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Abstract. As for a generic parameter-dependent Hamiltonian with time
reversal (TR) invariance, a non-Abelian Berry connection with Kramers (KR)
degeneracy is introduced by using a quaternionic Berry connection. This
quaternionic structure naturally extends to the many-body system with KR
degeneracy. Its topological structure is explicitly discussed in comparison
with the one without KR degeneracy. Natural dimensions to have nontrivial
topological structures are discussed by presenting explicit gauge fixing.
Minimum models to have accidental degeneracies are given with/without KR
degeneracy, which describe the monopoles of Dirac and Yang. We have shown
that the Yang monopole is literally a quaternionic Dirac monopole.

The generic Berry phases with/without KR degeneracy are introduced by
the complex/quaternionic Berry connections. As for the symmetry-protected
Z2-quantization of these general Berry phases, a sufficient condition of the
Z2-quantization is given as the inversion/reflection equivalence.

Topological charges of the SO(3) and SO(5) nonlinear σ -models are
discussed in relation to the Chern numbers of the CP1 and HP1 models as well.
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1. Introduction

Topological numbers have been important in physics, especially in quantum phenomena. They
give a conceptual foundation of quantizations for various elementary degrees of freedom such
as charges, fluxes, vortices and monopoles [1, 2]. One of the milestones of the emerging
topological numbers is a quantization of the Hall conductance where a response function
is directly related to the topological quantum number as the first Chern number [3]–[7]. Its
fundamental physical meaning has become clear by introducing an idea of the geometrical
concept, which is known as the Berry connection today [8]. For quantum Hall (QH) states,
the bulk is gapped and does not have any characteristic symmetry breaking. It results in
the absence of a local order parameter and no low-energy excitations as Goldstone bosons.
A class of such featureless systems is the (gapped) quantum liquid and the spin liquid. A
possible effective field theory for gapped quantum liquids is topological field theory, where
topological quantities play a central role. Then a corresponding new idea to describe the system
is topological order [9, 10]. It should be compared with the standard Ginzburg–Landau–Wilson
scenario, where a local field theory to describe the fluctuation of a local order parameter is
essential. As for a bulk topological ordered state, the degeneracy of the ground state depends
on the topology of the physical space [9]. However, there were not so many quantities to
describe the topological order. As an extension of the success for the QH state, we have
successfully used the Berry connections and related topological quantities for characterization
of the topological ordered states [11]–[17]. Also note that although the bulk QH state is
featureless, the system with boundaries has characteristic localized states as the edge states
[18, 19]. Extending this observation, we propose an idea of the bulk–edge correspondence
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which says that although the bulk is gapped and only characterized by topological quantities,
there exist characteristic boundary states that reflect the topologically nontrivial bulk for the
system with boundaries [7, 20]. This ‘bulk–edge correspondence’ seems to be a universal
feature of topological ordered states such as QH states, quantum spins [13, 17, 21],
graphene [22], photonic crystals [23], cold atoms [24], characterization of localizations [25]
and quantum spin Hall (QSH) systems [26]–[28].

The QSH state is an analogous state to the QH state, but it respects time reversal (TR)
symmetry with the help of spins [26, 27]. Then, it is natural that the Berry connection and
TR invariance play fundamental roles. There have been substantial amounts of works on the
topic [25]–[39]. In this paper, we present a self-contained description of Berry connections and
related topological quantities with/without Kramers (KR) degeneracy. Especially we focus on
its quaternioninc structure. Quaternions are fundamental in the description of the TR invariant
system with KR degeneracy, which was first pointed out by Dyson a long time ago [29, 30,
40, 41]. There is more than an analogy between the system with/without KR degeneracy. One
can make a mapping between them by replacing the complex number by the quaternions [41].
We explicitly demonstrate this for topological quantities by introducing canonical minimum
models, which are related to monopoles and accidental degeneracies.

As for topological quantities, there can be two classes. One includes topological invariants
by their definition. Quantization for them is automatically guaranteed only by stability and
a regularity of the Berry connections. Examples are Chern numbers, winding numbers and
the Pontrjagin index. Additionally, we introduce a new class of quantized quantities as
a generalization of the Z2 Berry phase [13], which is geometrical. However, as for the
quantization, one needs an additional symmetry requirement. We give a sufficient condition
for this symmetry-protected Z2-quantization.

As for the application of a gauge-invariant description of Chern numbers, a relation
between Chern numbers and topological charges of the SO(3) and SO(5) nonlinear σ -models
is also presented.

2. TR and quaternions

Let us first introduce a quaternion notation for a TR-invariant bi-linear system [40]. Introducing
D parameters x = (x1, . . . , xµ, . . . , x D) ∈ VD, dim VD = D, let us consider a bi-linear 2N -
fermion Hamiltonian H(x)= c†

m Hmn(x)cn, c†
n = (c†

n↑
, c†

n↓
), where Hmn is a 2 × 2 complex

matrix and cn (n = 1, . . . , N ) is a spinor, a pair of fermion annihilation operators (summation
over doubled indexes is assumed and n = 1, . . . , N ). Further let us impose an invariance under
the TR operation 2 for the Hamiltonian H. Since 2 operates as cnσ → (−)(σ−1)/2cn−σ (↑ = +1
and ↓ = −1, cn↑ → cn↓ and cn↓ → −cn↑) and taking a complex conjugate K, we have J̃H ∗

mn J =

−J H ∗

mn J = Hmn (J = iσy), where σx,y,z are the Pauli matrices (˜ is a matrix transpose). As
for the bi-linear Hamiltonian here, it is expressed as [H,2b] = 0, where {H}mn = Hmn and
2b = −KJ (J operates subblock of Hmn). Now let us expand this 2 × 2 matrix Hmn as Hmn =

h0
mn + h1

mn I + h2
mn J + h3

mn K , where I = iσz = −I ∗
= −I †, J = iσy = J ∗

= −J † and K = iσx =

−K ∗
= −K †. Then TR invariance implies hαmn ∈ R (α = 0, . . . , 3), that is, Hmn is identified

as a quaternion H 3 hmn by a standard equivalence I ∼= iH, J ∼= jH, K ∼= kH, iH, jH, kH ∈

H, iH
2
= jH

2
= kH

2
= iH jHkH = −1, since −JH ∗

mn J = (h0
mn)

∗(−JJ )+ (h1
mn)

