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Abstract

We analyze the St.Petersburg paradox from the perspective of a real social context. We
formulate a market for a coin-tossing gamble between a banker with a �nite budget and
people with cognitive bounds on probabilities. The budget for the banker alone removes the
paradox in the original form, as argued by Shapley. However, the standard expected reward
criterion for the banker and people leads to the other di¢ culty of vacuousness of trades be-
tween the banker and people. To consider this problem, we formulate explicitly the situation
as a market with a banker and people. Introducing cognitive bounds on probabilities for
the people, we show that the theory allows an a¢ rmative possibility of some trades in the
market. Speci�cally, we adopt Kaneko�s theory of EU theory with cognitive bounds for the
people. This theory leads us to the incomparability for people between buying a ticket and
not, and we take one more step toward semi-rationalistic behavioral-probability for incom-
parable options. Then, some people behave with positive probabilities of buying tickets and
the banker gets signi�cantly positive net rewords. Thus, our approach avoids the di¢ culty
mentioned above.

Key Words: St.Petersburg Paradox, Expected Utility Theory with Cognitive Bounds, In-
comparability, Behavioral Probability, Monte Carlo Method

1 Introduction

The St.Petersburg (SP) paradox remains a conundrum since the time of Bernoulli [3]. In the
literature, typically, the mathematical structures of the SP gamble or possible resolutions have
been discussed (cf., Samuelson [20], Peterson [19]), but the question of in what sense it is a
paradox has not been asked per se. One exception is Shapley [22], who condemns the SP gamble
as a con game in that the paradox relies upon arbitrarily large prizes exceeding any feasible
budgets in the real world. Taking his criticism seriously, we formulate the entire problem as a
monopolistic market consisting of a banker with a budget for prizes and people with bounded
cognitive abilities. We adopt the return on investment (ROI) index for the banker, and Kaneko�s
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Figure 1: The original St.Petersburg game

[12] expected utility theory with cognitive bounds for the people. We argue that this theory
allows an a¢ rmative possibility of some trade in the market. In this section, we discuss various
conceptual issues involved the development of the theory.

1.1 In what sense is the SP result a paradox?

The original SP coin-tossing gamble g1 = [�1; �] is as follows. A person decides either to
participate or not in the coin-tossing �1 with a fee �c/ (US cents) (� � 0); if he participates, a
fair coin is tossed until it results in heads, and if it shows heads at the t-th coin toss, the prize 2tc/
is attained and the gamble is concluded. The probability of having the prize 2tc/ is 1

2t : The net
reward from participation is 2t � �; and the reward from non-participation is 0: For simplicity,
rather than net rewards, we consider the opportunity reward from non-participation b, depicted
in Fig.1, which is �: The rewards from a are the prizes with the associated probabilities.

The expected reward from a is 12 �2
1+� � � + 1

2t �2
t+� � � = 1+� � �+1+� � � = +1; which is larger

than any �nite fee �. The expected reward (ER) criterion recommends to participate in the SP
gamble whatever � is. On the other hand, an ordinary person tends to avoid the gamble unless
� is very small. For instance, when � = 50; 000c/ = 500$ (USD); the probability of acquiring a
prize greater than 50; 000c/ is 1� (12 + � � � +

1
218
) = 1

218
= 1

262;144 ; since 2
18 < 50; 000 < 219; and

this probability is too small for him to take into account: We write this disagreement explicitly:

(*): For any large fee �; an ordinary person does not follow the ER recommendation.

We call (*) the St.Petersburg paradox in the original sense.

Shapley [22] criticizes the SP paradox (*) with the basic positions:

SH1: (*) is a paradox in an empirical sense but not in a mathematical sense.

SH2: (*) loses validity if a speci�c �nite budget is introduced.

The �rst means that it is a paradox in a real context ([22], p.440) in that the recommendation
of the ER criterion disagrees with our ordinary senses. The second states that when the budget
is 2100c/ and � > 100c/; the expected reward for a participant is 12 � 2+ � � �+

1
2100

� 2100 = 100c/ and
the ER criterion recommends to avoid the SP gamble; but our ordinary senses quite possibly
allow to participate in the gamble.
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Figure 2: The SP gamble market (�0;�N )

Shapley succeeded in refuting the validity of (*)1. However, the budget 2100c/ is absurd in a
real context; the US federal annual budget for 2018 is about 4:2 trillion$, roughly 249c/: Shapley
called the SP gamble a con game and concluded that the SP paradox has little relevancy to game
theory and economics ([22], p.442). The present author disagrees his conclusion and thinks that
his critical argument has large potential. It could be applied to a class of problems where serious
events take place with minuscule probabilities such as state lotteries, insurances, and more
generally �black swan� events with very narrow possibilities but without good understanding
of probabilities (cf., Teleb [25]). The other point is that there is no systematic theory to treat
what the SP paradox is; SH1 and SH2 are interpreted to suggest to develop such a theory. The
author in [12] developed a new EU theory incorporating cognitive bounds on probabilities, for
which Shapley�s critique provides a test. The present paper is written from these perspectives.

In SH1, we refer to ourselves as potential participants and observe a con�ict between the EU
recommendation and our ordinary senses. SH2 suggests some agent organizing and selling the
SP gamble, whom we call the banker. We include the banker as a crucial player for an a¢ rmative
possibility of a trade of an SP gamble. We formulate the entire problem as a monopolistic market
(�0;�N ), called the SP gamble market, consisting of a banker and people, depicted in Fig.2.

In the market (�0;�N ), the banker announces an SP gamble (2t; �) to the people, where
2t is the maximum prize within the budget B0 and � is the participation fee. Each person i
evaluates this gamble to buy a ticket or not. The people with tickets go to the execution process
of coin-tossing; each does coin-tossing one-by-one. The banker�s evaluation criterion is the ROI
(return on investment) index consisting of the ER revenue and the costs for the budget B0 and
facility. Our main concern is whether or not there are some a¢ rmative possibilities for an SP
gamble to attract people as well as to produce an enough revenue to have a positive ROI value.2

To have compatibility with the real world as well as our ordinary senses, we replace the
budget 2100 or 249c/ and a participation fee � by socially viable ones:

budget B0 = 4; 700; 000c/; and participation fee � = 1000c/: (1)

1Shapley [22] did not literally claim the resolution of the SP paradox, but Aumann [1], footnote 2, p.443 wrote
that �it appears from his paper that he thinks that he has actually resolved the whole paradox�. Shapley [23],
p.446 explained moderately his thoughts on Aumann�s comment.

2Participation in the case � > t was discussed as the problem of an intrinsic utility of a gamble for people
(cf., Fishburn [8], Schmidt [21], and Diecidue, et.al [5]); the utility of gambling is formulated by modifying the
classical expected utility theory. We do not deny the possibility that some people enjoy a gamble. However, this
could allow too large possibilities for such preferences.
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The rationales are: The average annual income of the 35 OECD countries is about 47; 000$
in 2018; and the maximum prize, not more than B0; is 2t = 222 = 4; 194; 304c/; this is quite
feasible for a trustworthy banker in these countries. The fee � = 1000c/ is also reasonable in
these countries; a lottery ticket in Japan is typically 300U (1c/ + 1:13U in October 2021).

We eliminated the absurd elements, but as long as we keep the ER criterion for the banker
and people, we meet another incompatibility with our real world experiences. The ER from a
is 1

21
� 21 + � � � + 1

2t
� 2t = t; and the reward from b remains �: The ER criterion recommends

the people to buy a ticket if and only if � < t. In this case, since the revenue for the banker is
negative, the banker should not open the market; also since the banker needs additional costs
to prepare money for the SP gamble market, it does not open the market even in the case � = t.
Conversely, when � > t; the ER criterion suggests the people not to participate in the market.
Table 1.1 summarizes the situation; the market is vacuous in either � � t or � > t: This holds
for any maximum prize 2t and participation fee �: We call Table 1.1 Shapley�s vacuousness,
since it is a direct conclusions from Shapley�s introduction of a banker with a budget.

Table 1.1; Shapley�s vacuousness

� � t � > t

People possibly participate no participation
Banker not open possibly open

Table 1.1 tends to be incompatible with our ordinary senses or our experiences in the real
world. Consider (1) with the replacement � = 1000c/ by � = 50c/: Table 1.1 still suggests no
people to buy tickets, because t = 22 < 50 = �: This is incompatible with the fact that national
lotteries are common in many countries; one example of a state lottery in Japan will be described
in Section 4.2. After all, SH2 removed the SP paradox in the original sense (*), but this removal
leads to the new paradox without absurd elements.

As mentioned above, our concern is the a¢ rmative possibility of a trade of an SP gamble in
a market. Although the main idea for people�s participations is based on Kaneko�s [12] expected
utility theory with cognitive bounds, we need more detailed treatments of his theory in that the
context is much more speci�c. One example is a derivation of behavioral probability for a choice
of a and b in Fig.1 when a and b are incomparable.

Our problem is not only to show the a¢ rmative possibility but also to see the boundary
between the a¢ rmative and negative possibilities. Our ordinary senses evaluate a theoretical
result, but our ordinary senses are not complete and are complemented by a theoretical result.
Unless we see the boundary, the a¢ rmative result may deceive our ordinary senses. We include
this requirement in our study.

For SH1 and SH2, bounded rationality is crucial for people, but not for the banker. Budgets
and how to be trusted by people are more important for the banker. To guarantee the maximum
prize 2t to people, the banker needs to �nance 2t by borrowing it from other sources, including
the facility and operating costs. The above mentioned concept ROI represents this idea of how
much return can be made to the investment. This idea is quite standard in accounting (cf.,
Needless, et al. [18]). In the economic literature, von Neumann [26] used it for the behavioral
criterion for �rms in his balanced growth model. We also emphasize that the possibility of
bankruptcy is included in the above picture. Bankruptcy may be induced when some people hit
large rewards. Bankruptcy itself is an important problem but causes a mathematical di¢ culty
in the probability treatment of coin-tossing. Thus, we need an explicit treatment of the banker�s
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�nancial moves.

1.2 Developments of the SP gamble market

The SP gamble market (�0;�N ) is asymmetric between the banker and the people; the banker
has a large budget while being accustomed to treating big and detailed amounts of money. The
ER criterion is a natural idealization for the banker, except additional costs of preparing prizes.
Each person is subject to a bounded cognitive ability over events with small probabilities, i.e.,
he has a cognitive bound 1

2�i (�i � 0 is a natural number) so that the smaller probabilities than
1
2�i are not in his perspective. The bound degree �i is typically smaller than the budget degree
t. For the people, the ER criterion is modi�ed with cognitive bounds.

The banker announces an SP gamble (2t; �) consisting of the maximum prize 2t and partic-
ipation fee � to the people. The cognitive bound 1

2�i for person i plays two roles. He considers
the subjective lottery restricted to the probabilities larger than or equal to 1

2�i : This does not
means that he totally ignores the prizes more than 2�i ; instead, the announcement of the gamble
(2t; �) tells the maximal prize 2t: Here, the probability is negligible but the prize remains in his
mind. A sociological study reports that a great fortune appealed in the advertisement attracts
people to buy tickets even though the probability is tiny (cf., Beckert-Lutter [2]). This plays an
crucial role in our study of the SP gamble market:

We adopt expected utility theory (abbreviated as EU theory) with cognitive bounds due
to Kaneko [12]. His concern was a general development of EU theory with cognitive bounds
relative to the standard EU theory. On the other hand, our concern is speci�c to SP gambles;
we meet problems caused by details of speci�c structures; which are new but not met in [12].
We will start with the 2-dimensional vector-valued expected reward functions with the interval
order due to Fishburn [7], skipping some general foundations such as basic preferences,

The preferences derived by the interval order show incomparability between a (participation)
and b (non-participation), particularly when �i is small. Here, we take one more step that the
people showing incomparability are forced to have behavioral probability choices between a and
b:3 When a and b are equally incomparable for a person, his behavioral probabilities of a and
b are 1

2 and
1
2 ; but when these alternatives are incomparable to him but with inclination of a

favor to a; the probability of a is larger than 1
2 : This step will be explained in an informal way

in Section 3 and in an axiomatic manner in Section 7.

