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Growth and Shape of Transportation Networks
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Normally, network-style infrastructure is built up slowly over time. The shapes that networks form are thought
to be related to the performance of networks during this process. Using reduced travel time as an evaluation
criterion, this study examines road and rail transportation networks to determine the differences in growth patterns
that are caused by various factors, including network speed, urban population distribution, and network shape.
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1. Introduction
Transportation networks have undergone rapid techno-

logical changes. However, the growth patterns of the trans-
portation networks vary widely from one city to another.
For example, Japan’s bullet train (Shinkansen) network
forms a tree structure, while the Japanese subway train net-
work usually forms a grid structure. Similarly, the growth
patterns of transportation networks in Tokyo and London
are also quite different. These differences can be attributed
to many different factors, such as network performance due
to technological innovation, urban population distribution,
and the shape of cities.

This study focuses on these types of transportation net-
work growth patterns. In addition to simulating different
growth patterns due to transportation network speed and
population distribution, and observing the resultant network
features, this study will determine the mechanism that can
be used to describe these differences. As well, optimum
network performance and amount of maintenance, taking
into account the trade-off between network speed and con-
struction cost, will be considered.

Batty and Xie (1997) simulated the areal expansion of a
city and the linear development of a network using cellu-
lar automata (CA), which is a type of discrete model. They
constructed a model of city growth generated by random
numbers, in which cells are selected at random from neigh-
boring cells, taking into account the hierarchical level of
the network. It was found that the denser the network is,
the higher its hierarchical level. They suggested that the
growth of a transportation network can be evaluated using
local indicators. However, for trunk networks in particu-
lar, which form the axis that shape the skeleton of national
and city-wide networks, it is important to construct net-
works based on evaluation indicators that measure overall
efficiency, rather than on simply improving local indicators.

Urban network is designed not only by considering lo-
cal accessibility but also mobility in the whole area. Net-
work design models allow us to investigate what type of
network is superior when we are taking overall accessibility

into account. Magnanti and Wong (1984), Minoux (1989)
and Ahuja et al. (1993) provide many references on network
design including applications. However network design in
the real world transportation network is unsolvable because
of its size. One of the possible alternatives is to consider
evolution of network in which the optimal adding interval of
transportation network is determined one by one. Hirayama
et al. (2001) proposed a model for extending networks that
minimize inconvenience. This method was able to capture
the shape features of the growth process. However, they did
not discuss the possibility of obtaining diverse shapes due
to differences in initial conditions. Given these findings,
this study will examine transportation networks that are de-
signed to minimize mean required travel time as a whole to
clarify the features of the shapes and the effects of networks.

Our model is advantageous in the sense that (1) network
growth process, which is not determined by neighboring
status but by the optimality of the whole region, is realized,
and (2) configuration of the city and transportation demand
distribution are easily controllable.

2. Transportation Network Growth Model
2.1 The ideal city

In this study, an ideal city was used as the model accord-
ing to Watanabe (2008).

The ideal city is defined as a total of 169 demand points
(points of access and egress on a high-speed transportation
network), which are represented on a 13 × 13 square grid.
The transportation demand between an arbitrary pair of de-
mand points is proportional to the population at each of the
two demand points.

A general link is already constructed enabling straight-
line travel between any two points, making it possible to
travel in a straight line between any two points at speed 1.
The number of general links is 312.

A section that connects grid points vertically or horizon-
tally is considered as a single high-speed link. A high-speed
link enables travel in c units of time (0 ≤ c ≤ 1), where
the time is normalized based on the time required using the
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Fig. 1. Speed and shape of network growth with high-speed links.

main link. The number of high-speed links, l, varies from 1
to 312.

The travel route between demand points is either the
route using only the general links, or the route via high-
speed links, whichever results in the shortest travel time.

The shape of real cities is not regular, as implied by the
above conditions. However, the aim of this study is to de-
termine the fundamental characteristics of such a network.
Thus, a simplified network in an ideal square city was used.

