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ABSTRACT

It has been shown that a permutation can uniquely identify the joint set of an initial condition and a non-autonomous external force realization
added to the deterministic system in given time series data. We demonstrate that our results can be applied to time series forecasting as well
as the estimation of common external forces. Thus, permutations provide a convenient description for a time series data set generated by
non-autonomous dynamical systems.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0009450

The symbolic method is a powerful tool for analyzing time series
data by coarse-graining. When the underlying dynamics is deter-
ministic, a generating partition and symbolic dynamics may be
used to convert an initial condition to an infinitely long sym-
bolic sequence in a one-to-one manner. However, this method
fails for non-autonomous dynamics, e.g., deterministic dynami-
cal systems in the presence of dynamical noise or external forces,
because a partition cannot remove the uncertainty in specifying
an initial condition. Here, we show that, unlike a generating parti-
tion for symbolic dynamics, permutations (ordinal patterns) can
represent a real-valued time series generated by non-autonomous
dynamical systems. We show that a permutation establishes a
one-to-one correspondence with a realized orbit based on the
joint set of an initial condition and external force realization
added to the deterministic system, if the dynamics under dynam-
ical noise is topologically transitive. Thus, our results explain
why permutations, in some cases, can distinguish deterministic
systems from stochastic systems. In addition, we demonstrate

that our findings can be applied to forecasting behavior as well
as estimating common dynamical noise in random dynamical
systems.

I. INTRODUCTION

In the analysis of time series data generated by dynamical sys-
tems, coarse-graining a state is one of the conventional approaches
to describe dynamical systems.1–7 This procedure is the corner-
stone of statistical mechanics and provides a framework to describe
several complex physical phenomena such as turbulent flow8 and
molecular dynamics,9 among others. For example, in a deterministic
dynamical system, a generating partition helps us to establish one-
to-one correspondence between an initial condition and the orbit of
symbolic dynamics. Subsequently, we can provide rigorous founda-
tions and/or calculations3,7 as well as bridge the ideas coming from
dynamical systems theory and information theory.10–12 However,
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this method fails for stochastic dynamics because a partition cannot
remove the uncertainty for a state in the system due to externally
added noise.13,14 Recently, stochastic chaos in random dynamical
systems has been studied theoretically and experimentally.15,16 The
main finding is the possibility to describe the behavior of com-
plex systems such as turbulent forced flows with simple dynamical
systems where non-essential degrees of freedom are lumped in
the random dynamics. These studies clearly show the existence of
open problems on nonlinear time series analysis for random/non-
autonomous dynamical systems.

Permutations (or ordinal patterns) or topological methods in
nonlinear time series analysis have been studied as an alterna-
tive analysis to coarse-grained dynamics.17 It is known that we
can estimate the Kolmogorov–Sinai entropy not only by generating
partitions, but also by permutations.18 Distinguishing deterministic
systems from stochastic systems is a recent trend in permutation
studies.19–25 In physics, the interest is to understand whether a
deterministic behavior can be separated from a stochastic dynam-
ics, thus, enabling simpler descriptions of complex systems, as in
Ref. 16. Here, we examine the hypothesis that a permutation can
achieve a one-to-one correspondence with a joint set of an initial
condition and a realization of the external force in random and
non-autonomous dynamical systems as the length of the permu-
tations tends toward infinity. The key idea is that the variety of
permutations could grow super-exponentially as the size of permu-
tations increases when the underlying dynamics is stochastic.24,26

This super-exponential growth can accommodate the information
regarding the state space as well as a stochastic input series within a
permutation.

II. OUR SETTINGS AND THEORETICAL RESULTS

We consider a non-autonomous dynamical system f : X ×

P → X,

xt+1 = f(xt, pt), xt ∈ X, pt ∈ P. (1)

Here, xt is a model of the state of the dynamical system and pt is a
model of external force or noise, which drives the dynamical system
at time t. Here, we adopt both X and P as one-dimensional intervals.