We emphasize the locality of our development, which is an explicit formulation of one aspect
of Simon�s [24] notion of bounded rationality.4 Kaneko�s [12] theory contains still a global
tendency in the sense that it treats all lotteries with positive probabilities not smaller than the
cognitive bound 1

2�i ; while our development targets comparisons between the two alternatives
a and b; being based on the evaluations of substructures of the subjective understanding ��i of
a. This enables us to evaluate the complexity of i�s choice behavior. Yet, our development has
an enough perspective including Sharpley�s vacuousness as well as discussing possibilities with
di¤erent values of cognitive degrees for the people.

3 It expresses a person�s behavioral tendency and di¤ers from Luce�s [16] probabilistic preferences (cf., Gul, et al.
[9], Echenique-Saito [6], and Loomis-Sugden [15]) where probabilities represents preferences over the alternatives.

4Simon [24] divided the notion of rationality into substrantive and procedural ; the former is a property of a
realized choice such as a �rational outcome�and the latter is an attribute of a performance of a system (person).
The logical inference ability of a person is included in the latter.
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A related remark is that the execution of coin-tossing is a di¢ cult stochastic process; a reason
for di¢ culty is that the process possibly includes bankruptcy, that is, the event of the banker
becoming no longer able to pay the maximum prize 2t. Bankruptcy is conceptually natural
in the execution process, but it makes the process complicated for analytical treatments.5 We
adopt the method of Monte Carlo simulation for our study.

The present paper consists of seven sections including this introduction. Section 2 provides a
theory of a monopolistic market with a banker and people. Section 3 gives sketches of derivations
of the people utility functions and consequent behavioral probability. Postponing the formal
treatments of these to Sections 6 and 7, Section 4.1 provides calculation tests for various cases
of parameter values, and Section 4.2 discusses our approach as a possible resolution of the SP
paradox. Section 5 closes the paper with a few remarks.

2 The SP Gamble Market

In this section, we describe the theory of an SP gamble market. Section 2.1 gives the basic com-
ponents of the theory. Section 2.2 explains the temporal structure of the market and formulates
the execution process of coin-tossing by the people with tickets. In the terms of these compo-
nents, Section 2.3 provides the de�nition of an a¢ rmative possibility and discuss its conceptual
foundation for the resolution of the SP paradox.

2.1 Elements of the SP gamble market

The SP gamble market is given as � = h�0;�N i; where �0 is the list of elements for the banker
0 and �N is the components for the people N = f1; :::; ng: The number of people n is assumed
to be 1000 in most examples in the paper: The list �0 is as follows:

S1 : O (open the market) and NO (not open) are alternatives for the banker;

S2 : B0 � 2 is the banker�s initial budget, 2t = maxf2t : 2t � B0g is the maximum prize,
and t is called the budget degree;

S3 : � is the participation fee with 2t � � > 0;
S4 : C(`) is the cost of facility for ` participants for coin-tossing;

S5 : ROI is the return on investment index with a desired level �0 > 0;
this is explained in Section 2.2.

The second list �N is as follows:

S6 : a; b are available choices for each i 2 N ; a is to purchase a ticket and b is not;
S7 : 1

2�i is the cognitive bound of person i 2 N; and �i is called the cognitive degree;
S8 : ui = [ui;ui] is the vector-valued utility function of person i 2 N with the domain fa; bg;

endowed with the interval order �I to be de�ned below;
S9 : Pr�i(a) is a probability of choice a for person i and Pr�i(b) = 1� Pr�i(a) is

the probability of choice b.

5Bankruptcy may be ignored when the banker has a large amount of money in addition to the money prepared
for the maximum prize. When it is ignored, the process can be reduced into that with the sum of binomial
distributions.
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The parameters, except for S5; S8; and S9; are natural numbers; ROI, �0; ui(f); ui(f); Pr�i(f);
are rational numbers for f = a; b.

In S1 to S3; the banker�s alternative choices O; NO; the initial budget B0, and the partici-
pation fee � are given. The maximum prize 2t is determined by B0: The cost function C(`) in
S4 describes the cost needed for the facility running the SP coin-tossing for ` people in addition
to a set-up cost. We assume the following speci�c function throughout the paper:

C(`) =

�
50000 + 10000 � (s+ 1) if 100s < ` � 100(s+ 1)

0 if ` = 0.
(2)

It requires the set-up cost 50; 000c/ = 500$ and the variable cost 10; 000c/ = 100$ for each 100
people, e.g., when ` = 720; C(`) = C(720) = (50; 000 + 10; 000 � 7)c/ = 1; 200$:

For �N ; S6 gives the available choices a and b; and S7 gives the distribution of cognitive
degrees over the people N: Table 2.1 gives an example of a distribution; 'I has the median value
�i = 15; which has the 30% of people with cognitive abilities not to recognize the probability
less than 1

215
= 1

32;768 :

Table 2.1; A distribution of cognitive degrees (%)

' n �i � � � 7 8 9 10 11 12 13 14 15 16 17 18 19 20 � � �
'I � � � 0 0 0 0 0 5 10 20 30 20 10 5 0 0 � � �

The utility function u�i = [u�i ;u�i ] in S8 has the domain fa; bg and takes a 2-dimensional vector
value [u�i(f);u�i(f)] for f = a; b with u�i(f) � u�i(f): The upper ui(f) is the least upper bound
of possible utilities and the lower ui(f) is the greatest lower bound. Two values [ui(f); ui(f)]
and [ui(g);ui(g)] are compared by the interval order �I (cf., Fishburn [7]) de�ned as

[ui(f); ui(f)] �I [ui(g); ui(g)] if and only if ui(f) �I ui(g): (3)

The properties of �I will be fully explained in Section 7. We denote u�i(f) 1I u�i(g) i¤ neither
u�i(f) �I u�i(g) nor u�i(g) �I u�i(f) holds; that is, f and g are incomparable. In this case,
the behavioral probability Pr�i(a) of S9 plays a crucial role.

The utility function u�i for a and b will be explained in the context of EU theory with
cognitive bounds in Section 3.1.

In the gamble market (�0;�N ); the probability distributions over rewards induced by choice
a appears in the objective and subjective manners. With the introduction of the budget degree t;
we truncate the original probability distribution �1 to the set of rewards Yt := f21; :::; 2t; 0g; i.e.,
the objective distribution � t over Yt is de�ned by � t(y) =

1
2t if y = 2

t and t � t and � t(0) = 1
2t
:

The prizes are the same as �1 up to the t-th toss, but after this, all prizes are reduced to 0
with the total probability 1

2t+1
+ � � � = 1

2t
: Now, we let b�i := min(�i; t): We de�ne the subjective

distribution ��i over Y�i = f21; :::; 2b�i ; 0g by

��i(y) =

8<:
1
2t if y = 2t and t � b�i
1
2b�i if y = 0:

(4)

Below the probability 1
2b�i ; the reward is assumed to be 0 with the total probability 1

2b�i+1 + � � � =
1
2b�i : Person i with cognitive degree �i takes this subjective distribution ��i representing the
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alternative a: Following (4), we have �0(0) = 1; in this case, person i does not consider the SP
coin-tossing. Thus, we assume �i > 0 when we consider ��i : Another note is that his choice is
subjective but the coin-tossing is objective; that is, the domain fa; bg of u�i is e¤ectively f��i ; �g;
but when person i chooses ��i ; he mechanically follows the objective probability distribution � t
in the execution stages of coin-tossing. The explicit formula of u�i(��i) will be given in Section
3.

The comparison �I for u�i(��i) and u�i(�) de�ned by the interval order �I given by (3)
often dictates incomparability between ��i and �: Here, person i does not make a decision, but
he is forced to choose either ��i or � for some reason. This will be explained in Section 3.2. In
this case, person i takes a probabilistic behavior. The behavioral probability Pr�i in S9 over the
choices a and b is determined by �i; 2

t;and �, that is,

(�i; 2
t; �) 7�! Pr�i(a): (5)

The simple requirement is that for the comparable case, Pr�i(a) expresses the strict preference,

Pr�i(a) = 1 if and only if u�i(��i) >I u�i(�); (6)

where >I is the strict part of �I : Our concern is the case where a and b are incomparable. The
derivation of Pr�i(a) is sketched in Section 3.2 and is derived in an axiomatic way in Section 7.

We assume that Pr�i(a) = p�i is assumed to be independent over the people. The number
of participants i with �i = k is given as the sum of random variables

P
�i=k

Xi; where Xi = 1
means buying a ticket with probability pk, and Xi = 0 not with 1�pk. The sum

P
�i=k

Xi obeys
a binomial distribution with the expected value �k =

P
�i
Pr�i(a) = n'(k) �pk and variance �2k =

n'(k) � pk(1 � pk), where n'(k) is the number of people with �i = k (a natural number). The
sum of binomial distributions

P
k(
P
�i=k

Xi) is the total number of participants, where k varies
over some �nite domain. This is not a binomial distribution, but the expectation � and variance
�2 of

P
k

P
�i=k

Xi are given simply as � =
P
k �k and �

2 =
P
k �

2
k: In Table 2.1 with n = 1000;

t = 22; and � = 1000; we have � + 443 and �2 + (11:4)2; here, � is small relative to �:

The expectation � may have decimal fractions; we round decimals to the nearest whole
number, which is denoted by ` = d�e : We assume that given fPr�i(a)gi2N ; the number of
people ` = d�e =

lP
k

P
�i=k

Pr�i(a)
m
buy tickets for coin-tossing.

2.2 Temporal structure of the SP gamble market

The temporal structure of the SP gamble market � = h�0;�N i is as follows:
1st stage: the banker chooses O with an announcement (2t; �) to the people or No:
If O is chosen, the market goes to the 2nd stage, but if NO is chosen, the market is over.

2nd stage: each i 2 N receives the announcement (2t; �) and decides to buy a ticket or not.

3rd stage: the people with tickets execute coin-tossing.

These are described in Fig.2. In the 2nd stage, each i reacts to (2t; �) with the behavioral
probability Pr�i(a) = p�i . In the 2nd stage, person i uses his subjective understanding ��i but if
he purchases a ticket, his coin tossing follows the objective distribution � t: The banker�s revenue
is calculated by the results of coin-tossing. The choices by the banker and people are involved
in the �rst two stages. The third stage is a mechanical process.
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The 3rd stage of execution of coin-tossing is as follows:

EC1: the people with tickets are linearly ordered and make coin-tossing one by one;
EC2: the process stops when the banker goes into bankruptcy or when all people �nish.

The people with tickets are ordered as i1; i2; :::; i` and execute coin-tossing one-by-one in this
order. The initial budget of the banker is B0: Let i`B be a person with `B � `; who is the person
to cause bankruptcy for the banker by hitting a large prize. Let (n1; :::; n`B ) be a �nite sequence
with nt 2 f1; :::; tg for t = 1; :::; `B; each nt means that the coin-tossing of person it results in
heads H in the nt-th toss. We denote the banker�s temporal budget B(t) after it�s coin-tossing.6

We de�ne the sequence of temporary budgets (B(0); B(1); :::; B(`B)) by

b0: B(0) = B0;
b1: B(t) = B(t� 1) + � � 2nt for t = 1; :::; `B;
b2: B(t) + � � 2t for t = 0; 1; :::; `B � 1;
b3: if `B < `; then B(`B) + � < 2t:

The banker has the initial budget B(0) = B0 before the start. Person i1 pays participation
fee � to the banker, and makes coin-tossing. If i1 goes to the n1-th toss with the heads H;
the banker pays 2n1c/ to i1. After this payments, the resulting money amount becomes B(1) =
B(0) + �� 2n1 and is brought to the second coin-tossing if B(1) + � � 2t: If B(1) + � < 2t; i.e.,
`B = 1; the banker cannot guarantee the maximum prize 2t for person i2; in this case, the banker
is in bankruptcy : These are described in b0 to b3. In general, this process goes up to person
`B with bankruptcy or to the last person `: We include the case B(`) + � < 2t in bankruptcy.
Using the sequence (n1; :::; n`B ); B(t) is expressed as

B(t) = B0 +
tP
s=1
(� � 2ns) for t = 1; :::; `B: (7)

Thus, B(t)�B0 =
Pt
s=1(� � 2ns) is the sum of net revenue � � 2ns up to t:

The above process is stochastic; `B; (n1; :::; n`B ); and B(1); :::; B(`B) are random variables.
The execution stops at `B < ` with bankruptcy. The expected value of B(`B) is denoted by
B(`B): To study the behavior of (B(0); B(1); :::; B(`B)); we adopts the Monte Carlo simulation
and simulate each person�s coin-tossing by a random number generator. We calculate the average
revenue B(`B) over 10; 000 runs in the Monte Carlo method.

