
electronics

Article

Exception Handling Method Based on Event from Look-Up
Table Applying Stream-Based Lossless Data Compression

Shinichi Yamagiwa 1,2,* , Koichi Marumo 1 and Suzukaze Kuwabara 3

����������
�������

Citation: Yamagiwa, S.; Marumo, K.;

Kuwabara, S. Exception Handling

Method Based on Event from Look-

Up Table Applying Stream- Based

Lossless Data Compression.

Electronics 2021, 10, 240.

https://doi.org/10.3390/

electronics10030240

Received: 12 December 2020

Accepted: 19 January 2021

Published: 21 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Faculty of Engineering, Information and Systems, University of Tsukuba, 1-1-1 Tennodai,
Tsukuba, Ibaraki 305-8573, Japan; marumo@padc.cs.tsukuba.ac.jp

2 JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
3 Department of Computer Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan;

kuwabara@padc.cs.tsukuba.ac.jp
* Correspondence: yamagiwa@cs.tsukuba.ac.jp

Abstract: It is getting popular to implement an environment where communications are performed
remotely among IoT edge devices, such as sensory devices and the cloud servers due to applying,
for example, artificial intelligence algorithms to the system. In such situations that handle big data,
lossless data compression is one of the solutions to reduce the big data. In particular, the stream-based
data compression technology is focused on such systems to compress infinitely continuous data
stream with very small delay. However, during the continuous data compression process, it is not
able to insert an exception code among the compressed data without any additional mechanisms,
such as data framing and the packeting technique, as used in networking technologies. The exception
code indicates configurations for the compressor/decompressor and/or its peripheral logics. Then, it
is used in real time for the configuration of parameters against those components. To implement the
exception code, data compression algorithm must include a mechanism to distinguish original data
before compression and the exception code clearly. However, the conventional algorithms do not
include such mechanism. This paper proposes novel methods to implement the exception code in
data compression that uses look-up table, called the exception symbol. Additionally, we describe
implementation details of the method by applying it to algorithms of stream-based data compression.
Because some of the proposed mechanisms need to reserve entries in the table, we also discuss the
effect against data compression performance according to experimental evaluations.

Keywords: lossless data compression; exception code; stream-based lossless data compression;
LCA-DLT; ASE coding

1. Introduction

Due to rapid performance improvement of information processing equipment such as
recently IoTsystems, the amount of data used in the system is still increasing fast in the
cases that big data applications such as algorithms of artificial intelligence are employed.
Focusing on data communication between the edge devices and the cloud servers or data
migration among the processing components in the equipment, the recent performance
growth of the physical communication data path is not so high than the one of producing
data from equipment. For example, video resolution is growing at four times almost every
year from HD to 8 K. In addition, the motion sensory devices output its data in 32 bit wide
since it was eight bit wide in several years before. In this paper, we focus on techniques to
reduce the amount of data by employing data compression technology.

Data compression technologies are categorized as lossless and lossy ones. The former
decodes the compressed data to the original data without any loss. The latter does not
maintain the original data. It mainly treats multimedia data by removing insensible data
in high/low frequency of such as images, sensory data and sound waves of pulse code

Electronics 2021, 10, 240. https://doi.org/10.3390/electronics10030240 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-3807-2726
https://orcid.org/0000-0001-9779-8861
https://doi.org/10.3390/electronics10030240
https://doi.org/10.3390/electronics10030240
https://doi.org/10.3390/electronics10030240
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10030240
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/10/3/240?type=check_update&version=3


Electronics 2021, 10, 240 2 of 19

modulation. The MPEG format is well-known. In this paper, however, we focus on the
lossless compression.

We developed stream-based data compression methods that are based on the digram
coding. The digram coding uses a look-up table that is used to compress an original
data with associating to the index. The methods, called LCA-DLT [1] and ASE coding [2],
employ a fixed number of entries in the table and recycle the entries during the com-
pression/decompression. LCA-DLT organizes a compressor/decompressor module that
converts a pair of original data to/from an index of the look-up table. The modules can
be connected to compress/decompress multiple data pairs. LCA-DLT can be easily im-
plemented in hardware and the resource size is selectable depending on the number of
connected modules. However, because the compressed data is associated from the indices
of the look-up table and the size of the index is fixed, the method results low dynamicity
in the aspect of the compression ratio. ASE coding improves this problem. It compresses
an original data to a short bit sequence by an instantaneous entropy calculation from the
number of occupied entries in the look-up table. This follows entropy of data stream in
real time and results high dynamicity of the compression ratio. ASE coding also can be
compactly implemented on FPGA working at 250 MHz.

Employing the compressor in the producer of data stream and the decompressor
in the consumer, the stream-based data compression reduces the latency and increases
the bandwidth in the communication data path. This brings performance upgrade of the
physical media virtually. In particular, under the condition where an application that needs
fast response from the consumer of the data such as IoT systems, this helps to improve
overall performance of the system. However, when we consider to generate an exceptional
procedure without related to the compression process such as a reconfiguration of the
decompressor’s setting from the producer side, we need to compress all data including the
exception code. Then, after the decompression, the original data must be analyzed based
on the data format of the original data. On the other hand, if we try to embed the exception
code as a compressed data, by assigning reserved bit patterns, the compressor is not able
to distinguish the exception code from the compressed data because all combinations
of available bit patterns would appear in original data. Thus, we are not able to embed
exception code in a part of compressed data stream without any additional mechanism.

This paper will propose novel methods to handle the exception code focusing on data
compression algorithms with a fixed number of look-up table entries. As typical examples,
we employ the proposed method on the stream-based ones: LCA-DLT and ASE coding.
The proposed methods are also available in the conventional digram codings. In this
paper, we will also evaluate the performance tradeoffs by applying the methods on those
stream-based ones.

The main contributions of research results disseminated in this paper are:

• Designs and implementations of handling methods for the exception code applying
to the digram coding with a fixed number of entries in look-up table.

• Effective classification of the proposed method for handling the exception code by
categorizing into four classes (RETO, RETI, FETI and FETO).

• Implementation details of the classes and evaluations of the compression performance.

This paper is organized as follows. The next section will describe the backgrounds and
definition of this research regarding the data compression technologies and the exception
handling methods. Section 3 will explain the target system model. In the system, we
will introduce situations wherein the exception code is required. Then, we will show the
proposed method to handle the exception code in data compression algorithms with a
fixed number of entries in the look-up table. Section 4 will show performance evaluations
focusing on the effects when the methods are applied. Finally, we will conclude the
research results.



Electronics 2021, 10, 240 3 of 19

2. Backgrounds and Definitions
2.1. Stream-Based Lossless Data Compression

The recent type of data produced from equipment of information technology such
as IoT devices mainly forms a continuous data stream such as video images and sensor
data [3]. The speed and the amount of the data stream are increasing rapidly. To sup-
port the technological aspects of the equipment, we need to reduce the amount of data
itself. Therefore, we focus on lossless data compression technology that can reduce the
data amount of the data stream without any quality loss. To implement compression
methods for data streams, we need to address the following factors in the algorithm:
(1) the algorithm does not need any buffering during compression/decompression pro-
cesses. (2) it compresses/decompresses a unit of data (we call this a symbol) in a small delay.
(3) it is implementable in hardware compactly and works fast to support performance of
the physical media. Due to the algorithm that supports these factors, the stream-based
lossless data compression implements fast compression based on hardware and brings
compactization of systems.

Lossless data compression technology has its origins in Shannon’s entropy since the
1950s. The method assigns S bits to each symbol of an original data sequence where S is
an entropy represented by −∑ p log2 pi where it is calculated from frequent probability
of each symbol pi. Then, arithmetic coding [4,5] is the next generation of compression
algorithm. It represents the target data by numeric values. It assigns each data pattern to a
value in a domain where includes all symbols are presented. This mechanism improves
the compression ratio, better than Shannon’s entropy. However, it needs to process all
input data and must decide the domain to express all symbols appeared in the input data.
The algorithm tries to find the frequent information of all symbols in the input data. The
Range Coder [6] is a similar compression algorithm to the arithmetic coding. Huffman
coding [7] is another lossless data compression. It also has the disadvantage of the buffering
problem against processing data stream because it needs to create a binary tree of whole
data. To overcome it, dynamic Huffman coding [8] was proposed. It arranges a binary tree
dynamically created during the compression process. However, it is too heavy calculation
to process very fast data stream. Furthermore, it is too complicated to implement it on fast
and small hardware. Therefore, the algorithms mentioned above are not suitable to process
data stream.

