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Abstract: Retinal microvasculature and the retinal pigment epithelium (RPE) play vital roles in
maintaining the health and metabolic activity of the eye. Visualization of these retina structures
is essential for pre-clinical studies of vision-robbing diseases, such as age-related macular
degeneration (AMD). We have developed a quantitative multi-contrast polarization diversity
OCT and angiography (QMC-PD-OCTA) system for imaging and visualizing pigment in the
RPE using degree of polarization uniformity (DOPU), along with flow in the retinal capillaries
using OCT angiography (OCTA). An adaptive DOPU averaging kernel was developed to increase
quantifiable values from visual data, and QMC en face images permit simultaneous visualization
of vessel location, depth, melanin region thickness, and mean DOPU values, allowing rapid
identification and differentiation of disease symptoms. The retina of five different mice strains
were measured in vivo, with results demonstrating potential for pre-clinical studies of retinal
disorders.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Non-invasive retinal imaging techniques and methods are essential for both clinical and preclinical
vision research to aid the development of novel therapies for irreversible vision loss. To undertake
controlled and rapid examination into the pathological aspects of human retinal disorders, small
animal models have been employed extensively in pre-clinical studies [1–6]. In vivo imaging
modalities ubiquitous in human clinical care, including optical coherence tomography (OCT), are
readily adapted for small animal imaging, thus enabling longitudinal research and reducing the
number of subjects required per study [7–11]. Additionally, the availability of a wide selection
of transgenic strains allows for targeted investigation of disease mechanisms, with customized
models, such as very low density lipoprotein receptor (VLDLR) and RPE65 mice, tailored to
express specific human pathologies or desired biomarkers, permitting controlled examination of
retinal degeneration and physiological responses to dysfunction [11–13].
Of the physical factors relating to vision loss, the retinal pigment epithelium (RPE) plays

a vital role in sustaining retinal health. The RPE is a strongly scattering mono-layer of cells
located immediately anterior to the choroid that plays a key role in the metabolic cycle of the
photoreceptor layer. [14–16]. Many research reports suggest that vision-robbing disorders, such
as retinitis pigmentosa (RP) and age-related macular degeneration (AMD), are highly correlated
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to functional failure of the RPE, making studies of the layer of significant interest amongst
ophthalmologists and vision researchers [17–21]. The RPE and choroid layers are populated by
melanin granules, which inherently exhibit polarization-scrambling properties. As a functional
extension of OCT, polarization-sensitive OCT (PS-OCT) has led to the adoption of polarization
diversity detection (PDD), permitting the acquisition of degree of polarization uniformity (DOPU)
contrast. This contrast is capable of leveraging the intrinsic polarization-scrambling property
of the melanin granules in these regions, facilitating selective layer identification for targeted
morphological RPE examination [22–28].
For full investigation of disorders and their effects on retinal physiology, the use of multiple

tissue-specific imaging contrast mechanisms is essential in pathological research. While imaging
modalities exist in isolation to provide specific tissue or layer contrasts, multi-contrast imaging,
with proper compositing of the contrasts into a single image, provides valuable context for retinal
features, health, and degradation, in relation to each other. Selective RPE imaging provides further
benefits through integration with OCT angiography (OCTA); in cases of neovascularization,
tracing the origin of new vessel growth complements the diagnosis of diabetic retinopathy and
AMD [13]. Other methods exploring multi-contrast imaging have experimented with combined
OCTA with DOPU contrast, such as multi-functional OCT [11] and pigment-and-flow imaging
[28]. However, there remains need for visualizations of simultaneous vascular and structural
information relative to the RPE, which are key features in various disorders and require strategic
compositions of the contrasts for meaningful visual evaluation.

In our previously published work [27], we introduced our multi-scale and multi-contrast OCT
system, capable of imaging pigment in the RPE as well as flow in the retinal capillaries using
OCTA. For this study, we have modified this previous setup and adapted it for small animal
imaging, using rodent models to validate extensions to our signal and image processing algorithms,
creating a polarization diversity OCT and angiography (PD-OCTA) system. In the present report,
we introduce an adaptive DOPU averaging kernel, with separable coordinate averaging and
rotational variation to conform to melanin-rich structures of the retina, avoiding overestimation of
DOPU boundaries and better reflecting retinal physiology. We used DOPU contrast for RPE layer
structural mapping, combining this information with OCTA in the quantification of vessel depths
with respect to the RPE. This method aids in highlighting neovascularization and new vessel
growth, as well as simultaneous display of melanin migration, retinal lesions, and RPE thinning,
integrating multiple symptom markers into a single en face image. Using these quantities, we
have produced quantitative multi-contrast (QMC) en face projections, displaying depth-encoded
retinal vessel networks on melanin region maps, quantifying melanin concentration and thickness
in the RPE and choroid regions to create a unified data map that characterizes both functional
vascular information and structural RPE integrity. System performance was verified with multiple
rodent models exhibiting variations in melanin concentration and retinal pathologies, with our
results demonstrating its capability to visualize and characterize each based on their quantified
measurements.