The rules of the SP gamble market are set up to avoid strategic behavior between the banker
and people. Each person i simply reacts to (2t; �); i.e., the prizes up to the maximum prizes
2t and participation fee �; and no interactions between people are necessary to be take into
account.

We are now in a state to consider the evaluation criterion (ROI; �0) of the banker; the return
on investment ROI is given as:

ROI =
B(`B)� (B(0) + C(`))

B(0) + C(`)
=
(B(`B)�B0)� C(`)

B0 + C(`)
: (8)

As stated, the banker borrows B0 + C(`) from a �nancial institution and should return this
amount with some interests after the SP gamble market; for example, if �0 is the interest rate,

6 If we ignore bankrupcy, e.g., enough money can be borrowed from the money market, the length `B is constant
to be ` and we may focus on the sequences of results of coin tossing up to `.
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then the banker should return (1+�0)(B0+C(`)): If the index ROI is greater than or equal to
a desired level �0; say 0:05; which is greater than the interest rate, then the banker generates a
positive pro�t after paying the interest rate. We assume that the positivity of ROI � �0 is a
necessary condition for the banker to open the market.

Suppose that the SP gamble market � = (�0;�N ) is given. Let B0; � are given in S2; S3;
and ` a natural number not greater than n: Recall that the maximal prize 2t is determined S2
and the behavioral probability Pr�i(a); depending upon (2

t; �); is given in S9 and (5). We say
that a triple h(B0; �); `i is an a¢ rmative possibility i¤

` =

&
E
P
k

P
�i=k

Pr�i(a)

'
> 0; (9)

ROI � �0: (10)

Thus, the people follow the behavioral probabilities given above, and ` is the nearest whole
number obtained by rounding E

P
k

P
�i=k

Pr�i(a); and the ROI index is not smaller than the
desired level �0; which is a necessary condition for the banker to open the market.

The main assertions of the paper are:

Assertion 0 (Shapley�s vacuousness): For some k0 � t; if �i � k0 for all i 2 N; then,

(1): � > t implies ` =
l
E
P
k

P
�i=k

Pr�i(a : (2
t; �))

m
= 0;

(2): � � t implies ROI � 0:

Assertion 1 (A¢ rmative possibility): In (1) with 'I of Table 2.1 and �0 = 0:05;

(1): there is an a¢ rmative possibility h(B0; �); `i;
(2): it remains a¢ rmative for changes in parameter values around the above possibility.

This concept of an a¢ rmative possibility is weaker than the monopolistic equilibrium which
requires the �pro�t maximization� over various relevant (B0; �; `)�s. It is even weaker than
the �quantity demanded�in the micro-economics textbook meaning that a �rm calculates who
purchase tickets in response to the announcement (2t; �) and veri�es the ROI value reaches the
desired level �0. Two questions could be raised: First, why do we stop at this concept? Second,
are the epistemic conditions involved in the concept compatible with our ordinary senses. These
questions will be discussed after numerical examples in Section 4.2.

In the standard micro-economics, the monopolist (banker in our case) is assumed to be
the pro�t maximizer, which requires the assumption that it knows the demand function from
consumers. Here, this assumption is too demanding in that even the quantify demanded for
(2t; �) is di¢ cult to know, which we calculate after some mathematical arguments as well as the
Monte Carlo simulation.

3 Sketch of the Derivations of u�i and Pr�i(a)

In Section 3.1, we describe, taking the results of Section 6 as the provisional starts, how to
calculate the value u�i(�) for fee � and the value u�i(��i) for the subjective understanding
��i of � t: To calculate u�i(��i); we need to calculate u�i(x) for various pure alternatives x: As
emphasized in Section 2, u�i(�) and u�i(��i) are often incomparable. We take one more step
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to derive the behavioral probabilities Pr�i(a) for ��i from the vector values u�i(�) and u�i(��i).
For full understanding, axiomatic derivations of u�i(�); u�i(��i)u�i ; and Pr�i(a) will be given
in Sections 6 and 7.

3.1 The utility vectors u�i(�) and u�i(��i)

In this section, we take the following two provisional starts:

Provisional start M: We de�ne u�i (�i � 0) over possible payments Xt := f0; 1; 2; :::; 2tg by

u�i(x) =

(
[x;x] if x = � � 2t��i

[(� + 1) � 2t��i ; � � 2t��i ] if (� + 1) � 2t��i > x > � � 2t��i ;
(11)

where x 2 Xt and � is a natural number with 0 � � � 2�i : By (11), we have u�i(0) = [0; 0] and
u0(x) = [2

t; 0] for x (0 < x < 2t). The other start is to extend the above u�i to an subjective
SP gamble ��i .

Provisional Start E: For �i > 0; we de�ne u�i(��i), recalling b�i := min(�i; t); by
u�i(��i) =

b�iP
t=1

1

2t
� u�i�t(2

t) +
1

2b�i � u�i�b�i(0); (12)

where the amount 0 in the last term follows from the assumption that when �i < t; person
i treats those events reaching t > b�i as having prize 0; which is taken into account (4). Also,
u�i�b�i(0) = [0; 0] as noted after (11). Here, we assume �i > 0 as remarked after (4), but the
subscript �i � t of u�i�t(2t) may take 0 when t = �i: Hence, in start M, �i = 0 is allowed.

The subscript �i � t of u�i�t decreases with the index t of the probability weight
1
2t : The

degree �i is person i�s cognitive ability for the use of probabilities; two types of probability uses
are involved in the recognition of the coe¢ cient probability 1

2t and the measurement of the prize
2t: The latter is hidden in this section, but will be explicit in Section 6.1. Since he uses his total
�i to recognize

1
2t ; he can use the remaining degree �i � t to measure the payo¤ 2

t:

The formulae of (11) and (12) look precise enough, but can be transformed into simpler
and more convenient forms when we restrict our attention on the domains for � and ��i :

7

The formulae in (11) express the results of measuring pure alternatives x�s in terms of the
measurement scale

f� � 2t��i : � = 0; 1; :::; 2�ig (13)

consisting of scale grids � � 2t��i ; � = 0; 1; :::; 2�i on Xt: The di¤erence between each pair of
adjacent grids is 2t��i ; with which Xt is divided into 2

�i subintervals having the same length
2t��i : The above de�nition (11) states that if x coincides with some scale grid � �2t��i ; the utility
value is uniquely determined to be x, i.e., u�i(x) = [x;x], and if x is in an interval, then u�i(x)
is the vector of the adjacent scale grids. In Fig.3, the broken line segment from x = 0 to x = 2t

is the measurement scale with the 2k + 1 number of scale grids; x is exactly measured by the
scale while x0 is expressed by the two adjacent scale grids: This measurement is described in
some axiomatic manner in Section 6.1.

7This is because our theory is local in that these steps are restricted on a choice between participation choice
a = ��i and non-participation b = �, while Kaneko�s [12] theory is global in that preferences are de�ned over the
set of lotteries yet with some depth constraints.
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Figure 3: Measurement scale

The following lemma states that when �i is large, � is exactly measured.

Lemma 3.1. There is some k0 � t such that for all i 2 N; if �i � k0, then u�i(�) = [�;�]:

Proof. Let k0 = t: Then, for �i � k0 = t; � is expressed as � � 2t��i = � � 1

2�i�t
and � = � � 2t��i :

By the �rst case of (11), we have u�i(�) = [�;�]:�

In the above proof, t is taken for k0: In general, k0 may be smaller than t: When � is an
even number, k0 can be t � 1: When � = 1000 = 23 � 125; k0 can be t � 3 and is the smallest
to have the exact measurement:

The other part of (11) is still abstract; we need more concise forms for the purpose of practical
calculations of u�i(�): It is enough to consider fees � with

0 < � < 2t and � 6= 2t (14)

for any t for our purpose. Under this condition, the second case of (11) is divided into the
following:

u�i(�) =

(
[2t��i ; 0] if 0 < � < 2t��i

[(� + 1) � 2t��i ; � � 2t��i ] if � � 2t��i < � < (� + 1) � 2t��i & � � 1:
(15)

The �rst case is the special case of the second for � = 0:We write these separate forms, because
the �rst will appear more than the second in the examples. This will be seen in Table 3.1.

The formula in (12) for u�i(��i) can be expressed without using the sum operator. Since
each term in the sum has the speci�c form u�i�t(2

t); we calculate it by (11):

Lemma 3.2 (Utility values for prizes with cognitive constraints)

(1): Let �i < t: Then u�i�t(2
t) = [2t�(�i�t); 0] for any t (1 � t � �i); and u0(0) = [0; 0]:

(2): Let �i � t: Then u�i�t(2t) = [2t; 2t] for any t � t:

Proof. (1): Suppose �i < t. Let t � �i: Since 0�2t�(�i�t) < 2t < 2t �2(t��i) = 1�2t�(�i�t); we have
the second case of (11) with � = 0; thus, u�i�t(2

t) = [2t�(�i�t); 0]: The formula u0(0) = [0; 0] is
a special case of the �rst assertion of (11):
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(2): Let �i � t: Since 2t = 2�i�t � 2t�(�i�t); we have the �rst case of (11) with � = 2�i�t; thus
u�i�t(2

t) = [2t; 2t]:�

The formula in (12) is calculated into simpler forms. Then, u�i(��i) is compared with u�i(�):

Theorem 3.1 (Value of u�i(��i))

(1): Let �i � t� 1: Then u�i(��i) = [�i � 2t��i ; 0]:
(2): Let �i � t: Then u�i(��i) = [t; t]:

Proof.(1): Plugging the formulae of Lemma 3.2.(1) into (12), we have u�i(��i) =
P�i
t=1

1
2t �

u�i�t(2
t)+ 1

2�i � u0(0) =
P�i
t=1

1
2t � 2

t��i � 2t = �i � 2t��i ; and u�i(��i) =
P�i
t=1

1
2t � 0+

1
2�i � 0 = 0:

(2): Recall b�i = min(�i; t): Plugging the the formula of Lemma 3.2.(2) to (12), we have
u�i(��i) =

Pb�i
t=1

1
2t �u�i�t(2

t) + 1
2b�i �u�i�b�i(0) =Pt

t=1
1
2t �u�i�t(2

t) =
Pt
t=1

1
2t � [2

t; 2t] = [t; t]:�

Now, we give comparisons between u�i(�) and u�i(��i) in a few cases. Only in the case
�i � t; u�imeasures ��i exactly, and in the case where all people have cognitive bounds �i � k0
(k0 is given by Lemma 3.1), u�i measures � exactly. In these cases, if � > t; some people stay at
home. In the other case � � t, people may want to buy tickets, but the revenue for the banker
is less than or equal to the expenditure. Thus, the ROI index is negative, and the banker does
not open the market. These are summarized as the following theorem precisely; it is Shaley�s
vacuousness in our theory.

Theorem 3.2 (Shapley�s vacuousness). Let k0 be the degree given by Lemma 3.1, and
assume that �i � k0 for all i 2 N .