In the 1970s, an algorithm based on look-up table that registers frequent symbols
was proposed. A typical implementation was LZW (Lempel-Ziv-Welch) [9,10] instantiated
on Zip, LZ4 [11], Snappy [12], and deflate [13]. The algorithm compresses one or more
frequent symbols by using a look-up table. The look-up table maintains the frequent
symbol patterns and the compressed symbols are translated as the table indices. This
kind of algorithm that uses a look-up table is called digram coding. For example, Figure 1
shows examples of compression/decompression processes of LZW. It compresses an ASCII
character pattern “ABCABC”. In LZW, first, the table is initialized by available symbols
appearing in the patterns. Typically, a table entry has a 12 bit symbol and the first 256
entries are configured to the corresponding binary bits. The compressor has a rule that a
new pattern with the subsequent symbols is added to the table. While a pattern is hit in the
table, the associated index is outputted. Here, to explain simply, the example initializes the
table with ‘A’, ’B’ and ‘C’ first as shown in Figure 1a. The first ‘A’ hits in the table. Then,
“AB” is tried if it is hit or not in the table. However, it misses. Therefore, ‘A’ is translated to
the index ‘0’ with ceil(log2 k) bits where k is the maximum number of entries in the table.
The pattern “AB” is added to the table. The ‘B’ is converted to ‘1’ as depicted in Figure 1b.
With the similar operations, “ABC” is added to the table and the compressor outputs ‘2’ as
shown in Figure 1c. After that, as illustrated in Figure 1d, “ABC” is hit in the table and the
compressor outputs ‘5’. This results “0125”. If the table index is 3 bits, the original data
pattern is compressed from 48 bits to 12 bits. In the decompressor, the table is initialized as
well as the compressor. During accepting the indices of compressed data, the decompressor



Electronics 2021, 10, 240 4 of 19

adds new patterns to the table as well as the compressor. The compressed pattern can be
decompressed to ‘A’, ‘B’, ‘C’, and “ABC”.

ABCABC...

A

B

C

ABCABC...

A

B

C

AB

ABCABC...

A

B

C

AB

BC

ABCABC...

3
4
5

A

B

C

0
1
2

AB

BC

ABC

Input data:

Compressed data:

0

3
4

0
1
2

3

0
1
2

0
1
2

A new entry added.

The index of hit entry outputted.

01 012 0125

a) b) c) d)

Figure 1. Compression processes of LZW. (a) shows an initial state of the table; (b) and (c) illustrate
the ones after “AB” and “BC” are added, respectively; (d) shows the one after “ABC” is added.

As we can see above, the algorithm can process data stream. However, it has a
fatal drawback that the memory size for the look-up table increases infinitely as the
number of symbols are compressed. This means we cannot know the required amount
of memory during the compression. Because we cannot determine a fixed number of
hardware resources used in the conventional digram coding such as LZW, we need to give
some restrictions to the algorithm. For example, in LZW case, we can estimate the maximal
size of memory for the look-up table. However, we cannot implement the algorithm
on any fixed amount of memory by assigning a limited number of entries in the table.
Therefore, it is typically configured to a fixed number of table entries such as 4096 used
in the implementation [14]. This is controlled in the algorithm and resets the table to
process the subsequent data from the initialized table. Therefore, it is not suitable for the
implementation that limits available resources such as hardware. Thus, the conventional
digram coding does not satisfy the conditions of stream-based data compression because
the perfect implementation needs unpredictable amount of resources.

On the other hand, we developed stream-based data compression algorithms. First,
we developed a very simple one called LCA-SLT [15] that supports the concept of LCA [16].
It prepares a look-up table with several entries. Each entry maintains a symbol pair (s0,
s1). When a symbol pair hits in the table, the compressor translates it to the table index
I. When a mishit happens, it outputs the original symbol pair. Each output combined
with a CMark bit that indicates if it is a compressed or an original symbol. Initially, entries
are set to the pairs statistically selected from a sample data sequence. This is suitable
for hardware implementation because the number of processing steps are constant. We
can implement the algorithm in a small and fast hardware and also can achieve high
bandwidth. Additionally, connecting the compressors, LCA-SLT can also compress a long
pattern. However, due to the static table associated from the sample data sequence, when
the frequency of patterns (i.e., data entropy) in a data stream changes, the compression
ratio is affected significantly. To improve the compression performance, we developed
LCA-DLT that includes entry exchange mechanism in the look-up table.

We added a dynamic histogram control to the look-up table of LCA-SLT and proposed
LCA-DLT [17]. When a symbol pair is received by the compressor, it is registered in an
entry of the table when the compressor/decompressor does not find it in the table. We
also prepared a reference counter in every table entry. The counter is reset to an initialized
value at a registration of a symbol pair. We also prepared a remove pointer that rounds the
table entries. The counter is decremented when the entry is pointed. Then, if the counter is
zero, the entry is invalidated and recycled. At every table search operation, the reference
counter is decremented at a mishit. On the other hand, at a hit, the counter is incremented.
Therefore, frequent symbol pairs can be maintained due to this counter operation. Figure 2
shows an example of the compression processes of an ASCII data pattern. Figure 2a shows



Electronics 2021, 10, 240 5 of 19

the initial registration of a symbol pair and outputs the original data. Actually, the output
needs to combine a CMark bit (in this case, 0) to indicate that it is not compressed. Figure 2b
shows a hit case when an input symbol pair is matched in the table. This case needs to add
a CMark bit (here, it is 1). Note that the hit case increments the reference count value. Then,
it is incremented when the entry is used again. In this example, a compressed symbol
becomes three bits due to four entries in the table. When a data pair is not compressed, the
output becomes 17 bits. After processing the pairs, Figure 2c shows an example when the
entries in the table are invalidated. When the counter becomes zero, the entry is invalidated
and reused for the subsequent input symbol pairs. The decompressor processes the same
operations as the compressor does with reading the CMark bit at every output from the
compressor. During the registration operation for a new entry to the table, any entry might
not be invalidated. In this case, we can use the lazy compression mechanism [1] to skip the
symbol pair. As explained above, LCA-DLT compresses data stream without stalling by
using a fixed number of entries. Therefore, it is easily implemented on hardware with a
fixed amount of resources. In [18], we reported an implementation with 200 MHz on an
FPGA device.

A B

ABCDAC

remove

ABCDACABFEACAB...

Input data stream:

s0 s1 count

Output compressed data:

10

1

2

3

A B

ABCDAC0

remove

ABCDACABFEACAB...

Input data stream:

s0 s1 count

Output compressed data:

20

1

2

3

A B

ABCDAC0EF2

remove

ABCDACABFEACAB...

Input data stream:

s0 s1 count

Output compressed data:

10

1

2

3

a) When a pair of symbols
does not match in the table.

b) When a pair of symbols
matches in the table.

c) When the frequent counter is zero,
the entry is invalidated.

C D 1

A C 2

C D 1

A C 1

C D 0

A C 2

F E 2

Figure 2. Example of compression processes of LCA-DLT.

