
Department of Policy and Planning Sciences

Discussion Paper Series

No.1378

A New Extension of Chubanov’s Method to Symmetric Cones

by

Shin-ichi KANOH and Akiko YOSHISE

October 2021

Revised November 2022

Revised April 2023

UNIVERSITY OF TSUKUBA
Tsukuba, Ibaraki 305-8573

JAPAN

A New Extension of Chubanov’s Method to Symmetric Cones

Shin-ichi Kanoh∗and Akiko Yoshise†

October 2021
Revised November 2022

Revised April 2023

Abstract

We propose a new variant of Chubanov’s method for solving the feasibility problem over the
symmetric cone by extending Roos’s method (2018) of solving the feasibility problem over the non-
negative orthant. The proposed method considers a feasibility problem associated with a norm
induced by the maximum eigenvalue of an element and uses a rescaling focusing on the upper bound
for the sum of eigenvalues of any feasible solution to the problem. Its computational bound is (i)
equivalent to that of Roos’s original method (2018) and superior to that of Lourenço et al.’s method
(2019) when the symmetric cone is the nonnegative orthant, (ii) superior to that of Lourenço et al.’s
method (2019) when the symmetric cone is a Cartesian product of second-order cones, (iii) equivalent
to that of Lourenço et al.’s method (2019) when the symmetric cone is the simple positive semidefi-
nite cone, and (iv) superior to that of Pena and Soheili’s method (2017) for any simple symmetric
cones under the feasibility assumption of the problem imposed in Pena and Soheili’s method (2017).
We also conduct numerical experiments that compare the performance of our method with existing
methods by generating strongly (but ill-conditioned) feasible instances. For any of these instances,
the proposed method is rather more efficient than the existing methods in terms of accuracy and
execution time.

1 Introduction

Recently, Chubanov [2, 3] proposed a new polynomial-time algorithm for solving the problem (P(A)),

P(A) find x > 0 s.t. Ax = 0,

where A is a given integer (or rational) matrix and rank(A) = m and 0 is an n-dimensional vector of 0s.
The method explores the feasibility of the following problem PS1(A), which is equivalent to P(A) and
given by

PS1
(A) find x > 0 s.t. Ax = 0, 0 < x ≤ 1,

where 1 is an n-dimensional vector of 1s. Chubanov’s method consists of two ingredients, the “main
algorithm” and the “basic procedure.” Note that the alternative problem D(A) of P(A) is given by

D(A) find y ≥ 0 s.t. y ∈ rangeA⊤, y ̸= 0,

∗Graduate School of Systems and Information Engineering, University of Tsukuba, Tsukuba, Ibaraki 305-8573,
and Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan. email:
s2130104@s.tsukuba.ac.jp

†Corresponding author. Faculty of Engineering, Information and Systems, University of Tsukuba, Tsukuba, Ibaraki
305-8573, Japan. email: yoshise@sk.tsukuba.ac.jp

1

where rangeA⊤ is the orthogonal complement of kerA. The structure of the method is as follows: In the
outer iteration, the main algorithm calls the basic procedure, which generates a sequence in Rn using
projection to the set kerA := {x ∈ Rn | Ax = 0}. The basic procedure terminates in a finite number
of iterations returning one of the following: (i). a solution of problem P(A), (ii). a solution of problem
D(A), or (iii). a cut of P(A), i.e., an index j ∈ {1, 2, . . . , n} for which 0 < xj ≤ 1

2 holds for any feasible
solution of problem PS1

(A).

If result (i) or (ii) is returned by the basic procedure, then the feasibility of problem P(A) can be
determined and the main procedure stops. If result (iii) is returned, then the main procedure generates
a diagonal matrix D ∈ Rn×n with a (j, j) element of 2 and all other diagonal elements of 1 and rescales
the matrix as AD−1. Then, it calls the basic procedure with the rescaled matrix. Chubanov’s method
checks the feasibility of P(A) by repeating the above procedures.

For problem P(A), [15] proposed a tighter cut criterion of the basic procedure than the one used in [3].