(1): Let � > t: Then, u�i(�) >�i u�i(��i) for all for all i 2 N; i.e., no people buy SP gambles.
(2): Let � � t and B0 � 249: Then, the banker does not open the market.

Proof.(1): Let � > t; and let i be arbitrary in N: Since u�i(�) = [�;�] by Lemma 3.1 and
u�i(��i) = [t; t] by Theorem 3.1.(1), person i strictly prefers � to ��i :

(2): We consider the two cases: (a) B(`B)�B0 � ` � (� � t) and (b) B(`B)�B0 > ` � (� � t).

Case (a): Since ` � (� � t) � 0; we have B(`B) � B0 < 0; which implies that the numerator of
ROI is non-positive.

Case (b): Let B(`B) � B0 � ` � (� � t): It is impossible that ` = 0; since no people participate
in the coin-tossing, i.e., B(`B) � B0 = 0; a contradiction. Now, let ` > 0; that is, ` number of
people make coin-tossing. The maximum net revenue for the banker occurs in the case where
that coin-toss ends at the �rst toss for all of these people `. In this case, the net revenue is
` � (� � 2): Hence, B(`B) � B0 � ` � (� � 2): Since � � t; the numerator of ROI is calculated
as (B(`B) � B0) � C(`) � ` � (� � 2) � C(`) � ` � (t � 2) � C(`): By the de�nition of t in
S2, it holds that 2t � B0 � 249: Hence, t � 49: By the speci�cation of C(`) of (2); we have
` � (t� 2)� C(`) � ` � 47� C(`) � 47000� C(1) = 47000� 60000 < 0: The numerator of ROI
is negative.�

The above theorem assumes B0 � 249 because of several speci�cations of the parameter
values, particularly, the cost function C(�) has the speci�c form stated (2): We take 249 since
this number was referred in Section 1.1.

Let us focus purely on the comparisons between u�i(�) and u�i(��i): The following theorem
states that if � > t; then � and ��i are incomparable or � is strictly preferred, and that otherwise,
they are incomparable for �i < t or ��i is strictly preferred for �i � t. Our concern is the case

13



� > t; where no people want to buy tickets in the strict sense.

Theorem 3.3 (Almost incomparable) (1): Let � > t: There is a k1 � t such that u�i(�) 1�i
u�i(��i) for all �i < k1 and u�i(�) >�i u�i(��i) for all �i � k1.
(2): Let 0 < � � t: Then, u�i(�) 1�i u�i(��i) for all �i < t and u�i(��i) >�i u�i(�) for all
�i � t.

Proof.(1): Let � > t: By Lemma 3.1.(2) and Theorem 3.1.(2), we have u�i(�) = [�;�] >�i
[t; t] = u�i(��i): We choose the minimum k1 so that uk1(�) >k1 uk1(�k1): Observe ut(�) �
ut+1(�) and ut(�t) � ut(�t) for any t; because of (11) and (12). By this, uk1(�) >k1 uk1(�k1)
implies u�i(�) >�i u�i(��i) for all �i � k1: By the de�nition of k1; we have u�i(�) 1�i u�i(��i)
for all �i < k1:

(2): Let �i � t. By Lemma 3.1.(2) and Theorem 3.1.(2), u�i(��i) = [t; t] >�i [�;�] = u�i(�):

Next, let �i < t. By Theorem 3.1.(1), u�i(��i) = [�i � 2t��i ; 0] is a nondegenerate interval. It
holds that �i � 2t��i � t for �i < t; if �i = t � 1 > 0; then (t � 1) � 21 � t: Let �i � 2t��i � �
hold. Then, (�i + 1) � 2t�(�i+1) = (�i + 1) � 2t��i � 12 =

�i+1
2 � 2t��i � �i � 2t��i : By (11), u�i(�) =

[(� + 1) � 2t��i ; � � 2t��i ] by (14) and (11); where (� + 1) � 2t��i > � > � � 2t��i : Hence, u�i(��i)
and u�i(�) have an intersection. Hence, u�i(�) 1�i u�i(��i)�

Theorem 3.3 states that in the essential case � > t; people have no strict preferences to buy
tickets of SP gambles. Up to now, our theory does not reach an a¢ rmative possibility. To see
what are happening in the incomparability cases, we look at the calculation results for u�i(�)
and u�i(��i); which are given in Table 3.1. The results for u�i(�) follow from the �rst case of
(15) and Lemma 3.1, and all the results for u�i(��i) are derived from Theorem 3.1. Then, we
go to the sketch of the behavioral probability Pr�i(a) in Section 3.2.

Table 3.1; u�i(�); u�i(��i), and Pr�i(a) for t = 22

�i 0� 1 2 3 4 5 6 7 8

u�i(�)
�
1�222
0

� �
1�221
0

� �
1�220
0

� �
1�219
0

� �
1�218
0

� �
1�217
0

� �
1�216
0

� �
1�215
0

� �
1�214
0

�
u�i(��i)

�
0
0

� �
1�221
0

� �
2�220
0

� �
3�219
0

� �
4�218
0

� �
5�217
0

� �
6�216
0

� �
7�215
0

� �
8�214
0

�
Pr�i(a) 0 1=2 3=4 5=6 7=8 9=10 11=12 13=14 15=16

�i 9 10 11 12 13 14 15 16 17

u�i(�)
�
1�213
0

� �
1�212
0

� �
1�211
0

� �
1�210
0

� �
2�29
1�29
� �

4�28
3�28
� �

8�27
7�27
� �

16�26
15�26

� �
32�25
31�25

�
u�i(��i)

�
9�213
0

� �
10�212
0

� �
11�211
0

� �
12�210
0

� �
13�29
0

� �
14�28
0

� �
15�27
0

� �
16�26
0

� �
17�25
0

�
Pr�i(a) 17=18 19=20 21=22 23=24 23=26 21=28 15=30 1=32 0

�i 18 19 20 21 22 23 � � �
u�i(�)

�
63�24
62�24

� �
1000
1000

� �
1000
1000

� �
1000
1000

� �
1000
1000

� �
1000
1000

�
� � �

u�i(��i)
�
18�24
0

� �
19�23
0

� �
20�22
0

� �
21�21
0

� �
22
22

� �
22
22

�
� � �

Pr�i(a) 0 0 0 0 0 0

Let us look at only �ve cases in Table 3.1 to show how to calculate the above results. When
�i = 0; we have u�i(�) = [1 � 222; 0] by (15) and u�i(��i) = [0; 0] by Theorem 3.1. In this case,
strict preference u�i(�) >I u�i(��i) holds; hence, the behavioral probability Pr�i(a) of choice a
is 0:When �i = 20; we have u�i(�) = [�;�] = [1000; 1000] by Lemma 3.1 and the remark after it,
and we have u�i(��i) = [20�22; 0] by Theorem 3.1.(1). Then, strict preference u�i(�) >I u�i(��i)
holds: Again, we have the behavioral probability Pr�i(a) = 0:
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When �i = 1; � is strictly between 0 and 2
21; i.e., u�i(�) = [2

21; 0]; and u�i(��i) = [2
21; 0]

is proved by Theorem 3.1.(1). These utility values are identical, and u�i(�) 1I u�i(��i) by
the de�nition (3) of the interval order �I . Then, it is reasonable to put Pr�i(a) =

1
2 ; provided

that person i is forced to make a choice. When �i = 10; we have u�i(�) = [1 � 212; 0] and
u�i(��i) = [10 � 212; 0]: By (3), we have u�i(�) 1I u�i(��i). The vectors are di¤erent; we need a
further consideration to �x Pr�i(a): This will be the subject of Section 3.2.

Table 3.2; u�i(��i); u�i(�); and Pr�i(a)

�i = 0 u�i(��i) = [0; 0] u�i(�) = [1 � 222; 0] Pr�i(a) = 0

�i = 1 u�i(��i) = [1 � 2
21; 0] u�i(�) = [1 � 2

21; 0] Pr�i(a) = 1=2

�i = 10 u�i(��i) = [10 � 2
12; 0] u�i(�) = [1 � 2

12; 0] Pr�i(a) = 19=20

�i = 13 u�i(��i) = [13 � 2
9; 0] u�i(�) = [2 � 29; 1 � 29] Pr�i(a) = 23=26

�i = 20 u�i(��i) = [20 � 2
2; 0] u�i(�) = [1000; 1000] Pr�i(a) = 0

3.2 Behavioral probability Pr�i(a)

Table 3.1 tells that person i with 1 � �i � 16 does not make a choice between ��i and � in the
sense of incomparability, and that person i only with �i = 0 or �i � 17 chooses �: Thus, no
people participate in the SP gamble market in the exact sense.

In general, people are often unable to make choices by rational thinking. One famous story
is Buridan�s donkey (cf., Zupko [28]); a donkey faces two carrots in the same distances (up to
his cognitive ability), cannot choose the right or left carrot, and eventually dies of starvation.8

In our problem, person i �nds incomparability between ��i and �; and our theory is silent about
what his next behavior is. In the real world, majority of people make choices because they have
been forced to make for survival or by social norm, authorities, etc.

Suppose that person i is incomparable between ��i and �; but is forced to make a choice.
He has already used his capacity for his rationalistic choice; now, he uses di¤erent sources to
make a choice. People have had experiences and practices in similar situations. Person i digs
his memories in past experiences of having choices between incomparable alternatives. Here, we
explain the derivation of behavior probability Pri(a) in the three cases in Table 3.2; as explained,
the cases �i = 0 and �i = 20 show strict preference u�i(�) >I u�i(��i): A rigorous derivation
will be provided in an axiomatic manner in Section 7.

The simplest incomparable case is �i = 1: Here, u�i(��i) = u�i(�) = [1 � 222; 0]; since the
utility values are identical; person i has the same inclination to choose either ��i or �: This
inclination is interpreted as the equal probability 1

2 for ��i and �; we de�ne Pr�i(a) = p�i =
1
2

for �i = 1:

Consider the case �i = 10. In this case, the interval u�i(��i) = [10 � 221; 0] is 10 times larger
than u�i(�) = [1 �221; 0] and includes u�i(�); but they are still incomparable with respect to �I :
We partition u�i(��i) into A = [1 � 221; 0] and B = [10 � 221; 1 � 221]: The reasoning for �i = 1 is
applied to the comparison between A and u�i(�); since they are identical, each of A and u�i(�)

8 In literature, there are many instances treating such problems, e.g., �Sophie�s Choice�by William Styron and
�Terror� by Ferdinand von Schirachon. In the literature of economics, however, people (experimental subjects)
are simply assumed to answer to questionaires. In the game theory literature, Davis-Maschler [4] asked some
game theorists about a questionaire related to their theory, only Martin Shubik made an explicit refusal to answer
to it because of insu¢ ciency of descriptions of the theory for answering.
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Figure 4: Behavioral probability Pr�i(a)

happens with probability 1
2 : The second case is the comparison between the remaining B and

u�i(�); the interval order �I gives a strict preference to B over u�i(�) = [1 � 221; 0]; this gives
probability 1 to B: The weights for these two comparisons between

A vs. u�i(�) and B vs. u�i(�)

are assumed to be proportional to the sizes, i.e., the jAj
jAj+jBj =

1
10 and

jBj
jAj+jBj =

9
10 ; where jAj and

jBj are the lengths of the intervals A and B:We calculate the weighted sum of the probabilities
having ��i as

jAj
jAj+jBj �

1

2
+ jBj

jAj+jBj � 1 =
19

20
: (16)

Here, a large portion of people with cognitive degree 10 choose participation.