The compressed data by the compressor of LCA-DLT consists of the full bits of the
look-up table. This rises a compression limit that the compression ratio is affected by the
number of entries in the look-up table. To overcome this performance limit, we developed
a new algorithm called ASE coding [2]. It compresses a symbol using an effect that the
data entropy of data stream follows the number of occupied entries in the look-up table as
used in LCA-DLT. The instantaneous compressed data is shrunk to m bits from the number
of occupied entries k by an entropy calculation of the equation m = ceil(log2 k). Figure 3
shows an example of the compression/decompression mechanism. Figure 3a illustrates
that the compressor outputs a compressed data by shrinking the table index when the input
symbol is matched in the table. The number of bits in the compressed data becomes m + 1
bits due to a CMark bit. When the decompressor receives the compressed data, it reads the
CMark bit. If it is set, the compressor calculates m, extracts m bits from the compressed
data stream and picks up the original symbol from the table. If the input symbol does not
match in the table, the compressor registers the symbol to the table and outputs the original
symbol with a CMark bit (in this case, 0). When the decompressor receives the CMark bit,
it can know if it is compressed or not. If compressed, the subsequent m bits are extracted
by the entropy calculation and are extended to the number of bits corresponding to the
table index as depicted in Figure 3a. If not, the decompressor extracts the number of bits of
an original symbol and registers it to the table. During the compression/decompression
operations, the table is operated by the method shown in Figure 3b. When the input symbol
is hit in the table, the entry is moved to the top and the others are pushed to the next ones
such as the LRU (Least Recently Used). When a mishit happens, the input symbol is pushed
from the top entry in the table. However, while repeating the registration operations, the
table always becomes full. This results in full bits of the table index as the compressed
data. In this case, any original symbol is not compressed. To avoid this situation, we apply
entropy culling that invalidates the highest entry in the table after several hit operations.



Electronics 2021, 10, 240 6 of 19

By performing these operations, ASE coding implements a stream-based compression
mechanism by using a fixed number of entries in the table.

BADC...

B

E
A

0000

0001

0010

0011

3 entries occupied.
ceil(Log

2
3 )=2

The index can 

0010 10
be shrunk to 2bits.

B

E

A

0000

0001

0010

0011

3 entries occupied.
ceil(Log

2
3 )=2

2bits are extracted 

00101+10

from compressed data.

Compressor

Decompressor

Extended to 4bits.
B

...

On a hit 

B

E

A Move 
to the top.

...

On a mishit

C

B

E

A

C

Push

operation. operation.

a) Compression and decompression b) Look-up table management

+ 1
Cmark bit

Cmark bit

Figure 3. Example of compression processes of ASE coding.

As explained above, ASE coding compresses the data stream without stalling the flow.
It is also easily implemented on hardware due to the simple compression mechanism. The
hardware resource size is deterministic because the number of entries in the look-up table
is fixed. ASE coding can be implemented on hardware by a smaller resource size than
LCA-DLT and also works at the same speed on FPGA devices. Thus, we implemented an
effective lossless data compression targeted to data stream.

According to the discussion above, LCA-DLT and ASE coding support the conditions
for the stream-based lossless data compression: (1) compression process without buffering
the input data, (2) compression/decompression processes in a small delay and (3) compact
hardware implementation. Thus, these compression algorithms provide a breakthrough to
overcome the enormous increasing of the big data processing demands under the fast data
communication situation.

2.2. Exception Handling on Lossless Data Compression

In information equipment with a stream-based data compression mechanism through
the data path, the compressed data stream is continuously transferred from the producer
to the consumer of the data stream. During the continuous data flow, the system needs
to allow exchanging controls for the peripheral logics and/or the compression algorithm
itself. The stream-based lossless data compression can control and adjust the compression
performance against the target data in real time if it can send the compressed data with
the control data in a single stream. For example, the digram coding will become available
to reset the look-up table and also to adjust parameters for the backend system of the
decompression algorithm such as sensor settings for multimedia application. When the
compressor and the decompressor are implemented in hardware, the parameter adjustment
must be performed in real time during the processes of a data stream. To implement this
mechanism, we need to add a method to the digram coding. The method embeds an
exception code that is distinguished from the normal compressed data. In the other words,
the exception code is inserted in compressed data, and then, the decompressor must
recognize the code seamlessly. Thus, we need to invent a mechanism to insert a control
code under an exception status. In this paper, we call this control code an exception symbol.

First, the simplest method to embed exception symbols in a compressed data stream
is to compress its original data stream with the exception symbols. Figure 4a shows an
example of the method. It passes a data stream to the compressor that is formatted in a
rule. The exception symbols are recognized in the decompressor side after decompressed
to the original data. This method has a drawback that the original data needs additional
information for distinguishing data among the compressed ones and exception symbols.



Electronics 2021, 10, 240 7 of 19

Furthermore, when we consider to configure the compressor and the decompressor settings
via the exception symbols, it is hard to synchronize the configuration timings because the
timings must be adjusted according to the delay of the compressor/decompressor.

Compressor Compressor Compressor

Exception symbol

Formatted

a) Formatted before comprssor b) Packeting after comprssor c) Fixed chunk after compressor

IN OUT
original data

with header
Compressed data

Header

OUTIN

Packet

OUTIN

Fixed size chunk

Figure 4. The simplest methods for exception symbol treatment on digram coding.

The second method is to make packets of compressed data and exception symbols.
This method needs to add a header information to each chunk. Figure 4b illustrates an ex-
ample of this method. This method needs to include a communication protocol such as that
used in a packet-based network connection. This demands the compressor/decompressor
to include a protocol. The compressor specifies a protocol to create a packet with chunks.
Then, the decompressor extracts the chunks from the packet by following the protocol.
This obviously degrades the compression performance due to the additional information
combined with the compressed data stream according to the packet format. Similarly,
the escape code is another well-known method that distinguishes the exception symbol
and the compressed data. For example, if the code of ‘FF’ is defined as the escape code,
the subsequent code is recognized as the exception symbol. Here, the compressed data
that corresponds to the escape code is expressed two ’FF’s. This means that the method
inevitably increases the amount of the compressed data, and thus degrades the compres-
sion performance.

The third method is to make chunks from the compressed data separated in a fixed
size. The compressor outputs those chunks and inserts the exception symbol between the
chunks as illustrated in Figure 4c. This method avoids additional process in the compressor
to format a packet like the second method. However, the exception symbol must be
inserted after every chunk. Even if any exception does not occur, the exception symbol
must be inserted by defining a void exception such as NOP (No OPeration). Although this
mechanism can avoid equiping a protocol on both the compressor and the decompressor,
the void exception increases the amount of compressed data. Therefore, the compression
performance degrades. LZ4 [11] uses the method to make chunks and implements a
pseudo stream-based compression manner. It can use this method for the exception symbol.
However, it cannot avoid degrading the compression performance.

The three methods above to insert the exception symbol to a compressed data stream
are applicable to the conventional lossless data compression methods such as Shannon’s
entropy and Huffman coding. However, when we consider to introduce the exception
symbol to a digram coding, we must employ another method to support it by using
the look-up table. For example, LZW implements the mechanism of exception symbol
using the look-up table. It initially prepares entries in the table dedicated to exception
symbols. At the initialization, the compressor and the decompressor prepare a look-up
table respectively, setup the table with the available bit patterns for all single symbols
and add two additional entries for stop and clear exceptions after the occupied entries.
As a typical setting, initially 4096 entries are prepared in the table. The lower entries are
initialized from 0 to 255 at first. The 257th and 258th entries are used to save the codes
for the stop and the clear exceptions. The clear exception is used to reset the table. The
stop exception is used to stop compression/decompression. The compressed data ‘256’
and ‘257’ are detected as the exception symbols in the decompression side. In this method,
we need to prepare at least 2k + n entries in the table, where k is the number of bits in an
original symbol and n is the number of exception symbols. Therefore, the number of bits
in a compressed data becomes larger than the original symbol because the number of bits



Electronics 2021, 10, 240 8 of 19

in the table index begins with ceil(log2(2
k + n)) bits. In the LZW case, two entries for the

exception symbols are not used for the compression processes.
However, the method stated above for managing exception symbols is not applicable

to the digram coding with a fixed number of entries because the table entries are reused by
the invalidation mechanism dynamically during the compression algorithm. For example,
LCA-DLT and ASE coding, explained in the previous section, do not have any mechanism
to reserve the entries for the exception symbols without invalidation. Even when the
additional entries reserved for the exception symbols are extended in the last of the table,
the number of bits in the compressed symbol increases and the compression ratio will
become worse. Thus, in the aspects of control and performance, digram coding with a
fixed number of table entries is not able to use the similar method employed in LZW that
reserves the exception symbols in the table.

