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LIE ALGEBRAS ASSOCIATED WITH A STANDARD

QUADRUPLET AND PREHOMOGENEOUS

VECTOR SPACES
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Nagatoshi Sasano

Abstract. By using the theory of Lie algebras associated with a

standard quadruplet, we can embed an arbitrary reductive pre-

homogeneous vector space with completely reducible representation

into some graded Lie algebra. The purpose of this paper is to study

properties of graded Lie algebras which correspond to the pre-

homogeneity condition of triplets. Moreover, we give another proof

of castling transformation as an application.

Introduction

Let ðG; r;VÞ be a triplet which consists of a connected algebraic group G, a

representation r of G on a finite-dimensional vector space V all defined over C.

We call a triplet ðG; r;VÞ a prehomogeneous vector space (abbrev. PV) if and

only if there exists an element x A V such that the orbit rðGÞxHV is Zariski

dense in V . Such an element x A V is called a generic point. For example, for any

triplet ðG; r;VÞ, it is known that a triplet ðG � GLn; rnL1;V nCnÞ is always

prehomogeneous for any nbm ¼ dim V , where L1 stands for the natural repre-

sentation of GLn on Cn. Such triplets are called trivial PVs. However, if n < m,

the triplet ðG � GLn; rnL1;V nCnÞ is not generally a PV. On the other hand,

if the triplet ðG � GLn; rnL1;V nCnÞ is a PV, it is known that a triplet

ðG � GLm�n; r
� nL1;V

� nCm�nÞ is also a PV, where ðr�;V �Þ is the dual

module of ðr;VÞ. These triplets ðG � GLn; rnL1;V nCnÞ and ðG � GLm�n;

r� nL1;V
� nCm�nÞ are called castling transform of each other (see [7,
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Definition 11, p. 39]). Now, when G is reductive, we call a PV ðG; r;VÞ a

reductive PV. In [7], M. Sato and T. Kimura classified reductive PVs whose

representation is irreducible by using castling transformations.

The theory of PVs is closely related to the theory of Lie algebras. The

prehomogeneity condition of a triplet ðG; r;VÞ can be expressed by the cor-

responding Lie algebra and its representation ðLieðGÞ; dr;VÞ, where LieðGÞ is

the Lie algebra of G and dr the infinitesimal representation of r. That is, a

triplet ðG; r;VÞ is a PV if and only if there exists an element x A V such that

drðLieðGÞÞx ¼ V . This condition is useful to check the prehomogeneity of a

triplet. Moreover, we can obtain PVs from a graded semisimple Lie algebra. If we

let l ¼ 0
n AZ ln be a finite-dimensional semisimple Lie algebra and L the adjoint

group of l, then the subgroup L0 of L which corresponds to l0 acts on l1. This

representation is prehomogeneous. That is, there exists an element x A l1 such that

½l0; x� ¼ l1. In [2, 3, 4], H. Rubenthaler studied these PVs and called them PVs

of parabolic type. In other words, a PV of parabolic type is a triplet which

consists of a reductive Lie algebra and its completely reducible representation

which can be embedded into a finite-dimensional graded Lie algebra. Some

properties of PVs of parabolic type can be described by structures of Lie algebras.

For example, H. Rubenthaler classified irreducible regular PVs of parabolic type

by using subalgebras of semisimple Lie algebras which are isomorphic to sl2 (see

[2, 3, 4]). However, the castling transform of a PV of parabolic type is no longer

parabolic type.

In [6], the author introduced a way to embed an arbitrary finite-dimensional

reductive Lie algebra g, its faithful and completely reducible representation ðp;VÞ
and its dual module ðp�;V �Þ into some graded Lie algebra. For this, we use

a non-degenerate symmetric and invariant bilinear form B on g. If the qua-

druplet ðg; p;V ;BÞ is a standard quadruplet (see Definition 1.6 or [6, Definition

1.9]), then we can construct a graded Lie algebra Lðg; p;V ;BÞ ¼ 0
n AZ Vn called

the Lie algebra associated with ðg; p;V ;BÞ and embed the above objects into

it (see Theorem 1.7 or [6, Theorem 2.11]). In general, these graded Lie algebras

are infinite-dimensional. By the way, H. Rubenthaler obtained a similar result

in [5].