Consider case �i = 13: In this case, we partition u�i(��i) = [13 � 29; 0] into A = [1 � 29; 0];
B = [2 � 29; 1 � 29]; and C = [13 � 29; 2 � 29]; and consider the three comparisons A vs.u�i(�); B vs.
u�i(�); and C vs. u�i(�): In the �rst comparison, u�i(�) = [2 � 29; 1 � 29] >I A; in the second,
u�i(�) and B are identical, in the third, C >I u�i(�): We take the weighted sum in the same
way as above:

jAj
jAj+jBj+jCj � 0 +

jBj
jAj+jBj+jCj �

1

2
+ jCj

jAj+jBj+jCj � 1 =
1

26
+
22

26
=
23

26
:

In the other cases of Table 3.1, we calculate Pr�i(a) in the manner as one of the above 5 case.
Table 3.1 gives the exhaustive list of Pr�i(a), which is depicted with the solid line in Fig.4; the
other broken lines are with t = 19; :::; 23:

A methodological remark is: we will ratios of di¤erences in the upper and lower utilities.
This needs the those utility values to be cardinal in the sense that they are determined up to
positive linear transformations, which will be stated in Lemma 6.1 and Remark 6.1.

4 Performance of the SP Gamble Market

We look at the performance of our theory in numerical examples. Our numerical calculations
have the following tasks; one is to show an a¢ rmative possibility in the sense of (9), (10), and
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the other task is to see the performance relative to the changes of parameter values of the SP
gamble market. We employ the comparative statics method (sensitivity analysis) to have the
second task, to see how the a¢ rmative possibility works positively as well as negatively. We
choose only some examples of changes for parameters. Still, these calculations show the rich
performance of the theory. We mention brie�y the possible e¤ects of other parameters and the
example of a Japanese state lottery.

4.1 Comparative statics: a¢ rmative and negative possibilities

We adopt, as the central case, the following parameter values:

B0 = 2
t = 222c/; t = 22; � = 1000c/ = 10$; n = 1000; and 'I ; (17)

where 'I is given in Table 2.1. The behavior probability Pr�i(a) is fully determined and given
in Table 3.1. The expected number of participants is given as

` =

&P
�i

'I(�i) � n � Pr�i(a)
'
: (18)

We take the nearest whole number d�e :We assume that these people ` go to the execution stage
of coin-tossing. Using Tables 2.1 and 3.1, we calculate ` = 443: These people buy the ticket of the
SP gamble; (18) has a positive number of people, but the requirement (10): ROI � �0 = 0:05
should still be considered. We adopt by the Monte Carlo method; the coin-tossing of each person
is simulated using a random number generator. The coin-tossing stage for 443 people is repeated
10; 000 times, and the average is adopted to calculate the total net (t.n.) revenue B(`B) � B0,
bankruptcy rate, and ROI.

We focus on four parameters to have comparative statics, which are listed in Table 4.1. We
see the e¤ects of changes of one parameter, provided that the other parameters are �xed; the
central case is (17) with the other parameters �xed. The �rst two are simple and are easily
interpreted. Then, (c) and (d) are more subtle and essential in our theory.

Table 4.1; the list of comparative statics

#participants t.n.revenue bankruptcy ROI

(a): Additional: B0 � 2t �! & & % &
(b): participation fee � & % & & % &
(c): budget degree t % & % % % &
(d): cognitive degrees % % % %

(a): Additional B0 � 2t (t = 22): In Section 1.1, we adopted the budget B0 = 47; 000$ from
the OECD data, and chose 2t = 222 = 4194304c/ for the maximum prize within the budget B0:
In our theory, the maximum prize 2t works e¤ectively to attract people to purchase tickets, but
the additional B0� 2t has no e¤ects on the behavior of people. This additional amount has two
e¤ects on the banker; it decreases the bankruptcy possibility and so increases the t.n.revenue.
This additional amount is a borrowing from some �nancial source, and its interest payment is a
cost to the banker, which is counted in the ROI index. Let us see Table 4.2. Recall d`e = 443;
which is constant over the �ve cases. As stated, those people go to the execution stage of coin-
tossing one-by-one until the banker gets bankruptcy or all the people �nish coin-tossing. The

17



calculation results are given as Table 4.2.

Table 4.2; Changes of the additional money

budget B0 #participants t.n.revenue $ bankruptcy % ROI

B0 = 2
22c/ 443 4284 1:08 :076

B0 = (2
22+1000)c/ 443 4313 0:79 :077

B0 = (2
22+10000)c/ 443 4320 0.52 .077

B0 = (2
22+100000)c/ 443 4332 0.23 .076

B0 = 47; 000$ 443 4351 0:15 :069

The initial budget B0 is increased from 222c/ to 47; 000$ by adding some amounts of money.
The total net revenue B`B � B0 is increasing with additional amounts, since bankruptcy is
avoided by additional amounts. This increases the ROI in the beginning but decreases after some
amount, because the additional amount yields larger interests. In the last row of B0 = 47; 000$,
the total net revenue is higher than the �rst row, but the ROI value is smaller.

In the following, we assume B0 = 2t:

(b): Changes in the participation fee �: As expected, the number of participants is decreas-
ing with the fee �: The bankruptcy rate is decreasing because a higher fee avoids bankruptcy
by increasing the budget for the next person. The total net revenue is increasing by � = 10$;
and then it decreases since the number of participants decreases. A similar behavior is observed
on the ROI; it takes the maximum at � = 20$: The choice between 10$ and 20$ needs another
criterion.

Table 4:3; Changes of �

Cases n Values # participants revenues $ bankruptcy % ROI

� = 3$ 761 2067 2.95 .018
� = 5$ 668 3140 1.99 .046

� = 10$ 443 4284 1.08 .076

� = 20$ 210 4142 0.40 .078
� = 30$ 133 3950 0.24 .076
� = 40$ 78 3096 0.21 .059

(c): Budget degree t: As stated in the end of Section 1.1, the maximum prize 2t has the role

Table 4.4; Changes of the maximum prize 2tc/

Maximum prize #participants t.n.revenue $ bankruptcy % ROI

220c/ 78 759 0:88 :014

221c/ 210 2032 1:04 :057

222c/ 443 4284 1:08 :076

223c/ 668 6452 1:32 :062

224c/ 826 7964 1.14 .039

to attract people to SP gamble market: This is shown in Table 4.4; the larger is t; the larger is
the participation number. The reason is as follows: for a small budget degree t; the cognitive
ability works to evaluate precisely prizes, but for a larger t; it fades out. The exact argument of
this e¤ect will be discussed in Section 6.1.
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The bankruptcy rate is also increasing with t up to t = 23: When B0 = 224c/; more people
are attracted, by even larger prize 224c/ + 167; 772$: Here, the bankruptcy rate gets smaller,
1:14%; than in the case B0 = 223c/: The reason is, perhaps; the maximum prize 224c/ is much
larger than 223 and the probability of going beyond the 23th coin-tossing is small: This large
prize causes the decrease of ROI with higher interest payments, from the previous cases: For
the same reason, ROI is decreased from the case B0 = 222c/ to B0 = 223c/:

(d): Cognitive bounds: The concept of cognitive bound 1
2�i plays a crucial role in our theory,

but being di¤erent from the other variables in (a) to (c), the banker cannot control the distri-
bution ' on �i�s. Still, it would be an important question for our study how ' is distributed.
Here, we consider the following four distributions from 'III to '0; it is shifted to the left by
degree 1; and the median case of each is denoted by the bold 30%. The distribution 'III has
more people with lower cognitive degrees, and as the distribution goes down, more people have
higher cognitive degrees.

Table 4:4; distributions of cognitive bounds

' n �i � � � 7 8 9 10 11 12 13 14 15 16 17 18 19 20 � � �
'0 � � � 0 0 0 0 0 0 5 10 20 30 20 10 5 0 � � �
'I � � � 0 0 0 0 0 5 10 20 30 20 10 5 0 0 � � �
'II � � � 0 0 0 0 5 10 20 30 20 10 5 0 0 0 � � �
'III � � � 0 0 0 5 10 20 30 20 10 5 0 0 0 0 � � �

It is found in Table 4:5 that the number of participants is larger with a lower distribution.
The bankruptcy rate is larger from '0 to 'III , but the ROI rate is also larger in the same
direction. Both are caused by the increase of participants `; though the increase of bankruptcy
rate has an e¤ect of decreasing ROI: In this table, we should not forget that the banker cannot
choose ' directly; thus, the ROI rate is a reference for the banker to think about opening the
market or not.

Table 4:5; Changes of cognitive abilities

Distribution ' # participants ` t.n.revenues $ bankruptcy % ROI

'0 229 2223 1.05 .033

'I 443 4286 1:08 :076

'II 668 6465 1:09 :122

'III 802 7751 1.15 .147

4.2 Further possible studies

In Section 4.1, we have seen the performance of our theory in examples with various parameter
changes from the central case in (17). These results seem compatible with our ordinary senses,
but we have �xed some elements of the theory. Here, we indicate a few other possibilities of
parameter changes.

(e): Number of people n and cost function: This is a control variable for the banker when
the banker can choose a place or a community. In this sense, this di¤ers from (a) to (c). If n
is much larger than 1; 000; the �xed and variable costs of C(�) should be reconsidered taking
the budget degree t into account. When t is much larger than t = 23; the bankruptcy rate may
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be kept small, but once it happens, the banker would have a large damage. In this case, the
question to avoid bankruptcy in (a) is relevant.

The opposite case is with small n: This is relevant to an experimental study, since a large
budget cannot be feasible for a laboratory experiment and � should be small, too. For example,
when n = 100 � 200; perhaps, the relevant cognitive degrees treated in (d) are too large. Test
subjects may be students, and they may live under low income situations. It may be possible
to arrange experimental designs in the perspective of the present paper.

(f ): Risk attitudes: We have assumed risk neutrality for the utility functions of people. This
simpli�es the calculation of u�i(��i); speci�cally, as Theorem 3.1. Without risk neutrality, we
can adopt the risk-averse utility function u�i(�); but should return to the general formula in
(12). An implementation with a computer program could not be very di¢ cult; it would provide
examples appealing more to our ordinary senses. We have now large freedom of a choice of a
utility function, which requires a lot of studies. This extension to allow risk aversion may be
relevant for (e).

(g): Meanings of simulations: We do not use fully the simulation method in the two senses.
The SP gamble market � = (�0;�N ) has two separated processes depicted in Fig.2. The
calculation of the number of participants is based on the theory given in Section 3.1; it is not
based on a simulation method. Once the number of participants is determined, we adopted
the Monte Carlo method to pursue the dynamics of the banker�s budget. We use the Monte
Carlo method to calculate the statistical distribution of the outcomes, because it is theoretically
di¢ cult to calculate the probability distribution of the outcome.

The other possible simulation study is fully to implement the Monte Carlo method both in
two stages. Now, we see the behavior for a smaller number of runs, e.g., 25 � 50 runs/year,
instead of a huge number, such as 10; 000; of runs to calculate statistical distributions. This is
closer to social environments, but for this kind of studies, we need the analysis of the present
paper as a benchmark case.

The following is does not belong to comparability statics in the SP gamble market. However,
it is still a variant of the SP gamble market and shows a perspective of our analysis.

(h): Application to a state lottery: A state lottery is a variant of the SP gamble market
(�0;�N ) and helps us consider what should be emphasized for the SP gamble market.9 Table
4.6 describes one called the year-end Jumbo Lottery (2020) in Japan. The 1st prize could give
the huge amount of money about 7 million$, yet with the tiny probability 5

108
:

Table 4.6; the Year-end Jumbo (YEJB) Lottery

prizes 1st 1st�1 1st�2)� 2nd 3rd 4-th 5-th 6-th 7-th miss
rewards 7 � 108U 1:5 � 108 105 107 106 5 � 104 104 3000 300 0

probabilities 5
108

1
107

1
105

5
107

5
106

1
104

2
104

1
102

1
10 :889685�

The expected revenue from this lottery is 128U; and the price of the ticket is 300U: Here,
Shapley�s vacuousness could hold as long as the ER criterion is assumed for people and the
banker. The YEJB lottery still attracts some people.10 This di¢ culty could be eliminated

9 In Japan, the business of lottery is organized by the non-pro�t organization �Japan Lottery Association�. It
is legally determined that the expected value of rewards from a ticket is at most a half of a ticket: No one would
buy the tickets.as long as they follow the expected value. However, since the association was founded in 1964; it
has run lotteries constantly with large revenues, and has attracted a large number of people.
10Here, the probability of the 1st�2 prize is taken as 5

107
as an approximation for simplicity; and the that of

miss :889685 is an approximation.
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by introducing the cognitive bound for people. It would be interesting to make comparisons
between the SP gamble market and this YEJP lottery from the taking the points (e) to (g) into
account.

