following dual
form:

L(α) =

N∑
j=1

αj −
1

2

N∑
j=1

N∑
j′=1

αjαj′tjtj′k(xj ,xj′), (3)

where k(xj ,xj′) = φ(xj)
Tφ(xj′) is a kernel function, α = (α1, . . . , αN )T and

αjs are Lagrange multipliers such as w =
∑N
j=1 αjtjφ(xj). The optimization

problem can be transformed into the following: argmax
α

L(α) subject to

αj ≥ 0, j = 1, . . . , N, and

N∑
j=1

αjtj = 0. (4)

Let us write that

α̂ = (α̂1, . . . , α̂N )T = argmax
α

L(α) subject to (4).

Note that
∑n1

j=1 α̂j =
∑N
j=n1+1 α̂j . There exist some xjs satisfying that tjy(xj) =

1 (i.e., α̂j 6= 0). Such xjs are called the support vector. Let Ŝ = {j|α̂j 6= 0, j =

1, . . . , N} and NŜ = #Ŝ, where #A denotes the number of elements in a set

A. The intercept term is given by b̂ = N−1
Ŝ

∑
j∈Ŝ{tj−

∑
j′∈Ŝ α̂j′tj′k(xj ,xj′)}.

Then, the classifier in (2) is given by

ŷ(x) =
∑
j∈Ŝ

α̂jtjk(x,xj) + b̂. (5)

One classifies x0 into Π1 if ŷ(x0) < 0 and into Π2 otherwise. See Vapnik
(2000) for the details.

Let e(i) denote the error rate of misclassifying an individual from Πi into
the other class for i = 1, 2. We claim that a classifier has the consistency if

e(i)→ 0 as d→∞ for i = 1, 2. (6)

In this paper, we mainly investigate the following typical kernels.

(I) The linear kernel: k(xj ,xj′) = xTj xj′ and

(II) The Gaussian kernel: k(xj ,xj′) = exp(−‖xj − xj′‖2/γ),

where γ(> 0) is a scale parameter. In addition, we discuss a choice of γ in
Sect. 4. We examine the following kernels numerically.

(III) The polynomial kernel: k(xj ,xj′) = (ζ + xTj xj′)
r and

(IV) The Laplace kernel: k(xj ,xj′) = exp(−‖xj − xj′‖1/ξ),

where ζ ≥ 0, ξ > 0, r ∈ N and ‖ · ‖1 denotes the L1-norm.
We also investigate the soft-margin SVM in Sect. 6.
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2.2 Asymptotic properties of non-linear SVM

Let K be an N ×N gram matrix with the (j, j′) element k(xj ,xj′). First, we
assume the following assumption under the divergence condition (D):

(A-i) k(x1j ,x1j′) = κ1 + oP (∆) for all 1 ≤ j < j′ ≤ n1,

k(x1j ,x1j) = κ2 + oP (∆) for all 1 ≤ j ≤ n1,

k(x2j ,x2j′) = κ3 + oP (∆) for all 1 ≤ j < j′ ≤ n2,

k(x2j ,x2j) = κ4 + oP (∆) for all 1 ≤ j ≤ n2,

and k(x1j ,x2j′) = κ5 + oP (∆) for all 1 ≤ j ≤ n1 and 1 ≤ j′ ≤ n2,

where ∆ = κ1 + κ3 − 2κ5 and κls are variables (which may depend on d)
such that ∆ > 0, κ2 ≥ κ1 and κ4 ≥ κ3.

Note that (A-i) is regarded as a convergence condition for the gram matrix
and ∆ is a distance between the two populations. Also, note that κis are
characteristic variables for each kernel in high-dimensional settings. They are
naturally obtained by high-dimensional asymptotics. For example, ∆ = ‖µ1−
µ2‖2, κ1 = ‖µ1‖2, κ2 = ‖µ1‖2 + tr(Σ1), κ3 = ‖µ2‖2, κ4 = ‖µ2‖2 + tr(Σ2)
and κ5 = µT1 µ2 when k(·, ·) is the linear kernel. See Sect. 3.1. Also, see Sects.
3.2 and 7 for the Gaussian and polynomial kernels, respectively.

Let η1 = κ2−κ1 and η2 = κ4−κ3. We note that k(xij ,xij′) = k(xij′ ,xij)
for all j 6= j′ (i = 1, 2). Then, under (A-i), we write that

K/∆ ≈
(
κ1Jn1,n1 + η1In1 κ5Jn1,n2

κ5Jn2,n1 κ3Jn2,n2 + η2In2

)
/∆ (= K0/∆, say),

where Jn1,n2
denotes the n1 × n2 matrix with all the elements 1. Let ά =

(−α1, . . . ,−αn1
, αn1+1, . . . , αN )T . We note that

∑n1

j=1 αj =
∑N
j=n1+1 αj (=

α?, say) under (4). Then, it holds that

άTK0ά = ∆α2
? + η1

n1∑
j=1

α2
j + η2

N∑
j=n1+1

α2
j . (7)

The second and third terms in (7) are regarded as a bias part. See Proposition
1. We have that L(α) = 2α? − άTKά/2 under (4). Then, from (7) we claim
the following lemma.

Lemma 1 Under (4), (A-i) and (D), it holds that

L(α) = 2α? −
∆

2
α2
? −

1

2

(
η1

n1∑
j=1

α2
j + η2

N∑
j=n1+1

α2
j

)
+ oP (∆α2

?).

Note that

min
α
η1

n1∑
j=1

α2
j = α2

?η1/n1 and min
α
η2

N∑
j=n1+1

α2
j = α2

?η2/n2



6 Y. Nakayama et al.

when α1 = · · · = αn1 = α?/n1 and αn1+1 = · · · = αN = α?/n2 under (4). We
first consider the following condition under (D):

lim inf
d→∞

ηi
ni∆

> 0 for i = 1, 2. (8)

Let ∆∗ = ∆+η1/n1+η2/n2. Note that 2α?−∆∗α2
?/2 = −∆∗(α?−2/∆∗)

2/2+
2/∆∗. Then, in a way similar to Sect. 2 of Nakayama et al. (2017), it follows
from Lemma 1 that

max
α

L(α) = −∆∗
2

(
α? −

2 + oP (1)

∆∗

)2
{1 + oP (1)}+

2 + oP (1)

∆∗

under (4), (8), (A-i) and (D), so that α? ≈ 2/∆∗. Let α̂? =
∑n1

j=1 α̂j . Note

that
∑N
j=n1+1 α̂j = α̂?.

Proposition 1 Assume (A-i) and (8). It holds that

α̂? = (2/∆∗){1 + oP (1)},
n1∑
j=1

α̂2
j =

4

∆2
∗n1
{1 + oP (1)} and

N∑
j=n1+1

α̂2
j =

4

∆2
∗n2
{1 + oP (1)} (9)

under (D). We also assume

(A-i’) k(x0,xij) = κ2i−1 + oP (∆) for all 1 ≤ j ≤ ni and k(x0,xi′j) = κ5 +
oP (∆) for all 1 ≤ j ≤ ni′ when x0 ∈ Πi for i = 1, 2; i′ 6= i.

It holds that under (D)

ŷ(x0) =
∆

∆∗

(
(−1)i +

δ

∆
+ oP (1)

)
when x0 ∈ Πi for i = 1, 2, (10)

where δ = η1/n1 − η2/n2.

We note that “δ/∆” is a (normalized) bias term of the SVM. From Proposi-
tion 1, under (A-i) and (8), it holds that

∑n1

j=1(α̂j− α̂?/n1)2 = oP {(n1∆2
∗)
−1}

and
∑N
j=n1+1(α̂j − α̂?/n2)2 = oP {(n2∆2

∗)
−1}, so that

α̂j =
2

∆∗n1
{1 + oP (1)} for all j = 1, . . . , n1; and

α̂j =
2

∆∗n2
{1 + oP (1)} for all j = n1 + 1, . . . , N (11)

when d→∞ while N is fixed. It should be noted that all the data points are
support vectors under (A-i) and (8) in the HDLSS context. Ahn and Marron
(2010) called this phenomenon the “data piling”.