It is well-known that the Lie algebra of a reductive algebraic group is a

reductive Lie algebra. Thus, by using the theory of Lie algebras associated with

a standard quadruplet, any reductive PV ðG; r;VÞ with completely reducible

representation r can be embedded into a graded Lie algebra of the form

LðLieðGÞ; dr;V ;BÞ. Thus, it is expected that we can use the theory of Lie

algebras to study a reductive PV and its castling transform in a similar way to
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the theory of PVs of parabolic type. However, since we have the Lie algebra

LðLieðGÞ; dr;V ;BÞ regardless whether ðG; r;VÞ is a PV or not, it is required to

give a Lie algebraic property of LðLieðGÞ; dr;V ;BÞ which corresponds to the

prehomogeneity of the triplet ðG; r;VÞ. The purpose of this paper is to answer

this problem, i.e., we shall give a necessary and su‰cient condition for a

triplet ðG; r;VÞ to be a PV by using the structure of the graded Lie algebra

LðLieðGÞ; dr;V ;BÞ. Moreover, we give another proof of castling transformation

as an application.

This paper consists of two sections. In section 1, we consider about the

F-map of quadruplets. First, we give the definition of F-map (Definition 1.1) and

some examples (Example 1.2, 1.3, 1.4). Next, we give the F-maps of a direct sum

and a tensor product of modules (Proposition 1.5). At the end of this section, we

introduce the notion of the Lie algebras associated with a standard quadruplet

(Definition 1.6 and Theorem 1.7).

In section 2, we shall define the notion of prehomogeneous quadruplet

by using F-map. The prehomogeneity of quadruplets corresponds to the pre-

homogeneity of triplets. For this, we shall give a way to describe the pre-

homogeneity condition of ðG; r;VÞ by using the F-map of ðLieðGÞ; dr;V ;BÞ
(Theorem 2.1). Moreover, if ðLieðGÞ; dr;V ;BÞ is a standard quadruplet, we can

describe the prehomogeneity of ðG; r;VÞ by the restricted bracket product

½� ; �� : V�1 � V1 ! V0 of the graded Lie algebra LðLieðGÞ; dr;V ;BÞ ¼ 0
n AZ Vn

(Theorem 2.4). A prehomogeneous quadruplet is a quadruplet such that its

F-map satisfies the same condition.

In the remaining part of this section, we shall consider the prehomogeneity

of triplets of the form ðG � GLn; rnL1;V nCnÞ. It can be described by the

F-map of ðLieðGÞ; dr;V ;BÞ. That is, in general, the prehomogeneity condition

of a quadruplet of the form ðgl gln; pnL1;V nCn;BlTnÞ, where Tn is a

bilinear form on gln (see (1.3)), can be described by the F-map of ðg; p;V ;BÞ
(Lemma 2.7). Finally, as an application of this lemma, we shall give an-

other proof of castling transformation by using the Lie algebraic calculation

(Theorem 2.10). In particular, the correspondence of generic points of

ðG � GLn; rnL1;V nCnÞ and one of ðG � GLm�n; r
� nL1;V

� nCm�nÞ and

their generic isotropy subalgebras can be described by using the Lie algebraic

calculation.

Notation: We denote the space of matrices of size n�m by Mðn;m;CÞ, the
trace of a matrix A by TrðAÞ, the transpose of a matrix X by tX , the zero matrix

and the unit matrix of size n� n by 0n and 1n. In this paper, all objects are

defined over C.
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1 The F-Map of a Quadruplet

Let g be a finite-dimensional reductive Lie algebra and p a representation of

g on a finite-dimensional vector space V . Moreover, we denote the dual module

of ðp;VÞ by ðp�;V �Þ and the pairing between V and V � by h� ; �i. Now, by the

theory of Lie algebras, it is known that there exists a non-degenerate symmetric

and invariant bilinear form B on g (see [1, Chapter 1 § 6.4 Proposition 5]).

Throughout this paper, we use these notation. Then we can define the following

linear map from the quadruplet ðg; p;V ;BÞ which plays important roles in this

paper.