We note that Theorem 3.1 cannot be applied to this problem, and thus, we should return to
the summation formula (12).

5 Discussions

This paper started with Shapley�s critique formulated as SH1 and SH2 in Section 1.1; the original
SP paradox is removed by introducing a �nite budget. Following SH1 and SH2, however, it is
changed into Shapley�s vacuousness as long as the ER criterion is kept for the banker and
people. This vacuousness is a variant of the SP paradox but is more serious in that it includes
a larger class of societal problems including state lotteries, insurances, and Black swan events;
the classical EU theory fails to treat them in a natural manner. We formulated the SP problem,
taking SH1 and SH2 into account, as the SP gamble market with a banker and people. We
applied the EU theory with bounded cognitive abilities developed in Kaneko [12] to people. We
have succeeded in showing a quite rich resolution of Shapley�s vacuousness.

The results in Section 4.1 look compatible with our ordinary senses. This is true because the
parameter values of the theory are taken following our ordinary senses. Also, since the theoretical
structure has enough complexity to calibrate the theory to avoid possible incompatibilities.
Because our ordinary senses are partial, we cannot make precise judgments on numerical results.
Perhaps, this is a limit of our method to resolve the SP paradox. To go beyond this conclusion,
what should we do?

One possibility is to analyze what our ordinary senses are. The inductive game theory,
initiated by Kaneko-Matsui [14], Kaneko-Kline [13], look for experiential sources for a player�s
understanding of a game structure. This theory may give a good hint for a study of our ordinary
senses and where we should go.

Although there are similar markets to the SP gamble market, there are no actual markets
having the structure of of the SP gamble markets. It is impossible to carry out �eld experiments
on the SP gamble markets. There are two ways to overcome this di¢ culty. The �rst is to conduct
a �eld study: a hypothetical SP gamble market is designed and ask people if they participate in
the market with a given fee; and we may target similar state lottery markets, such as mentioned
in (h), Section 4.2. We can study such markets with our theory, and a �eld research is possible,
too. The second is to target laboratory experiments; here, the exact SP gamble markets can be
designed such as the miniature gamble markets mentioned in Section 4.2.

The theory may be modi�ed to apply it to similar but di¤erent problems where some events
take place with very small probabilities; one example, investments and/or insurances. Here,
we can discuss how such an insurance is designed by a company to attract customers. In a
�black swan problem�such as an accident of a nuclear plants, the control of the probability of
an severe accident is a true problem, but how to show (hide) it is �small�is an actual problem
for an electricity company. This may be in the perspective of our theory and can be a good
contribution to understanding of such a �black swan problem�.
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6 Axiomatic Bases for the Provisional Starts for u�i(�) and u�i(��i)

In Section 3, we took the provisional starts (11) for u�i(x) (x 2 Xt = f0; 1; :::; 2tg) and (12)
for u�i(��i): Kaneko [12] separated explicitly these two steps for the development of the EU
theory with cognitive bounds, while the separation could be implicit in classical EU theory (cf.,
von Neumann-Morgenstern [27], Herstein-Milnor [10]). In this section, we derive (11) and (12)
from the bases in axiomatic manners. We emphasize that the following development has two
di¤erences from [12]. Our theory is very local in that they aim to make comparisons between
only u�i(�) and u�i(��i); while [12] is global in that the comparisons are made for the pairs in
the set of possible lotteries. In this sense, the present treatment is more faithful to bounded
rationality of Simon [24]. The other di¤erence is that here risk neutrality is assumed, while [12]
treated general preferences.

We prepare various mathematical concepts, some of which are already given. Person i�s
cognitive degree �i de�nes his cognitive bound

1
2�i ; he can think about probabilities expressed

only as probability grids �
2�i (0 � � � 2

�i); and the set of probability grids is given as �k = f �2k :
0 � � � 2kg for k = 0; :::; �i: Then, �0 = f0; 1g ( �1 ( � � � ( ��i : We de�ne the depth �(�) = t
of � 2 �t i¤ � 2 �t � �t�1: Then, �(�) = t if and only if � is expressed as �

2t for some odd �:
Thus, each � 2 �k has at most depth k: The depth �(�) plays a crucial role in Section 6.2.

6.1 Measurement of pure alternatives to the Provisional Start M

The goal is to show the formula (11) for u�i(x) (x 2 Xt) from the viewpoint of EU theory with
cognitive bounds. Person i is conscious of the upper reference point 2t and the lower reference
point 0: Each pure alternative x 2 Xt is measured by the measurement scale Bk(x;x) of depth
k = 0; 1; :::; �i consisting of x = 2

t; x = 0; and probability grids �
2k
(0 � � � 2k); i.e.,

Bk(x;x) = f[x; �;x] : � 2 �kg; (19)

where expression [x; �;x] is a scale lottery, meaning that the reference points x = 2t and x = 0
happen with probabilities � and 1��: The scale Bk(x;x) consists of all scale lotteries of cognitive
depth at most k. As k increases, the scale Bk(x;x) is getting more precise, up to the most precise
scale B�i(x;x):

Let k be a depth with 0 � k � �i:We let Q2(�) := f� = (�; �) 2 Q�Q : � � �g; where Q is
set of rationals. A base utility function uk is a function over Bk(x;x)[Xt having a 2-dimensional
vector value uk(f) = [uk(f);uk(f)] in Q2(�) for each f 2 Bk(x;x)[Xt: As stated above, uk(f)
and uk(f) are interpreted as the least upper of bounds and greatest lower bounds of possible
utilities from f: We assume two axioms on uk for k = 0; :::; �i: The �rst axiom states that uk is
based on the measurement scale of precision k.

Axiom M0(Measurement scale):(1)(Upper and lower benchmarks):

uk([x; 1;x]) = uk([x; 1;x]) > uk([x; 0;x]) = uk([x; 0;x]); (20)

and these values are independent of k;

(2)(Expected utility for scale lotteries): for all [x; �;x] 2 Bk(x;x);

uk([x; �;x]) = �uk([x; 1;x]) + (1� �)uk([x; 0;x]): (21)
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We stipulate that when uk(f) = [uk(f);uk(f)] satis�es uk(f) = uk(f); we write uk(f) =
[uk(f);uk(f)] dropping the upper and lower bars. Using this, Axioms M0.(1) states that the
components of uk([x; 1;x]) and uk([x; 0;x]) are expressed without the upper and lower bars.
The reference points [x; 1;x] = x = 2t and [x; 0;x] = x = 0 are precisely measured, and x
is strictly better than x: Axiom M0.(2) is the expected utility property over the scale lotteries;
that is, the value uk([x; �;x]) is the expected values of uk([x; 1;x]) and uk([x; 0;x]) with the
probability weights � and 1 � �: Hence, uk([x; �;x]) is the vector of components without the
upper and lower bars. Since fuk([x; �;x]) : [x; �;x] 2 Bk(x;x)g with �I is isomorphic to the set
�k; uk represents Bk(x;x) as well as �k:

The next axiom, M1, describes how a pure alternative x 2 Xt is measured. In this paper,
we assume the risk-neutral utility function uk(x): In the axiom, we use �

2k
x = �

2k
x+ (1� �

2k
)x;

because x = 0:

Axiom M1 (Risk-neutrality): for all x 2 Xt
(1): x = �

2k
x if and only only if uk(x) = uk([x; �2k ;x]);

(2): �+1
2k
x > x > �

2k
x if and only if uk(x) = [uk([x; �+12k ;x]);uk([x;

�
2k
;x])]:11

The left-hand of M1.(1) is a representation of pure alternative x in terms of convex combi-
nations, �

2k
x = �

2k
x+(1� �

2k
)x; of the upper and lower reference points with the weights �

2k
and

1� �
2k
, and the right-hand side is the expected utility of x and x with the same weights. M1.(2)

is the same assertion except with the replacement of the exact weights by the adjacent weights,
where the upper and lower bars are unnecessary by Axiom M0.

We take a speci�c representation fukg�ik=0 satisfying;

uk([x; 1;x]) = x = 2
t and uk([x; 0;x]) = x = 0: (22)

By Axiom M0.(1), these values are independent of k � �i: This is a normalization and causes
no conceptual problem, which will be shown in Lemma 6.2.

We have the following theorem; the second assertion is the goal, i.e., the formula (11), of
this subsection.

Theorem 6.1(Measurement by the scale): (1): For any k = 0; 1; :::; �i and x 2 Xt;

uk(x) =

8<:
[ �
2k
x; �

2k
x] if x = �

2k
x

[�+1
2k
x; �

2k
x] if �+1

2k
x > x > �

2k
x;

(23)

(2): Under (22), (23) is (11).

Proof. We consider (1) and (2) both only in the case where x = �
2k
x: The other case is parallel.

Let x = �
2k
x: By Axiom B1.(1) and B0.(1), we have uk(x) = uk([x; �2k ;x]) = [

�
2k
x; �

2k
x]; i.e., (1).

Then, plugging (22), we have uk(x) = [� � 2t�k; � � 2t�k]; i.e., (2).�

An important result in the classical EU theory is the uniqueness of a derived utility function
up to a positive linear transformation (cf., von Neumann-Morgenstern [27], Chap.1, Herstein-
Milnor [10]). Our theory shares this property; the structure of vector-value utility functions is
preserved under a positive linear transformation. It guarantees that the normalization (22) is
meaningful. However, the property needs to be described speci�cally in our context; two streams
11The risk-aversion may be introduced by modifying Axiom M1. There are a few manners for this modi�cation.
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fukg�ik=0 and fu0kg
�i
k=0 of utility functions are a¢ ne-transformed to each other if and only if they

are identical with respect to intended preferences including incomparabilities. The following
lemma states one direction in each of (i) and (ii), but it implies both directions.

Lemma 6.1 (Uniqueness up to a¢ ne transformations). Let fukg�ik=0 and fu0kg
�i
k=0 be

given with Axioms M0 and M1. Then, for some rational � > 0 and �; u0k(x) = �uk(x)+� � [1; 1]
for all x 2 X�i if and only if for all k � �i; and x 2 Xt;

(i): if uk(x) = [uk([x; �+12k ;x]);uk([x;
�
2k
;x])]; then u0k(x) = [u

0
k([x;

�+1
2k
;x]);u0k([x;

�
2k
;x])];

(ii): if uk(x) = uk([x; �2k ;x]); then u
0
k(x) = u

0
k([x;

�
2k
;x]):

Proof (Only-If): Let u0k(�) = �uk(�)+� � [1; 1]: Then, u0k(x) = �uk(x)+� � [1; 1] and u0k(x) =
�uk(x) + � � [1; 1]: We consider (i). We show only that if uk(x) = uk([x;

�
2k
;x]); then u0k(x) =

u0k([x;
�
2k
;x]): By Axiom M0.(1), u0k([x;

�+1
2k
;x]) is decomposed into �

2k
u0k(x) + (1 � �

2k
)u0k(x) =

�
2k
(�uk(x) + � � [1; 1]) + (1� �

2k
)(�uk(x) + � � [1; 1]) = �( �2kuk(x) + (1�

�
2k
)uk(x)) + � � [1; 1] =

�uk([x;
�
2k
;x])+� � [1; 1]: It follows from this and u0k(x) = �uk(x)+� that u0k(x) = u0k([x; �2k ;x]):

Similarly, we have (ii).