2. Methods

2.1. System

Figure 1 presents the layout of the system employed in this study. A commercially-available
MEMS-based short cavity wavelength swept laser (Axsun Technology Inc.) with a scanning
frequency of 100 kHz, a center wavelength of 1060 nm and a full width half maximum (FWHM)
of 85 nm was used as a light source. The system is comprised of three main units: OCT
interferometer, phase calibration unit, and PDD unit. The detailed description of the phase
calibration and the PDD units can be found in Ref. [27].

The OCT interferometer consisted of three single-mode fiber couplers. A custom-built retinal
scanner designed for the small animal model was connected to the sample arm. The retinal
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Fig. 1. Schematic of the QMC-PD-OCTA system. Polarization Controller (PC); Collimator
(CL); Lens (L); Mirror (M); Dispersion Compensation Block (DCB); Galvanometer Scanner
(GS); Variable Focus Lens (VFL); Linear Polarizer (LP); Beam Splitter (BS); Polarizing
Beam Splitter (PBS); Balanced Photodetector (BPD); L1= 2 × 200mm, L2= 2 × 125mm.

scanner consisted of a fiber collimator (F240APC-1064, Thorlabs Inc., Newton, NJ, USA),
a variable focus lens (VFL, A-39N-1, Corning, NY, USA), a two-axis galvanometer scanner
(Compact 506, ScannerMax, FL, USA), and two optical relay lens sets. Two achromatic doublets
(AC254-200-B, f1 = 100 mm, and AC254-125-B, f2 = 62.5 mm, Thorlabs Inc., Newton, NJ, USA)
were used in the first and second optical relay as shown in Fig. 1. The numerical aperture (NA)
of the system was measured to be 0.29, as defined by NA = nd/2f , where n= 1.35, d is the beam
diameter incident on the cornea, measured to be1.1 mm (1/e2), and f is the focal length of the
mouse eye, taken as 2.6 mm [29]. The depth of focus (DOF) and nominal lateral resolution
were calculated to be 16.05 µm and 1.86 µm respectively, as defined by DOF = 4λ/πNA2 [30]
and ∆xOCT = 0.51λ/NA [31], where λ is the central wavelength. Dispersion mismatch in the
OCT interferometer was compensated by inserting a dispersion compensation block (LSM05DC,
Thorlabs Inc., Newton, NJ, USA) in the reference arm. Any remaining dispersion mismatch was
corrected numerically in post-processing [32].

TheOCT interference signalwas digitized by a 12-bit waveformdigitizer (ATS9350, AlazarTech
Inc., Canada) with a 500 MHz sampling frequency and 1024 sampling points. The sampled
interference signal was rescaled to the wavenumber domain using a pre-defined rescaling
parameter obtained by a time-frequency calibration method [32]. The depth resolution defined
by the −3 dB width was measured to be 8.7 µm in air (corresponding to the resolution of 6.4
µm in tissue with n=1.35), and the sensitivity measured at ∼1 mm depth was 92 dB at each
polarization channel, with power of the incidental beam on the cornea measured at ∼1.0 mW.
Because the signal energy is split into two OCT images for PDD, the sensitivity of the system
measured for a single image is 3 dB lower than that of standard OCT. This fundamental sensitivity
loss is overcome by the coherent composite method, discussed in Section 2.4.2 [24,25]. After
considering the fundamental loss of the 50:50 fiber coupler, the shot-noise-limited sensitivity of
a single channel became approximately −100 dB. The departure of the measured sensitivity from
the shot-noise-limited sensitivity by −8 dB was accounted for by the single-pass transmittance of
the sample arm, which has been measured to be −0.9 dB, the fiber coupling loss at the PDD,
measured to be −3.4 dB, and possible recoupling loss at the fiber-tip in the scanning unit, due to
misalignment of a mirror target during sensitivity measurement.
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2.2. Imaging protocol

Prior to imaging, mice were anesthetized with a subcutaneous injection of ketamine (100 mg/kg
of body weight, average mouse weight 20–30 grams) and dexmedetomidine (0.1 mg/kg of body
weight). Pupils were dilated using a single drop of 0.5% tropicamide, and a rigid 0-Diopter
contact lens was used to keep the cornea hydrated during imaging. The mouse was placed in a
custom-built stage with three-dimensional control, manually adjusted for imaging alignment.
High-contrast polarization sensitive imaging was obtained by adjusting the polarization

controller, matching the intensity between H- and V-channel outputs. For in vivo mouse imaging,
the focal plane was directed to the deep capillary plexus, allowing for optimized OCTA contrast
with statistically minimal variation to DOPU contrast [27]. The transversal area of 1.2 mm
(horizontal) × 1.2 mm (vertical) was scanned with 500 × 2000 A-scans in 10 seconds. In this
scanning protocol, four repeated B-scans were taken at a single location, and used for intensity
averaging for SNR-enhanced OCT images and OCTA images through measuring the variance of
complex OCT signals [33].