Next, we consider the following condition instead of (8) under (D):

ηi
ni∆

= o(1) for i = 1, 2. (12)
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It follows from Lemma 1 that

max
α

L(α) = −∆
2

(
α? −

2 + oP (1)

∆

)2
{1 + oP (1)}+

2 + oP (1)

∆
(13)

under (4), (12), (A-i) and (D), so that α? ≈ 2/∆.

Proposition 2 Assume (A-i) and (12). It holds that α̂? = (2/∆){1 + oP (1)}
under (D). Furthermore, we assume (A-i’). It holds that under (D)

ŷ(x0) = (−1)i + oP (1) when x0 ∈ Πi for i = 1, 2. (14)

It should be noted that the data piling does not occur under (12). How-
ever, ŷ(x0) has the consistency in the sense of (14). We consider the following
condition under (D):

(C-i) lim sup
d→∞

|δ|
∆

< 1.

Note that (C-i) is met under (12). From Proposition 1, “δ/∆” is a normalized
bias term of the SVM. From (10), if (C-i) is met, it holds that P{(−1)iŷ(x0) >
0} → 1 when x0 ∈ Πi under (A-i), (A-i’) and (D). Thus we have the following
result.

Theorem 1 Under (A-i), (A-i’), (C-i) and (D), the SVM (5) holds the con-
sistency (6).

However, without (C-i), we have the following results.

Corollary 1 Under (A-i), (A-i’) and (D), the SVM (5) holds the following
properties:

e(1) = 1 + o(1) and e(2) = o(1) as d→∞ (15)

if lim inf
d→∞

δ

∆
> 1, and

e(1) = o(1) and e(2) = 1 + o(1) as d→∞ (16)

if lim sup
d→∞

δ

∆
< −1.

Remark 1 For the linear SVM, Hall et al. (2005), Qiao and Zhang (2015)
and Nakayama et al. (2017) showed the consistency (6) and the results in
Corollary 1.

From Corollary 1, if |δ| is larger than ∆, the SVM would give a bad per-
formance. When ni/ni′ → 0 for some i (6= i′), |δ| tends to become large. Such
an imbalanced data is called the “extremely imbalanced data”. In such cases,
the SVM brings the strong inconsistency property as “e(1) = 1 + o(1)” when
η1 = η2, ∆/ηi = o(1) and n1 is fixed but n2 →∞. In order to overcome such
difficulties, we propose a bias-corrected SVM.
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2.3 Bias-corrected non-linear SVM

Let

η̂i =

ni∑
j=1

k(xij ,xij)

ni − 1
−

ni∑
j=1

ni∑
j′=1

k(xij ,xij′)

ni(ni − 1)
for i = 1, 2; and

∆̂∗ =

2∑
i=1

( ni∑
j=1

ni∑
j′=1

k(xij ,xij′)

n2i

)
− 2

n1∑
j=1

n2∑
j′=1

k(x1j ,x2j′)

n1n2
.

We consider estimating ∆ and δ as ∆̂ = ∆̂∗ − η̂1/n1 − η̂2/n2 and δ̂ = η̂1/n1 −
η̂2/n2. We have the following lemma.

Lemma 2 Under (A-i) and (D) it holds that

∆̂/∆ = 1 + oP (1) and δ̂/∆̂∗ = δ/∆∗ + oP
(
∆/∆∗

)
.

From Proposition 1 and Lemma 2, we give a bias-corrected SVM (BC-
SVM) as follows:

ŷBC(x0) = ŷ(x0)− δ̂

∆̂∗
. (17)

One classifies x0 into Π1 if ŷBC(x0) < 0 and into Π2 otherwise. We have the
following result.

Theorem 2 Under (A-i), (A-i’) and (D), the BC-SVM (17) holds the con-
sistency (6).

It should be noted that the BC-SVM (17) claims the consistency without
(C-i) even when |δ/∆| → ∞.

For imbalanced cases, Benjamin and Nathalie (2010) proposed the boost-
ing SVM. There are several studies on SVMs in imbalanced cases. See He and
Garcia (2009) for the review. However, it should be noted that they are al-
gorithmic methods. On the other hand, the BC-SVM (17) can theoretically
ensure the accuracy and have the consistency property at a low computational
cost even for extremely imbalanced data.

Remark 2 Nakayama et al. (2017) gave a bias-corrected linear SVM. In this
paper, we generalize the concept of the BC-SVM to non-linear kernels.

2.4 Performance of the BC-SVM

We set Πi : Nd(µi,Σi), i = 1, 2, having µ2 = 0, Σ1 = c1B(0.3|i−j|
1/3

)B

and Σ2 = c2B(0.4|i−j|
1/3

)B, where B = diag[{0.5 + 1/(d+ 1)}1/2, . . . , {0.5 +
d/(d+ 1)}1/2]. Note that tr(Σi) = cid for i = 1, 2. We considered

µ1 = (−1/5, 1/5,−1/5, . . . ,−1/5, 1/5)T (= µα, say),

where the r-element is (−1)r/5 for r = 1, . . . , d.
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First, we considered the linear SVM (LSVM) and the Gaussian kernel
SVM (GSVM). We compared the performance of the bias-corrected LSVM
(BC-LSVM) and bias-corrected GSVM (BC-GSVM) with the above ones. See
(18) and (19) for the BC-LSVM and BC-GSVM. We set (n1, n2) = (20, 10),
d = 2s, s = 5, . . . , 12, and γ = d/4 in the Gaussian kernel (II). We considered
three cases:

(a) µ1 = µα and (c1, c2) = (1, 1),
(b) µ1 = 0 and (c1, c2) = (0.9, 1.1), and
(c) µ1 = µα and (c1, c2) = (0.9, 1.1).

Note that ‖µ1 − µ2‖2 = d/25 for (a) and (c), ‖µ1 − µ2‖2 = 0 for (b),
|tr(Σ1) − tr(Σ2)| = 0 for (a), and |tr(Σ1) − tr(Σ2)| = 0.2d for (b) and (c).
We repeated 2000 times to confirm if the classifier does (or does not) classify
x0 ∈ Πi correctly and defined Pir = 0 (or 1) accordingly for each Πi (i = 1, 2).

We calculated the error rates, e(i) =
∑2000
r=1 Pir/2000, i = 1, 2. Also, we calcu-

lated the average error rate, e = {e(1)+e(2)}/2. Their standard deviations are
less than 0.0112 from the fact that Var{e(i)} = e(i){1− e(i)}/2000 ≤ 1/8000.
In Fig. 3, we plotted e(1), e(2) and e for d = 2s, s = 5, . . . , 12.

[Fig. 3 should be inserted here]

We observed that the BC-SVMs give good performances as d increases
for (a) and (c). However, for (b), the error rate of the BC-LSVM is close to
0.5 because ‖µ1 − µ2‖ = 0. On the other hand, the BC-GSVM gave good
performances as d increases by drawing information about heteroscedasticity
thorough the geometric representation as in Figs. 1 and 2. For the LSVM and
GSVM, e(1) and e(2) became quite unbalanced as d increases. In particular,
the strong inconsistency (16) occured for the GSVM. This is because of the
bias in the GSVM. We give their theoretical backgrounds in Sect. 3.2.

Next, we considered (a) to (c) for (n1, n2) = (20, 10), d = 1024 (= 210) and
γ = 2s, s = 5, . . . , 14 in (II). Similar to Fig. 3, we calculated the average error
rate e by 2000 replications and plotted the results in Fig. 4. We observed that
the BC-GSVM and GSVM are close to the BC-LSVM and LSVM, respectively,
as γ increases for (a) and (c). We give their theoretical backgrounds in Sect.
3.3. For (b) and (c), the BC-GSVM gave better performances than the other
SVMs for several settings of γ. We note that the performance of the BC-GSVM
(or GSVM) heavily depends on γ. We discuss a choice of γ in Sect. 4.