Definition 1.1 (F-map of a quadruplet). We define a linear map Fp from

V nV � to g by the following equation:

Bða;Fpðvn fÞÞ ¼ hpðaÞv; fi ¼ �hv; p�ðaÞfi ð1:1Þ

for any a A g; v A V and f A V �. Since B is non-degenerate, the equation ð1:1Þ
determines the linear map Fp uniquely. We call this map Fp the F-map of

ðg; p;V ;BÞ (see [6, Definition 1.1]). Moreover, for an element v A V , we can

define a linear map Fp; v from V � to g by:

Fp; vðfÞ :¼ Fpðvn fÞ ð1:2Þ

where f A V �. We call this map Fp; v the F-map at v of ðg; p;V ;BÞ.

Example 1.2. Let ðg; p;V ;BÞ be a quadruplet ðgln;L1;C
n;TnÞ, where L1 is

the natural representation of gln on the space of column vectors Cn ¼ Mðn; 1;CÞ
and Tn is a bilinear form on gln defined by

Tnða; a 0Þ :¼ Trðaa 0Þ ð1:3Þ

where a; a 0 A g. Then the dual space V � can be identified with Cn. The repre-

sentation L�
1 and the pairing h� ; �i are given as follows:

L�
1 ðaÞf :¼ �taf; ð1:4Þ

hv; fi :¼ tvf ð1:5Þ

where a A g, v A V and f A V �. Then the F-map is given as:

FL1
ðvn fÞ ¼ vtf: ð1:6Þ
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Example 1.3. Let ðg; p;V ;BÞ be a quadruplet ðson;L1;C
n;Tnjson�son

Þ, where
L1 is the natural representation of son on Cn ¼ Mðn; 1;CÞ. Then the dual space

V � can be identified with Cn. The representation L�
1 and the pairing h� ; �i are

given as follows:

L�
1 ðaÞf :¼ af; ð1:7Þ

hv; fi :¼ tvf ð1:8Þ

where a A g, v A V and f A V �. Then the F-map is given as:

FL1
ðvn fÞ ¼ 1

2
ðvtf� ftvÞ: ð1:9Þ

Example 1.4. Let ðg; p;V ;BÞ be a quadruplet ðspn;L1;C
2n;T2njspn�spn

Þ,

where L1 is the natural representation of spn ¼
�
X A gl2n j tXJn þ JnX ¼ 0;

Jn :¼
0n 1n

�1n 0n

� ��
on C2n ¼ Mð2n; 1;CÞ. Then the dual space V � can be

identified with C2n. The representation L�
1 and the pairing h� ; �i are given as

follows:

L�
1 ðaÞf :¼ af; ð1:10Þ

hv; fi :¼ tvJnf ð1:11Þ

where a A g, v A V and f A V �. Then the F-map is given as:

FL1
ðvn fÞ ¼ � 1

2
ðvtfJn þ ftvJnÞ: ð1:12Þ

The F-map of a direct sum or tensor product of modules can be obtained as

follows.

Proposition 1.5. Let g be any reductive Lie algebra, pi, si representations of

g on Vi and Ui ði ¼ 1; 2Þ and B a non-degenerate symmetric and invariant bilinear

form on g. Then for quadruplets ðg; p1 l p2;V1 lV2;BÞ and ðg; s1 n s2;U1 nU2;

BÞ, their F-maps Fp1lp2 and Fs1 n s2 are given as follows:

Fp1lp2ððv1; v2Þn ðf1; f2ÞÞ ¼ Fp1ðv1 n f1Þ þFp2ðv2 n f2Þ; ð1:13Þ

Fs1ns2ððu1 n u2Þn ðc1 nc2ÞÞ

¼ hu2;c2iFs1ðu1 nc1Þ þ hu1;c1iFs2ðu2 nc2Þ ð1:14Þ
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where vi A Vi, ui A Ui, fi A V �
i , ci A U �

i and Fpi , Fsi are the F-maps of the

quadruplets ðg; pi;Vi;BÞ and ðg; si;Ui;BÞ ði ¼ 1; 2Þ.