2.3. Animal selection and handling

For validation of DOPU contrast measurements and diseased model visualization, rodent models
were selected which exhibited quantifiable differences in melanin concentration as well as varying
degrees of retinal pathology. The strains chosen to demonstrate varying melanin concentration
were wild type B6 mice (C57BL/6J), serving as a baseline measurement, B6 agouti mice
(C57BL/6J-Aw−J/J) for their lowered melanin production, and B6 albino mice (B6(Cg)-Tyrc−2J/J)
for their lack of melanin pigmentation [34]. To characterize models of various human pathologies
with differing symptoms, wild type was used again as a healthy baseline population, with RPE65
mice (B6(A)-Rpe65rd12/J) selected as a model for Leber’s congenital amaurosis (LCA) due
to retinal thinning and melanin migration to the choroid, and VLDLR mice (VLDLRtm1Her/J)
selected as a wet AMD model for their neovascularization and retinal lesions [10–12]. Details of
all mice and strains are listed in Table 1.

Table 1. Details of all mouse models employed. Imaging sessions were divided into separate
validation studies for melanin concentration variation and pathological symptom visualization.

Wild Type Agouti Albino RPE65 VLDLR

Mouse Strain C57BL/6J C57BL/6J-Aw−J/J B6(Cg)-Tyrc−2J/J B6(A)-Rpe65rd12/J VLDLRtm1Her/J

Number 3 2 3 3 2

Imaging Session Melanin/

Pathological Melanin Melanin Pathological Pathological

Features Baseline Decreased melanin Unpigmented LCA model Wet AMD model

Age 12 months 13 months 12 months 11 months 4 months

Symptom
Stabilization

6 months 6 months 6 months 5 months 3 months

Mice roughly double the age of symptom stabilization were chosen for assured visibility
of desired characteristics, as well as maintaining similar ages across strains for consistency.
Ages ranged from 330 to 360 postnatal days, with the exception of VLDLR at 120 postnatal
days. Symptoms in VLDLR rodents manifest earlier than other strains, as well as having higher
tendency of developing cataracts with advanced age [13]. As such, the chosen VLDLR specimens
were sufficiently stabilized for imaging suited to visualization of wet-type AMD.

All mice were purchased from Jackson Laboratory, ME, USA. Imaging was performed
according to the protocols issued by the Canadian Council on Animal Care and with approval of
the University Animal Care Committee at Simon Fraser University.
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2.4. QMC image processing pipeline

QMC image post-processing is characterized by two en face image generation stages; quantified
melanin region contrast with DOPU quantities, and depth-resolved vessel contrast through
OCTA. Figure 2 illustrates the image processing pipeline, modified from the previously-reported
multi-contrast processing in order to improve the quantifiable results [27].

Fig. 2. Flowchart of QMC image processing pipeline. (a) Raw volumetric data from
orthogonally polarized outputs, H- and V-channels. (b) DOPU en face image processing;
generation of Stokes vectors, adaptive DOPU kernel averaging, noise-corrected DOPU,
and melanin maps for mean DOPU value and melanin region thickness. (c) OCTA en
face image processing; coherent composition of polarization channels, scattering intensity
averaged OCT and OCTA, and OCTA en face maximum intensity projection image with
corresponding depth indices relative to the RPE. Scalebars indicate 100 µm.

2.4.1. DOPU process with adaptive averaging kernel

Following data acquisition, volumes comprised of two orthogonally polarized channels, H- and
V-channels, were obtained as illustrated in Fig. 2(a). The dual-channel output data was processed
with a standard OCT pipeline, including automatic numerical dispersion compensation [35] and
wavenumber resampling [32], in preparation for a noise-corrected DOPU generation algorithm
[24]. DOPU contrast computed the circular variance of Stokes vectors in a local region, with the
noise-corrected Stokes vector parameters si(x, z, f ), i= (0, 1, 2, 3) given as;

s0(x, z, f )

s1(x, z, f )

s2(x, z, f )

s3(x, z, f )


=



|gH(x, z, f )|2 + |gV (x, z, f )|2 − [nH(z) + nV (z)]

|gH(x, z, f )|2 − |gV (x, z, f )|2 − [nH(z) + nV (z)]

2Re[gH(x, z, f )g∗V (x, z, f )]

2Im[gH(x, z, f )g∗V (x, z, f )]


(1)

where f is the frame index within a repeated B-scan set (f = (1,2,. . . ,N), with N=4), gH(x, z, f )
and gV (x, z, f ) are the processed OCT H- and V-channel output data, Re and Im are the real
and imaginary parts, g∗V (x, z, f ) is the complex conjugate data, and nH(z) and nV (z) indicate
the measured noise powers for each polarization channel. Noise levels were estimated as the
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variance of the vitreous region, since the noise floor is almost flat over the imaging depth range
[24]. DOPU values were then calculated as;