Finally, we compared the performance of the BC-SVM with SVM for ker-
nel functions (III) and (IV). We set (ζ, r) = (d, 2) in (III) and ξ = d/4 in (IV).
We considered (a) to (c) for (n1, n2) = (20, 10) and d = 2s, s = 5, . . . , 12.
Similar to Fig. 3, we calculated the average error rate e by 2000 replications
and plotted the results in Fig. 5. We observed that the BC-SVM with (III)
or (IV) gives good performances compared to the SVMs for (a) and (c). On
the other hand, for (b) the BC-SVM with (IV) gave good performances as
d increases. This is probably because the kernel function (IV) can draw in-
formation about heteroscedasticity via the difference of Σis. We investigated
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their performances in other high-dimensional settings as well. In most cases,
the BC-SVM with (III) or (IV) gave better performances than the SVMs. We
investigate asymptotic properties of the BC-SVM with (III) in Sect. 7.

[Figs. 4 and 5 should be inserted here]

3 Asymptotic properties by kernel functions

In this section, we investigate asymptotic properties of the non-linear SVM
brought by kernel functions. We assume that lim supd→∞ ‖µi‖2/d < ∞ and
tr(Σi)/d ∈ (0,∞) as d → ∞ for i = 1, 2. Here, for a function, f(·), “f(d) ∈
(0,∞) as d → ∞” implies lim infd→∞ f(d) > 0 and lim supd→∞ f(d) < ∞.
Similar to Bai and Saranadasa (1996) and Aoshima and Yata (2014), we as-
sume the following assumption for Πis as necessary:

(A-ii) Let zij , j = 1, . . . , ni, be i.i.d. random pi-vectors having E(zij) = 0 and
Var(zij) = Ipi for each i (= 1, 2) and some pi. Let zij = (zi1j , . . . , zipij)

T

whose components satisfy that lim supd→∞E(z4irj) <∞ for all r and

E(z2irjz
2
isj) = E(z2irj)E(z2isj) = 1 and E(zirjzisjzitjziuj) = 0

for all r 6= s, t, u. Then, the observations, xijs, from each Πi (i = 1, 2) are
given by xij = Γ izij +µi, j = 1, . . . , ni, where Γ i is a d× pi matrix such

that Γ iΓ
T
i = Σi.

Note that zirjs are i.i.d. as the standard normal distribution when the Πis

are Gaussian and Γ i = Σ
1/2
i . Thus, (A-ii) naturally holds when the Πis are

Gaussian. Another example satisfying (A-ii) is the case when the Πis have a
skew normal distribution. See Remark S4.1 in Aoshima and Yata (2018a) for
the details.

3.1 Linear kernel

We consider the linear SVM (LSVM), that is, the classifier (5) has the kernel
function (I). We set κ1 = ‖µ1‖2, κ2 = ‖µ1‖2 + tr(Σ1), κ3 = ‖µ2‖2, κ4 =
‖µ2‖2 + tr(Σ2) and κ5 = µT1 µ2, so that

∆ = ‖µ1 − µ2‖2 (= ∆(I), say) and ηi = tr(Σi) (= ηi(I), say) for i = 1, 2.

We note that the LSVM is invariant to linear transformations on the data
set. Thus, in Sect. 3.1, we assume µ2 = 0 without loss of generality, so that
κ3 = κ5 = 0, κ4 = η2(I) and ∆(I) = ‖µ1‖2. In addition, we assume the
following condition under (D):

(C-ii)
nitr(Σ

2
i )

∆2
(I)

= o(1) for i = 1, 2.
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Note that ∆2
(I)/tr(Σ

2
i ) = O(d) from the facts that lim supd→∞∆(I)/d < ∞,

tr(Σ2
i ) ≥ tr(Σi)

2/d and tr(Σi)/d ∈ (0,∞) as d→∞ for i = 1, 2. Thus, ni =
o(d) when (C-ii) is met. Under (1), (C-ii) holds when lim infd→∞∆(I)/d > 0
and nis are fixed. We have the following result.

Lemma 3 Assume (A-ii) and (C-ii). Then, the assumptions (A-i) and (A-i’)
are met for the kernel function (I).

By combining Lemma 3 with Theorem 1 and Corollary 1, we have the
following results.

Corollary 2 For the LSVM, one can claim that

(6) holds if lim sup
d→∞

|δ(I)|
∆(I)

< 1, (15) holds if lim inf
d→∞

δ(I)

∆(I)
> 1, and

(16) holds if lim sup
d→∞

δ(I)

∆(I)
< −1

under (A-ii), (C-ii) and (D), where δ(I) = η1(I)/n1 − η2(I)/n2.

Nakayama et al. (2017) gave the results of Corollary 2 under slightly differ-
ent conditions. They provided the following bias correction of the linear SVM:
Let ∆∗(I) = ∆(I) + η1(I)/n1 + η2(I)/n2. Estimate ∆∗(I) and δ(I) by

∆̂∗(I) = ‖x1n1 − x2n2‖2 and δ̂(I) = tr(S1n1)/n1 − tr(S2n2)/n2,

where xini
=
∑ni

j=1 xij/ni and Sini
=
∑ni

j=1(xij−xini
)(xij−xini

)T /(ni−1).

Note that E(∆̂∗(I)) = ∆∗(I) and E(δ̂(I)) = δ(I). Let ŷ(I)(x0) denote ŷ(x0)
given by using the kernel function (I). Then, Nakayama et al. (2017) gave the
bias-corrected linear SVM (BC-LSVM) as

ŷBC(I)(x0) = ŷ(I)(x0)− δ̂(I)/∆̂∗(I). (18)

One classifies x0 into Π1 if ŷBC(I)(x0) < 0 and into Π2 otherwise.

We note that ∆̂∗(I) and δ̂(I) are equivalent to ∆̂∗ and δ̂ when k(·, ·) is the
linear kernel. From Lemma 3 and Theorem 2, we have the following result.

Corollary 3 Under (A-ii), (C-ii) and (D), the BC-LSVM holds the consis-
tency (6).

The BC-LSVM has the consistency property without (C-i). Chan and Hall
(2009) considered a different bias correction for the LSVM. Nakayama et al.
(2017) compared the BC-LSVM with the LSVM both in numerical simulations
and actual data analyses. They concluded that the BC-LSVM gives adequate
performances for HDLSS data even when nis are quite unbalanced (i.e., ex-
tremely imbalanced data).
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3.2 Gaussian kernel

We consider the Gaussian kernel SVM (GSVM), that is, the classifier (5) has
the kernel function (II). We set κ1 = exp{−2tr(Σ1)/γ} (= κ1(II), say), κ3 =
exp{−2tr(Σ2)/γ} (= κ3(II), say), κ2 = κ4 = 1, and κ5 = exp[−{tr(Σ1) +
tr(Σ2) +∆(I)}/γ] (= κ5(II), say), so that

∆ =κ1(II) + κ3(II) − 2κ5(II) (= ∆(II), say) and

ηi =1− exp
(
−2tr(Σi)/γ

)
(= ηi(II), say) for i = 1, 2.

We note that ∆(II) > 0 when µ1 6= µ2 or tr(Σ1) 6= tr(Σ2). Let tr(Σmin) =
mini=1,2 tr(Σi) and ψ = exp{−2tr(Σmin)/γ}. We assume the following con-
dition under (D):

(C-iii)
nitr(Σ

2
i ) +∆(I)

{
nitr(Σ

2
i )
}1/2

min{γ2∆2
(II)/ψ

2, γ2}
= o(1) for i = 1, 2.

We note that (C-iii) is a convergence condition of the GSVM. Under (1), (C-iii)
holds when lim infd→∞∆(II) > 0, lim infd→∞ γ/d > 0 and nis are fixed. Note
that ψ → 1 and γ∆(II) = 2∆(I){1 + o(1)} as d→∞ under d2/(γ∆(I)) = o(1)
as d→∞ from the fact that “d2/(γ∆(I)) = o(1)” implies “d/γ = o(1)”. Thus,
(C-iii) holds under (C-ii) and d2/(γ∆(I)) = o(1). See Sect. 3.3 for the relation
between the kernels (I) and (II). We have the following result.