Proof. The dual modules of V1 lV2 and U1 nU2 can be identified with

V �
1 lV �

2 and U �
1 nU �

2 respectively. The pairings between them are given as

follows:

hðv1; v2Þ; ðf1; f2Þi :¼ hv1; f1iþ hv2; f2i; ð1:15Þ

hu1 n u2;c1 nc2i :¼ hu1;c1ihu2;c2i: ð1:16Þ

Then, our claim can be checked by a direct calculation. 9

When a quadruplet ðg; p;V ;BÞ is a standard quadruplet, its F-map is closely

related to the bracket product of the Lie algebra associated with ðg; p;V ;BÞ (see

[6, Definition 1.9 and Theorem 2.11]).

Definition 1.6 (Standard quadruplets). If a quadruplet ðg; p;V ;BÞ satisfies

the following conditions, then we call it a standard quadruplet:

p is faithful; ð1:17Þ

p is completely reducible; ð1:18Þ

fv A V j pðaÞv ¼ 0 for all a A gg ¼ f0g: ð1:19Þ

Theorem 1.7 (Lie algebra associated with a standard quadruplet). For a

standard quadruplet ðg; p;V ;BÞ, there exists a graded Lie algebra Lðg; p;V ;BÞ ¼
0

n AZ Vn called the Lie algebra associated with ðg; p;V ;BÞ. This Lie algebra

satisfies that V0, V1, V�1 are isomorphic to g, V , V � respectively. The restriction

of the bracket product of Lðg; p;V ;BÞ to V1 � V�1 ! V0 can be identified with the

F-map of ðg; p;V ;BÞ.

2 Prehomogeneous Vector Spaces

2.1 Prehomogeneous Quadruplets

Recall that a triplet ðG; r;VÞ is called a prehomogeneous vector space

(abbrev. PV) if and only if there exists an element x A V such that rðGÞx is

Zariski dense in V . In this section, we shall introduce the notion of ‘‘pre-

homogeneity’’ of quadruplets which corresponds to PVs. For this, we give the
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following theorem to describe the prehomogeneity of ðG; r;VÞ by using the

F-map of a quadruplet of the form ðLieðGÞ; dr;V ;BÞ.

Theorem 2.1. Let G be a connected reductive algebraic group, V a finite-

dimensional vector space and r a representation of G on V. Let LieðGÞ be the Lie

algebra of G and dr the infinitesimal representation of r on V. Then the triplet

ðG; r;VÞ is prehomogeneous if and only if there exists an element x A V and a non-

degenerate symmetric and invariant bilinear form B on LieðGÞ such that the F-map

at x of the quadruplet ðLieðGÞ; dr;V ;BÞ, denoted by Fdr;x : V
� ! LieðGÞ, is

injective.

Proof. Assume that ðG; r;VÞ is a PV and x is its generic point. Then it

is known that the vector subspace drðLieðGÞÞx of V coincides with V (see [7,

Proposition 2, p. 36]). Let us show that the F-map at x denoted by Fdr;x is

injective. In fact, if Fdr;x is not injective, there exists a non-zero element f A V �

such that Fdr;xðfÞ ¼ 0 and we have

0 ¼ Bða;Fdr;xðfÞÞ ¼ hdrðaÞx; fi ð2:1Þ

for any a A LieðGÞ. This is a contradiction to the assumption that drðLieðGÞÞx
¼ V . Thus Fdr;x is injective.

Conversely, suppose that there exists a non-degenerate symmetric invariant

bilinear form B on LieðGÞ and an element x A V such that the linear map Fdr;x is

injective. Then ðG; r;VÞ is a PV and x is its generic point. Indeed, if x is not a

generic point, then drðLieðGÞÞx is a proper subspace of V and thus there exists

a non-zero element f A V � such that 0 ¼ hdrðaÞx; fi ¼ Bða;Fdr;xðfÞÞ for any

a A LieðGÞ. Since B is non-degenerate, we have Fdr;xðfÞ ¼ 0. This is a contra-

diction to the assumption that Fdr;x is injective. Therefore we have drðLieðGÞÞx
¼ V and thus x is a generic point. 9

Definition 2.2. Let g be a finite-dimensional reductive Lie algebra, p a

representation of g on a finite-dimensional vector space V and B a non-degenerate

symmetric invariant bilinear form on g. We say that a quadruplet ðg; p;V ;BÞ is

a prehomogeneous quadruplet if and only if there exists an element x A V such

that Fp;x : V
� ! g is injective. We call such an element x A V a generic point of

ðg; p;V ;BÞ. A generic point x satisfies pðgÞx ¼ V .