2.2 Rules of network construction order
In the ideal city, only a single high-speed link was created

at a time. Assume that the high-speed links are constructed
in order, one by one, and define the “period” as the length
of time required to construct a single such link.

The “mean travel time” is defined as the mean travel
time between all demand points. To determine the order
of construction, a sequential optimum construction method,
whereby high-speed links that minimize the value of mean
demand time in each “period” are successively constructed,
was used. Many transportation networks are, to a certain ex-
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Fig. 2. Mean travel time reduction process.
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Fig. 3. Reduction rate, r312.

tent, constructed according to broad-ranging scheme, based
on a prescribed plan. However, in this study, it was assumed
that the transportation network is constructed one by one
without any overarching plan.
2.3 Evaluation indicators

In addition to illustrating the construction order and
shapes in relation to the transportation network growth pat-
terns defined by the above rules, in order to clarify their fea-
tures, three quantitative indicators were created to evaluate
growth pattern processes.

The first indicator is the rate of reduction in mean travel
time. If the mean travel time at demand point i during the
time in which l high-speed links are constructed (l periods)
is til , the mean travel time for the whole network can be
expressed by the following expression.

Tl =
169∑

i=1

til/169. (1)

Furthermore, the rate of reduction, rl , in mean travel time

when l high-speed links have been constructed (after l pe-
riods) relative to the mean travel time when there are no
high-speed links (0 periods) is determined by

rl = 1 − Tl/T0. (2)

The second indicator is the number of closed paths, p.
When the number of high-speed links in the growing trans-
portation network is e, and the number of demand points
connected by these high-speed links is v, then the number of
closed paths formed by high-speed links can be expressed
as

p = e − v + 1. (3)

The closed path capacity utilization factor, α, can be cal-
culated as the number of closed paths divided by the max-
imum number of closed paths, as shown below (Okudaira,
1976; Honda, 2005).

α = e − v + 1

2v − 5
. (4)
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Fig. 4. Number of closed paths.
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Fig. 5. Indicator π .

The third indicator is the π indicator. This indicates the
degree to which the graph of the transportation network
resembles a circle. It is defined as

π = l

d
(5)

where l is the number of links that equals to the overall
length of the transportation network, and d is the diameter
of the graph, that is, the required time between the two de-
mand points that are furthest apart (Okudaira, 1976). Obvi-
ously π becomes one when the network is a chain of links.
As the network is densely constructed with keeping its cir-
cular shape, π gets larger. However, if the network extends
to a particular direction, π becomes small. If the lengths of
networks are same, then the larger π means that the shape
of the network resembles a circle.

These three indicators can be used to determine the char-
acteristics of the network.

3. Transportation Network Growth Patterns
3.1 Speed and growth patterns of high-speed links

In the first case, it was assumed that the population is the
same at each demand point. Based on this assumption, the
speed of the high-speed links, c, was varied from 0 to 1 in
increments of 0.1 to determine the shape of the network as
a function of l. Figure 1 shows the results.

Networks where the speed is high (i.e., c is low) show a
tendency to try to expand outward from the center of the
city, with repeated branching. As a result, the network
shape has essentially a radial form: the higher the speed
of the links, the fewer the number of loops present. The
network had a tendency at high speeds to extend rapidly
to every corner of its periphery. On the other hand, net-
works where the speed is slow (i.e., c is high) are shaped
like regular grids. Once the grid-shaped routes that form
the trunk lines are created, the network has a tendency to
grow in a manner such that the grids are further subdivided
into smaller grids. Generally, the lower the speed of the
links, the smaller the size of the grid and the lower the ef-
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Fig. 6. Various virtual city shapes (gray square: non-residential area, black dot: demand point).
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Fig. 7. Various population density shapes (orage square: high-density area, orange dot: demand point (high density), black dot: demand point (low
density)).

Table 1. Population density at the demand points.