Lemma 4 Assume (A-ii) and (C-iii). Then, the assumptions (A-i) and (A-i’)
are met for the kernel function (II).

By combining Lemma 4 with Theorem 1 and Corollary 1, we have the
following results.

Corollary 4 For the GSVM, one can claim that

(6) holds if lim sup
d→∞

|δ(II)|
∆(II)

< 1, (15) holds if lim inf
d→∞

δ(II)

∆(II)
> 1, and

(16) holds if lim sup
d→∞

δ(II)

∆(II)
< −1

under (A-ii), (C-iii) and (D), where δ(II) = η1(II)/n1 − η2(II)/n2.

We denote η̂i (i = 1, 2) and ∆̂∗ for the kernel function (II) by η̂i(II) and

∆̂∗(II). Here, η̂i and ∆̂∗ are defined in Sect. 2.3. Let∆∗(II) = ∆(II)+η1(II)/n1+

η2(II)/n2 and δ̂(II) = η̂1(II)/n1 − η̂2(II)/n2. Let ŷ(II)(x0) denote ŷ(x0) given
by using the kernel function (II). Then, we give the bias-corrected GSVM
(BC-GSVM) as

ŷBC(II)(x0) = ŷ(II)(x0)− δ̂(II)/∆̂∗(II). (19)

One classifies x0 into Π1 if ŷBC(II)(x0) < 0 and into Π2 otherwise. From
Theorem 2 and Lemma 4, we have the following result.
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Corollary 5 Under (A-ii), (C-iii) and (D), the BC-GSVM holds the consis-
tency (6).

The BC-GSVM has the consistency property without (C-i).
Now, we consider the following condition:

γ/d ∈ (0,∞) as d→∞. (20)

Let

∆Σ = |tr(Σ1)− tr(Σ2)|, θ1 = exp(−∆(I)/γ) and θ2 = exp(−∆Σ/γ).

Note that ∆(I) = O(d) and

∆(II)/ψ = (1− θ2)2 + 2θ2(1− θ1). (21)

If one assumes that
lim inf
d→∞

∆Σ/d > 0,

it follows that lim infd→∞∆(II) > 0 under (20), so that (C-iii) holds as d→∞
while N is fixed under (1) and (20). Thus, the BC-GSVM has the consistency
(6) even when µ1 = µ2. On the other hand, the BC-LSVM (or the LSVM)
does not hold the consistency property when µ1 = µ2. We emphasize that the
BC-GSVM (or the GSVM) draws information about heteroscedasticity via the
difference of tr(Σi)s. The accuracy becomes higher as the difference grows. See
Fig. 3.

3.3 Relation between the linear kernel and Gaussian kernel

We consider the following conditions for γ > 0:

(C-iv)
d2

γ∆(I)
→ 0 as d→∞, and (C-v)

∆(I) +∆2
Σ/∆(I)

γ
→ 0 as d→∞.

Note that (C-iv) implies (C-v). By noting that ψ → 1 as d→∞ under (C-iv),
it holds from (21) that under (C-iv)

γ∆(II) = 2∆(I){1 + o(1)}. (22)

Thus, the GSVM becomes close to the LSVM under (C-iv). In fact, we have
the following result.

Proposition 3 Under (A-ii), (C-ii), (C-iv) and (D), it holds that

ŷ(II)(x0) = ŷ(I)(x0){1 + oP (1)} when x0 ∈ Πi for i = 1, 2.

Hence, the GSVM is asymptotically equivalent to the LSVM when γ sat-
isfies (C-iv). On the other hand, it holds from (21) that under (C-v)

γ∆(II) = 2ψ∆(I){1 + o(1)}. (23)
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Proposition 4 Under (A-ii), (C-ii), (C-v) and (D), it holds that( ∆(I)

∆∗(I)

∆∗(II)

∆(II)

)
ŷBC(II)(x0) = ŷBC(I)(x0){1 + oP (1)}

when x0 ∈ Πi for i = 1, 2.

Hence, the BC-GSVM is asymptotically equivalent to the BC-LSVM when
γ satisfies (C-v).

4 How to choose γ in the Gaussian kernel

In this section, we discuss a choice of γ in the Gaussian kernel function (II).

4.1 Behaviours of ∆(II) for several settings of γ

We consider the following two conditions for ∆(I) and ∆Σ :

∆Σ/∆(I) → 0 as d→∞, and (24)

lim inf
d→∞

∆Σ/∆(I) > 0. (25)

We first consider ∆(II) under (24). From (21) it holds that ∆(II)/ψ =
1 + exp(−2∆Σ/γ) + o(1) under lim infd→∞∆Σ /γ > 0 and (24), so that the
BC-GSVM (or GSVM) loses information about ∆(I). Thus, we do not consider
the case when lim infd→∞∆Σ/γ > 0 under (24). Under (24) we consider the
following conditions for γ, ∆(I) and ∆Σ :

∆Σ/γ → 0 as d→∞, and (26)

∆(I)/γ → 0 as d→∞. (27)

From (21) it holds that under (24) and (26)

γ∆(II)/ψ = 2γ{1− exp(−∆(I)/γ)}{1 + o(1)}.

On the other hand, it holds from (23) that under (24) and (27)

γ∆(II)/ψ = 2∆(I){1 + o(1)}

because (C-v) holds under (24) and (27). From Proposition 4 we note that
the BC-LSVM is asymptotically equivalent to the BC-GSVM under (24) and
(27). Also, note that γ{1− exp(−∆(I)/γ)} ≤ ∆(I) for any γ > 0. Then, from
the convergence condition (C-iii), when (24) is met, we recommend to use the
BC-LSVM or the BC-GSVM with γ satisfying (27).

Next, we consider ∆(II) under (25). From (21) it holds that under (25) and
(26)

γ∆(II)/ψ = 2∆(I) + o(∆Σ).
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When (25) is met, the BC-GSVM (or GSVM) with γ satisfying (26) loses
information about heteroscedasticity via the difference of tr(Σi)s. Thus, we
do not consider the case when ∆Σ/γ = o(1) as d→∞ under (25). Under (25),
we consider the following conditions for γ and ∆Σ :

∆Σ/γ →∞ as d→∞, or (28)

∆Σ/γ ∈ (0,∞) as d→∞. (29)

It holds that under (25) and (28)

γ∆(II)/(ψ∆Σ) = (γ/∆Σ){1 + o(1)} = o(1).

Also, it holds that under (25) and (29)

lim inf
d→∞

γ∆(II)/(ψ∆Σ) > 0.

Hence, from the convergence condition (C-iii), when (25) is met, we recommend
to use the BC-GSVM with γ satisfying (29).

4.2 Choice of γ in the GSVM

In this section, we give a choice of γ in the GSVM. From Sect. 4.1, we recom-
mend to use the BC-GSVM with γ satisfying

(i) the condition (27) when (24) is met, and
(ii) the condition (29) when (25) is met.

For the dual form (3), from Lemma 1, under (4) and several conditions, it

holds that άTKά = ∆α2
?{1 + oP (1)}+ η1

∑n1

j=1 α
2
j + η2

∑N
j=n1+1 α

2
j , so that

άTKά

α2
?∆

− 1−
η1
∑n1

j=1 α
2
j + η2

∑N
j=n1+1 α

2
j

α2
?∆

(= Loss(γ), say). (30)

We emphasize that the accuracy of the BC-SVM (or SVM) heavily depends
on the convergence rate of Loss(γ) because the bias in ŷ(x0) converges to δ
in Proposition 1. See Lemma 1 in Sect. 2. Thus, for the Gaussian kernel (II),
we consider such γ as to have a higher convergence rate of Loss(γ). From
Proposition 1 and (47) to (52) in Sect. 8, we can evaluate that under several
conditions

Loss(γ) =
1

γ∆(II)

(n1(n1 − 1)κ1(II)

n21
+
n2(n2 − 1)κ3(II)

n22
+ 2κ5(II)

)
×OP (ε)

=
κ1(II) + κ3(II) + 2κ5(II)

γ∆(II)
×OP (ε),

where ε = maxi=1,2[tr(Σ2
i ) + ∆(I){tr(Σ2

i )}1/2]1/2. Thus from (30), one may
consider γ as

γ0 = argmin
γ>0

κ1(II) + κ3(II) + 2κ5(II)

γ∆(II)
. (31)

When (24) is met, we have the following result.
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Proposition 5 Under (24) it holds that ∆(I)/γ0 → 0 as d→∞.

