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Given a finite-dimensional complex Lie algebra with invariant form (g, ⟨, ⟩), the corresponding affine Lie
algebra g is a central extension of the loop algebra

g
[
z, z−1]

= g ⊗ C
[
z, z−1]

by a one-dimensional center Ck. It is familiar [E. Frenkel and D. Ben-Zvi, Vertex algebras and algebraic
curves. Providence, RI: American Mathematical Society (AMS) (2004; Zbl 1106.17035)] that, for each
K ∈ C, the vacuum module

VK(ĝ) = Indĝ

ĝ+CK

where
ĝ+ = g [z] ⊕ Ck ⊂ ĝ

and CK denotes its one-dimensional representation on which the first summand acts trivially and k acts
by K, is of the structure of a vertex algebra and can be realized geometrically on a smooth complex curve
X [A. Beilinson and V. Drinfeld, Chiral algebras. Providence, RI: American Mathematical Society (2004;
Zbl 1138.17300)], and tied closely to the geometry of the moduli space BunG(X) of principal G-bundles
on X.
More generally, for a commutative C-algebra R, one can construct the Lie algebra gR = g ⊗C R and its
universal central extension ĝR. The case R = C

[
z, z−1]

corresponds to the affine Kac-Moody algebra,
while ĝR is known as the (n + 1)-toroidal algebra in case of R = C

[
z±1, z±1

1 , . . . , z±1
n

]
. The principal

objective in this paper is to show that, for R = A
[
z, z−1]

with a commutative C-algebra A, one can
associate to ĝR a vertex algebra analogous to V (ĝR) which has a geometric realization. Connections
between toroidal algebras and vertex algebras have been explored in [S. Berman et al., Contemp. Math.
297, 1–26 (2002; Zbl 1018.17017); S. Eswara Rao and R. V. Moody, Commun. Math. Phys. 159, No. 2,
239–264 (1994; Zbl 0808.17018); H. Li et al., J. Algebra 365, 50–82 (2012; Zbl 1345.17019); R. V. Moody
et al., Geom. Dedicata 35, No. 1–3, 283–307 (1990; Zbl 0704.17011)].
It is observed in this paper that Theorem (Theorem 2.9 and Proposition 2.10). When R = A[z, z−1],
V (ĝR) has the structure of a vertex algebra. Furthermore, this structure is functorial in A.
This paper is largely devoted to giving a geometric realization of V (ĝR) in the language of factorization
algebras [K. Costello and O. Gwilliam, Factorization algebras in quantum field theory. Volume 1. Cam-
bridge: Cambridge University Press (2016; Zbl 1377.81004); Volume 2. Cambridge: Cambridge University
Press (2021; Zbl 07376333)], where it was shown that there is a close relationship between a certain class
of prefactorization algebras on C and vertex algebras. The following theorem of Gostello and Gwilliam
plays a central role in this paper.
Theorem (Zbl 1377.81004, Theorem 5.3.3). Let F be a unital S1-equivariant holomorphically translation
invariant prefactorization algebra on C abiding by certain natural conditions. Then the vector space

V (F) =
⊕
t∈Z

H∗(F (l)(C))

has the structure of a vertex algebra, where F (l)(C) denotes the l-th eigenspace of in F(C).
The authors begin with two pieces of data to construct prefactorization algebras.
• A locally trivial holomorphic fibration π : E → X of complex manifolds with fiber F .
• A Lie algebra with invariant bilinear form (g, ⟨, ⟩).

When F is a smooth affine complex variety with a trivial fibration E = X × F , we obtain a chain of
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inclusions of factorization enveloping algebras

Galg
g,π ⊂ Gg,π ⊂ Fg,π

corresponding to the inclusion of sheaves of dg Lie algebras

(g ⊗ H0(F, Oalg
F ) ⊗ Ω0,∗

X , ∂) ⊂ (g ⊗ Γ(F, Ω0,∗
F ) ⊗ Ω0,∗

X , ∂) ⊂ gπ

which extends to the central extensions, where denotes the sheaf of algebraic functions.
The principal result in this paper is
Theorem (Theorem 5.2). Let F be a smooth affine variety, and π : C × F → C the trivial fibration with
fiber F . Then
1. The toroidal prefactorization algebra Galg

g,π abides by the hypothesis of the above theorem of Gostello
and Gwilliam.

2. The vertex algebra V (Galg
g,π) is isomorphic to the toroidal vertex algebra V (ĝR), with

R = H0(F, Oalg
F )

[
t, t−1]

The proof of the above theorem breaks down into two major steps.
1. It is verified that the various technical hypothesis of the above theorem of Gostello and Gwilliam
are satisfied.

2. The second step is a somewhat lengthy direct calculation after the approach taken in [B. Williams,
Lett. Math. Phys. 107, No. 12, 2189–2237 (2017; Zbl 06814928)] for the Virasoro factorization
algebra and in [Zbl 1377.81004, §5.5.5] for the affine factorization algebra.
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