DOPU(x, z) =

∑N
f=1

√∑3
v=1 sv

2
(x, z, f )∑N

f=1 s0
2
(x, z, f )

(2)

where sv is the spatially-averaged Stokes parameter [24,28]. Quantitative measurement of the
melanin region via DOPU is frustrated by this local spatial averaging of region statistics, inherent
in the calculation process. For high DOPU contrast and signal clarity, a larger kernel is preferred,
but precise layer boundaries and small retinal features, such as lesions and drusen, risk blurring
or obfuscation. However, smaller averaging kernels are insufficient to overcome background
noise and fail to provide clear DOPU values.
To overcome the trade-off between DOPU contrast and sharpness, as well as enhance the

resolution of these local spatial statistics, an adaptive DOPU averaging kernel was employed
to compute the moving average in place of a traditional rectangular kernel. The computation
performed by this averaging kernel is capable of adaptively conforming to the shape of retinal
structures along B-scans, reducing overestimation of melanin boundaries and distortion of small
melanin projections or detachments.

The design principles of the adaptive DOPU kernel relied on basic knowledge of the RPE and
choroid structures with the following assertions:

• The bulk of depolarizing deposits in the eye will be in these pigmented layers.

• These layers will remain relatively continuous across the eye with the exception of the
optic nerve head (ONH), where these layers are absent.

• Traces of melanin pigments near the ONH manifest as depolarizing signals at this location.
These are remnants from development of the hyaloid canal [36], which can be excluded
from our analysis of the RPE/choroid by cropping.

• All other retinal tissue can be characterized as non-depolarizing tissue [36].

After calculation of the Stokes vector parameters, exclusion of the ONH was accomplished by
simple cropping at the mean depth of the nerve fiber layer, ignoring points above this line. The
number of points in each A-line should be consistent for each B-scan, but the precise number
N of points was inconsequential to calculations and can vary between scans. Each B-scan was
processed with the adaptive DOPU averaging kernel algorithm outlined in Fig. 3.

a. Separation into slices
For feature-specific adaptive averaging, B-scans were first divided into continuous segments
of approximately 100 A-lines. This step permitted kernels to be fitted to the orientation of
the curvature of the layer and melanin structures on the order of ∼240 µm. The precise
number of A-lines are adjustable for different applications and OCT setups, and was set to
100 for validation of the methods presented here. Volumes should ideally be cropped to
reduce amount of non-retinal signal present for more economic data size.

b. Least-squares elliptical fitting and angle extraction
Each slice’s largest retinal structure was estimated with an ellipse by least-squares fitting
to determine directionality, as illustrated in the red dotted lined inset of Fig. 2(b). The
ellipse form was selected using the knowledge that these deposits would form elongated
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shapes along the XZ-plane or small projections into the Z-plane. A collection of n ellipses
was created, with the function for the ellipse corresponding to the nth slice given as;

En = Ellipsen(a, b, xc, zc) =
(x − xc)2

a2
+
(z − zc)2

b2
= 1 (3)

with a as the semi-major axis, b as the semi-minor axis, (x, z) as the coordinates on the
ellipse, and (xc, zc) as the coordinates of the centroid.
Prior to estimating the angle, thresholding by Otsu’s method [37] was applied to the
individual Stokes vector B-scans to separate background noise from visible retina feature
data. For least-squares fitting within the given ellipsoid parameters, the equation to be
minimized was the distance to the orthogonal contact point between the gradient of the
nearest point lying on the ellipse and the target test point, as shown in Eq. (4).

δz
δx
(zi − z)
(xi − x)

=
−b2x
a2z
(zi − z)
(xi − x)

= −1 (4)

These conditions set a non-linear least-squares fitting function, which was solved using the
Gauss-Newton method on the Jacobian matrices of each orthogonal contact point [38].
With the estimated semi-major axis a for ellipse En, the corresponding angle αn to the
x-axis is then found with simple trigonometry.

c. 1-D axial kernel filtering
The adaptive kernel was separated into two 1-D components, which were rotated in the
XZ-plane according to angle αn normal to the major axis of the slice ellipse En. This
rotation ensured averaging was performed perpendicular to the retinal structure, reducing
blurring between layers and calculating statistics of a more homogenous region of tissue.
Averaging was first performed by 2-D convolution of the axial kernel across the nth slice,
smoothing noise and estimating local spatial parameters in the axial direction. To avoid
clipping at slice boundaries, the edges were padded through inclusion of additional A-lines,
double the length of the axial kernel, which were cropped upon recombination into the full
B-scan.

d. 1-D lateral kernel filtering
The noise-corrected axially filtered slices were subsequently processed with the lateral
kernel, rotated parallel to the major axis with αn, and the same padding method applied as
in step (c). This kernel served to estimate the local statistics for each retinal layer, therefore
rotation was necessary to reduce contributions from neighbouring layers, providing
increased continuity and lessening boundary blurring.

e. Cropping and stitching slices
Before the final output, the paddingA-lines are cropped from each slice and then recombined,
producing the final averaged B-scan with the same dimensions as the input.