We assume the following:27

1. The sequence {pt}t=0,...,n−1 is given beforehand as a hidden
parameter to be estimated.

2. The function f(x, p) is a continuous map and an embedding in
terms of arbitrary p; Namely, under xt+1 = f(xt, p), the param-
eter p corresponds to xt+1 in a one-to-one manner when we
fix xt.

Our goal is to estimate both x0 and {pt}t=0,...,n−1, based on the
given time series data {xt}t=1,...,n. Here, as a shorthand, we write
xt+1 = fpt(xt) and

xt+1 = fpt(fpt−1(· · · fp0(x0) · · · ) = fpt
0
(x0), (2)

where pt
0 = {pτ }τ=0,...,t.

We now introduce the permutations.17,18 Suppose that a scalar
time series st (t = 1, 2, . . . , N) is given. Now, consider n consecutive
measurements st, st+1, . . . , st+n−1 starting from time t. If we sort these

measurements in the ascending order, then we have

st+t1 ≤ st+t2 ≤ · · · ≤ st+tn , (3)

where we define st+ti ≤ st+tj , if st+ti = st+tj and ti < tj. Then, the

obtained series

πt(n) = (t1, t2, . . . , tn) (4)

is called the permutation for time t with length n. It is known that
the Kolmogorov–Sinai entropy can be obtained using permutations
if the underlying dynamics is ergodic.18

We especially consider the dynamics in a one-dimensional
space X and introduce a natural measure µ if for all test functions
h : X → R, we have

lim
N→∞

1

N

N−1
∑

t=0

h(fpt
0
(x)) →

∫

A

h dµ (5)

for almost all x ∈ A ⊂ X and for almost all pt
0.

28 We further assume
that non-autonomous dynamical system (2) has a natural measure.

We refer to xt+1 = fpt
0
(xt) as topologically transitive if {xt} is

dense in A ⊂ X. This definition can be equivalent to that if there
exists t > 0 such that fpt

0
(U) ∩ V 6= φ for any pair of open sets

U, V ⊂ A ⊂ X. Approximately, when one starts from an open set U,
we can visit the neighborhood of another open set V after finite itera-
tions of f. Note that in general, the topological transitivity in random
and non-autonomous dynamical systems depends on the given pt

0.
In other words, here we exclude the case where fpt

0
(x) only forms a

finite periodic orbit because such an orbit is not dense on A. Our
theoretical result is summarized as the following main theorem:

Theorem 1. Suppose f on X has a natural measure. Let
[xin0−1, xin0+1] be an interval for an initial condition x0 specified by a

permutation of length n. Similarly, [pt,n, p̄t,n] be an interval for the
external force at time t specified by the same permutation. Then, each
of [xin0−1, xin0+1] and [pt,n, p̄t,n] for each t converges to a single point

when the length n of the permutation tends to infinity if and only if
the dynamics f on X is topologically transitive.

The following Lemma 1 and the contraposition of Lemma 2
lead to the above main theorem.

Lemma 1. Suppose that the dynamics f on X is topologically
transitive and has a natural measure. Then, a permutation can spec-
ify a joint set of an initial condition x0 and a realization of the
external force {pt} as the length of the permutation goes to infin-
ity. Namely, [xin0−1, xin0+1] and [pt,n, p̄t,n] for each t converge to single

points, respectively.
Proof. Suppose that the current length of permutations is n.

Additionally, let us assume initially that x0 is neither the mini-
mum nor the maximum of x ∈ X. Then, if x0 is the in0th point from
below, the initial value x0 is sandwiched between the in0 − 1th point
xin0−1 and the in0 + 1th point xin0+1, namely, we have xin0−1 ≤ x0 ≤

xin0+1, which is an interval between the minimum and the max-

imum of x. Let us consider xin0−1 and xin0+1, separately. First, we

consider xin0−1. Because we assume that the dynamics is topologically

transitive, there is mL(1) > n such that x
i
mL(1)
0 −1

∈ (xin0−1, x0), imply-

ing that xin0−1 < x
i
mL(1)
0 −1

< x0. By applying the same logic repeat-

edly, we can choose a sequence {mL(k) : k = 1, 2, . . .} such that
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x
i
mL(k)
0

< x
i
mL(l)
0

< x0 for 0 < k < l. Since the sequence of x
i
mL(k)
0

is

always less than x0 and increasing monotonically, we have x
i
mL(k)
0

→ x0 when k → ∞. By using the similar logic, there is a sequence
{mR(k) : k = 1, 2, . . .} such that x

i
mR(k)
0

> x
i
mR(l)
0

> x0 for 0 < k < l.