Hence, when (24) is met, the BC-GSVM with γ0 is asymptotically equiva-
lent to the BC-LSVM because (C-v) is met under (24) and (27). See Proposi-
tion 4.

Next, we consider the case when

lim sup
d→∞

∆(I)/∆Σ ≤ 1. (32)

Proposition 6 Under (32) it holds that ∆Σ/γ0 ∈ (0,∞) as d→∞.

Finally, we consider the case when

lim inf
d→∞

∆(I)/∆Σ ≥ 1 and lim sup
d→∞

∆(I)/∆Σ <∞. (33)

Since it is very difficult to evaluate γ0 under (33), we investigate the behavior of
γ0 numerically. Let γ? = γ/∆Σ and ω = ∆(I)/∆Σ . By noting that ∆(II)/ψ =
1 + θ22 − 2θ1θ2 and (κ1(II) + κ3(II) + 2κ5(II))/ψ = 1 + θ22 + 2θ1θ2, it holds that

∆Σ

κ1(II) + κ3(II) + 2κ5(II)

γ∆(II)
=
∆Σ

γ

(
1 +

4θ1θ2
1 + θ22 − 2θ1θ2

)
(34)

=
1

γ?

(
1 +

4 exp
{
− (ω + 1)/γ?

}
1 + exp(−2/γ?)− 2 exp

{
− (ω + 1)/γ?

}) (
= F (γ?), say

)
.

Thus, we consider the following minimization:

γ0? = argmin
γ?>0

F (γ?).

Note that γ0 = ∆Σγ0?. Hence, (31) depends only on ω. We plotted γ0? and
γ0?/(ω

3/3) for ω = 1, . . . , 100 in Fig. 6.

[Fig. 6 should be inserted here]

We observed that γ0? behaves around ω3/3. One may conclude that γ0? =
O(ω3), so that from Proposition 6 it holds that ∆Σ/γ0 = 1/γ0? ∈ (0,∞) as
d→∞ when (25) is met.

In conclusion, we recommend to use the BC-GSVM with γ0. From (34) we
estimate γ0 as

γ̂0 = argmin
γ>0

γ−1{1 + 4θ̂1θ̂2/(1 + θ̂22 − 2θ̂1θ̂2)}, (35)

where θ̂1 = exp(−∆̂∗(I)/γ) and θ̂2 = exp(−∆̂Σ/γ) with ∆̂Σ = |tr(S1n1
) −

tr(S2n2
)|. See Sect. 5 for the performance of the BC-SVM with γ̂0.

Remark 3 We note that E(∆̂(I)) = ∆(I), where ∆̂(I) = ∆̂∗(I)−tr(S1n1
)/n1−

tr(S2n2)/n2. However, it does not hold P (∆̂(I) ≥ 0) = 1. Thus we use ∆̂∗(I)
in (35) since P (∆̂∗(I) ≥ 0) = 1.
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Remark 4 Note that E(∆̂∗(I)) = ∆∗(I), and Var(∆̂(I)) = O[
∑2
i=1{tr(Σ

2
i )/n

2
i+

∆(I)tr(Σ
2
i )

1/2/ni}] and Var{tr(Sini
)} = O{tr(Σ2

i )/ni} under (A-ii). Thus, if

tr(Σi)/(ni∆(I)) = o(1) and tr(Σ2
i )/(ni∆

2
Σ) = o(1) as d,N →∞ for i = 1, 2,

it holds that ∆̂∗(I) = ∆(I){1 + oP (1)} and ∆̂Σ = ∆Σ{1 + oP (1)} as d,N →∞
since tr(Σ2

i ) ≤ tr(Σi)
2, so that γ̂0 becomes close to γ0 in (31).

5 Performance of the BC-SVM

In this section, we check the performance of the BC-SVM both in numerical
simulations and actual data analyses.

5.1 Simulations

For the settings (a) to (c) in Sect. 2.4, we first checked the performance of the
BC-GSVM with γ̂0. Similar to Sect. 2.4, we calculated the error rates, e(1),
e(2) and e, of the BC-GSVM and the GSVM with γ = γ̂0 by 2000 replications
and plotted the results in Fig. 7. We laid e(1), e(2) and e for the BC-LSVM
and the LSVM by borrowing them from Fig. 3. In the rth replication, we
evaluated γ̂0r by (35) and calculated γ0 =

∑2000
r=1 γ̂0r/2000. In Fig. 8, we plotted

∆(I)/γ0, ∆(I)/γ0, ∆Σ/γ0 and ∆Σ/γ0 for (a) to (c). As expected theoretically,
we observed that the BC-GSVM with γ̂0 is asymptotically equivalent to the
BC-LSVM for (a). See Sect. 4.2. On the other hand, γ̂0 did not become close
to γ0 for (b) and (c). However, one may conclude that ∆Σ/γ0 <∞ as d→∞.
The BC-GSVM draws information about heteroscedasticity via the difference
of tr(Σi)s. See Sect. 4.1. This is the reason why the BC-GSVM with γ̂0 gave
adequate performances for (b) and (c).

Next, we compared the performance of the BC-SVMs with the SVMs in

non-Gaussian and imbalanced settings. We set µ2 = 0, Σ1 = 1.3B(0.3|i−j|
1/3

)B

and Σ2 = 0.7B(0.4|i−j|
1/3

)B. Let d∗ = 2dd1/2/2e, where dxe denotes the
smallest integer ≥ x. We set µ2 = (1, . . . , 1, 0, . . . , 0,−1, . . . ,−1)T whose first
d∗/2 elements are 1 and last d∗/2 elements are −1. Note that ∆(I) = d∗ ≈ d1/2,

so that (C-ii) does not hold. We generated xij −µi (= Σ
1/2
i (zi1j , . . . , zidj)

T ),
j = 1, 2, . . . (i = 1, 2) independently from zirj = (yirj − 1)/21/2 (r = 1, . . . , d)
in which yirjs are i.i.d. as the chi-squared distribution with 1 degree of free-
dom. Note that (A-ii) holds. We considered two cases for d = 2s, s = 5, . . . , 12:

(d) (n1, n2) = (5, 5 log2 d) and (e) (n1, n2) = (100, 5).

For the BC-LSVM, LSVM, BC-GSVM with γ = γ̂0 and GSVM with γ = γ̂0,
similar to Sect. 2.4, we calculated the error rates by 2000 replications and
plotted the results in Fig. 9. We observed that the BC-SVMs give adequate
performances even when ni/ni′ → 0 for some i (6= i′).

Throughout the simulations, γ̂0 by (35) was a preferable choice. We rec-
ommend to use a cross-validation procedure for γ around γ̂0. See Sect. 5.2.
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[Figs. 7, 8 and 9 should be inserted here]

5.2 Examples: Microarray data sets

In this section, we analyze gene expression data sets by using the BC-SVMs
and SVMs. We summarized the information on the data sets together with
∆̂Σ/∆̂(I) in Table 1, where ∆̂(I) and ∆̂Σ are given in Sect. 4.2.

We randomly split the data sets from (Π1, Π2) into training data sets of
sizes (n1, n2) and test data sets of sizes (m1−n1,m2−n2). We constructed the
BC-SVM and SVM by using the training data sets. We checked accuracy by
using the test data set for each Πi and denoted the misclassification rates by
ê(1)r and ê(2)r. We repeated this procedure 100 times and obtained ê(1)r and
ê(2)r, r = 1, . . . , 100, for the BC-LSVM, LSVM, BC-GSVM and GSVM. For
the BC-GSVM and GSVM, we used the average of the parameters selected
by 5-fold cross-validation among γ = (2s − 1)γ̂0 (s = 1, . . . , 5) with γ̂0 given
by (35). We used the BC-GSVM and GSVM with γ̂0 (without applying the
cross-validation) for Breast cancer because mis are quite small for the dataset.