Moreover, the method used in LZW needs to register all exception symbols in the look-
up table. However, such as performed in the processor architecture field, the “exception”
is an event to migrate the operation mode from a normal to a supervisor mode. The
processor recognizes which exception has occurred from status information that causes the
event. As well as this technique, just an exception symbol for the event that migrates the
compressor’s/decompressor’s mode to a supervisor mode should be prepared in the data
compression algorithm. In addition, the information by which exception is caused should
follow the exception symbol. However, the conventional exception methods in lossless
data compression do not support this kind of diversity.

As discussed in the sections above, the stream data compression is able to com-
press/decompress data stream without any stalls and can be implemented on hardware
compactly. However, we do not have any smart solution to support the exception symbol
that causes an event to migrate the operation mode using a look-up table with a fixed
number of entries. To support this, we need a novel mechanism to cause an exception event
in the fixed-size look-up table. In the rest of this paper, we will propose a new mechanism
to support the exception symbol that can follow the additional information for the event
without degradation of data compression performance.

3. Exception Handling Method for Stream-Based Lossless Data Compression

Let us propose a novel exception handling mechanism in the digram coding that
maintains the look-up table with a fixed number of entries.

3.1. Modeling of Variable Exception Control

Here, we begin to define a system model with compressor/decompressor that ac-
cepts parameter configuration for the peripheral devices/algorithms. This system has
requirements as follows:

• The number of entries in the look-up table is a constant. The number of entries is fix
to a number decided initially. It is not changed dynamically.

• All entries in the table can be modified/moved/invalidated.
• Each table entry has a valid bit that indicates if the entry is occupied or not.
• The parameters of peripheral programs/logics around the compressor/decompressor

can be modified independently.

To satisfy the conditions above, the compressor and the decompressor need to detect
the exception symbol before beginning the compression and decompression process for a
symbol, respectively. These mechanisms are needed for eliminating compressed data and
exception symbol. The compressor has inputs for exception symbols. The decompressor
has outputs for parameter updates. For example, when the exception symbol is requested
to the compressor by asserting the enable input for an exception, the compressor outputs
an exception symbol as a compressed data. When the exception symbol arrives at the
decompressor, it detects the exception symbol and asserts the parameter updates. In order
to synchronize the parameter update timings at both the compressor and the decompressor,
we need to serialize inputted data to be compressed and exception symbols. When a



Electronics 2021, 10, 240 9 of 19

hardware implementation, during compression of target data, the compressor stops the
input in order to give a timing to insert an exception symbol.

Furthermore, although the compressed data and the exception symbols are merged
in the data stream outputted from the compressor, the decompressor must exploit the
exception symbols obviously. Additionally, the exception symbols are generated from the
compressor without storing them in entries of the look-up table and report the occurrences
of the corresponding exceptions to the decompressor. In this case, this mechanism can
embed command codes after the exception symbol. The command codes are translated by an
identified protocol defined in the system. The command code mechanism is also available
in the method of LZW. When the exception symbol is received in the decompressor, it can
recognize the command codes after the exception symbol by receiving the subsequent data
in the compressed data.

As discussed above, if we can implement a method to insert the exception symbols
into compressed data at precise timings for updating parameters in peripherals, we will
be free from timing conditions to implement compression/decompression hardware that
has strict timing restrictions. Moreover, we can freely define command sequences with
arguments by the command code regarding its exceptions.

The peripheral logics/algorithms control the compressor. By inserting the exception
symbols, those exchange the control code and the parameters for the application in the
system. In particular, the exception symbol will address the following situations in the
stream-based data compression:

• The exception symbol implements in order to insert pause function in the stream-based
compression. For example, during the continuous compression process for a data
stream, if the peripheral logic/algorithm that generates the data stream wants to stop
the generation for a while, the conventional digram coding is not able to implement
the pause function. Because the compressor is not able to define special code for
the compressed data, the decompressor is not able to know the timing to ignore the
part of data stream. The exception symbol will address this situation to notify the
decompressor to ignore the compressed data generated by the compressor during the
pause period by an exception symbol.

• It is not possible to know the end of data stream (EOS) when the decompressor receives
a limited length of data stream. For example, an application needs to decompress
a data file compressed by a stream-based data compressor. If it is performed by
a software decompressor, the file size is known. However, if it is implemented in
hardware, due to the pipeline of the decompression processes, it is impossible to
know the stop timing of the decompression because it already processes a part of the
decompression operation in the pipeline. When the multiple files are decompressed
in the same manner, the situation becomes worse. The decompressor does not have
method to know the borders of streams from different files. The exception symbol
will address the EOS. Thus, the decompressor can know it in the precise timing before
the decompression pipeline.

• One of typical realistic applications that can apply the exception symbol and the
command codes are found in the communication flow control between a data producer
and its consumer. For example, as mentioned in [19], let us consider a system that
handles a video stream between the producer and the consumer connected by a
communication network such as wireless and mobile one. The consumer processes
the video frames with the algorithms such as object detection by a neural network. The
application demands higher resolution for improving the accuracy in the consumer
side. However, in the case when the bandwidth is not stable, controlling the output
data rate to the network, the producer changes the resolution and the frame rate
to avoid frame drops. One of the traditional methods for the flow controls uses a
threshold of FIFO buffer of the video frames in the producer side. In addition, we can
find that one of the typical controls for the data rate is a up/down sampling of video
frames [20]. It is controlled by a sampling parameter. Combining the sampling rate



Electronics 2021, 10, 240 10 of 19

with the FIFO’s threshold, the system can control the flow in the network. Here, when
we apply the stream-based lossless compression for the video stream, we will have
a problem how to convey the sampling rate from the producer to the consumer in
the compressed data stream. Although we can prepare a separate channel that only
transfers the sampling parameter, it is hard to synchronize the timings between when
the rate is changed and when the border of the video stream comes in the different
sampling rates. Furthermore, when we use a single channel for transferring the rate
parameter and the video stream, we will need the framing or the packeting methods
as shown in Figure 4. However, if the exception symbol is available, we are able to
control the timing by inserting an exception symbol between the parameter data and
the subsequent video stream. Thus, the rate control will become simple due to the
exception symbol.

As we explained in this section, implementations of the application examples above
will become simple. Because we can eliminate the complex controls, the performance
of the systems will also be improved. Now, let us propose the novel methods and the
implementations for the exception symbol.

3.2. Method for Exception Control

The exception symbol is an irregular event that is treated as other data than com-
pressed data. To generate this irregular event, we can find a hint in the look-up table
operation. In our mechanism, the compressor inserts the exception symbol after flushing
compressing data in the processing pipeline. Then, when the decompressor receives the
exception symbol, it flushes all the data previously received and it can process the exception
symbol during the table operations.

In order to implement the mechanism above, we focus on the search operation in the
look-up table. The decompressor is able to cause an exception during search operation
because the compressed data received has not been decompressed yet. During the search
operations, we propose a method that causes an inconsistent search and finally causes an
exception. This inconsistent situation is categorized in two methods as shown in Figure 5.
In Figure 5a, the compressor outputs an exception symbol as a compressed data, and then
the decompressor receives it. The decompressor recognizes it as an index of the look-up
table. However, the valid bit of the table entry pointed by the index is false. In this case,
the entry does not have any registered symbol. This is inconsistent in the decompression
process and detected as an exception. We call this method Transfer Index. Figure 5b shows
another method. When the compressor outputs an original data to be registered in the
decompressor side, the decompressor receives it and tries to register the original data into
the look-up table. However, the original data is already registered and found in the table.
This is also inconsistent during the table operation in the decompression. This also causes
an exception. We call this method Transfer Original.

A
B

C

0000
0001
0010
0011

a) Transfer Index

T

F
T

T

Valid

Compressor

1+0010 A
B

C

0000
0001
0010
0011

T

F
T

T

Valid

Decompressor

Cmark=1

Compressed

Inconsistentdata

A
B

C

0000
0001
0010
0011

b) Transfer Original

T

F
T

T

Valid

Compressor

0+1010 A
B

C

0000
0001
0010
0011

T

F
T

T

Valid

Decompressor

Cmark=0

Compressed
Inconsistentdata

‘A’ (1010) is 
already registered.

0010 is 
not occupied.