Shape High density area Low density area Total population

Population/node # node Population/node # node

Normal — — 13 312 4176

BeltC 100 39 1 276 4176

BeltW 100 39 1 276 4176

SquareC 430 9 1 303 4176

SquareSW 430 9 1 303 4176

fectiveness in reducing the mean travel time, even as the
network grows by branching. Thus, growth by construc-
tion of shorter length routes from the center of the region is
preferable to growth by branching.

Figure 2 illustrates the process of mean travel time re-
duction as a function of speed. For slow networks, having a
speed of greater than 0.7, the reduction in mean travel time
remains very small as high-speed links grow. In contrast,
for fast networks, having a speed of less than 0.7, there is a
large reduction in mean travel time as the number of high-
speed links increases. Figure 3 shows that, for a reduction
rate when l = 312, r312, there is a linear improvement in the
reduction rate for c ≤ 0.7, while when c ≥ 0.7, the reduc-
tion in mean travel time is small compared to when there
are no high-speed links.

As well, the main features of the network shape, which
are seen in Fig. 1, are confirmed using the number of closed
paths and the indicator π . Figure 4 shows the number of
closed paths. The number of closed paths for networks of
high speed is small, and most of the networks with high-
speed links have a tree structure, due to branching. On the
other hand, the number of closed paths in networks of low
speed is high, and a regular structure that includes closed
paths can be seen. Given the above, the network can be
expected to be useful between two distant points when the
speed is fast. When the speed is slow, the effectiveness of
each high-speed link in reducing mean travel time is low,
so that the influence of the high-speed links occurs only in

the vicinity of where the links are constructed. In addition,
the indicator π in Fig. 5 reveals that, although the values
vary according to the growth process, in general, networks
of lower speed grow in a shape that is closest to round.

Similar trends can be observed in real networks. For
example, most high-sped train networks, such as the
Shinkansen and the TGV, have no closed paths and grow by
means of branching. On the other hand, subway networks
in cities are usually composed of numerous routes that in-
tersect one another. The differences in patterns due to the
speed in network growth models reflect the features of real
transportation networks.
3.2 Growth patterns due to differences in population

distribution
The shapes of real cities vary, and their populations are

not evenly distributed. The shapes of transportation net-
works and the order of their construction naturally change,
due to changes in population distribution. Thus, the effect
of population distribution on the growth of the network was
considered.

The first case considered a non-square city, where parts of
the city are uninhabitable due to the presence of rivers, bays,
lakes, and mountains. As shown in Fig. 6, the ideal cities
were created using five types of shapes, including: River,
Bay, Bay2, Lake, and Lake2. For each type, the growth of
the transportation networks was examined. It was assumed
that areas that are shaded in gray in Fig. 6 are uninhabitable,
with zero traffic demand. We assume that general links exist
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Fig. 8. Shapes of network growth for different city shapes (upper: c = 0.2, lower: c = 0.8).
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Fig. 9. Number of closed paths.
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Fig. 10. Indicator π .

even in uninhabitable areas. So we can go through on the
general links and also construct the high-speed links. The
value of the speed ratio, c, was 0.2 for high-speed networks
and 0.8 for low-speed networks.

As well, not only the shape of the city, but also the pop-
ulation density was considered. The population distribu-
tion was modeled using the following four types, which are
shown in Fig. 7: BeltC, BeltW, SquareC, and SquareSW.
It was assumed that the population density is higher at the
demand points of the high-density areas than at other areas,
as shown in Table 1. However, the total population of the
city stayed constant in each of the runs.
3.3 Impact of the shapes of ideal cities on network

growth
Figure 8 shows the network growth process as a function

of the shape of the cities. Calculations were performed for
two cases: c = 0.2 and c = 0.8.

It can be seen that the network shapes are different than
those in the case of uniform population. However, the
same basic features can be seen, such as the tendency of

high-speed network links to grow by branching in a radial
pattern, and the tendency of slow-speed network links to
grow in one direction in a grid pattern.