We calculated the average misclassification rates, e(1) (=
∑100
r=1 ê(1)r/100),

e(2) (=
∑100
r=1 ê(2)r/100) and e (= {e(1) + e(2)}/2) for the SVMs and BC-

SVMs in various combinations of (n1, n2) in Table 2.
We observed that the BC-SVMs give adequate performances compared

to the SVMs especially when n1 and n2 are unbalanced. See Sects. 3.1 and
3.2 for theoretical reasons. On the other hand, the BC-GSVM gave adequate
performances compared to the BC-SVM for HGG and Breast cancer data sets.
This is because ∆̂Σ/∆̂(I) is large for those data sets, so that the BC-GSVM
can draw information about heteroscedasticity via the difference of tr(Σi)s.

[Tables 1 and 2 should be inserted here]

6 Appendix A: Soft-margin SVM

In Sects. 2 to 5, we discussed asymptotic properties and the performance of the
hard-margin SVMs (hmSVM). In this section, we consider soft-margin SVMs
(smSVM). The smSVM is given by ŷ(x) after replacing (4) with

0 ≤ αj ≤ C, j = 1, . . . , N, and

N∑
j=1

αjtj = 0, (36)

where C(> 0) is a regularization parameter. Let nmin = min{n1, n2}. From
(11) in Sect. 2, we can asymptotically claim that α̂j ≤ 2/(∆∗nmin) for all j.
Thus we consider the following condition for C:

lim inf
d→∞

C∆∗nmin

2
> 1. (37)
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Let ŷ(S)(x0) and ŷBC(S)(x0) denote ŷ(x0) and ŷBC(x0) after replacing (4)
with (36), respectively. Then, we have the following result.

Proposition 7 Assume (A-i), (A-i’) and (8). Under (37) it holds that when
x0 ∈ Πi for i = 1, 2

ŷ(S)(x0) =
∆

∆∗

(
(−1)i +

δ

∆
+ oP (1)

)
and ŷBC(S)(x0) =

∆

∆∗
{(−1)i + oP (1)}.

From Proposition 7, the bias-corrected smSVM (BC-smSVM) holds the
consistency (6) even when |δ/∆| → ∞. Hence, for smSVMs, we recommend to
use the BC-smSVM.

For the settings (a) to (c) in Sect. 2.4, we checked the performance of
the BC-smSVM and smSVM together with the hmSVM and bias-corrected
hmSVM (BC-hmSVM) for the kernel function (II). We set (n1, n2) = (20, 10),
d = 1024 (= 210) and γ = d/4. We set C = 2−5+t/(nmin∆∗), t = 1, . . . , 10, for
the smSVMs. Similar to Fig. 3, we calculated e by 2000 replications and plotted
the results in Fig. 10. We observed that smSVMs give bad performances when
C < 2/(nmin∆∗). As expected, the smSVMs are close to the hmSVMs when
C > 2/(nmin∆∗).

[Fig. 10 should be inserted here]

7 Appendix B: Polynomial kernel SVM

In this section, we consider the polynomial kernel SVM, that is, the classifier
(5) has the kernel function (III). We give some asymptotic properties of the
polynomial kernel SVM. We consider the following conditions for ζ and r:

ζ/d ∈ (0,∞) and r ∈ (0,∞) as d→∞. (38)

We set κ1 = (ζ + ‖µ1‖2)r, κ2 = (ζ + tr(Σ1) + ‖µ1‖2)r, κ3 = (ζ + ‖µ2‖2)r,
κ4 = (ζ+tr(Σ2)+‖µ2‖2)r and κ5 = (ζ+µT1 µ2)r. Then, we have the following
result

Proposition 8 Assume (1), (38) and (A-ii). Assume that N is fixed and

lim inf
d→∞

∣∣∣ ‖µ1‖2 − ‖µ2‖2

d

∣∣∣ > 0. (39)

Then, the assumptions (A-i) and (A-i’) are met for the polynomial kernel
(III). Furthermore, the BC-SVM (17) with the polynomial kernel (III) holds
the consistency (6).

See Fig. 5 for the performance of the BC-SVM with the polynomial kernel
(III).

Remark 5 For the Laplace kernel (IV), it is difficult to provide asymptotic
properties of the kernel SVM unless Πis are Gaussian. Detailed study of the
BC-SVM with the Laplace kernel is left to a future work.
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8 Appendix C: Proofs

8.1 Proof of Lemma 1

Note that L(α) =
∑N
j=1 αj − ά

TKά/2. The result is obtained from (7)
straightforwardly. ut

8.2 Proofs of Proposition 1 and Proposition 2

We assume (A-i) and (A-i’). From Lemma 1 it holds that under (8) and (D)

η1

n1∑
j=1

α̂2
j/α̂

2
? = η1/n1+oP (∆) and η2

N∑
j=n1+1

α̂2
j/α̂

2
? = η2/n2+oP (∆), (40)

so that L(α̂) = 2α̂? −∆∗α̂2
?{1 + oP (∆/∆∗)}/2. Then, it holds that

α̂? = (2/∆∗){1 + oP (∆/∆∗)}. (41)

Also, from (40) we have (9) under (8).
Next, we consider the second result of Proposition 1. Let Ŝ1 = {j|α̂j 6=

0, j = 1, . . . , n1}, Ŝ2 = {j|α̂j 6= 0, j = n1 + 1, . . . , N}, n̂1 = #Ŝ1 and

n̂2 = #Ŝ2. Then, we have that when x0 ∈ Πi for i = 1, 2,

N∑
j=1

α̂jtjk(x0,xj) +
1

NŜ

∑
j∈Ŝ

(
tj −

∑
j′∈Ŝ

α̂j′tj′k(xj ,xj′)
)

= (−1)iα̂?(κ2i−1 − κ5) +
n̂2 − n̂1
NŜ

− α̂?
(−κ1n̂1 − η1 + κ3n̂2 + η2 + (n̂1 − n̂2)κ5

NŜ

)
+ oP (∆α̂?)

= (−1)iα̂?(κ2i−1 − κ5) +
(n̂2 − n̂1)(1− α̂?∆∗/2)

NŜ
+
α̂?(κ1 − κ3)

2

+ α̂?
η1/n1 − η2/n2

2
+ α̂?

η1(1− n̂1/n1)− η2(1− n̂2/n2)

NŜ
+ oP (∆α̂?). (42)

Here, we note that η1
∑n1

j=1 α̂
2
j/α̂

2
? ≥ η1/n̂1. Thus from (40) it holds that

n̂1(η1/n̂1 − η1/n1) = η1(1− n̂1/n1) = oP (n̂1∆) (43)

under (8). Similarly, we have η2(1− n̂2/n2) = oP (n̂2∆) under (8). Then, from
(41) and (42), we have that when x0 ∈ Πi for i = 1, 2,

ŷ(x0) = 2(−1)i
κ2i−1 − κ5

∆∗
+
κ1 − κ3
∆∗

+
η1/n1 − η2/n2

∆∗
+ oP

( ∆
∆∗

)
= (−1)i∆/∆∗ + δ/∆∗ + oP (∆/∆∗) (44)
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under (8). Hence, we conclude the second result of Proposition 1.
Finally, we consider the proof of Proposition 2. In view of (13), we claim

the first result. By noting that ∆∗/∆ → 1 and δ/∆ = o(1) under (12) and
(D), it holds from (42) that ŷ(x0) = (−1)i + oP (1) under (12) and (D). We
conclude the second result. ut

8.3 Proofs of Theorem 1 and Corollary 1

We assume (A-i) and (A-i’). We consider the following conditions under (D):

lim inf
d→∞

η2/(n2∆) > 0 and η1/(n1∆) = o(1). (45)