The final output of the adaptive DOPU averaging kernel was a smoothed Stokes vector B-scan
s′v, replacing sv in Eq. (1) for further steps of DOPU calculation. Obtained DOPU quantities
were subsequently thresholded and smoothed by a three-dimensional median filter (3 × 3 × 3
pixels) for removal of any remaining background noise. For the purposes of this study, DOPU
averaging kernel sizes of 3 (axial) × 5 (lateral) pixels corresponding to ∼10 µm × 10 µm were
used for optimal image quality, determined experimentally. However, ideal kernel size may vary
depending on OCT protocols and system parameters, and further testing may be required to
evaluate the standard ideal size for rodent eyes.
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Fig. 3. Flowchart of adaptive DOPU averaging kernel process, taken for a data volume of N
cropped axial points and 500 lateral A-lines.

2.4.2. Full QMC en face image generation

The noise-corrected, adaptively-averaged DOPU B-scans were used to extract the melanin-
containing regions of the RPE and choroid through simple thresholding of the background
level, due to the inherent depolarization of the melanin granules in the layers exhibiting DOPU
values roughly < 0.95, found empirically. Due to the simple thresholding, segmentation was
performed faster than traditional graph cut methods; a common 4-core CPU (Intel i5-7600,
3.50GHz, 16.0 GB RAM) using MATLAB 2017b required 3 seconds per B-scan, including
DOPU calculations and adaptive kernel processing. Moreover, since segmentation was based on
an intrinsic tissue property, it was insensitive to morphological changes in the layer structure and
tolerant of abnormalities in the RPE.
Mean DOPU value was calculated on an A-line basis, taken along the depth of the melanin

region values, mapping pink and blue to lower DOPU values indicating areas of higher melanin
concentration, and yellow to higher DOPUvalues correspondingwith lowermelanin concentration.
Thickness was equivalently calculated as the largest continuous region of melanin presence along
each depth, and was mapped linearly to an intensity gradient, with black corresponding to zero
thickness and white to the average thickness value for a healthy rodent eye (approximately 55
pixels, or ∼200 µm, found experimentally). The final molecular melanin contrast region maps
are shown in the final steps of Fig. 2(b).

Due to the use of PDD, the output was divided into two separate signals, resulting in an inherent
loss in SNR. To maximize the SNR, as well as overcome this loss, the phase offset between
the H- and V-channel data was estimated and compensated, allowing the summation of the two
complex signals to form a polarization-insensitive coherent composite OCT [24,25]. From this
coherent composite data, conventional OCT averaging and OCTA processing were performed
using the multiple B-scan protocol. Signal-enhanced scattering contrast OCT was obtained
through temporal averaging, and OCTA vessel contrast was obtained using complex variance
estimation across each set of repeated B-scans, taken sequentially from the same transverse
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location [39,40]. The pixel indices of the vessels found via OCTA were cross-referenced with
the corresponding location on the DOPU contrast map to extract their relative depth with respect
to the RPE layer, which was subsequently colour-coded correspondingly to a healthy rodent’s
retinal vascular network, with orange corresponding to the deep capillary plexus depth, red for
the superficial capillary plexus, and white-pink for suspicious vessel growth in the outer nuclear
layer. Figure 2(c) displays the processing steps and resulting location and depth maps from the
OCTA process.

With the en face maps obtained in Fig. 2(b) and (c), QMC imaging is capable of simultaneous
display of four contrasts which quantify both vascular and molecular data; OCTA, vessel depth,
melanin region mean DOPU values, and melanin region thickness. Figure 4 illustrates the full
QMC en face image generation process. For melanin region map generation, the mean DOPU
value contrast map was multiplied with the melanin region thickness map, thus encoding the
region thickness in the melanin values by the intensity of the background, as seen in Fig. 4(a).
Equivalently, for OCTA en face image generation, the map of vessel locations was multiplied
with the depth-encoded contrast map, colour-coding each vessel with their corresponding depth
with respect to the RPE layer, as seen in Fig. 4(b). Figure 4(c) presents the resulting QMC
en face image after overlaying the depth-encoded OCTA on the melanin region map, resulting
in simultaneous display of all contrasts; OCTA position and depth in conjunction with RPE
structure and thickness.

Fig. 4. QMC full en face image generation, contrast illustration. (a) Melanin region en face
map of mean DOPU value with thickness map. (b) OCTA en face map of vessel location
and depth with respect to the RPE. (c) Full QMC en face image displaying four contrasts
simultaneously. Scalebars indicate 100 µm.

3. Results

3.1. QMC melanin concentration analysis

To visualize and validate the correlation between DOPU contrast and melanin, three separate
mouse strains (WT, agouti and albino) were selected and imaged which exhibit different retinal
melanin concentrations. Figure 5 shows a representative QMC-PD-OCTA image set for the
selected strains, displayed in order of highest melanin concentration (WT) to lowest (albino).