(If): We take � = u0k(x)�u0k(x)
uk(x)�uk(x) and � = u

0
k(x)�

u0k(x)�u0k(x)
uk(x)�uk(x) �uk(x): It also holds that � = u

0
k(x)

� u0k(x)�u0k(x)
uk(x)�uk(x) � uk(x): Then, u

0
k(x) = �uk(x) + � � [1; 1] by Axiom B0.(2).�

6.2 Extension to ��i to the provisional start E

The goal is to show the formula (12) for u�i(��i) from the viewpoint of EU theory with cognitive
bounds; in other words, fukg�ik=0 given in Section 6.1 is extended to ��i . Let us explain the basic
idea of the derivation using Fig.5. Let �0�i = ��i : To avoid confusions, we use a new symbol
U�i(�) rather than u�i(�); since the domain of U�i(�) di¤ers from that of u�i(�): We consider
U�i(��i): By one axiom, we return from U�i(�) to u�i(�)

The process of derivation starts separating the smallest prize 21 in �0�i from the remaining
part �1�i ; it is expressed as the subtree in the second broken-line rectangular in Fig.5. The
outermost �0�i = ��i is expressed as the compound lottery

1
22
1 � 1

2�
1
�i
; meaning that each of

21 and �1�i happens with probability
1
2 . These components are is evaluated by U�i�1; thus,

U�i(��i) is decomposed into U�i(��i) =
1
2 �U�i�1(2

1) + 1
2 �U�i�1(�

1
�i
): As mentioned after the

formula (12), the person spends the cognitive resource to measure the outer probability 1
2 ; his

cognitive resource decreases to �i� 1, which is the subscripts of U�i�1(2
1) and U�i�1(�

1
�i
): The

term U�i�1(�
1
�i
) is further decomposed to the third rectangular 12 �U�i�2(2

2)+ 1
2 �U�i�2(�

2
�i
):

Repeating this decomposition and evaluation, person i goes to the innermost rectangular to
�nish this process.

We need to de�ne the elements occurring in Fig.5. Recall b�i := min(t; �i): The domain
(support) of �0�i = ��i is denoted by Y�i = fy1; :::; yb�i ; yb�i+1g; where yt = 2t for t � b�i and
yb�i+1 = 0: We restrict Y�i to Y

k
�i
= fyk+1; :::; yb�i ; yb�i+1g for k = 0; :::;b�i � 1; for example,

Y 0�i = Y�i and Y
b�i�1
�i = f2b�i ; 0g: For k = 0; :::;b�i � 1; we de�ne �k�i over Y k�i by

�k�i(yt) =

8<:
1

2t�k
if k + 1 � t � b�i

1
2t�k

if t = b�i + 1: (24)
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Figure 5: Thought process into the inner lotteries

The �rst �0�i is ��i itself, and the last �
b�i�1
�i has the support Y b�i�1�i = f2b�i ; 0g with �b�i�1�i (2b�i) =

�
b�i�1
�i (0) = 1

2 : In the above thought process, �
k
�i
is decomposed into 1

22
k+1 � 12�

k+1
�i

for k < b�i�1;
the last one �b�i�1�i has the domain Y b�i�1�i = f2b�i ; 0g and is no longer decomposed.

We describe the above idea of the decomposed process in an axiomatic manner. For this
purpose, we need a few more de�nitions. Let Ll(Xt) = ff : Xt ! �l :

P
x2Xt f(x) = 1g;

where Xt = f0; 1; � � � ; 2tg and l is a depth, i.e., a nonnegative integer. We say that (u;�) is
a legitimate pair i¤ u = (u; u) is de�ned over a subset � of Ll(Xt) for some l and it takes
the values in Q2(�): We say that h(U�i ;�

0); (U�i�1;�
1); :::; (U�i�b�i ;�b�i)i is a trajectory of

the though process of decomposition i¤ (U�i�k;�
k) is a legitimate pair for each k = 0; 1; :::;b�i:

The length of a trajectory can be shown to be b�i = min(t; �i) (without counting (U�i ;�
0)) as

a result from our axioms for the process, but to avoid unnecessary complications, we use the
length b�i as given.

The process starts with evaluation of utility values from participation fee � and his subjective
understanding ��i of � t. This is made by decomposing ��i into subdistributions of shallower
depths. Then, we make connections between adjacent pairs (U�i�k;�

k) and (U�i�(k+1);�
k+1)

in a trajectory: For these connections, we need two concepts: Let f; f1; f2 be three lotteries in
Ll(Xt) with some l � 1: We say that ff1; f2g is a decomposition of f i¤

f(x) =
1

2
� f1(x) + 1

2
� f2(x) for all x 2 Xt; (25)

for t = 1; 2; �(f t(x)) < �(f(x)) for all x 2 Xt with �(f(x)) > 0: (26)

In Fig.5, subjective lottery �k�i is decomposed to yk+1 = 2k+1 and �k+1�i
: In general, a lottery

may have multiple decompositions. We say that f 2 Ll(Xt) is mixed i¤ 0 < �(f(x)) for some
x 2 Xt:

Let h(U�i ;�
0); (U�i�1;�

1); :::; (U�i�b�i ;�b�i)i be any trajectory.
Axiom E0 (Comparison target): The domain of U�i is �

0 = f�; �0�ig; where �
0
�i
= ��i :

Axiom E1 (Decomposition): Let k = 0; :::;b�i � 1 and let f be mixed: Then, f 2 �k if and
only if f has a decomposition ff1; f2g such that ff1; f2g � �k+1:

Axiom E2 (Reduction of utility value): For k = 0; :::;b�i�1; if f 2 �k has a decomposition
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ff1; f2g; then
U�i�k(f) =

1
2 �U�i�(k+1)(f

1) + 1
2 �U�i�(k+1)(f

2): (27)

Axiom E3 (Connection to the Measurement Process): U�i�k(y) = u�i�k(y) for any
y 2 �k \Xt and k � b�i:

Axiom E0 states that the axioms are about the evaluations of � and �0�i : Axiom E3 implies
that the evaluation of � is the utility u�i(�) given in Section 6.1. The remaining part of E0 is
�0�i = ��i in �

0: This is decomposed to lotteries of shallower depths by E1 to E3.

Axiom E1 requires that when f 2 �k is mixed, f is decomposed into two lotteries in �k+1;
and conversely, if f is obtained by combining two lotteries f1; f2 in �k+1; then f belongs to �k:
It follows from the depth constraint (26) that the depths of lotteries in �k are strictly decreasing,
and the process stops when �k has no mixed lottery: It will be shown that this happens for
k = b�i; thus the length of a trajectory is uniquely determined to be b�i:

Axiom E2 connects the utility values of (u�i�k;�
k) to those of (u�i�(k+1);�

k+1) via de-
compositions. The subscripts of the utility functions are numbered along the decomposition
process, and contain the information of permissible depths. In the beginning of the process,
person i evaluates the utility value U�i(f) from the viewpoint of cognitive degree �i: Then, he
enters the scope of lower cognitive degree �i � 1 with probability weight 12 ; considers a decom-
position ff1; f2g of f; and evaluates each of ff1; f2g is from the viewpoint of cognitive degree
�i � 1: Thus, U�i�1 is used with the outer weights

1
2 in (27):

The �rst �0�i is ��i , and in general, �
k
�i
is de�ned over the support Y k�i : The last �

b�i�1
�i

has the support Y b�i�1�i = f2b�i ; yb�i+1g = f2b�i ; 0g; and the decomposition is applied to neither
2b�i nor 2b�i+1; and the process does not go any further. We have the following theorem from
Axioms E0 to E2: the domains �0; �1; :::;�b�i are uniquely determined, but the utility functions
U�i ;U�i�1; :::;U�i�b�i are determined within some freedom, which will be explained below: A
proof will be given in the end of this section.

Theorem 6.2 (Decomposition trajectory): Suppose�0 = f�; �0�ig: A trajectory h(U�i ;�
0);

(U�i�1;�
1); :::; (U�i�b�i ;�b�i)i satis�es Axioms E1 and E2 if and only if ;

�k = f2k; �k�ig for each k � b�i � 1 and �b�i = f2b�i ; 0g; (28)

U�i(�
0
�i
) =

kP
t=1

1

2t
�U�i�t(yt) +

1

2k
�U�i�k(�

k
�i
) for each k � b�i � 1: (29)

Under Axioms E0, Axioms E1 and E2 form necessary and su¢ cient conditions for a trajectory
to be the same as what is described in Fig.5. As remarked stated, the domain �k in (28)
is uniquely determined and �b�i = f2b�i ; yb�i+1g = f2b�i ; 0g: (29) is an intermediate expression
obtained in the decomposition process up to k � b�i � 1: When k = b�i � 1; the residue 1

2b�i�1 �
U�i�(b�i�1)(�b�i�1�i ) becomes 1

2b�i�1 � (12U�i�b�i(2b�i) + 1
2U�i�b�i(0)); we obtain, under Axiom E3,

U�i(�
0
�i
) =

b�iP
k=1

1

2k
� u�i�k(yk) +

1

2b�i � u�i�b�i(yb�i+1): (30)

This formula is the goal (12), by denoting U�i(�
0
�i
) by u�i(�

0
�i
):

Remark 6.1. The uniqueness result mentioned in Lemma 6.1 is extended to the formula (30).
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Now, we go to the proof of Theorem 6.2. In general, a lottery f 2 Lk(X�i) may have multiple
decompositions; this multiplicity makes an application of Kaneko�s [12] theory di¢ cult. In the
case of the SP lottery �k�i , however, we can prove uniqueness, which simpli�es the application
of Axiom E2, which is the following lemma.

Lemma 6.2 (Unique decomposition). For each k < b�i � 1; lottery �k�i has the unique de-
composition consisting of yk and �k+1�i

:

Proof. It is easy to see that fyk; �k+1�i
g is a decomposition of �k�i :We show its uniqueness. Sup-

pose that f�1; �2g is a decomposition of �k�i : Since the support of �
k
�i
is Y k�i = fyk+1; :::; yb�i ; yb�i+1g,

it holds by (25) that

1

2
� �1(yt) +

1

2
� �2(yt) = �k�i(yt) for t = k + 1; :::;b�i + 1: (31)

Since �k�i(yk+1) =
1
2 ; we have

1
2�1(yk+1)+

1
2�2(yk+1) =

1
2 : By (26), �(�1(yk+1)) < �(�

k
�i
(yk+1)) =

1 and �(�2(yk+1)) < �(�k�i(yk+1)) = 1; which implies that each of �1(yk+1) and �2(yk+1) is 0 or
1: Since 12�1(yk+1)+

1
2�2(yk+1) =

1
2 ; at least one of �1(yk+1) and �2(yk+1) is 0: Consider the case

�1(yk+1) = 0: Then, �2(yk+1) = 1; thus, �2(yk+1) = 0 for all t = k + 2; :::;b�i + 1: So, �2 is pure
outcome yk+1: It remains to show �1 = �k+1�i

: By (31), �1 is obtained from �k�i by restricting
the support to Y k�i with normalization by multiplying by 2: The resulting lottery is �1 = �

k+1
�i
:

Thus, f�1; �2g = f�k+1�i
; yk+1g. The other case �2(yk+1) = 0 is parallel.�

Proof of Theorem 6.2 (Only-if): Suppose that h(U�i ;�
0); (U�i�1;�

1); :::; (U�i�b�i ; �b�i)i
satis�es Axioms E1 and E2. Repeating Axiom E1 and Lemma 6.2, we have �k = fyk; �k�ig for
k = 1; :::;b�i � 1; and �b�i = fyb�i ; yb�i+1g = fyb�i ; 0g: Applying Axioms E2 and E1 to each �k�i , we
have (29) for k = 1; :::;b�i:
(If): Axiom E1 follows from Lemma 6.2. Axiom E2 is proved as follows: by (29), U�i�k(�

k
�i
) =

2k �U�i(�
0
�i
)�

Pk
t=1 2

k�t �U�i�t(2
t) = 1

2 � [2
k+1 �U�i(�

0
�i
)�

Pk+1
t=1 2

k+1�t �U�i�t(2
t)] + 1

2 � 2
0 �

U�i�(k+1)(2
k+1) = 1

2 �U�i�(k+1)(�
k+1
�i
) + 1

2 �U�i�(k+1)(yk+1):�

7 Semi-rationalistic Choice for Incomparable Alternatives

We described utility values, u�i(��i) and u�i(�); of person i with cognitive degree �i over ��i
and �: In many cases, u�i(��i) and u�i(�) are incomparable. As discussed in Section 3.2, people
are often forced to choose an alternative. Here, we develop a probabilistic interpretation of
incomparability.