Remark 2.3. Note that if ðg; p;V ;BÞ is prehomogeneous, then for any other

non-degenerate symmetric and invariant bilinear form B 0 on g, ðg; p;V ;B 0Þ is also
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prehomogeneous with the same generic points, i.e. the prehomogeneity of a

quadruplet is independent to the choice of a bilinear form. It can be checked by

the proof of Proposition 2.1.

In particular, when a quadruplet ðg; p;V ;BÞ is standard, its prehomogeneity

is described in terms of graded Lie algebras. We can obtain the following theorem

from Theorems 1.7 and 2.1.

Theorem 2.4. Under the notation of Definition 2.2, we assume that

ðg; p;V ;BÞ is a standard quadruplet. Then the quadruplet ðg; p;V ;BÞ is pre-

homogeneous if and only if there exists an element x A V1 such that

ðad xÞjV�1
: V�1 ! V0 ð2:2Þ

is injective, where ad stands for the adjoint representation of Lðg; p;V ;BÞ ¼
0

n AZ Vn on itself.

To consider a PV ðG; r;VÞ whose representation r is completely reducible,

we can assume that r is faithful without loss of generality. Then a quadruplet

ðLieðGÞ; dr;V ;BÞ is a standard quadruplet for any non-degenerate symmetric

invariant bilinear form B. Thus, we can say that any reductive PV with com-

pletely reducible representation can be embedded into some graded Lie algebra

which corresponds to a prehomogeneous standard quadruplet.

Example 2.5. A triplet ðSOn;L1;C
nÞ, where L1 is the natural representation

of SOn on Cn ¼ Mðn; 1;CÞ, is not a PV for any nb 3. To check this, under the

notation of Example 1:3, let us show that the quadruplet ðson;L1;C
n;Tnjson�son

Þ
is not prehomogeneous. In fact, for any column vector v A Cn, we have

FL1; vðvÞ ¼ 1
2 ðvtv� vtvÞ ¼ 0: ð2:3Þ

Thus we have our claim.

However, a quadruplet ðgl1 l son;rnL1;CnCn;BÞ is prehomogeneous,

where r is a scalar multiplication of gl1 ¼ C and B is a bilinear form defined

by:

Bðða;AÞ; ða 0;A 0ÞÞ :¼ �aa 0 þ 1
2 TrðAA 0Þ ð2:4Þ

where a; a 0 A gl1 ¼ C and A;A 0 A son. In fact, identifying CnCn with Cn, the

representation rnL1 and the map FrnL1
are given as follows:
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ðrnL1Þða;AÞ � v ¼ avþ Av; ð2:5Þ

FrnL1
ðvn fÞ ¼ ð�tvf; v tf� f tvÞ: ð2:6Þ

Put v0 :¼ tð1; 0; . . . ; 0Þ. Then we have

ðrnL1ÞðFrnL1; v0ðfÞÞ � v0 ¼ �f ð2:7Þ

for any f A V �. Thus the map FrnL1; v0 is injective. Therefore ðgl1 l son;

rnL1;CnCn;BÞ is a prehomogeneous quadruplet.

2.2 Triplets of the Form ðG � GLn; rnL1;V nCnÞ

In this section, we shall consider an important theorem in the theory

of prehomogeneous vector spaces, castling transformation. We shall study triplets

of the form ðG � GLn; rnL1;V nCnÞ by using quadruplets of the form

ðgl gln; pnL1;V nCn;BlTnÞ, where BlTn is a bilinear form on gl gln
defined by ðBlTnÞðða;AÞ; ða 0;A 0ÞÞ :¼ Bða; a 0Þ þ TnðA;A 0Þ ða; a 0 A g;A;A 0 A gln).

To consider the prehomogeneity condition of them, we give the following

definition.