Thus, x
i
mR(k)
0

→ x0 when k → ∞.

Both limits mean that the interval [xin0−1, xin0+1] gets smaller and

smaller and converges to a single point x0 when the length of per-
mutations tends to infinity. In addition, since the in0th point among
n points can be rephrased as a certain percentile point on µ as
a natural measure, the initial condition x0 can be specified on X.
Therefore, the theorem has been proven. When x0 is either the min-
imum or the maximum of x ∈ X, we can make x0 a sandwich within
[minx∈I x, xin0+1] or [xin0−1, maxx∈I x], respectively. Thus, the similar

monotonic convergence argument discussed above holds for both
cases.

As it has been found that a series of states {xt} is identified
by the corresponding permutation, each pt can be inferred because
now we assume that f(xt, p) is an embedding in terms of the arbi-
trary non-autonomous force p given xt. Therefore, if f is known,
we can identify the joint set of {xt} and {pt} by the corresponding
permutation as the length of permutations tending to infinity. �

Lemma 2. Suppose that the dynamics f on a one-dimensional
space X is not topologically transitive. Then, a permutation cannot
specify all the initial conditions and realization of the external force
{pt} when the length of the permutation tends to infinity.

Proof. Assume that the underlying dynamics on a one-
dimensional interval is not topologically transitive. Then, there is
some interval (a, b) ⊂ X such that any point for the underlying
dynamics will not visit the interval (a, b) after any number of iter-
ations, where a and b are some of the time points of the currently
given time series up to some length n > 2. Therefore, if an initial
condition starts within this interval, we cannot refine the uncer-
tainty for such an initial condition even if we prolong the length
for the permutation. Since {xt} is not identified, there is no clue for
identifying {pt} using the permutation. �

Our theoretical foundation is based on topological transitivity,
namely, the denseness of orbits: if there is an interval within X, this
interval is divided by future points obtained from the underlying
dynamics. Thus, this interval is eventually narrowed to a point when
the length of the permutations tends to infinity. Once each state is
identified, we can also learn the value for dynamical noise because
of the property of the embedding between pt and xt+1.

Moreover, we note that, using the same logic, we can also
uniquely specify a point xk for k (0 < k < n), which is demonstrated
in numerical experiments in Sec. III.

III. NUMERICAL RESULTS

Here, we demonstrate how to use permutations for inferring a
state as well as external noise. Our focus is on inferring information
regarding the external force. For quantifying the external noise at a
particular time, there are two approaches: (i) When we can access
a time series of the external noise and (ii) when we cannot access a
time series of the external noise.

When we can access a time series {pt} of the external noise p, we
can estimate the mean state M

p
π (κ) for the κth relative point of the

external noise p by using time segments sharing the same permu-
tation π obtained by time series x in the modeling part of the time
series. When we encounter a permutation π in the validating part of
the time series, we just need to recall the corresponding mean state
M

p
π (κ).

When we cannot access a time series of the external noise, we
try to reproduce the underlying metric space from the generated
permutations. We can subdivide this case into two sub-cases. If we
assume that the external force is slow, then we can directly apply the
idea of Ref. 29 to remove the state space information and reproduce
the information of the slow external force. If we cannot assume that
the external force is slow, then we need to have multiple observa-
tion nodes30,31 which are subject to the same external force to remove
the information of state spaces and reproduce this sudden external
force. In either case, we use a recurrence plot,32,33 which helps us to
transform the binary information of whether the two states for the
corresponding times are neighbors to a metric space, or a distance
matrix.