∗(−J (−I )J )+
(h2

mn)
∗(−J (J )J )+ (h3

mn)
∗(−J (−K )J )∼= (h0

mn)
∗ + (h1

mn)
∗iH + (h2

mn)
∗ jH + (h3

mn)
∗kH. Hermiticity

of the H, H †
= H , implies four conditions for the real matrices, hα, h̃0

= h0,
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h̃α = −hα (α = 1, 2, 3), where (hα)mn ≡ hαmn. It gives a Hermite quaternionic matrix hH =

h0 + h1iH + h1iH + h2 jH + h3kH ∼= H = h0 + h1 I + h2 J + h3K expressed as (hH)† = hH.
As for a normalized eigenstate,

ψ` =

[
ψ`↑
ψ`↓

]
(ψ

†
`ψ` = 1),

of the 2N -dimensional Hamiltonian H (Hψ` = ε`ψ`), it is degenerate with

ψ2
` =2ψ` =

[
−ψ∗

`↓

ψ∗

`↑

]
,

which is the KR degeneracy. Its orthogonality, ψ†
`ψ

2
` = 0, is trivial here (generically, there are

N KR pairs, `= 1, . . . , N ). Let us write this KR pair as

9` = (ψ`,2ψ`)= ψ0
` ⊗ E2 +ψ1

` ⊗ I +ψ2
` ⊗ J +ψ3

` ⊗ K

=

[
ψ0
` + iψ1

` ψ2
` + iψ3

`

−ψ2
` + iψ3

` ψ0
` − iψ1

`

]
∼= ψH` ∈HN ,

where ψ0
` = Reψ↑

` , ψ1
` = Imψ

↑

` , ψ2
` = −Reψ`↓, ψ3

` = Imψ
↓

` , ψα
` ∈ RN and E2 is a two-

dimensional unit matrix. Here ψH` is a quaternion vector of dimension N .
A linear canonical transformation of the fermions {cn} → {d`}, cn = Un`d`, which is

consistent with the TR invariance (written in {d`}), requires that the 2 × 2 matrix Un`

does commute with the TR, that is, J̃U ∗

n` J = Un`
∼= uHn` ∈H. Supplementing the unitarity of

this matrix U †U = UU †
= E2N , (U )n` = Un`, U ∈ U (2N ,C), which guarantees the fermion

anticommutation relations of the {dσ`}’s, this 2N × 2N matrix U satisfies Ũ J2NU = J2N ,
J2N = J ⊗ EN (U ∈ Sp(2N ,C)). It implies U ∈ Sp(N )= U (2N ,C)∩ Sp(2N ,C) as a 2N -
dimensional matrix. By standard equivalence, we also have an N -dimensional quaternion matrix
uH ∈ MN (H), (uH)n` = uHn` ∈H. It is constructed from all of the orthonormalized eigenstates
(KR pairs), {ψH` }, as uH = (ψH1 , . . . , ψ

H
N ), Hψ` = ε`ψ` (ε` 6= ε`′, ` 6= `′).

3. Quaternionic structure of the many-body system with KR degeneracy

The quaternionic structure introduced in section 2 is directly extended to the Fock space of
the fermion many-body states as far as the total number of particles is conserved, since the
TR operation 2 commutes with the Sp(N ) unitary transformation among the fermion spinors
{c†

n} → {d†
n} and the TR operation2, ci↑ → ci↓, ci↓ → −ci↑ and taking the complex conjugate,

has a basis independent meaning. Then, it is also applicable for the S =
1
2 quantum spins by

the standard representation Si =
1
2 c†

i σ ci (extension to the general spins is trivial by introducing
Hund coupling).

Now let us consider a TR-invariant many-body Hamiltonian H, [H,2] = 0. When the
state |9〉 is an eigen state of the Hamiltonian, its TR pair |92

〉 =2|9〉 is also an eigenstate. As
mentioned before, we assume that the Hamiltonian preserves the total fermion number. Then
one may discuss an M-particle sector separately. The TR operation for this M-particle sector
then satisfies 22

|ψ〉 = (−)M
|ψ〉.
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Let us further assume that the number of total fermions (1
2 spins) M is odd to have KR

degeneracy. Then we have the following fundamental relation:

22
|ψ〉 = −|ψ〉.

A generic M-particle state is spanned by the Fock basis as

|ψ〉 =

∑[
ψO(i)|O(i)〉 +ψE(i)|E(i)〉

]
,

where |O(i)〉 and |E(i)〉 represent a basis with an odd (even) number of spin-up fermions:

|O(i)〉 = c†
m1↑

· · · c†
mMu ↑

c†
m1↓

· · · c†
mMd ↓

|0〉 (Mu : odd, Md : even),

|E(i)〉 = c†
m1↑

· · · c†
mMu ↑

c†
m1↓

· · · c†
mMd ↓

|0〉 (Mu : even, Md : odd).

They are orthonormalized as

〈O(i)|O( j)〉 = 〈E(i)|E( j)〉 = δi j , 〈O(i)|E( j)〉 = 0,

where i = 1, . . . , DF is a label of the Fock states. Since the total number of particles is odd, the
basis with even up spins |E(i)〉 is given by that of the odd as

|E(i)〉 =2|O(i)〉.

Therefore, one has (also it is confirmed directly)

2|E(i)〉 =22
|O(i)〉 = −|O(i)〉.

As for the generic state |ψ〉, the TR operation is given as

2|ψ〉 = |ψ2
〉 =

∑
(−ψ∗

E(i)|O(i)〉 +ψ∗

O(i)|E(i)〉).

Using this setup, one can directly extend the discussion in section 2. As for the eigenstate

ψ =

[
ψO

ψE

]
, ψO =

 ψO(1)
...

ψO(DF)

, ψE =

 ψE(1)
...

ψE(DF)

,
the KR multiplet of the many-body state is given as

9 = (ψ,2ψ)≡

[
ψO −ψ∗

E
ψE ψ∗

O

]
= ψ0E +ψ1I +ψ2J +ψ3K ,

New Journal of Physics 12 (2010) 065004 (http://www.njp.org/)

http://www.njp.org/


6

whereψ0
= ReψO ,ψ1

= ImψO ,ψ2
= −ReψE ,ψ3

= ImψE . The orthogonality of the KR pair
is also trivial. Similar to the discussion in section 2, we identity the KR multiplet as a single
state of the quaternion as

9 ∼= ψH = ψ0 +ψ1iH +ψ2 jH +ψ3kH.

Then all of the discussion is trivially transformed into a discussion of the many-body states.
For example, the quaternionic Berry connection for the many-body state is defined as aH =

(ψH)†dψH. All of the discussion in the paper can be applicable to the many-body system.
Applications for electronic systems with electron–electron interaction will be given elsewhere.