[3] used the fact that xj ≤
√
n∥z∥2

yj
holds for any y ∈ Rn satisfying

∑n
i=1 yi = 1, y ≥ 0 and y /∈ rangeAT ,

z ∈ Rn obtained by projecting this y onto kerA, and any feasible solution x ∈ Rn of PS1
(A), and the

basic procedure is terminated if a y is found for which
√
n∥z∥2

yj
≤ 1

2 holds for some index j. On the other

hand, [15] showed that for v = y−z, xj ≤ min(1,1T [−v/vj]+) ≤
√
n∥z∥2

yj
holds if vj ̸= 0, where [−v/vj]+

is the projection of −v/vj ∈ Rn onto the nonnegative orthant and 1 is the vector of ones, and the basic

procedure is terminated if a y is found for which 1T [−v/vj]+ ≤ 1
2 holds.

Chubanov’s method has also been extended to include the feasibility problem over the second-order cone
[9] and the symmetric cone [13, 10]. The feasibility problem over the symmetric cone is of the form,

P(A) find x ∈ intK s.t. A(x) = 0,

where A is a linear operator, K is a symmetric cone, and intK is the interior of the set K. As proposed
in [13, 10], for problem P(A), the structure of Chubanov’s method remains the same; i.e., the main
algorithm calls the basic procedure, and the basic procedure returns one of the following in a finite
number of iterations: (i). a solution of problem P(A), or (ii). a solution of the alternative problem of
problem P(A), or (iii). a recommendation of scaling problem P(A). If result (i) or (ii) is returned by
the basic procedure, then the feasibility of the problem P(A) can be determined and the main procedure
stops. If result (iii) is returned, the problem is scaled appropriately and the basic procedure is called
again.

It should be noted that the purpose of rescaling differs between [10] and [13]. In [13], the authors devised
a rescaling method so that the following value becomes larger:

δ(kerA ∩K) := max
x

{
det(x) | x ∈ kerA ∩K, ∥x∥2J = r

}
,

where kerA := {x | A(x) = 0} and ∥x∥J is the norm induced by the inner product ⟨x, y⟩ = trace(x ◦ y)
defined in section 2.3. They proposed four updating schemes to be employed in the basic procedure and
conducted numerical experiments to compare the effect of these schemes when the symmetric cone is
the nonnegative orthant [14].

In [10], the authors assumed that the symmetric cone K is given by the Cartesian product of p simple
symmetric cones K1, . . . ,Kp, and they investigated the feasibility of the problem (PS1,∞(A)),

PS1,∞(A) find x ∈ intK s.t. A(x) = 0, ∥x∥1,∞ ≤ 1,

where for each x = (x1, . . . , xp) ∈ K = K1×· · · Kp, ∥x∥1,∞ is defined by ∥x∥1,∞ := max{∥x1∥1, . . . , ∥xp∥1},
and ∥x∥1 is the sum of the absolute values of all eigenvalues of x. Note that if p = 1, then problem
PS1,∞(A) turns out to be PS1

(A), which is equivalent to P(A):

PS1(A) find x ∈ intK s.t. A(x) = 0, ∥x∥1 ≤ 1.

2

The authors focused on the volume of the feasible region of PS1,∞(A) and devised a rescaling method
so that the volume becomes smaller. Their method will stop when the feasibility of problem PS1,∞(A)
or the fact that the minimum eigenvalue of any feasible solution of problem PS1,∞(A) is less than ε is
determined.