Each of the specimens selectedwere chosen for exhibiting healthy vessel density and distribution,
as shown in all three en face images, with red superficial capillary plexus and orange deep
capillary plexus. This ensured that the sole variation in QMC en face images between strains was
limited to the melanin region, postulated to be corresponding to regions of low DOPU value.
To aid in fully characterizing the source of anomalous melanin deposits or vessels, composite
DOPU B-scans were generated by multiplying DOPU contrast with the log-scaled OCT intensity
signal, as seen in the top of Fig. 5. This allowed low DOPU regions to be spatially referenced
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Fig. 5. Composite B-scans (top) and QMC en face images (bottom) of three rodent strains
with differing melanin concentrations; (a)WT mouse; (b) Agouti mouse; (c) Albino mouse.
Scalebars indicate 100 µm.

to non-depolarizing retinal structures, permitting easier differentiation between structural RPE
features (such as lesions) or neovascularization from choroidal vasculature.

The QMC image shown in Fig. 5(a) displays the measured DOPUwith colouration varying from
green to blue, indicative of DOPU values characterising moderate to high melanin concentration.
These colours are displayed with high brightness and saturation, signifying a thick melanin region
of a healthy RPE and choroid with normal melanin distribution, which correlates with the WT
strain. The composite B-scan shown in Fig. 5(a) also supports these results, with both the RPE
and choroid region highlighted by low DOPU values and hence high melanin content. Regions
surrounding the RPE and choroid lack depolarizing deposits, showing no lesions or melanin
migration into the inner retina, further indicative of the health of this specimen.

In Fig. 5(b), DOPU values remain comparable in colour distribution and variation to Fig. 5(a),
but the overall intensity and brightness are lowered, indicating fewer low DOPU values and thus
a reduction in melanin distribution and the thickness of the melanin region. The corresponding
composite B-scan also shows the RPE and choroid layers highlighted by low DOPU values,
however the region is thinner than that of Fig. 5(a), and also displays slightly lower values in blue,
suggesting that the melanin present is highly concentrated in a thinner region. This corresponds
with the agouti mouse strain, as a characteristic of the phenotype is lowered melanin production
compared to WT.

To further verify that DOPU is a measure of the polarization-scrambling of melanin granules
and not the intensity of the RPE alone, the final en face image from the pigment-free albino mouse
in Fig. 5(c) displays a background that is nearly black, indicating a lack of depolarizing deposits.
Additionally, in spite of a bright RPE layer in the composite B-scan of this strain, there are no
regions of low DOPU, with the entire retina displayed as uniformly red, polarization-preserving
tissue, indicating a lack of melanin in the albino mouse eye.
To quantify the values found for all imaged specimens of each strain, a histogram displaying

the percent distribution of all melanin region thickness values is shown in Fig. 6. Of the three
strains, the distribution of WT lies at the highest measured thickness values. The center of the
agouti strain’s distribution is shifted to the lower end of the WT distribution, revealing their
lowered melanin production. The entirety of the albino strain’s distribution lies at thickness
values below both other strains, supporting the albino’s near complete lack of melanin. All
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zero thickness values were truncated for clarity to visualize the three strains simultaneously, as
almost 99% of the thickness values in the albino mice were zero, severely distorting the graph
and making inter-strain comparison difficult.

Fig. 6. Histogram of melanin region thickness distributions for all imaged mice, categorized
by strain (WT, Agouti, Albino). Zero thickness values for albino mice have been neglected
for ease of inter-strain display and comparison.

3.2. QMC pathological case visualization

For pathological case investigation using QMC imaging, three mouse strains (WT, RPE65 and
VLDLR) were selected to model different human pathologies with distinct symptoms, with
imaging results displayed in Fig. 7.

Fig. 7. Composite B-scans (top) and QMC en face images (bottom) of three different
pathological case rodent strains; (a) WT mouse; (b) RPE 65 mouse; (c) VLDLR mouse.
Scalebars indicate 100 µm.

TheWT strain was initially selected as a healthy baseline example. However, one specimen was
found to exhibit a case of a hyper-reflective focus (HPF), potentially due to melanin migration into
the inner retina, a phenomenon also observed in Alzhiemer’s studies using this strain as a control
[41]. This HPF is indicated in the en face image of Fig. 7(a) by brighter DOPU colour saturation,
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signifying an elevated RPE projection, as well as pink-toned vessels, signifying vessels abnormally
in proximity to the RPE. The deposit itself is highlighted in the corresponding composite B-scan
by the low DOPU value compared to surrounding tissue, suggesting migration of RPE cells into
the inner retinal layers. This instance demonstrates the ability for QMC-PD-OCTA to visualize
and detect anomalous features in an otherwise healthy population.
The RPE65 mouse lacks RPE65 enzyme (isomerohydrolase) expression in the RPE layer,