4. Minimum dimensions for nontrivial Berry connections

To have a nontrivial topological structure with the Berry connection generically, there are
some requirements for the dimension of the parameter space D, which we describe here.
Let us first start from a generic consideration of the normalized m-dimensional multiplet
9 = (91, . . . , 9m), 9†9 = Em and the corresponding m-dimensional non-Abelian Berry
connection A =9†d9 =9†∂µ9dxµ, which transforms under a gauge transformation 9g =

9g, g ∈ U (m), as Ag = g−1 Ag + g−1dg [8, 42]. The nth Chern number Cn of this connection is
defined as

Cn =

(
i

2π

)n 1

n!

∫
M2n

Tr Fn, F = dA + A2,

where M2n is a 2n-dimensional manifold without boundaries ∂M2n = 0 [43, 44]. Although the
field strength F gets modified by the above gauge transformation as Fg = g−1 Fg, the Chern
number is invariant. As for the explicit discussion of the Berry connection, Zumino’s generic
construction of the topological quantities is quite useful. We summarize a part of them which
we require in this paper [43, 44]. They read as

Tr F = dω1(A), Tr F2
= dω3(A),

ω1(A)= Tr A, ω3(A)= Tr(AdA + 2
3 A3)= Tr(AF −

1
3 A3).

The transformation properties are given as

ω1(Ag)= ω1(A)+ Tr(g−1dg), ω3(Ag)= ω3(A)−
1
3 Tr(g−1dg)3 + dα2,

where α2 = Tr(Adgg−1). Although Zumino’s construction is general for TrFn
= dω2n−1(A), we

just need n = 1 and 2, which one can explicitly confirm by a direct calculation.
The Chern number is gauge invariant and is explicitly given by the gauge-invariant

projection P =99†. It is given for the first Chern number [45], but is also given for the higher
ones. By taking a differential of P , we have dP = d99† +9d9†. Then the following direct
calculation gives a useful formula for gauge-invariant quantities as

9F9†
= PdP2 P, Tr (PdP2)n = Tr Fn.
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It obeys the following observation:

(dP)2 = d99†d99† +9d9†d99† + d99†9d9† +9d9†9d9†

= − d9d9†99† +9d9†d99† + d9d9†
−99†d9d9†

= − d9d9† P +9d9†d99† + d9d9†
− Pd9d9†,

P(dP)2 P = − Pd9d9† P + P9d9†d99† P + Pd9d9† P − Pd9d9† P

= − Pd9d9† P + P9d9†d99† P

= −99†d9d9†99† +99†9d9†d99†99†

=99†d99†d99† +9d9†d99†

=9
[
d9†d9 + (9†d9)2

]
9†

=9F9†,

where the normalization 9†9 = EM implies 9†d9 = −d9†9, P2
= P and dA = d9†d9.

Then the Chern number is written as an explicit gauge-invariant form as

Cn =

(
i

2π

)n 1

n!

∫
M2n

Tr
[
P(dP)2 P

]n
=

(
i

2π

)n 1

n!

∫
M2n

Tr
[
P(dP)2

]n
.

As for the TR-invariant system with KR degeneracy, we identify the multiplet of dimension
2M to the quaternionic one with dimension M as 9 = (91, . . . , 9M)∼= ψH. Then a gauge
transformation ψHg = ψHg, g ∈ Sp(M) preserves the TR-invariant linear space spanned by
ψH. Now the quaternionic Berry connection aH = (ψH)†dψH and corresponding field strength
f H = daH + (aH)2 are defined as usual. Their transformation properties are also standard as
aHg = (ψHg )

†dψHg = g−1aHg + g−1dg and f Hg = daHg + (aHg )
2
= g−1 f Hg. The nth Chern number

with even n, Cn, is defined as (since Cn is intrinsically integer, it suggests vanishing Cn for odd n)

Cn =

(
−1

4π2

)n/2 1

n!

∫
Mn

TrM T ( f H)n =

(
−1

4π 2

)n/2 1

n!

∫
Mn

TrM T [pH(dpH)2]n,

where T xH = x + x̄ = 2x0
∈ R for a quaternion x = x0 + x1iH + x2 jH + x3kH and the quateronic

projection is pH = ψH(ψH)†. In the following, we omit the symbol H and simply use the lower
character for quaternionic notation if the situation is clear.

Since the multiplet and the Berry connection have a gauge freedom, one needs to fix it
for the connection to be well defined. As for the generic multiplet without KR degeneracy,
the gauge is specified by an arbitrary but given multiplet 8 as 98 = P8N−1/2

8 , where P is a
gauge-independent projection, and the normalization matrix N8 =8† P8, which is also gauge
invariant and semi-positive definite [11]. When one can use this single gauge over the whole
parameter space, the Berry connection is trivial. Generically, however, the normalization matrix
may have zero eigen values as det N8(

∃x8)= 0. Then near this zero, x8, this gauge is singular
since one can not normalize. One needs to use the other gauge, say ψ8′ , by taking 8′. Since
det N8′(x8) 6= 0, generically, one can express the projection by the multiplet explicitly as P =

9ψ ′9
†
ψ ′ and the normalization matrix is factorized as N8 =8† P8= η

†
8′8η8′8, η8′8 ≡9

†
8′8.
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One may write it as η8 =9†8 when one does not need to specify the gauge. Now it is clear
that the singularity is specified by

det η8′8 = 0� Re (det η8′8)= Im (det η8′8)= 0

since this determinant is complex, det η8(x) ∈ C. Generically one does not have zeros when the
dimension of the parameter space is too low and the Berry connection is trivial. To have a non-
trivial topological structure, the dimension of the parameter space has to satisfy D>Dmin =2,
since the condition to have the singularities is given by two real equations. A two-dimensional
magnetic Brillouin zone to discuss the Hall conductance as the first Chern number is this
minimum space where the singularities occur in points [6]. Note that the gauge transformation
between the two gauges by taking 8 and 8′, 98′ =98g88′ , is explicitly given by

98 =98′9
†
8′8N−1/2

8 =98′ g8′8,

g8′8 =9
†
8′8N−1/2

8 = (N8′)−1/28′† P8(N8)
−1/2

∈ U (M).

The unitarity is confirmed as

g8′8g†
8′8 = (N8′)−1/28′† P8(N8)

−18† P8′(N8′)−1/2

= (N8′)−1/2η
†
8′η8(N8)

−1η
†
8η8′(N8′)−1/2

= (N8′)−1/2η
†
8′η8′(N8′)−1/2

= EM,

and g†
8′8g8′8 = EM similarly.