The aim of this paper is to devise a new variant of Chubanov’s method for solving P(A) by extending
Roos’s method [15] to the following feasibility problem (PS∞(A)) over the symmetric cone K:

PS∞(A) find x ∈ intK s.t. A(x) = 0, ∥x∥∞ ≤ 1,

where ∥x∥∞ is the maximum absolute eigenvalue of x. Throughout this paper, we will assume that K is
the Cartesian product of p simple symmetric cones K1, . . . ,Kp, i.e., K = K1× · · · ×Kp. Here, we should
mention an important issue about Lemma 4.2 in [15], which is one of the main results of [15]. The proof
of Lemma 4.2 given in the paper [15] is incorrect and a correct proof is provided in the paper [19], while
this study derives theoretical results without referring to the lemma. Our method has a feature that the
main algorithm works while keeping information about the minimum eigenvalue of any feasible solution
of PS∞(A) and, in this sense, it is closely related to Lourenço et al.’s method [10]. Using the norm ∥ ·∥∞
in problem PS∞(A) makes it possible to

• calculate the upper bound for the minimum eigenvalue of any feasible solution of PS∞(A),

• quantify the feasible region of P(A), and hence,

• determine whether there exists a feasible solution of P(A) whose minimum eigenvalue is greater
than ε as in [10].

Note that the symmetric cone optimization includes several types of problems (linear, second-order
cone, and semi-definite optimization problems) with various settings and the computational bound of
an algorithm depends on these settings. As we will describe in section 6, the theoretical computational
bound of our method is

• equivalent to that of Roos’s original method [15] and superior to that of Lourenço et al.’s method
[10] when the symmetric cone is the nonnegative orthant,

• superior to that of Lourenço et al.’s method when the symmetric cone is a Cartesian product of
second-order cones, and

• equivalent to that of Lourenço et al.’s method when the symmetric cone is the simple positive
semidefinite cone, under the assumption that the costs of computing the spectral decomposition
and of the minimum eigenvalue are of the same order for any given symmetric matrix.

• superior to that of Pena and Soheili’s method [13] for any simple symmetric cones under the
feasibility assumption of the problem imposed in [13].

Another aim of this paper is to give comprehensive numerical comparisons of the existing algorithms
and our method. As described in section 7, we generate strongly feasible ill-conditioned instances, i.e.,
kerA ∩ intK ̸= ∅ and x ∈ kerA ∩ intK has positive but small eigenvalues, for the simple positive
semidefinite cone K, and conduct numerical experiments.

The paper is organized as follows: Section 2 contains a brief description of Euclidean Jordan algebras
and their basic properties. Section 3 gives a collection of propositions which are necessary to extend
Roos’s method to problem PS∞(A) over the symmetric cone. In sections 4 and 5, we explain the
basic procedure and the main algorithm of our variant of Chubanov’s method. Section 6 compares the
theoretical computational bounds of Lourenço et al.’s method [10], Pena and Soheili’s method [13] and
our method. In section 7, we conduct numerical experiments comparing our variant with the existing
methods. The conclusions are summarized in section 8.

3

2 Euclidean Jordan algebras and their basic properties

In this section, we briefly introduce Euclidean Jordan algebras and symmetric cones. For more details,
see [5]. In particular, the relation between symmetry cones and Euclidean Jordan algebras is given in
Chapter III (Koecher and Vinberg theorem) of [5].

2.1 Euclidean Jordan algebras

Let E be a real-valued vector space equipped with an inner product ⟨·, ·⟩ and a bilinear operation ◦ :
E × E → E, and e be the identity element, i.e.,x ◦ e = e ◦ x = x holds for any x ∈ E. (E, ◦) is called a
Euclidean Jordan algebra if it satisfies

x ◦ y = y ◦ x, x ◦ (x2 ◦ y) = x2 ◦ (x ◦ y), ⟨x ◦ y, z⟩ = ⟨y, x ◦ z⟩

for all x, y, z ∈ E and x2 := x ◦ x. We denote y ∈ E as x−1 if y satisfies x ◦ y = e. c ∈ E is called an
idempotent if it satisfies c ◦ c = c, and an idempotent c is called primitive if it can not be written as a
sum of two or more nonzero idempotents. A set of primitive idempotents c1, c2, . . . ck is called a Jordan
frame if c1, . . . ck satisfy

ci ◦ cj = 0 (i ̸= j), ci ◦ ci = ci (i = 1, . . . , k),

k∑
i=1

ci = e.

For x ∈ E, the degree of x is the smallest integer d such that the set {e, x, x2, . . . , xd} is linearly
independent. The rank of E is the maximum integer r of the degree of x over all x ∈ E. The following
properties are known.