Let ∆∗2 = ∆+ η2/n2. Note that η1
∑n1

j=1 α̂
2
j/α̂

2
? = oP (∆) under (45). Similar

to (41), it holds from (42) and (43) that α̂? = (2/∆∗2){1 + oP (∆/∆∗2)} and

ŷ(x0) = (−1)i∆/∆∗2 + δ/∆∗2 + oP (∆/∆∗2) (46)

under (45) when x0 ∈ Πi for i = 1, 2. Note that ∆∗/∆ → 1 and δ/∆∗ → 0
under (12) and ∆∗/∆∗2 → 1 under (45). From Propositions 1, 2 and (46), we
obtain (44) under (D) without (8). Thus, from (44), we conclude the results
of Theorem 1 and Corollary 1. ut

8.4 Proofs of Lemma 2 and Theorem 2

Under (A-i) and (D), it holds that ∆̂∗ = ∆∗ + oP (∆) and η̂i = ηi + oP (∆)
for i = 1, 2. Thus we can conclude the result of Lemma 2. From the proofs of
Theorem 1 and Corollary 1, we obtain (44) under (A-i) and (D). By combining
(44) with Lemma 2, we conclude the result of Theorem 2. ut

8.5 Proofs of Lemma 3, Corollaries 2 and 3

We assume (A-ii) and (C-ii). Assume also µ2 = 0 without loss of generality.
Note that κ1 = ‖µ1‖2, κ2 = ‖µ1‖2 + tr(Σ1), κ3 = κ5 = 0, κ4 = η2(I) and
∆(I) = ‖µ1‖2. Also, note that

µT1Σiµ1 ≤ ∆(I)λmax(Σi) ≤ ∆(I)tr(Σ
2
i )

1/2. (47)

Then, by using Chebyshev’s inequality, for any τ > 0 we have that

n1∑
j=1

P (|µT1 (x1j − µ1)| ≥ τ∆(I)) ≤ n1(τ∆(I))
−4E[{µT1 (x1j − µ1)}4]

= O
{
n1

(
(µT1Σiµ1)2 +

p1∑
r=1

(γTr µ1)4
)
/∆4

(I)

}
= O(n1tr(Σ2

i )/∆
2
(I))→ 0 (48)
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from the fact that
∑p1
r=1(γTr µ1)4 ≤ (µT1Σiµ1)2, where Γ 1 = [γ1, ...,γp1 ]. On

the other hand, we have that

ni∑
j<j′

P (|(xij − µi)T (xij′ − µi)| ≥ τ∆(I))

≤
ni∑
j<j′

(τ∆(I))
−4E[{(x1j − µ1)T (x1j′ − µ1)}4] = O

(
n2i tr(Σ

2
i )

2/∆4
(I)

)
→ 0.

(49)

Note that xT1jx1j′ − κ1 = (x1j −µ1)T (x1j′ −µ1) +µT1 (x1j −µ1 +x1j′ −µ1).
Thus, from (48) and (49), it holds that

xT1jx1j′ = κ1 + oP (∆(I)) for all j < j′ ≤ n1. (50)

Note that

n1∑
j=1

n2∑
j′=1

P (|(x1j − µ1)T (x2j′ − µ2)| ≥ τ∆(I))

= O
(
n1n2{tr(Σ1Σ2)}2 + tr(Σ1Σ2Σ1Σ2)}/∆4

(I)

)
→ 0 (51)

from the fact that tr(Σ1Σ2Σ1Σ2) ≤ {tr(Σ1Σ2)}2. Then, similar to (50), we
have that

xT2jx2j′ = κ3 + oP (∆(I)) for all j < j′ ≤ n2,
xT1jx2j′ = κ5 + oP (∆(I)) for all j = 1, ..., n1; j′ = 1, ..., n2,

xT0 xij = κ2i−1 + oP (∆(I)) for all 1 ≤ j ≤ ni, i = 1, 2, when x0 ∈ Πi

and xT0 xi′j = κ5 + oP (∆(I)) for all 1 ≤ j ≤ ni, i = 1, 2 (i′ 6= i) when x0 ∈ Πi.

In addition, for any τ > 0 we have that

ni∑
j=1

P
(∣∣‖xij − µi‖2 − tr(Σi)

∣∣ ≥ τ∆(I)

)
= O

(
nitr(Σ

2
i )/∆

2
(I)

)
→ 0 (52)

for i = 1, 2. Thus, from (48) and (52), it holds that for all j = 1, ..., ni; i = 1, 2

xTijxij = κ2i + oP (∆(I)).

It concludes Lemma 3.

For the proofs of Corollaries 2 and 3, from Theorems 1, 2 and Corollary 1,
we conclude the results. ut
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8.6 Proofs of Lemma 4, Corollaries 4 and 5

We assume (A-ii). Let Ω = min{γ∆(II) /ψ, γ}. Similar to (48), for any τ > 0,
we have that under (C-iii) and (D)

ni∑
j=1

P (|(µ1 − µ2)T (xij − µi)| ≥ τΩ)→ 0

for i = 1, 2, so that (µ1−µ2)T (xij−µi) = oP (Ω) for all j = 1, ..., ni; i = 1, 2.
Similarly, ‖xij − µi‖2 = tr(Σi) + oP (Ω) for all j = 1, ..., ni; i = 1, 2, and
(x1j − µ1)T (x2j′ − µ2) = oP (Ω) for all j = 1, ..., n1; j′ = 1, ..., n2. Then,
under (C-iii), we have that for all j = 1, ..., n1; j′ = 1, ..., n2

exp(−‖x1j − x2j′‖2/γ) = exp(−‖(x1j − µ1)− (x2j′ − µ2) + µ1 − µ2‖2/γ)

= κ5(II) + oP (κ5(II)Ω/γ) = κ5(II) + oP (∆(II)) (53)

from the fact that κ5(II) ≤ ψ. Similar to (53), we can conclude that the
assumptions (A-i) and (A-i’) are met. It concludes Lemma 4.

For the proofs of Corollaries 4 and 5, from Theorems 1, 2 and Corollary 1,
we conclude the results. ut

8.7 Proofs of Propositions 3 and 4

From (23), (C-iii) holds under (C-ii) and (C-v). Thus, from (44) and Lemmas
2 to 4, we conclude Proposition 4. For the proof of Proposition 3, we note that
tr(Σi)/γ → 0 for i = 1, 2, under (C-iv) from the fact that ∆(I) = O(d). Thus
it holds that ψ → 1 and γηi(II) = 2tr(Σi)+O(d2/γ) for i = 1, 2, under (C-iv).
In addition, from (22) it holds that δ(II)/∆(II) = δ(I){1 + o(1)}/∆(I) + o(1)
under (C-iv). Thus from (44), Lemmas 3 and 4, we conclude Proposition 3. ut

8.8 Proof of Proposition 5

We assume (24). Note that 1/ω → 0 under (24). First, we consider the case
when lim supd→∞ γ? < ∞. Then, it holds that F (γ?) = {1 + o(1)}/γ?, so
that lim infd→∞ F (γ?) > 0. Next, we consider the case when γ? → ∞. Let
ν = ω/γ? (> 0). Note that ν = ∆(I)/γ. Then, it holds that

ωF (γ?) = ν +
2ν exp(−ν){1 + o(ν)}
{1− exp(−ν)}+ o(ν)

.