Definition 2.6. Let g be a reductive Lie algebra, p a representation of g

on a finite-dimensional vector space V , B a non-degenerate symmetric invariant

bilinear form on g. For the quadruplet ðg; p;V ;BÞ, any n A N and n-vectors

v1; . . . ; vn A V and f1; . . . ; fn A V �, we define vector subspaces Sðv1;...; vnÞ H ðV �Þn

and S �
ðf1;...;fnÞ HV n as follows:

Sðv1;...; vnÞ :¼
(
ðc1; . . . ;cnÞ A ðV �Þn

�����
Xn
l¼1

Fpðvl nclÞ ¼ 0; hvi;cji ¼ 0

for 1a i; ja n

)
; ð2:8Þ

S �
ðf1;...;fnÞ :¼

(
ðu1; . . . ; unÞ A V n

�����
Xn
l¼1

Fpðul n flÞ ¼ 0; hui; fji ¼ 0

for 1a i; ja n

)
ð2:9Þ

where Fp is the F-map of ðg; p;V ;BÞ.
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Lemma 2.7. We continue to use the notation of Example 1.2 and Definition

2.6. Then a quadruplet ðgl gln; pnL1;V nCn;BlTnÞ (respectively ðgl gln;

p� nL1;V
� nCn;BlTnÞ) is prehomogeneous if and only if there exists n-vectors

v1; . . . ; vn A V (respectively f1; . . . ; fn A V �) such that Sðv1;...; vnÞ ¼ fð0; . . . ; 0Þg (re-

spectively S �
ðf1;...;fnÞ ¼ fð0; . . . ; 0Þg).

Proof. We prove for a quadruplet ðgl gln; pnL1;V nCn;BlTnÞ. For a
quadruplet ðgl gln; p

� nL1;V
� nCn;BlTnÞ, our claim can be proved by the

same way.

Let ei A Cn be the column vector whose coe‰cients are all zero except the

i-th one which is equal to 1 and Eij A gln be the n� n matrix whose coe‰cients

are all zero except the ði; jÞ-th one which is equal to 1. Then for any v A V and

f A V �, we have

FpnL1
ððvn eiÞn ðfn ejÞÞ ¼ ðdijFpðvn fÞ; hv; fiEijÞ ð2:10Þ

from Example 1.2 and Proposition 1.5 where dij is the Kronecker delta.

Suppose that ðgl gln; pnL1;V nCn;BlTnÞ is a prehomogeneous qua-

druplet and v1 n e1 þ � � � þ vn n en A V nCn is its generic point. Then we have

Sðv1;...; vnÞ ¼ fð0; . . . ; 0Þg. In fact, take an arbitrary element ðc1; . . . ;cnÞ A Sðv1;...; vnÞ,

then we have:

FpnL1

X
1aian

vi n ei

 !
n

X
1ajan

cj n ej

 ! !

¼ Fp

X
1akan

vk nck

 !
;
X

1ai; jan

hvi;cjiEij

 !
¼ 0: ð2:11Þ

Therefore, we have c1 n e1 þ � � � þ cn n en ¼ 0 and thus ðc1; . . . ;cnÞ ¼ ð0; . . . ; 0Þ.
Conversely, assume that n-vectors v1; . . . ; vn A V satisfy Sðv1;...; vnÞ ¼

fð0; . . . ; 0Þg. Then v1 n e1 þ � � � þ vn n en is a generic point of ðg; p;V ;BÞ. In fact,

suppose that f1 n e1 þ � � � þ fn n en satisfies

FpnL1

X
1aian

vi n ei

 !
n

X
1ajan

fj n ej

 ! !
¼ 0; ð2:12Þ

then we can obtain that ðf1; . . . ; fnÞ A Sðv1;...; vnÞ and thus f1 n e1 þ � � � þ fn n en ¼
0. This completes the proof. 9

The following corollary is immediate.

10 Nagatoshi Sasano



Corollary 2.8. Under the notation of Example 1.2 and Definition 2.6, if we

let nbm ¼ dim V , then a quadruplet ðgl gln; pnL1;V nCn;BlTnÞ is pre-

homogeneous. Such quadruplets correspond to triplets which are called trivial PVs

(see [7, Definition 5, p. 43]).