It is interesting to consider whether a high-speed link can
be created on vacant land. In a high-speed network, bridge
links, which connect demand points, are not constructed on
vacant land. On the other hand, in low-speed networks,
many bridge links are constructed on vacant land. This is
because in high-speed networks, one link alone is sufficient
to serve the need for high-speed linking, even without con-
structing a bridge, as long as one route connects the de-
mands points, even if it is a detour. On the other hand, in
low-speed networks, there is insufficient time reduction for
each link constructed. This leads to the construction of nu-
merous routes to connect the demand points. This result
can be applied to the construction planning of bridges over
rivers and straits, roads crossing bays, and tunnels passing
through mountain areas.

Figure 9 shows the effect of the number of closed roads
on the shape of the city, while Fig. 10, shows the effect
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Fig. 11. The effect of population density on the shape of network growth (upper: c = 0.2, lower: c = 0.8).
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Fig. 13. Difference in mean travel time between high-density and low-density areas.

of the π indicator on the shape of the city. Both of the
figures show that the smaller the number of closed paths,
the greater the tendency for the network to adopt a tree
structure, while the lower the network speed, the greater
the number of closed paths, and the paths are more circular.
For the low network speed case, the results are similar to
the uniform population case.
3.4 Impact of population density on network growth

Figure 11 shows the growth process of the network for
different population density patterns. As shown in Fig. 8,
the calculation was performed for two cases: c = 0.2 and
c = 0.8.

In every case, network growth starts from the high-
density area. However, depending on the speed of the high-
speed links, networks have different growth patterns after
this period. That is, in the case of high-speed links, there is
a tendency to give priority to links extending to low-density
areas. On the other hand, in the case of low-speed links,
the growth pattern develops such that links first sufficiently

cover high-density areas before starting to extend to low-
density areas. It should be noted that high-speed transporta-
tion prioritizes regional areas, while low-speed transporta-
tion prioritizes cities. In SquareC and SquareSW, a low-
speed network grows by extending towards the east, west,
south, and north directions, centered on the high-density ar-
eas. Networks are first constructed in cities, which have
a high population density. Low-speed networks grow by
branching out from high-density areas. These patterns are
evident in the railway networks and road networks of real
cities.

Figure 12 shows how mean travel time is reduced, and
Fig. 13 shows the difference in the reduction process be-
tween high-density areas and low-density areas. In the case
of SquareC, where the population is overly concentrated
in one area, mean travel time is extremely short. This is
because many people are living in the central area where
moving is advantageous. If Belt and Normal cases are com-
pared, in the initial stage, Normal, which has a uniform pop-
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Fig. 14. Number of closed paths.
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Fig. 15. Indicator π .
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Table 2. Calculation results and indicator values for each case (l = 156).