Exception 
symbol

Exception 
symbol

Figure 5. Inconsistent situation in look-up tabe to detect an exception symbol.

These two inconsistent situations also have two categories according to the manage-
ment of the entries in the look-up table. One is a method that the entry related to an
exception is fixed in an index. Indeed, we can implement it by reserving an entry with a
symbol that corresponds to a bit pattern of the demanded exception symbol. This method
needs to reserve an entry on both cases of the Transfer Index and the Transfer Original.
We call this method Reserve Entry. The decompressor also reserves the same entry as the



Electronics 2021, 10, 240 11 of 19

compressor. Another method does not reserve any entry in the look-up table. we call this
method Free Entry. The compressor picks up a symbol from an occupied entry in the case
of Transfer Original, and outputs it as an original data to the decompressor.

As follows the categorization of the methods above, we can have available combina-
tions: Reserve Entry, Transfer Original (RETO), Reserve Entry, Transfer Index (RETI), Free
Entry, Transfer Original (FETO) and Free Entry, Transfer Index (FETI). Let us explain these
methods in the following sections.

3.3. RETO: Reserve Entry, Transfer Original

RETO reserves one or more entries in the look-up table and initially registers any
symbols in the entries on both the compressor and the decompressor. The registered
symbols are the exception symbols. The compressor outputs the symbol as an original
data. When the decompressor receives the original data, it tries to register the symbol to
the look-up table. However, the decompressor detects an inconsistent that the symbol is
already registered in the table. Using this inconsistent event, the decompressor knows the
original data is an exception symbol.

RETO is similar to the method in LZW because the exception symbol is reserved in
the look-up table and it is never invalidated. However, RETO differs in the aspect that the
reserved entry joins in the compression operation. In the LZW method, there is no way
to detect if the received symbol is a compressed data or not because the compressed data
consists of the table index that equals to the registered symbol in the entry. Therefore, the
compressor of LZW inevitably uses a reserved entry as an exception symbol and directly
outputs the symbol. Thus, the entry is not used during compression process. On the other
hand, RETO compresses the symbol reserved in an entry in the table.

RETO has a drawback in the complexity of the algorithm. When the decompressor
receives any original data, it needs to search the symbol in the look-up table and checks if
the symbol is registered in the table or not. If the symbol is found in the table, it is detected
as an exception symbol. If not, it is an original data to be newly registered. Thus, RETO
needs to be implemented either by software or in hardware with a search mechanism of
the table. Therefore, the complexity of RETO is O(E) where E is the number of entries in
look-up table.

In the aspect of compression performance, RETO is able to use the reserved entry for
compression. When a symbol inputted to the compressor is corresponding to the symbol
registered in the reserved entry in the look-up table, the compressor is able to compress
the symbol by converting it to the index of the entry. For example, RETO can prepare
the reserved entry by a symbol that is frequently appeared in the inputted data stream to
the compressor. This might contribute to achieve a better compression ratio than the case
without the reserved entry.

Figure 6 shows examples of RETO applying to LCA-DLT and ASE coding. In the case
of LCA-DLT as depicted in Figure 6a, an entry in the look-up table is reserved in both
the compressor and the decompressor. The index of the entry must be the same among
those. The frequent counter in the entry is not decremented during the table operations
and the valid bit is set always to be true. This prevents the entry from removing by the
table operations. On the other hand, in the case of ASE coding as shown in Figure 6b, the
entry in the lowest index of the look-up table is reserved. Moreover, the registration of a
new symbol to the table is preformed from the second lowest index. Here, note that the
number of occupied entries k in the entropy calculation is always more than 0 due to the
reserved entry. Additionally, the entropy culling targets to invalidate the entries of the
indices larger than 0.

As we explained above, RETO reserves an entry in the look-up table and treats an
original data as an exception symbol. It is able to use the entry during the compression
operation. However, the content of the entry is always fixed. Therefore, the compression
performance of RETO is affected by the reserved entry.



Electronics 2021, 10, 240 12 of 19

AB
BC

CD

0000
0001
0010
0011

a) RETO on LCA-DLT

T

F
T

T

Valid

Compressor

0+AB

Decompressor

Cmark=0

Compressed

data

A
B
C

0000
0001
0010
0011

b) RETO on ASE coding

T

F

T
T

Valid

Compressor

0+A A
B
C

0000
0001
0010
0011

T

F

T
T

Valid

Decompressor

Cmark=0

Compressed

Inconsistent

data ‘A’ is already registered.

Exception 
symbol

Exception 
symbol

Frequent
count

Reserved

>0
2

1
0

AB
BC

CD

0000
0001
0010
0011

T

F
T

T

Valid
Frequent

count
Reserved

>0
2

1
0

Inconsistent

‘AB’ is already registered.

Reserved Reserved

Figure 6. RETO examples applying to (a) LCA-DLT and (b) ASE coding.

3.4. RETI: Reserve Entry, Transfer Index

In the case of RETI, the compressor outputs a compressed data as an exception symbol.
The compressed data is an index of the look-up table. RETI reserves an entry of the look-up
table that is not involved in the registration for a new symbol. The entry must be always
marked as unoccupied. When the decompressor receives the compressed data, it uses the
compressed data as an index of the table and then detects an inconsistency because the
entry is reserved as unoccupied. Due to the inconsistency, an exception has occurred in the
decompressor.

In RETI, the reserved entry is not used for the compression because the reserved entry
in the look-up table must be always unoccupied. This degrades the compression ratio
because the number of entries joined in the compression in the look-up table is always E− k
where E is the total number of entries physically allocated and k is the number of exception
symbols. Thus, RETI is not an optimal method if application expects good compression
ratio. However, as we discussed the event-driven exception above, we can set k = 1. The
degradation of the compression ratio cannot be large.

When we implement RETI in LCA-DLT, we need a mechanism to control the reserved
entry to be unoccupied. As shown in Figure 7a, the valid bit of the reserved symbol
is fixed to be false permanently. The index of the reserved entry must be equal among
the compressor and the decompressor. Here, using the characteristics that the index
of the reserved entry should be known by the compressor and the decompressor, the
decompressor can detect the exception symbol without touching the look-up table by
comparing the reserved index with the known exception symbol. To avoid this irregular
mode in the table operations, the straightforward implementation is to associate the index
of the table from the exception symbol. Then the inconsistency is detected as the exception.
On the other hand, in the case of ASE coding as illustrated in Figure 7b, the entry in the
lowest index is reserved as unoccupied. The entry is ignored during the table operations.
The entropy culling can include the entry. However, there is no effect to the compression
mechanism even if it includes the entry because the reserved entry is always unoccupied.
Note that the entropy calculation uses k ≥ 0 for the number of occupied entries in the table
because the number of bits shrunk in the compressor must guarantee the case when the
table is empty. However, after an entry is occupied, k becomes 2. This results the entropy
calculation is m ≥ 1. In the other words, the bit length of the compressed data never
becomes zero due to the reserved entry. Therefore, we can expect that RETI degrades the
compression ratio.

BC

CD

0000
0001
0010
0011

a) RETI on LCA-DLT

F
T

T

Valid

Compressor

1+0000

Decompressor

Cmark=1

Compressed

data

B
C

0000
0001
0010
0011

b) RETI on ASE coding

F

F

T
T

Valid

Compressor

0+00

B
C

0000
0001
0010
0011 F

T
T

Valid

Decompressor

Cmark=0

Compressed

Inconsistent

data The index 0000 is unoccupied.

Exception 
symbol

Exception 
symbol

Frequent
count

Reserved

2

1
0

BC

CD

0000
0001
0010
0011

F
T

T

Valid
Frequent

count
Reserved

0
2

1
0

Inconsistent

Reserved Reserved

F 0 F F

The reserved entry is included 
in the number of occupied entries.

3

The reserved index is
 shrunk to 2bit.

The index 0000 is unoccupied.

Figure 7. RETI examples applying to (a) LCA-DLT and (b) ASE coding.



Electronics 2021, 10, 240 13 of 19

As we can see in this section, RETI implements the exception symbol without any
search operation during table operations. However it inevitably degrades the performance
because the reserved entry is not used for the compression.