Example 2.9. It is known that a triplet ðGL3 � GL3 � GL2;L1 nL1 nL1;

C3 nC3 nC2Þ is a PV (see [7, Proposition 16, p. 100]). Thus the corresponding

quadruplet ðgl3 l gl3 l gl2;L1 nL1 nL1;C
3 nC3 nC2;T3 lT3 lT2Þ is pre-

homogeneous. Let us check this by using Lemma 2.7.

First, let us consider a quadruplet ðg; r;V ;BÞ :¼ ðgl3 l gl3;L1 nL1;

C3 nC3;T3 lT3Þ. The representation p ¼ L1 nL1 can be identified with the

representation of gl3 l gl3 on the space of square matrices of size 3 defined by

ðL1 nL1ÞðA;BÞ � X :¼ AX þ X tB ð2:13Þ

where ðA;BÞ A g ¼ gl3 l gl3 and X A V ¼ Mð3; 3;CÞ. Then the dual module V �

is also identified with Mð3; 3;CÞ. The dual representation p�, the pairing h� ; �i
between V and V � and the F-map of the quadruplet ðg; p;V ;BÞ are given by

ðL1 nL1Þ�ðA;BÞ � x :¼ �tAx� xB; ð2:14Þ

hX ; xi :¼ TrðX txÞ; ð2:15Þ

FL1nL1
ðX n xÞ ¼ ðX tx; tXxÞ ð2:16Þ

where ðA;BÞ A g, X A V and x A V � ¼ Mð3; 3;CÞ.
Next, let us show that the following matrices

X1 :¼
1 0 0

0 1 0

0 0 1

0
B@

1
CA; X2 :¼

1 0 0

0 �1 0

0 0 0

0
B@

1
CA A V

satisfy SðX1;X2Þ ¼ fð0; 0ÞgH ðV �Þ2. In fact, the orthogonal space ðCX1 þ CX2Þ? H
V � is given by

ðCX1 þ CX2Þ? ¼
a b e

c a f

g h �2a

0
B@

1
CA
������� a; . . . ; h A C

8><
>:

9>=
>;: ð2:17Þ

We take arbitrary elements

xi :¼
ai bi ei

ci ai fi

gi hi �2ai

0
B@

1
CA A ðCX1 þ CX2Þ? ði ¼ 1; 2Þ:
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Then we have

FL1nL1
ðX1 n x1 þ X2 n x2Þ

¼
a1 þ a2 c1 þ c2 g1 þ g2

b1 � b2 a1 � a2 h1 � h2

e1 f1 �2a1

0
@

1
A;

a1 þ a2 b1 þ b2 e1 þ e2

c1 � c2 a1 � a2 f1 � f2

g1 h1 �2a1

0
@

1
A

0
@

1
A

A g: ð2:18Þ

Thus, by an easy calculation, we can obtain that FL1nL1
ðX1 n x1 þ X2 n x2Þ ¼ 0

if and only if x1 ¼ x2 ¼ 0 A V �. Therefore we obtain that a quadruplet ðgl3 l
gl3 l gl2;L1 nL1 nL1;C

3 nC3 nC2;T3 lT3 lT2Þ is prehomogeneous.

As an application of Lemma 2.7, we can obtain another proof of castling

transformation. For this, let us show the following theorem about quadruplets.

Theorem 2.10 (Castling transformation). Under the notation of Example 1.2

and Definition 2.6, we let n < m ¼ dim V. Then a quadruplet ðgl gln; pnL1;

V nCn;BlTnÞ is prehomogeneous if and only if a quadruplet ðgl glm�n;

p� nL1;V
� nCm�n;BlTm�nÞ is also prehomogeneous. Moreover, if ðgl gln;

pnL1;V nCn;BlTnÞ is prehomogeneous (and thus ðgl glm�n; p
� nL1;

V � nCm�n;BlTm�nÞ is also prehomogeneous), then for any generic point x A

V nCn of ðgl gln; pnL1;V nCn;BlTnÞ there exists a generic point y A

V � nCm�n of ðgl glm�n; p
� nL1;V

� nCm�n;BlTm�nÞ such that the g-part of

the isotropy subalgebra at x denoted by gx coincides with the g-part of the isotropy

subalgebra at y denoted by gy.

