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While many ideas from differential geometry have been generalized to tangent categories [J. R. B. Cockett
and G. S. H. Cruttwell, Theory Appl. Categ. 32, 835–888 (2017; Zbl 1374.18016); Cah. Topol. Géom.
Différ. Catég. 59, No. 1, 10–92 (2018; Zbl 1419.18016); G. S. H. Cruttwell and R. B. B. Lucyshyn-Wright,
J. Homotopy Relat. Struct. 13, No. 4, 867–925 (2018; Zbl 1405.18017)], one can not turn vector fields
into flows in an arbitrary tangent category. Nonetheless, it is possible to characterize the structure which
enables such solutions, which this paper aims.
The central idea is that of a curve object allowing unique solutions of ordinary differential equations.
Its definition (Definition 4.1) resembles that of a (parametrized) natural number object, and possesses a
similarly powerful universal property leading to a rich theory. Just as a natural number object acquires
a commutative monoid structure, so too does a curve object (Theorem 4.19). However, there is a crucial
difference between curve objects and natural number objects. On the one hand, natural number objects
are initial so that every system has a unique solution. On the other hand, curve objects are preinitial so
that solutions are unique, but need not exist.
A synopsis of the paper consisting of six sections goes as follows.
• §2 focuses on vector fields and dynamical systems in a tangent category. It is shown (Proposition
2.18) that a vector field in the tangent category of vector fields is a pair of commuting vector fields.

• §3 defines what it means to give a solution in a dynamical system, developing some initial results
regarding such solutions.

• §4 defines the notion of a curve object, establishing many of the key results. When a tangent category
has a curve object, one can show that many standard results from differential geometry hold. There
is a bijection between complete vector fields and flows (Theorem 4.24). There is a correspondence
between commuting vector fields and commuting flows (Theorem 4.33), whose proof is structural in
sharp constrast with the calculated proof in differential geometry. The sum of commuting complete
vector fields is complete (Proposition 4.37).

• §5 investigates the consequences of combining differential and curve object structure in the presence
of linear completeness. It is established that a differential curve object is a differential exponential
rig which has a bilinear action on every differential object and differential bundle in the tangent
category.

• §1 is an introduction, and §6 is concerned with conclusions and future results.
Reviewer: Hirokazu Nishimura (Tsukuba)
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