A. Estimation of states

In addition to the theoretical proofs provided above, we tested
our hypothesis numerically. For testing our idea, we used the logistic
map34 and the Hénon map35 subject to dynamical noise. The logistic
map we used is defined as follows:

xt+1 = (3.7 + εt)xt (1 − xt) , (6)

where εt is a source of independent uniform noise on [−0.1, 0.1].
We chose the initial condition x0 from a uniform distribution on
[0, 1] and observed the time evolution of the variable xt. Similarly,
the Hénon map we used is defined as follows:

xt+1 = 1 − (1.2 + ηt)xt
2 + 0.3yt,

yt+1 = xt,
(7)

where ηt independently follows a uniform distribution on
[−0.05, 0.05]. In addition, we choose the initial conditions x0 and y0

from the uniform distribution on [0, 1]. Therefore, here we are con-
sidering dynamical systems subject to dynamical noise and discuss
whether we can specify a state xt by a permutation.

Although our theorem is restricted to one-dimensional inter-
val dynamics, we use the Hénon map to observe whether our claim
holds for higher dimensional dynamical systems. We adopt xt as the
observed time series. Our numerical approach aims to represent a
time series using a series of permutations (see Fig. 1 for the intuitive
illustration). Thus, by specifying a permutation, we can eventually
specify both series of states as well as stochastic inputs, simultane-
ously. Since a permutation eventually specifies a state in the limit for
the length of permutation approaching infinity, representing points
sharing the same permutation with a point becomes a reasonable
approximation. We generated two time series x and x′ of the length
N from the same system. Here, we set N = 1 000 000. For each time
series x and x′, we also obtained a series of permutations {πt(n)} and
{π ′

t(n)} by using permutations of length n. Then, we use the first
time series x and its series of permutations {πt(n)} to compute the
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FIG. 1. Schematic for explaining the first numerical approach, the mean repre-
sentation.

mean state

Mx
π (κ) =

1

|#{πt = π |t = 1, 2, . . . , N}|

∑

t:πt=π

xt+κ (8)

for the κth point of each appearing permutation π . This step is
similar to a step of the k-means algorithm.36 Especially, we define
the middle point K = bn/2c of the permutation. These mean states
become our estimates for states corresponding to a permutation π

since each permutation corresponds to a single initial condition as
well as a single series of the external noise in the limit of the size
of the permutation approaching to infinity. These means enable us
to represent the second time series x′ by replacing each permutation
π ′

t(n) with the corresponding mean Mx
π ′

t(n)
(κ) state of the κth point

of permutation π ′
t(n) obtained from the first time series x. (If κ ≥ n,

then such an estimation becomes a time series forecast.) Finally, we
evaluate the estimation error

εx(κ − n+1) = Et

[
∣

∣x′
t+κ − Mx

π ′
t(n)(κ)

∣

∣

]

(9)

by comparing the second time series x′ and its representation
{Mπ ′

t(n)(κ)|t = 1, 2, . . . , N − n + 1} constructed by permutations.
This approach is called the mean representation.6

We first estimated states using the mean representation method
(Fig. 2). We found that states corresponding to the time period of
permutations were estimated more accurately than the cases where
we just used the mean states for all over the points of the entire time
series.

Moreover, we found a general tendency in the estimation error
convergence to 0 with increasing length of permutations [Figs. 3(a)
and 3(b), for the logistic map34 and the Hénon map,35 respectively].
When we rigorously compared the model of exponential decrease
converging to a constant in the limit of n → ∞ with the model
of exponential decrease converging to zero using the Akaike infor-
mation criterion,37 the model of exponential decrease converging to
zero was selected for both cases (see Fig. 4). Thus, these results imply
that a permutation corresponds to an initial condition, or a state, for
these models.

FIG. 2. Estimation errors for the current and future states. Panels (a) and (b)
correspond to the cases for the logistic map and Hénon map subject to dynamical
noise, respectively. For control, we showed the estimation errors by the overall
means that do not depend on the position of the corresponding attractor. Each
error bar is obtained from the mean and the standard deviation for ten simulations.
Estimations for the future states can be rephrased as “forecasts” of the second
time series given the first time series.