3.5. FETO: Free Entry, Transfer Original

We explained the methods of Reserve Entry above. From this section, we discuss the
ones of Free Entry that any entry in the look-up table is not reserved.

In FETO, the compressor outputs an original symbol as an exception symbol as well
as RETO. Then, the decompressor detects that the symbol is registered in the look-up table.
This is inconsistent in the decompression operation. Thus, an exception has occurred. The
original symbol outputted from the compressor is selected one of the registered symbols
in the occupied entries in the look-up table. This mechanism has a drawback when the
look-up table is empty. If no occupied entry exists in the table, FETO cannot pick up any
symbol for the exception. Therefore, one or more entries in the table must be occupied.
However, FETO does not affect the compression performance because the compressor is
able to use all entries in the look-up table during the compression operations.

Let us see the implementation of FETO in LCA-DLT and ASE coding. First, in the
implementation in LCA-DLT as shown in Figure 8a, the compressor picks up an entry from
the lookup table that the valid bit is set. Then, it outputs the symbol as the compressed
data combining with Cmark = 0. When the decompressor receives it, it tries to register
to the look-up table because the compressed data is the original symbol. However, the
decompressor scans the table with comparing the received symbol with contents of all
the entries. If an entry that matches to the received symbol is found, it is detected as an
exception symbol because the situation is inconsistent. Thus, the exception occurs. If not
found, it is registered to the table as a new symbol. On the other hand, in the case of ASE
coding as shown in Figure 8b, the compressor can choose the lowest entry in the look-up
table as an exception symbol because the table content is maintained equally among the
compressor and the decompressor. The symbol is outputted from the compressor as well
as LCA-DLT. Then, the decompressor just compares the lowest entry in the look-up table.
Here, note that we do not need to implement the search mechanism to check if the received
symbol is already registered in the look-up table or not. If the comparison fails, the received
symbol is pushed to the table. Here, the table operation includes all entries in the table
because there is no reserved symbol. Be aware that FETO does not work when the look-up
table is empty in both cases of LCA-DLT and ASE coding. This is a fatal drawback of the
mechanism. However, by combining FETI explained in the next section, we can implement
a perfect mechanism of the exception symbol.

AB
BC

CD

0000
0001
0010
0011

a) FETO on LCA-DLT

T

F
T

T

Valid

Compressor

0+AB

Decompressor

Cmark=0

Compressed

data

A
B
C

0000
0001
0010
0011

b) FETO on ASE coding

T

F

T
T

Valid

Compressor

0+A A
B
C

0000
0001
0010
0011

T

F

T
T

Valid

Decompressor

Cmark=0

Compressed

Inconsistent

data ‘A’ is already registered.

Exception 
symbol

Exception 
symbol

Frequent
count

1
2

1
0

AB
BC

CD

0000
0001
0010
0011

T

F
T

T

Valid
Frequent

count

1
2

1
0

Inconsistent

‘AB’ is already registered.Any occupied entry is
selected as the output.

Selected. Selected.

The lowest enty is selected.

Figure 8. FETO examples applying to (a) LCA-DLT and (b) ASE coding.

As we discussed above, FETO needs a symbol search operation before the table opera-
tion depending on the management algorithm of the table because it does not define any
reserved symbol in the look-up table. For example, LCA-DLT needs the search mechanism.
However, ASE coding does not need the search mechanism because it can identify the
exception symbol by just picking up the lowest entry of the table. Regarding the compres-
sion performance, we can expect that FETO does not have any effect to the performance
according to the exception symbol because it is able to use all allocated entries in the
look-up table. However, FETO does not work when the table is empty.



Electronics 2021, 10, 240 14 of 19

3.6. FETI: Free Entry, Transfer Index

In FETI, the compressor picks up an index of an unoccupied entry in the table as the
exception symbol and outputs it as a compressed data. When the decompressor receives
the compressed data, it uses the data as an index of the look-up table to pick up the
associated original symbol. However, the entry pointed by the index is unoccupied. This is
an inconsistent in the table operation. Thus, the exception has occurred in the decompressor.
This mechanism needs to guarantee that at least an unoccupied entry exists in the look-up
table. Therefore, it is obviously expected that this mechanism does not work if the table
is full. However, this mechanism does not affect the compression performance because it
does not need to reserve any entry in the table.

The implementations of FETI differ depending on the algorithms, especially depend-
ing on the table management. For example, in the case of LCA-DLT as shown in Figure 9a,
the compressor needs to search an unoccupied entry in the look-up table. Here, the com-
pressor can choose any unoccupied entry that the valid bit is reset, and outputs the index
as a compressed data with Cmark = 1. The decompressor receives the compressed data and
tries to pick up the original symbol from the look-up table. However, the entry pointed
by the index is not occupied. This is inconsistent and causes an exception. Note that
in LCA-DLT, we cannot apply FETI when the table is full. On the other hand, in ASE
coding, we need to implement FETI with a care for the table management operation. FETI
is not available when the number of occupied entries equals 2i where i ≥ 0. For example,
when the number of occupied entries in the look-up table is 16 (the total number of entries
initially allocated in the table is more than that), if the compressor generates an exception
symbol, it can choose the index of the 17th entry in the table. However, the number of
occupied entries does not change. Therefore, the entropy calculation returns 4 = log2 16
and the compressor shrinks the exception symbol to 4bits. However, the number of bits to
express the exception symbol (i.e., 16) is five. This lacks a bit of the exception symbol. Thus,
FETI does not work in some conditions depending on the number of occupied entries. To
avoid this situation, the compressor should activate FETI only when the look-up table is
empty. Under the condition when the number of occupied entries in the look-up table is
zero, the compressor can simply select the lowest index (i.e., 0) as the exception symbol
and outputs it. Due to the entropy calculation m = ceil(log2 0) = 0 when the table is
empty, the compressed data is always a single bit consisted of Cmark = 1 only. Here,
the compressor can ignore the index selection and just can output Cmark bit. When the
decompressor receives the compressed data, it detects the Cmark and extracts the number
of bits due to the entropy calculation as well as the one in the compressor. Then, the table
index becomes zero. The lowest entry in the table is selected. However, it is not occupied.
This is inconsistent in the decompression algorithm and thus, an exception has occurred.
Now, let us see a case when several entries are occupied in the look-up table as shown in
Figure 9b). In this case, the entropy calculation results m = ceil(log2 3) = 2. The index 0011
is selected as an exception symbol because it is not occupied and is placed in the lowest.
It is shrunk to 11 and Cmark = 1 is combined. In the decompressor side, the compressed
symbol is recognized and the index 0011 is referred. However, it is not occupied. Thus, the
exception occurs.

BC

CD

0000
0001
0010
0011

a) FETI on LCA-DLT

F
T

T

Valid

Compressor

1+0010

Decompressor

Cmark=1

Compressed

data

B
C

0000
0001
0010
0011

b) FETI on ASE coding

T

F

T
T

Valid

Compressor

0+11

B
C

0000
0001
0010
0011 F

T
T

Valid

Decompressor

Cmark=0

Compressed

Inconsistent

data The index 0011 is unoccupied.

Exception 
symbol

Exception 
symbol

Frequent
count

Selected.

2

1
0

BC

CD

0000
0001
0010
0011

F
T

T

Valid
Frequent

count

3
2

1
0

Inconsistent

Selected.

T 3 T T
3

The reserved index is
 shrunk to 2bit.

The index 0010 is unoccupied.

AB AB A A

Figure 9. FETI examples applying to (a) LCA-DLT and (b) ASE coding.



Electronics 2021, 10, 240 15 of 19

As mentioned above, FETI does not affect the compression performance because any
entry in the look-up table is not reserved. However, this method is not available if the
look-up table is full.

3.7. Implementation Consideration

Here, let us consider optimal combinations of four methods explained above.
We discussed above that RETI and RETO can degrade the compression performance

due to the reserved entry in the look-up table. Therefore, it would not be suitable when
application needs good compression ratio. However, in the aspect of implementation com-
plexity, RETI is simpler than RETO because it does not need the symbol search mechanism
in the decompressor side to find the corresponding symbol to the exception symbol.