Proof. Suppose that a quadruplet ðgl gln; pnL1;V nCn;BlTnÞ is pre-

homogeneous and take arbitrary n-vectors v1; . . . ; vn A V which satisfy Sðv1;...; vnÞ ¼
fð0; . . . ; 0Þg. Then vectors v1; . . . ; vn A V are linearly independent. In fact, sup-

pose that there exists scalars c1; . . . ; cn A C, ðc1; . . . ; cnÞ0 ð0; . . . ; 0Þ such that

c1v1 þ � � � þ cnvn ¼ 0. Then, since n < m ¼ dim V , we have a non-zero element

f A V � such that hvi; fi ¼ 0 for i ¼ 1; . . . ; n and ðc1f; . . . ; cnfÞ is a non-zero

element of Sðv1;...; vnÞ. It is a contradiction to the assumption that Sðv1;...; vnÞ ¼
fð0; . . . ; 0Þg.

Put U :¼ Cv1 þ � � � þ Cvn and denote the orthogonal space of U by U?.

Then the space U? is a ðm� nÞ-dimensional vector subspace of V �. Take an

arbitrary basis of U? and denote it by f1; . . . ; fm�n A V �. Then f1; . . . ; fm�n A V �

satisfy S �
ðf1;...;fm�nÞ ¼ fð0; . . . ; 0Þg. In fact, suppose that ðu1; . . . ; um�nÞ A S �

ðf1;...;fm�nÞ.

12 Nagatoshi Sasano



Then for any i; j ð1a i; jam� nÞ, we have

hui; fji ¼ 0; ð2:19Þ

Fpðu1 n f1 þ � � � þ um�n n fm�nÞ ¼ 0: ð2:20Þ

It follows from ð2:19Þ that u1; . . . ; um�n A U and thus there exist scalars ck; l A C

ð1a kam� n; 1a la nÞ which satisfy

uk ¼ ck;1v1 þ � � � þ ck;nvn ð1a kam� nÞ: ð2:21Þ

Then it follows from ð2:20Þ that

X
1alan

Fp vl n
X

1akam�n

ck; lfk

 ! !
¼ 0: ð2:22Þ

Thus we have ðð
P

1akam�n ck;1fkÞ; . . . ; ð
P

1akam�n ck;nfkÞÞ A Sðv1;...; vnÞ ¼
fð0; . . . ; 0Þg. Since f1; . . . ; fm�n is linearly independent, we have ck; l ¼ 0 for

any k, l and thus ðu1; . . . ; unÞ ¼ ð0; . . . ; 0Þ. Therefore we have S �
ðf1;...;fm�nÞ ¼

fð0; . . . ; 0Þg and thus ðgl glm�n; p
� nL1;V

� nCm�n;BlTm�nÞ is also pre-

homogeneous. Conversely, if ðgl glm�n; p
� nL1;V

� nCm�n;BlTm�nÞ is pre-

homogeneous, then ðgl glm�ðm�nÞ; ðp�Þ� nL1; ðV �Þ� nCm�ðm�nÞ;BlTm�ðm�nÞÞ
¼ ðgl gln; pnL1;V nCn;BlTnÞ is also prehomogeneous.

Next, we put x :¼ v1 n e1 þ � � � þ vn n en A V nCn and y :¼ f1 n e1 þ � � � þ
fm�n n em�n A V � nCm�n. Let us show that we have gx ¼ gy. A necessary and

su‰cient condition for an element a A g to belong to gx is that there exists an

element A ¼
P

1ai; jan bijEij A gln which satisfies

0 ¼ ðpnL1Þða;AÞ � x

¼ ðpnL1Þða;AÞ �
X

1aian

vi n ei

¼
X

1aian

pðaÞvi þ
X

1ajan

bijvj

 !
n ei:

Therefore we have

gx ¼ fa A g j pðaÞU HUg: ð2:23Þ

Similarly we have

gy ¼ fa A g j p�ðaÞU? HU?g: ð2:24Þ

By an easy calculation, we can obtain gx ¼ gy. This completes the proof. 9
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