Furthermore, the mean representation method was extended
so that we considered the means for q steps ahead by defining
κ = n − 1 + q in Eqs. (8) and (9) to make them “forecasts.” Then,
we found that we could forecast short-term prediction horizons up
to 10 and four steps ahead better, in the noisy logistic map [Fig. 2(a)]
and the noisy Hénon map [Fig. 2(b)], respectively, than the method
of control where we considered the simple means over all the points
of the attractor. The accuracy of these forecasts was achieved because
the permutations could specify the past states and noise realization,
even though uncertainty was generated due to the current and future
parts of dynamical noise as well as the sensitive dependence on the
initial conditions.

B. Estimation of realization of external force

Theorem 1 implies that we can estimate the realization of the
external force when there is a mathematical model for the dynamical
system. However, our results imply that even if such a model f is
not available, we can estimate the realization of external force in the
following two cases:

1. Dynamics of the external force is gradual compared with the
driven intrinsic dynamics.

2. We observe multiple time series whose intrinsic dynamics is
governed by identical dynamics and are subject to a common
external force.

Therefore, Theorem 1 provides a way of obtaining the distribution
of external noise as well.

To evaluate this possibility, we have estimated the dynami-
cal noise by using the mean representation method and recurrence
plot32,33 (see the Appendix). We found that the mean representa-
tion method achieved lower estimation errors than merely using the
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FIG. 3. Estimation error convergence
by permutations in (a) the logistic map
and (b) the Hénon map. For panels (a)
and (b), we used ten time series of length
1 000 000 to obtain the means for the
estimation errors shown by +. The solid
lines were obtained by fitting the model of
exponential decrease.

same means over all the permutations when the time steps are those
corresponding to the positions of permutations (Fig. 5). In addition,
the estimation errors for the noise realization also tend to decrease as
the length of permutations increases (Fig. 6). Although we assumed
here that a time series of noise realization for modeling is available,

this result implies that we could narrow down the possible realiza-
tion of dynamical noise using permutations. This direction enables
us to construct a random dynamical system model.

When we used recurrence plots, we tested with three systems:
the logistic maps with the common dynamical noise ηt. For an

FIG. 4. Comparison of Akaike infor-
mation criterion between the exponential
convergence model without a constant
term and with a constant term. Panels
(a) and (b) correspond to the logistic map
and the Hénon map, respectively. For the
exponential convergence model without a
constant term, we fitted the error model of
b exp(−al), where l is the length of time
series and b > 0. For the exponential
convergence model with a constant term,
we fitted the error model of b exp(−al) +
c, where b, c > 0.
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FIG. 5. Estimation errors for the current and future dynamical noise. See the
caption of Fig. 2 to interpret the results.

additive noise case, we use

xi,t+1 = 3.7xi,t(1 − xi,t) + ηt (10)

for ηt ∈ [0, 0.05]; for a multiplicative noise case, we use

xi,t+1 = (3.7 + ηt)xi,t(1 − xi,t) (11)

for ηt ∈ [−0.2, 0.2].
In the Hénon maps, we use

yi,t+1 = 1 − 1.2y2
i,t + 0.3zi,t + ζt, (12)

zi,t+1 = yi,t (13)

for the common additive dynamical noise ζt ∈ [−0.1, 0.1] or

yi,t+1 = 1 − (1.2 + ζt)y
2
i,t + 0.3zi,t, (14)

zi,t+1 = yi,t (15)

for the common multiplicative dynamical noise ζt ∈ [−0.1, 0.1].
Here, we also use a chaotic neuron model38 to examine a more

complicated situation. A chaotic neuron model is an extension of
the Nagumo and Sato’s neuron model39 by replacing the Heaviside
function with the sigmoid function, which defines whether or not a
neuron fires. In a chaotic neuron model,38 we use

wi,t+1 = 0.5wi,t −
1

1 + e−wi,t/0.04
+ 0.24 + 0.02σt (16)

for the common additive dynamical noise σt ∈ [−0.02, 0.02] or

wi,t+1 = 0.5wi,t −
1

1 + e−wi,t/(0.04+0.01σt)
+ 0.24 (17)