Proposition 2.1 (Spectral theorem (cf. Theorem III.1.2 of [5])). Let (E, ◦) be a Euclidean Jordan
algebra having rank r. For any x ∈ E, there exist real numbers λ1, . . . , λr and a Jordan frame c1, . . . , cr
for which the following holds:

x =

r∑
i=1

λici.

The numbers λ1, . . . , λr are uniquely determined eigenvalues of x (with their multiplicities). Furthermore,
trace(x) :=

∑r
i=1 λi, det(x) :=

∏r
i=1 λi.

2.2 Symmetric cone

A proper cone is symmetric if it is self-dual and homogeneous. It is known that the set of squares
K = {x2 : x ∈ E} is the symmetric cone of E (cf. Theorems III.2.1 and III.3.1 of [5]). The following
properties can be derived from the results in [5], as in Corollary 2.3 of [21]:

Proposition 2.2. Let x ∈ E and let
∑r

j=1 λjcj be a decomposition of x given by Propositoin 2.1. Then

(i) x ∈ K if and only if λj ≥ 0 (j = 1, 2, . . . , r),

(ii) x ∈ intK if and only if λj > 0 (j = 1, 2, . . . , r).

From Propositions 2.1 and 2.2 for any x ∈ E, its projection PK(x) onto K can be written as an operation
to round all negative eigenvalues of x to 0, i.e., PK(x) =

∑r
i=1[λi]

+ci, where [·]+ denotes the projection
onto the nonnegative orthant. Using PK, we can decompose any x ∈ E as follows.

4

Lemma 2.3. Let x ∈ E, and K be the symmetric cone corresponding to E. Then, x can be decomposed
into x = PK(x)− PK(−x).

Proof. From Propositoin 2.1, let x be given as x =
∑r

i=1 λici. Let I1 be the set of indices such that
λi ≥ 0 and I2 be the set of indices such that λi < 0. Then, we have PK(x) =

∑
i∈I1

λici and PK(−x) =∑
i∈I2
−λici, which implies that x =

∑
i∈I1

λici +
∑

i∈I2
λici = PK(x)− PK(−x).

A Euclidean Jordan algebra (E, ◦) is called simple if it cannot be written as any Cartesian product of
non-zero Euclidean Jordan algebras. If the Euclidean Jordan algebra (E, ◦) associated with a symmetric
cone K is simple, then we say that K is simple. In this paper, we will consider that K is given by a
Cartesian product of p simple symmetric cones Kℓ, K := K1×· · ·×Kp, whose rank and identity element
are rℓ and eℓ (ℓ = 1, . . . , p). The rank r and the identity element of K are given by

r =

p∑
ℓ=1

rℓ, e = (e1, . . . , ep). (1)

In what follows, xℓ stands for the ℓ-th block element of x ∈ K, i.e., x = (x1, . . . , xp) ∈ K1 × · · · × Kp.
For each ℓ = 1, · · · , p, we define λmin(xℓ) := min{λ1, · · · , λrℓ} where λ1, · · · , λrℓ are eigenvalues of xℓ.
The minimum eigenvalue λmin(x) of x ∈ K is given by λmin(x) = min{λmin(x1), · · · , λmin(xp)}.

Next, we consider the quadratic representation Qv(x) defined by Qv(x) := 2v ◦ (v ◦ x) − v2 ◦ x. For
the cone K = K1 × · · · × Kp, the quadratic representation Qv(x) of x ∈ K is denoted by Qv(x) =(
Qv1(x1), . . . , Qvp(xp)

)
. Letting Iℓ be the identity operator of the Euclidean Jordan algebra (Eℓ, ◦ℓ)

associated with the cone Kℓ, we have Qeℓ = Iℓ for ℓ = 1, . . . , p. The following properties can also be
retrieved from the results in [5] as in Proposition 3 of [10]:

Proposition 2.4. For any v ∈ intK, Qv(K) = K.

It is also known that the following relations hold for the quadratic representation Qv and det(·) [5].