The interval order �I due to Fishburn [7] is adopted to make a comparison between two
utility vectors. Here, we introduce �I in a general manner and state its properties. Recall
Q2(�) = f� = (�; �) 2 Q�Q : � � �g: The �rst component � of � = (�; �) is the least upper
bound of possible utility values, and the second � is the greatest lower bound. We say that
� = (�; �) is singular i¤ � = �; and non-singular i¤ � > �: For two vectors � = (�; �) and
� = (�; �) in Q2(�) = f[�;�] 2 Q2 : � � �g; we de�ne the interval order �I over � and � by

� �I � if and only if � � �: (32)

The comparison � �I � means that any possible utility value from � is larger than or equal to
any possible utility value from �: The strict part of �I is denoted by >I : Recall that �I may
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Figure 6: Reduction steps

not be complete, i.e., neither � �I � nor � �I �, which is denoted by � 1I �. This 1I is the
incomparability relation. The following properties hold:

(a): singular case: when � and � are singular, � �I � if and only if � � �;
(b): strict preference: if � or � is non-singular, then � �I � implies � >I �;
(c) incomparability : neither � �I � nor � �I � if and only if � < � < � or � < � < �.

In general, the indi¤erence � �I � & � �I � holds if and only if both are singular and identical.

7.1 An axiomatic system determining the semi-rationalistic choice-function

Let � be a �nite subset of Q2(�): We impose the decomposition closedness condition on � : for
any �;� 2 � and � = �; �;

if � � � � �; then [�; �] and [�;�] are in �: (33)

Here, � is decomposed into [�; �] and [�;�] by � = � or �; such as Reduction 1 in Fig.6. When
� = �; (33) implies [�;�] 2 � and [�;�] 2 �: However, the essential case of (33) is � > � > �;
in this case, new non-degenerated intervals are [�; �] and [�;�]. This condition generates a �nite
number of subintervals.

For given �;� 2 Q2(�); we say that � is the set generated by �;�, denoted by �(�;�);
i¤ � is the smallest among �0s having �;� and satisfying (33). We will target � = u�i(��i);
� = u�i(�); and the generated intervals. This �(�;�) is the uniquely determined. For example,
when � > � > � > �; we have

�(�;�) = f[�;�]; [�;�]; [�;�]g [ f[�; �] : � = �; �; �; �g [ f�; �g: (34)

Here, [�;�] is not in �(�;�). This �(�;�) has only 9 vectors. In general, it has at most 9
vectors.

Let �;� 2 Q2(�): A behavioral-probability function is given as � : �(�;�)2 ! Q[0;1]: The
value �(�;�) means that person i chooses � with probability �(�;�) from � and �: We focus
on a person i for �(�;�); but the information about i is included in �;�. Our �nal target is
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to calculate �(�;�) rather than f�(�;�) : (�;�) 2 �(�;�)2g; but the decomposition method
requires �(�; �) over the entire set �(�;�)2:

We assume the following three axioms on �(�;�):

Axiom S1(Probability): �(�;�) + �(�;�) = 1 for �;� 2 �(�;�).
Axiom S2 (Preservation of the interval order): Let �;� 2 �(�;�): If � �I � and � 6= �,
then �(�;�) = 1:

Axiom S3 (Proportional reduction): Let �;� 2 �(�;�):

(1): If � > � � �; then �(�;�) = ���
��� � �([�;�];�) +

���
��� � �([�;�];�):

(2): If � � � > �; then, �(�;�) = ���
��� � �([�;�];�) +

���
��� � �([�;�];�):

Axiom S1 expresses the intended interpretation that � and � is chosen with probability
�(�;�) and 1 � �(�;�); respectively. Axiom S2 states that the certainty case, �(�;�) = 1;
coincides with the interval order �I : Axiom S3 reduces �(�;�) into the probability values
determined by S1 and S2.

Let us see two simple observations: �rst, since �(�;�) + �(�;�) = 1 by Axiom S1, we have

�(�;�) =
1

2
for � 2 �(�;�): (35)

The second observation is the dual of Axiom S2; it is obtained by Axioms S2 and S1:

if � �I � but � 6= �; then �(�;�) = 0: (36)

The statements (35) and (36) with S2 will be used in the terminal cases of the reduction step.

The other simple observation is: Axiom S3 states a partition with respect to the �rst com-
ponent in �(�; �); but in either case of Axiom S3, it can be partitioned with respect to the second
component, i.e., for case (1), we have

�(�;�) = ���
����(�; [�;�]) +

���
��� � �(�; [�;�]): (37)

This will be proved in Section 7.2.

We have many cases for detailed representations of �(�;�): They are summarized into three
cases in Theorem 7.1. We denote `[�] = `[�;�] = � � � for an interval � = [�;�]; it is the
length of the interval �: Theorem 7.1 states that �(�;�) and �(�;�) are described explicitly by
`[�] with 0; 12 ; 1 in each of the three cases. A proof of Theorem 7.1 will be given in Section 7.2.

Theorem 7.1 (Semi-rationalistic behavioral-probability). A function � : �(�;�)2 !
Q[0;1] satis�es Axioms S1 to S3 if and only if for each (�;�) 2 �(�;�)2; �(�;�) and �(�;�)
are given as

(A): if � � �; then �(�;�) =
�
1 if � 6= �
1
2 if � = �

and �(�;�) =
�

0 if � 6= �
1
2 if � = �;

(B): if � � � � � � � and � is non-singular, then

�(�;�) = `[�;�]
`[�] +

1
2 �

`[�]
`[�] and �(�;�) = 1

2 �
`[�]
`[�] +

`[�;�]

`[�] : (38)

(C): if � � � � � � � and both �;� are non-singular, then

�(�;�) = `[�;�]
`[�] +

1
2 �

`[�;�]
`[�] �

`[�;�]
`[�] +

`[�;�]
`[�] �

`[�;�]

`[�] and �(�;�) = 1
2 �

`[�;�]
`[�] �

`[�;�]
`[�] : (39)
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The above (A) to (C) are exhaustive, which is proved in Section 7.2, but are not exclusive;
for example, the case � > � = � = � is in (A) and (C). Non-exclusiveness is allowed to avoid
complication of presentations.

Theorem 7.1 implies that Axioms S1 to S3 determine the behavioral-probability function
�(�; �) uniquely. Then, this axiomatic system is connected to the axiomatic system M0 to M2
and the system E0 to E3; � = u�i(��i) and � = u�i(�) and the function �(�; �) over �(�;�)

2

is expressed by Theorem 7.1. The behavioral probability Pr�i(a) in Seection 3.2 is determined
as �(u�i(��i);u�i(�)): Table 4.1 is covered by cases (A) and (B) of Theorem 7.1. In general,
for comparisons between � = u�i(��i) and � = u�i(�); case (C) of Theorem 7.1 is unnecessary
because of Theorem 3.1.

7.2 Proof of Theorem 7.1

Let us see that (A), (B), and (C) are exhaustive. Since both �(�;�) and �(�;�) are given in
the three cases, it su¢ ces to consider the case � � �: Thus, we consider the following three
subcases:

(a): � � �; (b): � � � � � � �; and (c): � � � � � � �
In (a), (A) covers all the cases where � and/or � are singular or not. In (b), if � is singular,
then this case is included in (A). In (c), if � or � is singular, then this is included in (A). Thus,
(A), (B), and (C) cover all the cases.

Proof of Theorem 7.1 (If part): We show that �(�; �) satis�es Axioms S1, S2, and S3.
Axiom S1: �(�;�) + �(�;�) = 1 for all �;� 2 �(�;�)2: This is veri�ed for the cases (A),
(B), and (C). This is straightforward for (A). For (C), �(�;�)+ �(�;�) = `[�;�]

`[�] +
`[�;�]
`[�] �

`[�;�]
`[�] +

`[�;�]
`[�] �

`[�;�]

`[�] =
`[�;�]
`[�] +

`[�;�]
`[�] � (

`[�;�]
`[�] +

`[�;�]

`[�] ) =
`[�;�]
`[�] +

`[�;�]
`[�] = 1: (B) is similar.

Axiom S2: This follows from (A) of the theorem.

Axiom S3: It holds by (A) that �([�;�];�) = 1; �(�;�) = 1
2 ; and �([�;�];�) = 0: Consider

case (1) of S3; Case (2) is similar. Then, by (38),

�([�;�];�) = `[�;�]
`[�] � 1 +

`[�]
`[�] �

1
2 +

`[�;�]

`[�] � 0

= `[�;�]
`[�] � �([�;�];�) +

`[�]
`[�] � �(�;�) +

`[�;�]

`[�] � �([�;�];�)

= `[�;�]
`[�] � �([�;�];�) +

`[�;�]
`[�] � �([�;�];�):

Only-If part: It su¢ ces to show (A), (B), and (C) of Theorem 7.1.

(A): Let us see the left statement; the right follows from Axiom S1. Suppose � � �: If � 6= � ,
then �(�;�) = 1 by Axiom S2, and if � = �, then �(�;�) = 1

2 by (35).

To prove (B) and (C) of Theorem 7.1, �rst we prove the following lemma.

Lemma 7.2. Let � = [�; �] and �0 = [� 0; � 0] with � = � 0: Then

(1): if � > � 0 � �; then �(�; �0) = 1
2 �

`[�;�0]

`[�] ;

(2): if � > � � � 0; then �(�; �0) = 1
2 �

`[�]
`[�0]

+
`[�;�0]

`[�] :

Proof. (1): By Axiom S3, we have �(�; �0) =
`[�;�0]

`[�] � �([�; �
0]; �0)+

`[�0;�]

`[�] � �([�
0; �]; �): Since
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[�; � 0] = �0; we have �([�; � 0]; �) = 1
2 by (35). Since �

0 �I [� 0; �]; we have �([� 0;�]; �) = 0 by

Axioms S1 and S2. Hence, �(�; �0) = 1
2 �

`(�;�0)

`(�) :

(2): Switching � with �0; (2) is reduced to (1).�

Now, we return to the proof of the only-if part. To prove (B) and (C) of Theorem 7.1.

Consider (B): � � � � � � �; and � is non-singular. By Axiom S3, we have

�(�;�) = `[�;�]
`[�] � �([�; �];�) +

`[�;�]
`[�] � �([�;�];�): (40)

By Axiom S2, �([�; �];�) = 1: When � is singular, we �([�;�];�) = 0 by Axiom S2; thus,

�(�;�) = `[�;�]
`[�] =

`[�;�]
`[�] +

`[�]
`[�] : Suppose that � is non-singular. The second term is decomposed

into
�([�;�];�) =

`[�;�]

`[�] � �([�;�];�) +
`[�;�]

`[�] � �([�;�];�):

By (35), �([�;�];�) = 1
2 : If � = �; then

`[�;�]

`[�] = 0; and if � > �, by Axiom S2, �([�;�];�) = 0:

Summing up these, we have �([�;�];�) = 1
2 : Plugging this to (40), we have �(�;�) =

`[�;�]
`[�] =

`[�;�]
`[�] +

`[�]
`[�] :

Consider (C): � � � � � � �; and both �;� are non-singular. Then,

�(�;�) = `(�;�)
`(�) � �([�; �];�) +

`(�;�)
`(�) � �([�; �];�): (41)

In the �rst term of the right-hand side, we have �([�; �];�) = 1 by S2. The second term is

reduced by Lemma 7.2.(1) to `(�;�)
`(�) �

1
2 �

`([�;�])

`(�) : Thus, �(�;�) =
`(�;�)
`(�) +

1
2 �

`(�;�)
`(�) �

`([�;�])

`(�) ; which
is (C).�
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