On the other hand, the combination of FETO and FETI will implement the exception
symbol without performance degradation. FETO is not available when the look-up table
is empty. On the other hand, FETI is not available when the table is full. Therefore, the
combination of those two methods will achieve the best solution, i.e., FETI is activated
when the table is empty and FETO is done when the table is not empty. In this combination,
the compressor does not need to reserve any entry in the table and never degrades the
compression performance because the compressor can use all entries in the table.

We explained the exception handling method in the digram coding with the look-
up table that the number of entries is fixed. The major method for the exception is to
make an inconsistent state in the look-up table operation. We categorized the mechanism
into four methods. According to the discussion focusing on the implementation difficulty
and the compression performance, the optimal implementation of the exception symbol is
FETI+FETO because the compression performance never degrades. However, if application
desires the simpler implementation, although the compression performance degrades,
RETI is the best solution. Here, we have a question about how much the performance
degradation occurs by RETI and RETO. Let us observe the performance from experimental
evaluations in the next section.

4. Experimental Evaluations

We will discuss the compression performance applying RETO, RETI, FETO and FETI
to LCA-DLT and ASE coding. We will compare the performance of three implementations
among RETO, RETI, FETI+FETO.

During the evaluations, we employ benchmark data available from [21–24]. From the
benchmarks, we use two ASCII text data and two image data. The text data potentially
includes some rules based on ASCII code. This provides frequency that makes the entropy
low. On the other hand, the image data is randomly generated depending on the image
sensor or the graphics rendering algorithm. This provides high entropy than the text data.
In the evaluations, we just compare the performance without exchanging any exception
symbol between the compressor and the decompressor. Therefore, we will observe the
compression performance by just applying the benchmark data to the compressor with the
mechanisms of RETO, RETI and FETI + FETO.

The gene DNA sequences and the English text are picked up from [21]. The contents
of the files are organized with ASCII text data sequences. We use the first 10Mbyte of the
downloadable file from the site. The Beauty is picked up from the second website. It is
provided by a file with a video frame sequence in YUV420 format in 8 bit depth. We use
the 100th frame of the sequence in the video file. The size of the frame data is 12 Mbyte.
The Sintel is picked up from [24]. It is a video file of a computer graphics amination which
frame size is 10 MByte. We use the 1000th frame of the Sintel formatted in YUV420 of
8 bit depth by converting from the TIFF file. Here, let us explain the reason we chose
these data sequences as the benchmark. The gene DNA sequences consist of only four
characters (A, T, G, C) of eight bit wide. The English text is an example of a more complex
data patterns of alphabets and some other symbols with eight bit wide. The evaluation
using this will show a compression performance of a data sequence with higher entropy



Electronics 2021, 10, 240 16 of 19

than the gene DNA sequence. The Beauty is an example of a natural image data which
resolution is 3840 × 2160. Note that in the YUV420 format, Y:U:V is 4:1:1. It stores 8 bit Y
element for every pixel. It also stores U and V elements that are also 8 bits respectively
derived from 2 × 2 pixel block. The evaluation with this data sequence will show effects of
the algorithms in the case of high entropy data stream. On the other hand, the Sintel is an
example of a data sequence based on an artificial image which resolution is 4096 × 1744
formatted in YUV420. The data size is 10 MB. This includes frequent color patterns due
to the creation algorithm of the computer graphics. Therefore, the evaluation using this
image data will show effects when we apply the algorithms to such data sequence with
lower data entropy than the natural image.

In the experiments, we apply the methods of the exception symbol to LCA-DLT under
the following configurations: the initially allocated entries in the look-up table varies from
16 to 256. The symbol width is 8 bit. We also apply the methods to ASE coding under the
following configurations: the initially allocated entries in the look-up table varies from
4 to 64. The symbol width is 8bit. The entropy culling is set to 2. The methods for the
exception symbol are implemented by applying the examples explained in the previous
Sections 3.3–3.6 depicted in Figures 6–9. FETO+FETI is the combination discussed in
Section 3.7 that FETO is applied when the look-up table is empty and otherwise FETI is
applied. Note that the performance of FETI+FETO equals to the one without the exception
symbol. We also perform an evaluation of RETO with the most frequent value (denoted as
RETO (MFV)) that sets the most frequent symbol in the benchmark data to the reserved
entry. In the case of LCA-DLT, we pick up the most frequent pair of contiguous symbols
from the benchmark data, which is 16 bits. The percentages of the values are 4.5%, 1.4%,
0.16% and 2.4% in gene DNA sequences, English text, Beauty and Sintel respectively. On
the other hand, in the case of ASE coding, we use the most frequent 8bit symbol from the
benchmark data. The percentages of the values are 28.6%, 17.4%, 2.16% and 5.18% in gene
DNA sequences, English text, Beauty and Sintel respectively. The compression ratio is the
metric of the performance comparison, which is calculated by (compressed data size/original
data size) ×100 (%). The smaller the ratio is, the better the compression performance is
achieved. As reference performances of the compression ratios by ZIP (the default setting
of Info-ZIP 3.0), we confirmed that the ratios of gene DNA sequences, English text, Beauty
and Sintel resulted 28.26%, 37.92%, 70.60% and 14.66%.

Figure 10 shows the performance comparisons among different configurations in
LCA-DLT with the methods of the exception symbol. All performances show almost the
same compression ratios in any configurations. We confirmed that the mechanism of the
exception symbol did not have overhead in the compression performance. RETI and RETO
reserves an entry in the look-up table. Therefore, we expected that the effect of the reserved
entry appears in the compression ratio when the number of entries is small. However,
it does not affect much to the compression ratio because the compression mechanism
recovers the disadvantage dynamically according to the data entropy. On the other hand,
when the number of entries in the look-up table is small, potentially the compression ratio
becomes worse such as the one more than 100%. Even when RETO (MFV) sets the most
frequent symbol pair in the reserved entry, the advantage of the reserved symbol is not
observed at all because the compressor does not increase the hit ratio against the look-up
table due to the reserved symbol. This is caused by the mechanism that the frequent
counter is incremented at hit operations. Therefore, the frequent symbol pairs can stay
in the table for a long time. This allows the compressor to keep the frequent symbols in
the table, and contributes to compress the symbols. Finally, the case without the reserved
entry even results the similar performance to the case with the one. Thus, we conclude
that the proposed methods of the exception symbol do not affect the compression ratio
in LCA-LDT.



Electronics 2021, 10, 240 17 of 19

Figure 10. Comparison of compression performance among RETO, RETI, FETO+FETI (without the
exception symbol) and RETO(MFV) (maintaining the most frequent value in the reserved entry)
applying on LCA-DLT.

Figure 11 also shows the performance comparisons among different configurations in
ASE coding with the methods of the exception symbol. We should focus on the compression
performance of RETI and RETO. The method of the reserved entry in the table has an
impact on making the bit length of the compressed data longer because the lowest entry is
always occupied. This makes m from the entropy calculation m ≥ 1. On the other hand, in
the case of FETI + FETO, the entropy calculation returns m ≥ 0, i.e., the method to reserve
an entry inevitably needs to increase a bit in the compressed data. Therefore, the main
reason for the performance difference between RETI/RETO and FETI + FETO is the effect
from the additional bit according to the reserved entry. However, we found that RETO can
cancel the performance decrease by using the reserved entry with setting the most frequent
symbol to the entry. The result of RETO(MFV) shows almost equivalent compression
performance to the one of FETI + FETO. In the case of ASE coding, RETO has advantage in
the simple implementation. Therefore, if the most frequent symbol is known originally,
this method helps in both aspects of implementation and compression performance.

Figure 11. Comparison of compression performance among RETO, RETI, FETO + FETI (without
the exception symbol) and RETO(MFV) (maintaining the most frequent value in the reserved entry)
applying on ASE coding.



Electronics 2021, 10, 240 18 of 19

As we discussed in the previous section, the graphs from the results of LCA-DLT and
ASE coding shows that FETI+FETO is the best solution to handle the exception symbol
because it does not affect the compression performance at all and also exploits the potential
performance of the compressor.