As for a system with KR pairs, let us consider the simplest M = 1 case. Now starting from
the gauge-invariant projection p into the degenerate KR space, the gauge is fixed by an arbitrary
quaternion vector φ ∈HN as

ψφ = pφN−1/2
φ , Nφ = φ† pφ = N (ηφ) ∈ R, ηφ = ψ†φ ∈H,

where N (x)= x̄ x = (x0)2 + (x1)2 + (x2)2 + (x3)2 is a norm of a quaternion x ∈H. This gauge
is again well defined only if Nφ 6= 0. Note that although ηφ itself is gauge dependent, the
norm N (ηφ) is gauge invariant as N (ψ†

gφ)= N (ḡψ†φ)= N (g)N (ψ†φ)= N (ψ†φ) (ψg = ψg,
g ∈ Sp(1)). Therefore, we do not need to specify the gauge for N (ηφ).

Near the singular point of this gauge, one needs to use the other gauge by taking φ′. Then
the condition of the vanishing norm Nφ = N (ηφ′φ) is expressed as

ηφ′φ = 0� T (ηφ′φ)= T (iHηφ′φ)= T ( jHηφ′φ)= T (kHηφ′φ)= 0.

It clearly shows that the singularity may occur in the parameter space of the dimension
D > DKR

min = 4. The gauge transformation is also given as

ψφ = ψφ′ gφ′φ, gφ′φ = [N (φ′)]−1/2(φ′)† pφ[N (φ)]−1/2
∈ Sp(1).

When the dimension of the parameter space is less than this minimum dimension, one
can generically take a single patch over the whole parameter space. Since the base space to
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define the Chern numbers is assumed to be without boundaries, this implies that the Chern
number is vanishing for dim M2n = 2n < DKR

min = 4. Then the natural quantities to have nontrivial
topological structure by the Chern numbers are C1 for the generic case and C2 for the system
with KR degeneracy.

Also note that the normalization of the KR pair in quaternion notation ψ†ψ = 1

gives 0 = ψ†dψ + dψ†ψ = ψ†dψ + d̃ψ†ψ = ψ†dψ + ψ̃dψ̄ = T (ψ†dψ)= T (a). This implies
that the first Chern number vanishes, which is consistent with the generic argument [29, 46].
Now let us focus on the second Chern number with KR degeneracy.

5. Degeneracies and monopoles with/without KR degeneracy

As pointed out by Berry, the generic degeneracy of a complex Hamiltonian has a co-dimension
dC = 3 [8]. That is, the minimum Hamiltonian (N = 2) to describe the degeneracy (at E =

Tr HC = 0) is a complex Hermite 2 × 2 matrix HC that is expanded by the Pauli matrix with
three-dimensional real coefficients R(x)= (R1(x), R2(x), R3(x)) ∈ R3 as

HC(x)=

[
R3 z
z̄ −R3

]
, z = R1 − iR2,

where R3 = R3(x) ∈ R, z = z(x) ∈ C. Similarly, the system with KR degeneracy has a
co-dimension dH = 5, as pointed out by Avron et al [29, 46]. Then the minimum model (N = 2,
E = Tr HH = 0) is realized by the following quaternionic Hermite Hamiltonian:

HH(x)=

[
Q5 q
q̄ −Q5

]
, q = q0 + q1iH + q2 jH + q3kH,

where Q5 = Q5(x) ∈ R, qi(x) ∈ R (i = 1, 2, 3) and q = q(x) ∈H. These Q =

(Q1, Q2, Q3, Q4, Q5) ∈ R5 (Q1 = q1, Q2 = q2, Q3 = q3, Q4 = q0) form five-dimensional
parameters of the minimum model with KR degeneracy.

The above observation suggests a strong analogy between systems with and without
KR degeneracy, which we pursue in this paper. There is also topological correspondence, as
discussed below (see figure 1). Actually, it is more than analogy and there exists a mapping by
R3 → Q5 and z(∈ C)→ q(∈H), as one can see. The origins of the parameter spaces R = 0 and
Q = 0 give degeneracies that bring singularities for each of the Berry connections. They are the
Dirac monopole [1] and the Yang monopole [27], [30]–[32], [47]–[49]. The Yang monopole is
literally a quaternionic Dirac monopole up to its topological structure.

5.1. Dirac monopole and the first Chern number

Owing to a simple observation, H 2
C = R2 E2, R = |R|, the energies of HC are ±R =

√
|z|2 + R2

3 .

Then degeneracy occurs at the origin in the three-dimensional R space R3. Away from this
degeneracy, the eigenstate of the energy ±R subspace is well defined by the projection P± =
1
2(1 ± HC/R). As for the base manifold to define the first Chern number, for simplicity let us
take the two-sphere S2

= {R|R = 1} ⊂ R3 as for M2n, n = 1 (figure 1). Then the possible singu-
larities of the Berry connection can be points on S2 by the generic consideration before. When
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S2

S4

S1 S3

Q=0
5

R=0
3
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5 d

+

+

complex number N-string

S-string

Quaternion

Figure 1. Topological objects and singularities for the Dirac monopole and the
Yang monopole.

one considers a generic base space in R3, these singularities form lines, which correspond to
Dirac strings [50]. The gauge-invariant projection into each eigen subspace is explicitly given as

P± =
1

2

[
1 ± R3 ±z

±z̄ 1 ∓ R3

]
.

In the following, let us consider a positive energy subspace P = P+. Taking a gauge by

8N =

[
1
0

]
,

the normalized state on S2 (|z|2 + R2
3 = 1) is given as 9N = P8N N−1/2

N , with NN =8
†
N P8N =

1
2(1 + R3). Since this gauge is only singular at the south pole R3 = −1, we can safely use

9N =
1

√
2

[
(1 + R3)

+1/2

z̄(1 + R3)
−1/2

]
for the north hemisphere S2

N (R3 > 0). For the south hemisphere, we need to use the other gauge,
say, by taking

8S =

[
0
1

]
.

Then the normalized state is given similarly as

9S = P8S N−1/2
S =

1
√

2

[
z(1 − R3)

−1/2

(1 − R3)
+1/2

]
, NS =8

†
S P8S =

1
2(1 − R3),

which is regular everywhere on the south hemisphere S2
S (R3 6 0).

The gauge transformation, gCSN , between them, 9N =9SgCSN , is given by the generic
formula before as

gCSN = N−1/2
S 8

†
S P8N N−1/2

N = z̄/|z|.