for the common multiplicative dynamical noise σt ∈ [−0.01, 0.01].
Namely, states wi,t for multiple neurons at time t are forced by the
common dynamical noise σt. Here, we assume that each of ηt, ζt, and
σt follows the independent and identical uniform noise, respectively.
The number L of the maps were decided as the minimum number in
the form of 10 × 2n with whose corresponding network, each time
point is connected with all the other time points within ten steps.
We assigned each of the initial conditions xi,0, yi,0, zi,0, wi,0 by the
uniform distribution between 0 and 1 and generated a time series
of length 500 each. We repeated this simulation 30 times to examine
the robustness of our findings. We identified the tendency for longer
permutations to perform more effectively in estimating the under-
lying dynamical noise [see panels (a), (c), and (e) of Figs. 7 and 8]

FIG. 6. Estimation error for noise real-
ization in (a) the logistic map and (b)
the Hénon map. The error bars show the
means and standard deviations for the
estimation errors obtained from ten real-
izations of time series for eachmodel. The
rest of the conditions is the same as Fig. 3.
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FIG. 7. Estimating the common additive dynamical noise. Panels (a), (c), and (e) show the means and standard deviations for the correlation coefficients between the
estimated dynamical noise and its truth calculated over 30 time series, while panels (b), (d), and (f) are examples of estimated dynamical noise estimated for permutations of
length 13. In each of the panels (b), (d), and (f), the blue solid line corresponds to the true dynamical noise, while the red dashed line corresponds to one of the reconstructed
dynamical noise. Panels (a) and (b) show the examples for the logistic maps, panels (c) and (d) show the examples for the Hénon maps, and panels (e) and (f) show the
examples for the chaotic neurons. In each simulation, we adjusted the minimum number L of maps as 10 × 2n that each time point is connected with all the other time points
within ten steps when we regard the final recurrence plot as a network.31 Note that there is a degree of freedom for the scaling the estimated dynamical noise. Thus, in panels
(b), (d), and (f), we adjusted the reconstructed dynamical noise so that the mean and standard deviation were the same as the actual truth as well as the direction for the
reconstructed dynamical noise matches the truth.

for the additive dynamical noise and multiplicative dynamical noise,
respectively. Examples shown in panels (b), (d), and (f) demonstrate
that the dynamical noise reconstructed via recurrence plots agreed
well with the true dynamical noise.

Overall, these numerical simulations confirmed that a permu-
tation can specify a realization of the external forces, especially
dynamical noise, which can be fast in its time scale.

IV. DISCUSSIONS

The goal of this study was to show theoretically and numeri-
cally that permutations can uniquely characterize the dynamics and
the external forcings in non-autonomous dynamical systems. There
are several related studies, and modeling of nonlinear stochastic sys-
tems is not new, for example, Ref. 40. Güttler et al.41 reconstructed
the parameter space from the measured time series observed for
fixed or slowly varying parameters. Recently, Hamilton et al.42 pro-
posed a filtering technique with dynamical noise without explicitly
modeling the underlying system. The closest study is the one by
Seifert et al.,43 where a Langevin equation is assumed for inferring
external forces from a measured time series. However, because this

work assumes a Langevin equation, the underlying dynamics should
be a flow and, thus, this technique cannot be applied to a time-
discontinuous system. In this sense, the current results could work
in a more general setting and provide a rigorous approach for ana-
lyzing a non-autonomous system, while its target system could be a
map.

Since the number of possible states in permutations increases
in a combinatorial manner rather than in an exponential man-
ner, a typical example of which is symbolic dynamics obtained
by a generating partition, permutations can overcome dynamical
noise through their redundancy.44 This super-exponential growth
is important in enabling a permutation to retain the information
regarding both the state space as well as a stochastic input series.
If we consider this kind of redundancy, recurrence plots31–33,45,46

can also provide one-to-one correspondence between a time series
generated from a stochastic system and its representations.