Case Shape c t r Node p α d π

C Normal 0.0 0.140 97.9 157 0 0.00 31 5.03

0.1 1.190 82.4 156 1 0.00 24 6.50

0.2 2.112 68.8 155 2 0.01 24 6.50

0.3 2.929 56.7 148 9 0.03 23 6.78

0.4 3.756 44.4 145 12 0.04 24 6.50

0.5 4.553 32.6 141 16 0.06 24 6.50

0.6 5.346 20.9 137 20 0.07 24 6.50

0.7 6.112 9.6 129 28 0.11 20 7.80

0.8 6.446 4.6 121 36 0.15 20 7.80

0.9 6.652 1.6 132 25 0.10 19 8.21

VC River 0.2 2.061 71.4 133 24 0.09 24 6.50

0.8 6.827 5.3 129 28 0.11 24 6.50

Bay 0.2 2.091 70.3 145 12 0.04 29 5.38

0.8 6.691 5.0 129 28 0.11 24 6.50

Bay2 0.2 2.225 70.8 111 46 0.21 32 4.88

0.8 7.174 6.0 127 30 0.12 24 6.50

Lake 0.2 2.054 73.3 133 24 0.09 24 6.50

0.8 7.274 5.3 135 22 0.08 23 6.78

2Lakes 0.2 1.991 71.1 149 8 0.03 24 6.50

0.8 6.562 4.6 124 33 0.14 20 7.80

PP BeltC 0.2 1.859 71.1 157 0 0.00 24 6.50

0.8 6.115 5.0 133 24 0.09 20 7.80

BeltW 0.2 2.076 72.1 152 5 0.02 24 6.50

0.8 7.043 5.3 135 22 0.08 28 5.57

SquareC 0.2 1.478 71.3 153 4 0.01 24 6.50

0.8 4.919 4.5 124 33 0.14 20 7.80

SqurareSW 0.2 2.193 72.9 154 3 0.01 32 4.88

0.8 7.654 5.5 132 25 0.10 30 5.20

ulation, has the lower mean travel time for the entire city.
However, as the transportation network grows, Belt leads
to a lower mean travel time. This means that the higher the
population density, the greater the improvement in transport
infrastructure. On the other hand, areas of lower population
do not benefit substantially from reduced travel time due to
transportation network growth.

Figures 14 and 15 show the changes in the number of
closed paths and the indicator π . In the case of high popula-
tion density, the lower the speed of the networks, the higher
the number of closed paths, the higher the value of π , and
the more circular the shape of the network. Comparing net-
work shapes, it can be noted that, in the cases of BeltW and
SquareSW, where high-density areas are located outside the
cities, both the number of closed paths and the value of π

are low. One explanation for this is that, since population is
unbalanced, network growth patterns are also unbalanced.

Table 2 shows a list of calculation results for this section.

4. Trade-off between Speed and Cost
The construction of a road network or rail network is ex-

tremely expensive. As shown in Tables 3 and 4, the real
costs of high-speed networks are generally more expensive
than that of low-speed networks. Monorails and new transit
systems, which are usually constructed in crowded urban-

ized areas, are relatively expensive comparing with bullet
trains because of higher land price or complicated struc-
tures. If there is a fixed budget to construct railways, the
following options are available: constructing a high-speed,
short distance network or a low-speed, long distance net-
work. Both options present trade-offs. Thus, this section
will examine the relationship between construction cost and
the speed of a transportation network. This will lead to the
determination of the appropriate speed for the transporta-
tion network.

First, the number of possible networks that can be con-
structed given the construction costs is considered. As Ta-
ble 3 shows, the relationship between cost and speed is
based on an average speed for expressways and national
highways of 76.7 km/h and 32.8 km/h, with construction
costs totaling 6.37 billion yen and 2.99 billion yen, respec-
tively. Taking an average, it can be seen that a road with
a speed of 1.17 km/h will cost 0.1 billion yen. By divid-
ing this value by the speed, the number of networks per 0.1
billion yen can be determined. Table 5 summarizes the re-
lationship between the speed and number of networks that
can be constructed. The mean travel times for networks
that could be constructed at a certain cost were compared,
as construction costs increased. In this way, a combination
of the desirable speed and shape that results in the mini-
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Table 3. Road construction costs (source: Road Bureau, Ministry of Land, Infrastructure, Transport and Tourism (2006)).

Average velocity (km/h) Cost (million yen/km)

Expressway 76.7 0.64

National highway 32.8 0.30

Prefecture highway 30.8 0.11

Table 4. Railway construction costs (source: Municipal Transportation Works Association (2008)).