This is regular except for the north and south poles R3 = ±1.
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The first Chern number of the Berry connection is easily evaluated using these two gauges
and the gauge transformation, AN = g−1

SN ASgSN + g−1
SN dgSN ,

C1 =
i

2π

∫
S2

Tr F =
i

2π

∫
S2

dω1(A)=
i

2π

(∫
S2

N

dω1(AN )+
∫

S2
S

dω1(AS)

)

=
i

2π

(∫
∂S2

N

ω1(AN )+
∫
∂S2

S

ω1(AS)

)
=

i

2π

∫
S1=∂S2

N

(ω1(AN )−ω1(AS))

= WS1(gCSN ),

where S1
= ∂S2

N = ∂S2
S is an equator S1

= {R|R = 1, R3 = 0} and WS1(gCSN ) is a winding
number of the map from the one-sphere (circle) S1

= {(R1, R2)|R2
1 + R2

2 = 1} to U (1)∼= S1
=

{z||z|2 = 1} ∈ C as

WS1(gCSN )=
i

2π

∫
S1

(gCSN )
−1dgCSN = −1.

This winding number can be evaluated in several ways. Since it is invariant against a rotation in
S1 (g → eiθg), we write it in a local coordinate near R1 = 0 and R2 = 1 as g = +i, dg = −dR1 as
WS1(gCSN )= (i/2π)(−)

∫
S1 dR1/(+i)= −

∫
S1 dR1/(2π)= −1, where

∫
S1 dR1 = 2π is a volume

(length) of the circle S1. Also using the explicit form gCSN = eiArg (R1+iR2), we have
∫

S1 g−1dg =

i
∫

S1 d Arg (R1 + iR2)= 2π i.
Considering S2 as a boundary of the solid sphere V3 (∂V3 = S2), naive application of the

Stokes (Gauss) theorem, C1 =
∫

V 3
dF , suggests that i

2π dF = −δ(3)(R) since dF = d2 A = 0 as
far as the Berry connection is well defined except at the origin. This is the Dirac monopole
at the origin of the three-dimensional R space where the degeneracy of the generic complex
Hamiltonian occurs [1].

5.2. Yang monopole as a quaternionic Dirac monopole

The discussion with KR degeneracy can be done analogously. Let us again start from a simple
observation H 2

H = Q2 E5, Q = | Q|, which implies that eigen energies of the KR multiplets are

±Q = ±

√
|q|2 + Q2

5, |q| =
√

N (q) ∈ R, and the additional degeneracy to KR degeneracy occurs

at the origin in the five-dimensional Q space R5 (figure 1). A projection into the positive energy
KR multiplet is defined as p =

1
2(1 + HH/Q). Similar to the discussion above, let us take a four-

sphere S4
= { Q|Q = 1} ⊂ R5 as the base space M2n(n = 2) to define the second Chern number

C2. Then the generic singularities of the KR multiplet are again points on S4, which make lines
in R5 when one considers a generic four-dimensional surface as a base space (‘Yang’ strings).
To be more specific, let us take a gauge by taking a quaternion vector with two components

φN =

[
1
0

]
∈H2. Then the normalized KR multiplet is given, in the north pole gauge (regular in

the northern hemisphere S4
N (Q5 > 0)), as

ψN = pφN N−1/2
N =

1
√

2

[
(1 + Q5)

+1/2

q̄(1 + Q5)
−1/2

]
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where NN = φ
†
N pφN =

1
2(1 + Q5). This gauge is only singular at the south pole Q5 = −1 on S4.

The other gauge by

φS =

[
0
1

]
also defines the multiplet (in the south pole gauge)

ψS = pφS N−1/2
S =

1
√

2

[
q(1 − Q5)

−1/2

(1 − Q5)
+1/2

]
,

where NS = φ
†
S pφS =

1
2(1 − Q5). This is regular in the southern hemisphere S4

S(Q5 6 0). The
gauge transformation between them is also calculated as

ψHS = gHSNψ
H
N , gHSN = q̄/|q| ∈ Sp(1)= {g ∈H|N (g)= 1}

Now let us calculate the second Chern number in quaternionic notation as

C2 = −
1

8π2

∫
S4

T f 2
= −

1

8π 2

∫
S4

dω3(a)= −
1

8π 2

(∫
S4

N

dω3(aN )+
∫

S4
S

dω3(aS)

)

= −
1

8π2

∫
S3
(ω3(aN )−ω3(aS))=

1

24π 2

∫
S3

T ((gHSN )
−1dgHSN )

3

≡ WS3(gHSN )= −1

where S3
= S4|Q5=0 = {(q1, q2, q3, q0)||q| = 1} is an equator, ω3(a)= T (ada + 2

3a3) and
WS3(gHSN ) is the Pontrjagin number of the map S3

→ Sp(1)∼= S3 that is a covering
degree, which is intrinsically integer. Here we used

∫
S3 dα2 =

∫
∂S3 α2 = 0 since the gauge

is regular on S3, which does not have boundaries. This Pontrjagin number is explicitly
evaluated [51]. Since it is invariant for the change q → qξ , |ξ | = 1 that induces a rotation
of S3, it is enough to evaluate it near q = 1 (q0 = 1, q1 = q2 = q3 = 0), where T (q−1dq)3 =

3!T (iH jHkH)dq1dq2dq3 = −12dq1dq2dq3. Then we have C2(Q)= WS3(gHSN )=
1

24π2 (−12 ×

2π 2)= −1, where 2π 2 is a volume of S3.
Again writing S4 as a surface of a five-dimensional solid sphere V5 = { Q|| Q|6 1},

∂V5 = S4, one may write symbolically dT ( f 2)= −δ(5)(Q) by a simple application of the Stokes
theorem

∫
V 5

dT ( f 2)=
∫
∂V 5

T ( f 2)= −1, since dT ( f 2)= d2ω3 = 0 away from the origin where
the singularity exists. The origin of the five-dimensional Q space, Q = 0, is a singular point
for the Berry connection due to the additional degeneracy (four-fold) and it induces the Yang
monopole in five dimensions [47], which locates at Q = 0 (the charge is −1). This explicitly
demonstrates that the Yang monopole is a quaternioninc Dirac monopole.

5.3. Chiral symmetry and topological stability of the doubled Dirac cones

For simplicity, we have assumed the two-sphere and the four-sphere as parameter spaces M2 and
M4. In a generic situation, let us consider the Chern numbers of models HC(R(x)) (x ∈ M2) and
HH(Q(x)) (x ∈ M4). Assuming that the energy gaps never collapse, images R(M2)⊂ R3 and
Q(M4)⊂ R5 are deformed into spheres S2 and S4 without changing the Chern numbers. This
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GappedStable massless Dirac cones

Figure 2. Collapsed images of maps into hyperplanes M2 → R ⊂ R2 : (R3 = 0)
and M4 → Q ⊂ R4 : (R3 = 0) with chiral symmetric minimum models.

is topological stability and these topological numbers are given by the covering degrees of the
maps as [52]

C1 = −deg R(M2) : M2 → S2, C2 = −deg Q(M4) : M4 → S4.