Let g(ν) = ν + 2ν exp(−ν)/{1− exp(−ν)}. Note that g(ν) is a monotonically
increasing function and g(ν)→ 2 as ν → 0, so that F (γ?) = 2{1 + o(1)}/ω =
o(1) when ν → 0. We can conclude the result. ut
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8.9 Proof of Proposition 6

When ω ≤ 1, it holds that F (γ?) = 2{1+o(1)}/ω under γ? →∞. When ω ≤ 1
and γ? = 1, it holds that

F (γ?) = 1 +
4

exp(ω + 1) + exp(ω − 1)− 2
< 1 + 1/ω ≤ 2/ω

from the facts that exp(ω + 1) > 1 + (ω + 1) + (ω + 1)2/2 ≥ 2 + 3ω and
exp(ω− 1) ≥ ω. Hence, when ω ≤ 1, we have that ∆Σ/γ0 ∈ (0,∞) as d→∞.
It concludes the result. ut

8.10 Proof of Proposition 7

From Proposition 1, Lemma 2 and (11), we can conclude the results. ut

8.11 Proof of Proposition 8

We set that κ1 = (ζ+‖µ1‖2)r, κ2 = (ζ+tr(Σ1)+‖µ1‖2)r, κ3 = (ζ+‖µ2‖2)r,
κ4 = (ζ + tr(Σ2) + ‖µ2‖2)r and κ5 = (ζ + µT1 µ2)r. From (1) we note that
µTi Σi′µi ≤ ‖µi‖2λmax(Σi) = o(d2) as d→∞ for i, i′ = 1, 2. Then, similar to
(50) to (52), for the polynomial kernel, we have that xTijxij′ = ‖µi‖2 + oP (d)

for all j < j′, i = 1, 2, xTijxij = tr(Σi) + ‖µi‖2 + oP (d) for all i, j, and

xT1jx2j′ = µT1 µ2 + oP (d) for all j, j′, so that k(xij ,xij′) = κ2i−1 + oP (dr) for
all j < j′, i = 1, 2, k(xij ,xij) = κ2i + oP (dr) for all i, j, and k(x1j ,x2j′) =
κ5 + oP (dr) for all j, j′. Here, note that

(ζ+‖µ1‖2)r+(ζ+‖µ2‖2)r−2(ζ+µT1 µ2)r ≥ {(ζ+‖µ1‖2)r/2−(ζ+‖µ2‖2)r/2}2

from the fact that (ζ + µT1 µ2)r ≤ (ζ + ‖µ1‖2)r/2(ζ + ‖µ2‖2)r/2. Then, it
holds that lim infd→∞∆/dr > 0 from (39). Thus, we have (A-i). Similarly,
we can conclude (A-i’). From Theorem 2, the BC-SVM (17) holds (6) for the
polynomial kernel. It concludes Proposition 8. ut
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Fig. 1 The histograms of ‖x0 − µi‖/d1/2 for x0 ∈ Πi, i = 1, 2, when d = 16, 80, 400 and
2000.

Fig. 2 The geometric representation of expanding two spheres having different radii,
tr(Σi)

1/2s.



Bias-corrected SVM in High-Dimension, Low-Sample-Size Settings 27

Fig. 3 The error rates of the BC-LSVM, LSVM, BC-GSVM and GSVM for (a) to (c). The
left panels display e(1), the middle panels display e(2) and the right panels display e for
d = 2s, s = 5, . . . , 12. For the LSVM and GSVM, e(2) was too high to describe.

(a) µ1 6= µ2, tr(Σ1) = tr(Σ2) (b) µ1 = µ2, tr(Σ1) 6= tr(Σ2) (c) µ1 6= µ2, tr(Σ1) 6= tr(Σ2)

Fig. 4 The average error rate, e, of the BC-GSVM and GSVM for (a) to (c) when d = 1024
and γ = 2s, s = 5, . . . , 14. The average error rates of the BC-LSVM and LSVM are described
by the lines.

Table 1 Microarray data sets and ∆̂Σ/∆̂(I).

Data set Number of genes Sample size
∆̂Σ

∆̂(I)

d m1 m2

Colon cancer by Alon et al. (1999) 2000 40 22 0.03
Leukemia by Golub et al. (1999) 7129 25 47 0.093
DLBCL by Shipp et al. (2002) 7129 58 19 0.668

HGG by Nutt et al. (2003) 12625 28 22 2.66
Breast cancer by Chang et al. (2003) 12625 14 10 0.78
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(a) µ1 6= µ2, tr(Σ1) = tr(Σ2) (b) µ1 = µ2, tr(Σ1) 6= tr(Σ2) (c) µ1 6= µ2, tr(Σ1) 6= tr(Σ2)

Fig. 5 The average error rates of the BC-SVM and SVM for (III) and (IV) in cases of (a)
to (c), where (ζ, r) = (d, 2) in (III) and ξ = d/4 in (IV). The panels display the error rates
for d = 2s, s = 5, . . . , 12.

Fig. 6 The left panel displays log γ0? and the right panel displays γ0?/(ω3/3) for ω =
1, ..., 100.
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Fig. 7 The error rates of the BC-LSVM, LSVM, BC-GSVM with γ = γ̂0 and GSVM with
γ = γ̂0 for (a) to (c). The left panels display e(1), the middle panels display e(2) and the
right panels display e for d = 2s, s = 5, . . . , 12. For the LSVM and GSVM, e(2) was too
high to describe. Their standard deviations are less than 0.0112.

(a) µ1 6= µ2, tr(Σ1) = tr(Σ2) (b) µ1 = µ2, tr(Σ1) 6= tr(Σ2) (c) µ1 6= µ2, tr(Σ1) 6= tr(Σ2)

Fig. 8 Behaviors of ∆(I)/γ0, ∆(I)/γ0, ∆Σ/γ0 and ∆Σ/γ0 for (a) to (c).
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Fig. 9 The error rates of the BC-LSVM, LSVM, BC-GSVM with γ = γ̂0 and GSVM with
γ = γ̂0 for (d) and (e). The left panels display e(1), the middle panels display e(2) and the
right panels display e for d = 2s, s = 5, . . . , 12. Their standard deviations are less than
0.0112.

(a) µ1 6= µ2, tr(Σ1) = tr(Σ2) (b) µ1 = µ2, tr(Σ1) 6= tr(Σ2) (c) µ1 6= µ2, tr(Σ1) 6= tr(Σ2)

Fig. 10 The average error rate, e, of the BC-smSVM, smSVM, BC-hmSVM and hmSVM
with (II) for (a) to (c) when d = 1024 and C = 2−5+t/(nmin∆∗), t = 1, . . . , 10. The average
error rates of the BC-smSVM and smSVM are described by the dashed lines and the average
error rates of the BC-hmSVM and hmSVM are described by the solid lines.
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Table 2 The average error rate e for five microarray data sets in Table 1.

Data set (n1, n2) BC-GSVM GSVM BC-LSVM LSVM
Colon cancer (10, 10) 0.157 0.158 0.163 0.159

(20, 10) 0.148 0.166 0.159 0.173
(30, 10) 0.135 0.172 0.178 0.213
(10, 15) 0.149 0.15 0.17 0.17
(20, 15) 0.131 0.142 0.154 0.157
(30, 15) 0.133 0.133 0.159 0.181

Leukemia (5, 10) 0.055 0.071 0.06 0.08
(10, 10) 0.041 0.04 0.04 0.041
(20, 10) 0.035 0.041 0.039 0.05
(5, 20) 0.049 0.099 0.049 0.102
(10, 20) 0.037 0.033 0.035 0.041
(20, 20) 0.03 0.029 0.037 0.037

DLBCL (10, 5) 0.082 0.096 0.079 0.079
(30, 5) 0.072 0.096 0.055 0.115
(50, 5) 0.099 0.137 0.069 0.147
(10, 15) 0.042 0.052 0.045 0.054
(30, 15) 0.028 0.027 0.021 0.021
(50, 15) 0.019 0.025 0.017 0.019

HGG (5, 10) 0.282 0.333 0.304 0.316
(10, 10) 0.269 0.277 0.28 0.286
(20, 10) 0.231 0.29 0.288 0.292
(5, 15) 0.279 0.476 0.313 0.344
(10, 15) 0.246 0.387 0.281 0.281
(20, 15) 0.246 0.262 0.268 0.267

Breast cancer (3, 3) 0.226 0.236 0.245 0.239
(6, 3) 0.202 0.264 0.228 0.243
(9, 3) 0.182 0.369 0.234 0.253
(3, 5) 0.218 0.277 0.257 0.276
(6, 5) 0.168 0.176 0.226 0.225
(9, 5) 0.149 0.217 0.211 0.206