Average velocity (km/h) Cost (million yen/km)

Bullet train 220 0.70

LRT 60–120 0.15–0.25

Tram 60–70 0.10–0.20

New transit system 50–60 0.70–1.20

Monorail 65–80 1.00–1.90

Subway 80–100 2.50–3.50

Guideway bus 60 0.30–0.40

Table 5. Construction cost by speed.

c 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Velocity 10.00 5.00 3.33 2.50 2.00 1.67 1.43 1.25 1.11

Link/cost 0.12 0.23 0.35 0.47 0.59 0.70 0.82 0.94 1.05

t
c c c = 0.6 c c c c c c

c c c c c c c c c

c c c c c c c c c

c c c c c c c c c

c c c c c c c c c

c c c c c c c c c

21 38 55 72 89 106 123 141 158 cost
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Fig. 17. Total cost as a function of desirable speed and shape.

mum mean travel time can be determined. Furthermore, by
using a base unit for the number of networks that can be
constructed, changes in the available budget can be easily
taken into consideration to determine the desirable combi-
nation of speed and the number of networks.

Figure 16 shows the relationship between total cost and

mean travel time of transportation networks by speed. The
lower the mean travel time, the more desirable networks
are. It can be seen that, in the initial stage, a network of
c = 0.3 reduces required travel time significantly. Links
slower than this cannot reduce the required time, even if
constructed over longer distance networks. Furthermore, it
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can be seen that networks cannot be effective unless they
can provide transportation at a certain speed. After this, as
construction costs increase, the network with the minimum
required travel time is the faster network of c = 0.2. This is
because, as the number of links increases, the effectiveness
of the network at speed c = 0.3 in reducing travel time
reaches a limiting value. Also, the length of the network
at speed c = 0.2 grows sufficiently to fully demonstrate
its usefulness. Based on these results, it can be concluded
that networks need a certain length in order to display their
effectiveness. Since only a small number of networks of
speed c = 0.1, the highest speed, can be constructed due
to the high construction costs, mean travel time cannot be
minimized.

Figure 17 shows the relationship between total cost and
a combination of desirable speed and shape. The lower
figures indicate networks having lower mean travel time.
Since high-speed links are selected, there are no closed
paths in the desirable network for any of the cost values,
and the network grows with a tree structure. It can be seen
that that given the current cost conditions, it is desirable to
have networks with no closed paths and with a tree structure
of high speed.

5. Conclusions
In this study, different models were constructed to de-

scribe the growth of transportation networks. Based on
the network speed and population distribution, the growth
processes and shapes of transportation networks were ex-
amined. Furthermore, the trade-offs between construction
costs and travel speed were considered.

First, using the transportation network growth models,
it was shown that the shape of networks depends on the
speed of high-speed links. High-speed networks tend to
grow by means of repeated branching from a central trunk.
On the other hand, low-speed networks tend to grow in
the shape of a grid, with straight lines overlapping each
other, without branching. The effect of speed differences on
growth patterns can be illustrated by the contrasting features
of the Shinkansen network, which has a tree structure, with
urban subway networks, which have many closed paths.

Second, it was demonstrated that different city shapes
form different network shapes. When the speed of a trunk
line link is high, bridge links that connect demand points
sandwiched between vacant lands are hardly ever con-
structed. However, when the speed of a trunk line link is
low, bridge links are more likely to be constructed.

Third, it was found that when the population is concen-
trated in one area, a significant reduction in mean travel time

is achieved with only a small number of links. On the other
hand, the gap in mean travel time between high-density ar-
eas and low-density areas gets larger in such situations. A
more detailed examination is required to determine whether
it is better for the long-term growth of the network to pri-
oritize overall efficiency for the city or to prioritize equity
between different areas.

Fourth, it was shown that, taking into consideration the
trade-offs between speed and construction costs, a desirable
network speed and shape are primarily constrained by cost.

The growth of networks changes the convenience and ac-
cessibility of places, and even changes the geographical dis-
tribution of human activities. In the future, it is expected
that transportation network growth models will give consid-
eration to factors such as the location of facilities and traffic
demand variations, as well as to the time required to build
the transportation networks. In addition, growth models
will be expanded to deal with the study of network shapes
where local optimization rather than overall optimization
is used as a criterion and to deal with optimal growth pro-
cesses. The results of this study can be used as base data to
formulate plans for transportation network construction.
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