resulting in retinal degeneration highly indicative of LCA [10,12]. Through the en face image for
the RPE65 strain in Fig. 7(b), this is visualized by the proximity of the entire vessel network
to the RPE, far closer than in a healthy eye, as the superficial plexus is at the depth of a proper
deep plexus in orange, whereas the deep plexus is now located where the ONL should be in pink.
Additionally, melanin migration to the choroid is also visible through the intense blue coloration
of the background DOPU signal, indicating much higher levels of melanin in the outer retina
compared with the other strains.
As a model for wet-type AMD, the VLDLR mouse is known to express choroidal neovas-

cularization, RPE degeneration, and retinal lesions [11,13]. All these symptoms are visible
in the en face image of Fig. 7(c), where the mouse eye displays white vessels indicative of
neovascularization, darkened DOPU background signal with varying vessel depths, signifying a
degraded and uneven RPE, and retinal lesions also creating falsely proximate white vessels. The
ambiguity of the white proximate vessels is clarified through the composite B-scan, revealing
two such ‘vessels’ to be retinal lesions, both indicated by the corresponding white arrows.
For further investigation and analysis of these pathological cases, circumpapillary plots were

created from each strain, with measured values of the ONL layer thicknesses extracted from the
calculated QMC data, displayed in Fig. 8.
Circumpapillary plots, computed as the average of five concentric radial scans, were taken

from each rodent around the ONH as indicated in Fig. 8(a). These cross-sections were displayed
for each strain (WT, RPE65, and VLDLR) in Fig. 8(b), with the white arrows indicating span of
the measurements for the ONL, and the black arrows for measurements of the melanin region
thickness, extracted using the DOPU measurements of the upper and lower boundaries of the
low DOPU region in conjunction with OCTA values for the deep capillary plexus. A plot of the
calculated ONL layer thickness values, determined as the distance between upper RPE boundary
and deep capillary plexus, is displayed in Fig. 8(c). The corresponding melanin thickness,
extracted as the low DOPU region depth range, is shown for the same rodents in Fig. 8(d),
colour-coded for each strain. Owing to their respective retinal degeneration pathologies, both
RPE65 and VLDLR have a relatively thinner ONL, as seen by their lower values compared to WT
in Fig. 8(c). However, the graph of their respective melanin distributions in Fig. 8(d) demonstrates
the difference in their disorders, revealing RPE degeneration specifically in VLDLR, whereas WT
and RPE65 have comparable melanin region values. These results agree with previous research
on the physiology of these strains, and present various means of distinguishing symptoms for
proper diagnosis of pathologies.

3.3. Adaptive kernel comparison

Representative results for a healthy rodent eye are displayed at each step of the DOPU algorithm
in Fig. 9. After generation of the Stokes vector parameters for a single B-scan (Fig. 9(a)), the
averaging kernel was applied, followed by calculation of DOPU values, filtering background
levels, and averaging across repeated B-scans to obtain the final DOPU B-scan (Fig. 9(b-c) left
and center). The optional step of compositing DOPU with averaged OCT scans is also displayed
(Fig. 9(b-c) right), visualizing DOPU with respect to retinal structures. The resulting melanin
map projections, showing mean value and thickness values, are displayed for each kernel method
in Fig. 9(d).
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Fig. 8. Circumpapillary plot of three pathological rodent strains (WT, RPE65, VLDLR). (a)
OCT en face view indicating the location of the averaged cross-sectional area. T, temporal;
N, nasal; S, superior; I, inferior. (b) Composite DOPU circumpapillary B-scans of WT
(top), RPE65 (center) and VLDLR (bottom), sampling depths for ONL and melanin region
thicknesses indicated by white and black arrows, respectively. (c) ONL thickness plot. (d)
Melanin region thickness plot. Scalebars indicate 100 µm.

The same volume was processed with both rigid (Fig. 9(b)) and adaptive kernels (Fig. 9(c)).
As seen in Fig. 9(b), with rigid kernel processing, the upper and lower melanin boundaries appear
ragged, and the region slightly enlarged. In comparison, the same frame processed with an
adaptive DOPU kernel in Fig. 9(c), displays distinct region boundaries with increased continuity
and reduced blurring, as well as remaining confined to the corresponding RPE and choroid
structures in the composite B-scan. As a result, different distribution patterns were observed
between the melanin map projections when processed with rigid versus adaptive kernels. The
adaptive kernel-based projection image (Fig. 9(d), right) shows a more homogenous melanin
distribution, with relatively consistent colouration of the mean DOPU value over the entire FOV,
compared to the rigid kernel-based projection image (Fig. 9(d), left) showing higher delineation
between the green and blue regions.
Retinal QMC images acquired from a VLDLR mouse were processed in the same manner,

with a B-scan containing a lesion selected for analysis of adaptive kernel performance, shown in
Fig. 10. From the QMC en face image displayed in Fig. 10(a), (a) B-scan was extracted from
the location indicated by the dotted line, selected for its large cluster of white anomalous signal,
circled in white. As shown in the DOPU B-scans of Fig. 10(b), this cluster signified a retinal
lesion projecting from the RPE layer, displayed both with the DOPU in isolation (left) and with
respect to the retinal layers in the composite DOPU B-scan (right). The top row displays DOPU
values of the lesion processed with a rigid kernel, and the bottom displays the same location with
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Fig. 9. Comparison of processed DOPU with adaptive and rigid kernel methods. (a) Stokes
vector parameters for a single B-scan. DOPU B-scan processing (measured DOPU, filtering
and averaging, composite DOPU B-scan) with (b) rigid and (c) adaptive kernels. (d) Melanin
map projections computed with rigid and adaptive kernels. Scalebars indicate 100 µm.

an adaptive kernel process, where the white arrows indicate small features of the lesion and the
choroid which are rendered sharper through the adaptive kernel process.