To have well-defined Chern numbers, the gap has to be always open. However, in
some situations, the gap may collapse. Generically speaking, this is accidental (accidental
degeneracy). In other words, one may need to fine-tune physical parameters that occur at a
quantum critical point. By imposing some restriction by symmetry, the situation may change
and the gap closing has topological stability. Let us here impose ‘chiral symmetry’ and restrict
the parameter space. The chiral operator in the minimum model is given by 0 = σ3, 02

= 1.
The Hamiltonians of the minimum models satisfy {HC, 0} = 2R3, {HH, 0} = 2Q5. That is, the
equators (S1 and S3, respectively) are characterized as chiral symmetrical spaces

{HC(R), 0} = 0 (R ∈ S1), {HH(Q), 0} = 0 (Q ∈ S3).

When the Hamiltonians do have chiral symmetry, the parameter spaces R(M2) (for HC) and
Q(M4) (for HH) are collapsed into the hyperplane R2(R3 = 0) and R3(Q5 = 0). Then we have
two situations for images R(M2)/ Q(M4) (see figure 2): in one case R(M2)/ Q(M4) includes
the origin, and in the other case it does not. When the image includes the origin, the energy
gap collapses and the gap linearly vanishes as a function of parameter x generically. This
results in Dirac-cone like energy dispersion. The doubling is also topologically clear (see the
inset of figure 2). These Dirac cones are generically topologically stable, that is, stable against
small but finite perturbation, since the images R(M2)⊂ R2 and Q(M4)⊂ R4. The topological
stability of Dirac cones in two/four dimensions is discussed in relation to graphene and the
Nielsen–Ninomiya theorem [53]–[55].

Here we comment on our quaternionic description of the Yang monopole to SU(2) gauge
theory. The gauge structure of the TR-invariant system is symplectic and the gauge group of the
simplest situation is Sp(1), which is mathematically equivalent to SU(2). Therefore, the results
of the Sp(1) gauge structure we have described are directly related to SU(2) gauge theory.
Our description of the Yang monopole is closely related to the instanton of the SU(2) gauge
theory [30], [47]–[49], [51]. By the mathematical equivalence Sp(1)= SU(2), the quaternionic
description of the Yang monopole here can be understood as a re-description of a known
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SU(2) gauge structure. However, our parallel discussion of the U(1) and Sp(1) gauge structures
without/with KR degeneracy simplifies the physical understanding of the SU(2) gauge structure,
especially with our explicit gauge fixing and treatment of the gauge singularities of the Berry
connections. Finally, note that the SU(2) gauge structure originating from the Sp(1) gauge
structure of the TR-invariant system is not related to the conservation of spins. The spin is not a
conserved quantity in most of the TR-invariant system such as the QSH systems with spin–orbit
interaction. The multi-component structure by the spin is necessary to have the nontrivial Sp(1)
gauge structure, but the spin itself is not a conserved quantity.

6. Symmetry-protected Z2-quantization

As discussed, Chern numbers are gauge invariant and intrinsically integer and apparently have
topological stability. This implies that the quantization is stable for small but finite perturbation
for the Hamiltonian. This topological stability does play a crucial role, for example, in the
theory of quantized Hall effects. Note that the dimension of parameter space to define Chern
numbers is necessarily even. The winding number WS1 and the Pontrjagin index WS3 are also
topological and defined for spaces with odd dimensions. In odd dimensions, one may also define
quantized quantities if one imposes additional symmetry requirements. They are generalizations
of the Berry phase and generically gauge dependent as a phase of the wavefunction [8, 13]. This
implies that these quantities are essentially quantum mechanical and do not have any classical
correspondents. They also have a fundamental advantage in the identification of topological
ordered states [12, 13]. An example is a Z2-quantization of the Berry phase for the TR-invariant
system without KR degeneracy22

= 1 [13]–[16]. The focus of this section is to extend the idea
and supply a generic condition for the Z2-quantization.

Now let us start by defining generic Berry phases γ1(A) and γ3(a) as

γ1(A)=
i

2π

∫
S1

ω1(A), γ3(a)= −
1

8π2

∫
S3

ω3(a),

where γ1(A) is for a generic system (without degeneracy M = 1) and γ3(a) is for a system with
KR degeneracy using quaternionic notation. Note here that the same topological quantity by
the integral of the Chern–Simons form is discussed in several papers [28, 37, 56]. They are
not invariant for the gauge transformation Ag = g−1 Ag + g−1dg (g ∈ U (1)) and ag = g−1ag +
g−1dg (g ∈ Sp(1)). Therefore, they are not well defined (as they are) but are gauge independent
and well defined in modulo 1 as [13]

γ1(Ag)= γ1(A)+ WS1(g)≡ γ1(A), γ3(ag)= γ3(a)+ WS3(g)≡ γ3(a),

since the gauge dependence is due to a nontrivial large gauge transformation. These
contributions are topological and integers as WS1(g) ∈ Z and WS1(g) ∈ Z [13] as far as the
gauge transformations are regular over S1 and S3. A phase factor of the Berry phase ei2γ

(γ = 2πγ1) is gauge independent and is a well-defined quantity (observed as a geometrical
phase), but the phase γ itself is gauge dependent [8, 13].

Generically speaking, these generic Berry phases γ1 and γ3 may take any real values even in
modulo 1. However they can be quantized when the system obeys some symmetry requirement,
which we discuss below.
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6.1. Z2-quantization of a TR-invariant system without KR degeneracy

Let us first consider a TR-invariant system without KR degeneracy [13]–[16]. This is realized
for quantum systems with an even number of quantum spins. Since the Hamiltonian H does
commute with the TR operator 2, which is anti-unitary, [H,2] = 0,

H(x)ψ(x)= ε(x)ψ(x), H(x)ψ2(x)= ε(x)ψ2(x), ψ2
≡2ψ.

Owing to the uniqueness of the state, ψ and ψ2 are only different in phase, that is, the
corresponding Berry connections A = ψ†dψ and A2 = (ψ2)†dψ2 are transformed into each
other by some gauge transformation g, A = g−1 Aθg + g−1dg, as γ1(A)≡ γ1(A2)mod 1, since
the gauge transformation is, generically, well defined on the parameter space x ∈ S1. Also the
TR operation for the many-spin stateψ is written as2= UK with some parameter-independent
unitary transformation U . Then the Berry connection is written as

A2 = (ψ2)†dψ2
= KA = −A

since the normalization ψ†ψ = 1 implies that 0 = (dψ†)ψ +ψ†dψ = d̃ψ†ψ + A = ψ̃dψ∗ +
A = A∗ + A. Now we have two conditions for the Berry phases

γ1(A)≡ γ1(A
2)= −γ1(A) mod 1.