According to the performance evaluations above, the exception methods proposed
in this paper implement appropriate exception handling on the digram coding with a fix-
sized look-up table. In particular, we designed the methods for the stream-based lossless
compression that needs to compress/decompress a contiguous data stream without stalling
in a small delay. Thus, we conclude that we implemented effective exception handling
methods that do not affect the compression performance.

5. Conclusions

This paper proposes exception handling methods for the digram coding that the num-
ber of entries in the look-up table is fixed. We proposed the method to handle the exception
symbol in the lossless data compression. We also classified the method into four categories
called RETO, RETI, FETO, and FETI according to the detection mechanism for the exception
during the management operations for the look-up table. We explained the implementation
examples on the stream-based lossless compression algorithms, LCA-DLT and ASE coding,
and also discussed the effects for the compression performance. Regarding the effects for
the performance, we performed the experimental evaluations applying the methods for the
exception symbol on the stream-based lossless data compression algorithms. According
to the comparisons of the compression ratios from the experiments, we confirmed that
the reserved methods have slight performance degradation. However, FETI + FETO im-
plements the stream-based data compression without any overhead in the compression
performance. Thus, we proposed an exception handling method in the digram coding with
a fixed-size look-up table by eliminating overhead in the compression performance. For
the future plans, we are going to apply the proposed methods to applications that need to
communicate combined data stream via slow communication devices such as Bluetooth.
Then, we will validate the proposed methods in realistic applications.

Author Contributions: Conceptualization, S.Y.; methodology, S.Y. and K.M.; software, S.Y. and S.K.;
validation, S.Y., K.M. and S.K.; formal analysis, S.Y.; investigation, S.Y.; resources, S.Y.; data curation,
S.Y.; writing—original draft preparation, S.Y.; writing—review and editing, S.Y.; visualization, S.Y.;
supervision, S.Y.; project administration, S.Y.; funding acquisition, S.Y. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported by JSPS KAKENHI Grant Number 20H04152, JST CREST Grant
Number JPMJCR1402 and JST PRESTO Grant Number JPMJPR203A.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Marumo, K.; Yamagiwa, S.; Morita, R.; Sakamoto, H. Lazy Management for Frequency Table on Hardware-Based Stream Lossless

Data Compression. Information 2016, 7, 63. [CrossRef]
2. Yamagiwa, S.; Hayakawa, E.; Marumo, K. Stream-Based Lossless Data Compression Applying Adaptive Entropy Coding for

Hardware-Based Implementation. Algorithms 2016, 13, 159. [CrossRef]
3. Mohammadi, M.; Al-Fuqaha, A.; Sorour, S.; Guizani, M. Deep Learning for IoT Big Data and Streaming Analytics: A Survey.

IEEE Commun. Surv. Tutor. 2018, 20, 2923–2960. [CrossRef]
4. Howard, P.G.; Vitter, J.S. A universal algorithm for sequential data compression. Inf. Process. Manag. 1992, 28, 749–763. [CrossRef]
5. Langdon, G.G. An Introduction to Arithmetic Coding. IBM J. Res. Dev. 1984, 28, 135–149. [CrossRef]
6. Martin, G.N.N. Range encoding: An algorithm for removing redundancy from a digitised message. In Proceedings of the Video

and Data Recording Conference, Southampton, UK, 24–27 July 1979.
7. Huffman, D.A. A Method for the Construction of Minimum-Redundancy Codes. Proc. IRE 1952, 40, 1098–1101. [CrossRef]
8. Vitter, J.S. Design and Analysis of Dynamic Huffman Codes. J. ACM 1987, 34, 825–845. [CrossRef]
9. Ziv, J.; Lempel, A. A universal algorithm for sequential data compression. IEEE Trans. Inf. Theory 1977, 23, 337–343. [CrossRef]
10. Ziv, J.; Lempel, A. Compression of individual sequences via variable-rate coding. IEEE Trans. Inf. Theory 1978, 24, 530–536.

[CrossRef]

http://doi.org/10.3390/info7040063
http://dx.doi.org/10.3390/a13070159
http://dx.doi.org/10.1109/COMST.2018.2844341
http://dx.doi.org/10.1016/0306-4573(92)90066-9
http://dx.doi.org/10.1147/rd.282.0135
http://dx.doi.org/10.1109/JRPROC.1952.273898
http://dx.doi.org/10.1145/31846.42227
http://dx.doi.org/10.1109/TIT.1977.1055714
http://dx.doi.org/10.1109/TIT.1978.1055934


Electronics 2021, 10, 240 19 of 19

11. LZ4. Available online: https://lz4.github.io/lz4/ (accessed on 5 December 2020).
12. Google. Available online: https://github.com/google/snappy (accessed on 5 December 2020).
13. Deutsch, P. RFC 1951 DEFLATE Compressed Data Format Specification Version 1.3; Aladdin Enterprises: Jaw, SK, Canada, 1996.
14. Welch, T. A Technique for High-Performance Data Compression. Computer 1984, 17, 8–19. [CrossRef]
15. Yamagiwa, S.; Sakamoto, H. A reconfigurable stream compression hardware based on static symbol-lookup table. In Proceedings

of the 2013 IEEE International Conference on Big Data, Santa Clara, CA, USA, 6–9 October 2013; pp. 86–93.
16. Maruyama, S.; Sakamoto, H.; Takeda, M. An Online Algorithm for Lightweight Grammar-Based Compression. Algorithms 2012,

5, 214–235. [CrossRef]
17. Yamagiwa, S.; Marumo, K.; Sakamoto, H. Stream-based Lossless Data Compression Hardware using Adaptive Frequency Table

Management. In Proceedings of the Very Large Data Bases/BPOE 2015, Kohala, HI, USA, 31 August–4 September 2015.
18. Marumo, K.; Yamagiwa, S. Time-Sharing Multithreading on Stream-Based Lossless Data Compression. In Proceedings of the 2017

Fifth International Symposium on Computing and Networking (CANDAR), Aomori, Japan, 19–22 November 2017; pp. 305–310.
19. Kua, J.; Nguyen, S.H.; Armitage, G.; Branch, P. Using Active Queue Management to Assist IoT Application Flows in Home

Broadband Networks. IEEE Internet Things J. 2017, 4, 1399–1407. [CrossRef]
20. Tang, T.; Yang, J.; Du, B.; Tang, L. Down-Sampling Based Rate Control for Mobile Screen Video Coding. IEEE Access 2019,

7, 139560–139570. [CrossRef]
21. Compressed Indexes and Their Testbeds. Available online: http://pizzachili.dcc.uchile.cl/ (accessed on 5 December 2020).
22. Ultra Video Group. Available online: http://ultravideo.cs.tut.fi/ (accessed on 5 December 2020).
23. Mercat, A.; Viitanen, M.; Vanne, J. UVG Dataset: 50/120fps 4K Sequences for Video Codec Analysis and Development.

In Proceedings of the 11th ACM Multimedia Systems Conference, MMSys ’20, Istanbul, Turkey, 8–11 June 2020; ACM: New York,
NY, USA, 2020; pp. 297–302. [CrossRef]

24. Xiph.org Test Media. Available online: https://media.xiph.org/ (accessed on 5 December 2020).

https://lz4.github.io/lz4/
https://github.com/google/snappy
http://dx.doi.org/10.1109/MC.1984.1659158
http://dx.doi.org/10.3390/a5020214
http://dx.doi.org/10.1109/JIOT.2017.2722683
http://dx.doi.org/10.1109/ACCESS.2019.2943887
http://pizzachili.dcc.uchile.cl/
http://ultravideo.cs.tut.fi/
http://dx.doi.org/10.1145/3339825.3394937
https://media.xiph.org/

	Introduction
	Backgrounds and Definitions
	Stream-Based Lossless Data Compression
	Exception Handling on Lossless Data Compression

	Exception Handling Method for Stream-Based Lossless Data Compression
	Modeling of Variable Exception Control
	Method for Exception Control
	RETO: Reserve Entry, Transfer Original
	RETI: Reserve Entry, Transfer Index
	FETO: Free Entry, Transfer Original
	FETI: Free Entry, Transfer Index
	Implementation Consideration

	Experimental Evaluations
	Conclusions
	References