Fig. 10. Comparison of rigid and adaptive DOPU averaging kernels on pathological data.
(a) QMC en face image of a VLDLR rodent eye, B-scan selected at dotted line with retinal
lesion circled in white. (b) DOPU (left) and composite DOPU B-scans (right) showing a
VLDLR retinal lesion, processed with rigid (top) and adaptive (bottom) kernels. Arrows
indicate features sharpened with the adaptive kernel. Scalebars indicate 100 µm.

4. Discussion

DOPU measurement presents variation of polarization properties between neighbouring points,
and therefore each DOPU value represents statistical information from a local spatial average
[24–26]. This necessitates that an integral element of DOPU calculation be devoted to spatial
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averaging, traditionally via a rigid rectangular convolutional kernel, which leads to trade-offs
between higher contrast and retinal feature sharpness.

For the proposed QMC process, accurate and dependable measurements of the melanin region
boundary were necessary to produce quantifiable data. With DOPU calculation employing a
rectangular averaging kernel, overestimation of these boundaries was a frequent shortcoming,
particularly in cases of retinal curvature or tilt and small features in the RPE. This becomes more
pronounced in pathological eyes, as disturbances in the RPE structure may manifest in small
deformations of the layer, which may be come blurred or lost in traditional DOPU rigid kernel
averaging. Our adaptive DOPU averaging kernel was developed to overcome this limitation
and diminish the trade-off between DOPU contrast and resolution, reducing the loss of clinical
features for proper compositing with additional contrasts. While further validation with histology
and collaboration with vision scientists is required to fully describe the utility of this method,
results suggest potential for greater fidelity to retinal layer physiology and an increased ability to
precisely visualize subtle symptoms of RPE degeneration.
As a high-dimensional imaging modality, QMC processing forms a composite of multiple

contrasts with minimal obstruction between the values, giving information-dense visual data.
Melanin concentration is presented without occlusion by RPE and choroid thickness variation
through coding each parameter in two separate features, DOPU colour and brightness. The
depth-encoded OCTA map directly displays the three-dimensional vessel distribution in the inner
retina, while simultaneously serving as an indirect measure of ONL degeneration, characterized
by a reduction in distance between the vasculature and the RPE, displayed via a shift in colour
values. Capturing multiple pathological aspects in imaging data serves as an aid in interpreting
disease effects on vasculature and RPE simultaneously, while compositing all the contrasts in
a single QMC en face image allows for rapid extraction of this information without additional
averaging and registration required.

This study employed mouse models to validate our methodology for multi-dimensional image
composition and visualization of retinal pathologies. Nevertheless, as the optical design was
modified from a human imaging system, repurposing and restoring the setup and algorithm
for human studies is a simple step. In the future, QMC imaging can be employed in human
pre-clinical investigation of disease mechanisms, serving as a direct and intuitive means of
detecting pathological impact on a patient’s vasculature, RPE and choroid in vivo, providing a
direct means of visualizing the effects of retinal disorders on multiple important biomarkers from
a single image.

5. Conclusion

In this study, we have presented an extension to multi-contrast OCT imaging, building upon
previously reported methods to integrate preclinically-relevant quantifiable features in a single
QMC en face image. Our QMC-PD-OCTA system was modified to permit small animal imaging,
using transgenic mice as models for human retinal pathologies for validation of our methodology.
With our QMC processing algorithm, we presented results differentiating mouse strains of varying
retinal melanin concentrations, demonstrating the ability of DOPU to detect and selectively
visualize melanin granules in the RPE and choroid as well as the QMC en face image to visualize
these changes. We investigated our adaptive kernel process for improved quantification of DOPU
values, as well as a novel method of compositing multiple contrasts into one image. Using
this methodology, we can provide multiple information to image operators and investigators
intuitively, providing all contrasts in a single imaging domain, thus giving a clearer picture of the
inter-relations of disease mechanisms during diagnosis and disease investigation. Additionally,
through the use of three rodent models of human pathologies, we presented QMC images and
measured retinal layer thicknesses which corresponded to melanin migration, LCA, and wet-type
AMD, with results demonstrating the ability of QMC to highlight characteristic symptoms of
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each, lending potential for use in pre-clinical studies for investigation and development of novel
treatments for various retinal disorders.
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