Therefore, allowed values of the Berry phase are restricted to two as γ1(A)= 0, 1
2 . This is the

Z2-quantization of the Berry phase for the unique TR-invariant state.
In most of the application [13]–[16], we have used a U (1) twist eiθ , θ : 0 → 2π as a

parameter. In this case, the condition of the Z2-quantization is reformulated from a more generic
point of view (see below).

6.2. Z2-quantization by inversion/reflection equivalence

Similar quantizations protected by symmetry occur for the generic Berry phases γ1 and γ3

when the system (with parameter) satisfies the following inversion/reflection equivalence.
Inversion/reflection equivalence implies the existence of the unitary operator UI or UR,

H(xI)= U †
IH(x)UI or H(xR)= U †

RH(x)UR,

where H(x) is a complex or a quaternionic Hamiltonian for x ∈ S1 or x ∈ S3, respectively.
Inversion in parameter space is defined as xI = −x and reflection is one of the following three:
xR = (−x1, x2, x3), xR = (x1,−x2, x3) or xR = (x1, x2,−x3). As for the x ∈ S1 case, reflection
is the same as the inversion. This is a sufficient condition for Z2-quantization.

Although we use the quaternion notation with the reflection below (with KR degeneracy), it
is also true for the inversion and the complex cases. The isolated KR multiplet, denoted as ψ(x)
with energy E(x), satisfies H(xR)ψ(xR)= U †

RH(x)URψ(xR)= E(xR)ψ(xR) due to reflection
equivalence. It implies

H(x)ψR(x)= E(xR)ψR(x),
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where ψR(x)= URψ(xR). Since the unitary equivalence between H(x) and H(xR) implies
that all of the eigenvalues are equal to each other, we may generically assume E(xR)= E(x)
supplementing a unitary transformation of reshuffling the KR degenerated eigenspaces. Now,
as for the isolated eigenspace of the KR multiplet, ψ(x) and ψR(x) are different just in
Sp(1) phase, which implies that the corresponding Berry connections are gauge equivalent,
ψR(x)= ψ(x)g, ∃g ∈ Sp(1),

aR(x)= ψ
†
R(x)dψR(x)= ψ†(xR)dψ(xR)= a(xR)= g−1a(x)g + g−1dg.

Then the generic Berry phases satisfy γ1(AR)≡ γ1(A) and γ3(aR)≡ γ3(a) in modulo 1. Here
note that γ1 and γ3 are defined by the integral over the odd dimensional spaces S1 and S3.
Therefore, the generic Berry phases γ1 and γ3 are odd by the inversion/reflection of parameter
spaces S2 and S3, x → xI or x → xR, as γ1(AI)= γ1(AR)= −γ1(A) and γ3(aI)= γ3(aR)=

−γ3(a). Therefore, we have a Z2-quantization of the Berry phases as

γ1(AI)≡ γ1(AR)≡ γ1(A)= 0, 1/2 (mod 1),

γ3(aI)≡ γ3(aR)≡ γ3(a)= 0, 1/2 (mod 1).

6.3. Chiral symmetry for minimum models

The chiral symmetry of the minimum models discussed before is a typical example of systems
with inversion equivalence because the anti-commutators between the unitary operator 0 = 0†

and HC /HH are rewritten as

0† HC(R)0 = − HC(R)= HC(−R)= HC(RI),

0† HH(Q)0 = − HH(Q)= HH(− Q)= HH(RI),

where the models are defined on the equators as R ∈ S1 and Q ∈ S3. This is what we need for
the Z2-quantization of γ1 and γ3. We explicitly confirm it by direct calculations below.

Let us first consider a generic case without KR degeneracy. In the north pole gauge, the
multiplet at the equator R3 = 0, |z| = 1 is given as

9N =
1

√
2

[
1
z̄

]
.

Then we have AN =
1
2 zdz̄ =

1
2 g−1
C dgC (gC = z̄ ∈ S1), which implies γ1(AN )=

1
2 WS1(gC)=

−1/2. If we take the south pole gauge, we have

9S =
1

√
2

[
z
1

]
, AS =

1
2 z̄dz = −

1
2 zdz̄ = −AN (z̄z = 1).

This implies γ1(AS)= +1
2 ≡ γ1(AN ) (mod 1), which is consistent with the general consideration

and Z2-quantization.
With KR degeneracy, the connection is obtained just by replacing z with q. Then we

have the Berry connections in the two gauges as aN =
1
2qdq̄ and aS =

1
2 q̄dq. Note here that
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aS 6= −aN , which is different from the case without KR degeneracy. Then using dq = −qdq̄q
(q̄q = 1, dq̄q = −q̄dq) and daN =

1
2dqdq̄ = −

1
2qdq̄q · dq̄ = −

1
2(qdq̄)2, we have

ω3(aN )= T (aN daN + 2
3a3

N )= T (− 1
4(qdq̄)3 + 1

12(qdq̄)3)= −
1
6 T (qdq̄)3

γ3(aN ) =
1

48π2

∫
S3

T (g−1
H dgH)

3
=

1

2
WS3(gH)= −

1

2
, gH ∈ Sp(1).

Similarly, we have aS =
1
2 q̄dq = −

1
2 q̄ · qdq̄q = −

1
2dq̄q , daS =

1
2dq̄dq = −

1
2dq̄ · qdq̄q =

−
1
2(dq̄q)2 and

ω3(aS)= T
(
aSdaS + 2

3a3
S

)
= T

(
1
4(dq̄q)3 −

1
12(dq̄q)3

)
=

1
6 T (dq̄q)3 =

1
6 T (qdq̄)3,

γ3(aS) = − γ3(aN )=
1
2 ≡ γ3(aN ) mod 1.

This again confirms the Z2-quantization of the quaternionic minimum model with chiral
symmetry.

6.4. Reflection and TR invariance without KR degeneracy

The quantization of the Z2 Berry phase discussed in section 6.1 [13] can be considered as
the quantization due to the reflection equivalence discussed in section 6.2 when the parameter
introduced is the U (1) twist eix and the other parameters are all real. It is simply due to the
following observation of TR invariance:

2−1 H(eix)2= U † H(e−ix)U = H(eix),

where U is a unitary operator to change ciσ → (−)(1−σ)/2ci−σ for the fermions and the spins
Si =

1
2 c†

i σ ci , c†
i = (c†

i↑, c†
i↓). This is just the inversion or reflection equivalence as discussed in

section 6.2.