The current work can be regarded as related to the funda-
mentals of the mechanism by which permutations can distinguish
deterministic systems from stochastic systems19–25,47 and validate the
analysis of transition matrices23,48 induced by a permutation for a
stochastic system.
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FIG. 8. Same as Fig. 7 but for multi-
plicative dynamical noise.

In summary, a permutation can uniquely identify a state for the
underlying dynamics even if the dynamics is subject to realization of
external force. We provided the mathematical proof (Theorem 1)
that the unique specification of a joint set of an initial condition and
a realization of the external force by a permutation is equivalent to
the condition for the topological transitivity of the given dynamics.
We also presented numerical demonstrations using the mean repre-
sentation as well as the recurrence plots to show that estimating the
realization of the unknown external force is possible. By specifying
a permutation, we can ultimately uniquely identify series of states as
well as stochastic inputs. Thus, a permutation can be used for time
series forecasts of random dynamical systems. From another view-
point, topological transitivity is a good criterion for evaluating the
chaotic nature for the underlying dynamics even when it is gener-
ated by random and non-autonomous dynamical systems. Although
this point will be further examined in our upcoming research, per-
mutations are certainly expected to provide a rigorous platform for
analyzing random as well as deterministic dynamical systems.

SUPPLEMENTARY MATERIAL

The supplementary material includes codes for reproducing
numerical calculations and plots presented in Figs. 2–8. Once you
unzip the supplementary material, such codes for each figure can be
found separated into each folder.
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APPENDIX: ESTIMATION OF REALIZATION OF

EXTERNAL FORCE

We estimate dynamical noise from observations from multi-
ple maps by extending the method of Ref. 31 (see Fig. 9). First, we
obtained an order recurrence plot49 using permutations of the same
length l [each permutation πi,t(l) corresponds to the information for
the joint set (xi,t, pt, pt+1, . . . , pt+l−2)]. An order recurrence plot is a
two-dimensional figure and can be defined as follows:

Ri(j, k) =

{

1 if πi,j(l) = πi,k(l),
0 otherwise.

(A1)

Then, we applied the OR operations for the order recurrence plots
to obtain the resulting recurrence plot,31 which corresponds to the
information of pt, pt+1, . . . , pt+l−2. Namely, we define

R(j, k) =

{

1 if Ri(j, k) = 1 for some i = 1, 2, . . . , I,
0 otherwise.

(A2)

Furthermore, we took the AND operations for R(j + m, k + m)

components for each (j, k) for m = 0, 1, . . . , l − 2 by duplicating the
resulting recurrence plots and applying time delays to obtain the
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FIG. 9. Schematic for estimating the
common dynamical noise using the
observations of the driven systems.

final components R̃(j, k) for the final recurrence plot. In mathemat-
ical language, we define

R̃(j, k) =

{

1 if R(j + m, k + m) = 1 for all m = 0, 1, 2, . . . , l − 2,
0 otherwise.

(A3)

With these AND operations, we could narrow down the information
for pt represented in the final recurrence plot. Finally, we converted
the final recurrence plot to a time series by the method of Ref. 31,

which has mathematical support.45,46 On this process, first we regard
a recurrence plot as a graph. In this graph, a time point corresponds
to a node, and points plotted (j, k) and (k, j) correspond to an edge
between j and k. Then, we assign to each edge the following local
distance d:

d(j, k) = 1 −

∑

l R̃(j, l)R̃(k, l)
∑

l R̃(j, l) +
∑

l R̃(k, l) −
∑

l R̃(j, l)R̃(k, l)
. (A4)

Second, we obtain the shortest distance between every pair of nodes
on this graph, constructing a distance matrix of global distances.
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For this procedure, we may use Dijkstra’s algorithm or Johnson’s
algorithm.50 Third, we use multidimensional scaling for converting
the distance matrix to a time series. If we extract the most significant
component, this component corresponds to the common dynami-
cal noise. Thus, we can transform the information of the recurrence
matrix, or the adjacency matrix, to that of the corresponding met-
ric space, resulting in the estimated time series for the common
dynamical noise.

DATA AVAILABILITY

The data that support the findings of this study are available
within the article and its supplementary material.
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