7. Topological charge and nonlinear σ -models

Finally in this section, let us calculate topological charges of the nonlinear σ -model
[30, 49], [57]–[60] as applications of the gauge-invariant forms of Chern numbers C1 and C2 in
section 4.

7.1. Topological charge without KR degeneracy [57, 58, 61]

Let us start by considering an x-dependent two-component normalized state

9(x)=

[
z1

z2

]
, 9†9 = 1 = |Re z1|

2 + |Im z1|
2 + |Re z2|

2 + |Im z2|
2,

which defines S3. Then the following three real quantities, n1, n2 and n3, are defined as a CP1

representation of ni (i = 1, 2, 3):

n(x)=

n1

n2

n3

=9†

σ 1

σ 2

σ 3

9 =

9†σ 19

9†σ 29

9†σ 39

=

Tr2 σ
1 P

Tr2 σ
2 P

Tr2 σ
3 P

,
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where σa = σ a and the projection, P(x)=99†, into the subspace spanned by 9(x) is
introduced.

Since TrP =9†9 = 1, the projection is expanded as P =
1
2 E2 + Piσ

i . The coefficients
are given as Pi = Tr P 1

2σ
i
=

1
2ni . Now we have rewritten P =

1
2(E2 + niσ

i)=
1
2(E2 +

HC(n)) and HC = n · σ = 2P − E2. Then H 2
C = 4P − 4P + E2 = E2 = niσi n jσ j = ni ni +∑

i< j ni n j{σi , σ j} = |n|
2 E2. This implies |n|

2
= 1. Therefore, the state 9 can be considered

as a positive energy eigenstate of HC by identifying n = R. It makes a CP1 representation of
the SO(3) nonlinear σ -model.

Using this decomposition of the three vectors n, let us discuss the topological charge of the
current

Jµ =
1

8π
εµνλεabcn

a∂νn
b∂λn

c

The topological charge is evaluated as

QC =

∫
dx1dx2 J 3

=
1

8π

∫
dx1dx2ε3νλεabcn

a∂νn
b∂λn

c

=
1

8π

∫
dx1dx2εabc(n

a∂1nb∂2nc
− na∂2nb∂1nc)

=
1

8π

∫
εabcn

adnbdnc
=

1

8π

∫
εabc(Tr σ a P)(Tr σ bdP)(Tr σ cdP)

Now writing dP = dPaσ
a, we have

QC =
1

8π

∫
εabc2

3 PadPbdPc =
1

π

∫
εabc PadPbdPc

Also note that TrPdPdP = PadPbdPcTrσ aσ bσ c
= PadPbdPciεabd Trσdσ

c
= 2iεabc PadPbdPc.

Therefore, we finally have

C1 =
i

2π

∫
dω1 =

i

2π

∫
Tr(PdPdP)=

i

2π

∫
(2i)εabc PadPbdPc = −QC

This gives a direct relation between the first Chern number and the topological charge of the
SO(3) nonlinear σ -model.

7.2. Topological charge with KR degeneracy [30, 49], [57]–[60]

Similarly to KR degeneracy, let us consider an x-dependent four-component normalized KR
pair, which is described by the two-component quaternionic vector

ψ(x)=

[
ψ1

ψ2

]
∈H2, ψ†ψ = 1 = (ψ0

1 )
2 + (ψ1

1 )
2 + (ψ2

1 )
2 + (ψ3

1 )
2 + (ψ0

2 )
2 + (ψ1

2 )
2 + (ψ2

2 )
2 + (ψ3

2 )
2,
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which defines S7 where H 3 ψi = ψ0
i +ψ1

i iH +ψ2
i jH +ψ3

i kH, ψa
i ∈ R (a = 0, 1, 2, 3, i = 1, 2).

Then the following five real quantities, n1, n2, n3, n4, n5, are defined by HP1 representation as

n(x)=



n1

n2

n3

n4

n5

=
1

2
Tψ†



61

62

63

62

65

ψ =
1

2



Tψ†61ψ

Tψ†62ψ

Tψ†63ψ

Tψ†64ψ

Tψ†65ψ

=
1

2



Tr T 61 p

Tr T 62 p

Tr T 63 p

Tr T 64 p

Tr T 65 p

,

61
=

[
0 iH
¯iH 0

]
, 62

=

[
0 jH

j̄H 0

]
, 63

=

[
0 kH

k̄H 0

]
, 64

=

[
0 1

1 0

]
, 65

=

[
1 0
0 −1

]
,

where6a
=6a = (6a)†, (6a)2 = E2, {6a, 6b} = 0,6a6b6c6d

= εabcde6e (when a, b, c, d, e
are all different) and p(x)= ψψ† is a projection, into the subspace spanned by the KR pair
ψ(x).

Since TrTp = Tψ†ψ = 2, the projection is expanded as p =
1
2 E2 + pa6

a. The coefficients
are given as pa = Tr T (6a p)/4 = na/2. Now we have rewritten p =

1
2(E2 + na6

a)=
1
2(E2 +

HH(n)) and HH = n · 6 = 2p − E2. Then H 2
H = 4p − 4p + E2 = E2 = ni6i n j6 j = ni ni E2 +∑

i< j ni n j{6i , 6 j} = |n|
2 E2. This implies |n|

2
= 1. Therefore, the state ψ can be considered

as a positive energy KR multiplet of HH by identifying n = Q. This establishes the relation for
the HP1 representation of the SO(5) nonlinear σ -model.

Again using this decomposition of the five vectors n, let us discuss the topological charge
QH following [30, 59, 60]:

J στω = N−1εµνλκρστωεabcden
a∂µnb∂νn

c∂λn
d∂ρne,

QH =

∫
dx1dx2dx3dx4 J 567

= N−1

∫
dx1dx2dx3dx4 εµνλρ567εabcden

a∂µnb∂νn
c∂λn

d∂ρne

= N−1

∫
εabcden

adnbdncdnddne

= N−12−5

∫
εabcde(Tr T 6a p)(Tr T 6bdp)(Tr T 6cdp)(Tr T 6ddp)(Tr T 6edp),

where N is a normalization constant.
Writing dp = dpa6a, we have QH = 25 N−1

∫
εabcde padpbdpcdpddpe. Also we can show

that TrT (pdpdp)2 = 4εabcde padpbdpcdpddpe. Therefore, we have

C2 = −
1

8π2

∫
Tr T (pdpdp)2 = −

1

2π2

∫
εabcde padpbdpcdpddpe

∝ QH.

This is again the direct relation between the second Chern number of the HP1 model and
the topological charge of the SO(5) nonlinear σ -model.
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