Proposition 2.5 (cf. Proposition II.3.3 and III.4.2-(i), [5]). For any v, x ∈ E,

1. detQv(x) = det(v)2 det(x),

2. QQv(x) = QvQxQv (i.e., if x = e then Qv2 = QvQv) .

More detailed descriptions, including concrete examples of symmetric cone optimization, can be found
in, e.g., [5, 6, 16, 1]. Here, we will use concrete examples of symmetric cones to explain the biliniear
operation, the identity element, the inner product, the eigenvalues, the primitive idempotents, the
projection on the symmetric cone and the quadratic representation on the cone.

Example 2.6 (K is the semidefinite cone Sn+). Let Sn be the set of symmetric matrices of n ×
n.The semidefinite cone Sn+ is given by Sn+ = {X ∈ Sn : X ⪰ O}. For any symmetric matrices

X,Y ∈ Sn, define the bilinear operation ◦ and inner product as X ◦ Y = XY+Y X
2 and ⟨X,Y ⟩ =

tr(XY) =
∑n

i=1

∑n
j=1 XijYij , respectively. For any X ∈ Sn, perform the eigenvalue decomposi-

tion and let u1, . . . , un be the corresponding normalized eigenvectors for the eigenvalues λ1, . . . , λn:
X =

∑n
i=1 λiuiu

T
i . The eigenvalues of X in the Jordan algebra are λ1, . . . , λn and the primitive idempo-

tents are c1 = u1u
T
1 , . . . , cn = unu

T
n , which implies that the rank of the semidefinite cone Sn+ is r = n. The

identity element is the identity matrix I and the projection onto Sn+ is given by PSn+(X) =
∑n

i=1[λi]
+uiu

T
i .

The quadratic representation of V ∈ Sn is given by QV (X) = V XV .

5

Example 2.7 (K is the second-order cone Ln). The second order cone is given by Ln = {(x1, x̄
⊤)⊤ ∈

Rn : x1 ≥ ∥x̄∥2}. For any x, y ∈ Rn, define the bilinear operation ◦ and the inner product as x ◦ y =
(x⊤y, (x1ȳ + y1x̄)

⊤)⊤ and ⟨x, y⟩ = 2
∑n

i=1 xiyi, respectively. For any x ∈ Rn, by the decomposition

x = (x1 + ∥x̄∥2)
(

1/2
x̄

2∥x̄∥2

)
+ (x1 − ∥x̄∥2)

(
1/2
− x̄

2∥x̄∥2

)
,

we obtain the eigenvalues and the primitive idempotents as follows:

λ1 = x1 + ∥x̄∥2 , λ2 = x1 − ∥x̄∥2,

c1 =

1
2 (1,

x̄⊤

∥x̄∥2
)⊤ ∥x̄∥2 ̸= 0

1
2 (1, z

⊤)⊤ ∥x̄∥2 = 0

, c2 =

1
2 (1,−

x̄⊤

∥x̄∥2
)⊤ ∥x̄∥2 ̸= 0

1
2 (1,−z

⊤)⊤ ∥x̄∥2 = 0

.

where z ∈ Rn−1 is an arbitrary vector satisfying ∥z∥2 = 1. The above implies that the rank of the
second-order cone Ln is r = 2. The identity element is given by e = (1,0⊤)⊤ ∈ Rn. The projection
PLn(x) onto Ln is given by

PLn
(x) = [x1 + ∥x̄∥2]+

(
1/2
x̄

2∥x̄∥2

)
+ [x1 − ∥x̄∥2]+

(
1/2
− x̄

2∥x̄∥2

)
.

Letting In−1 be the identity matrix of order n − 1, the quadratic representation Qv(·) of v ∈ Rn is as
follows:

Qv(x) =

(
∥v∥22 2v1v̄

T

2v1v̄ detvIn−1 + 2v̄v̄T

)
x.

2.3 Notation

This subsection summarizes the notations used in this paper. For any x, y ∈ E, we define the inner
product ⟨·, ·⟩ and the norm ∥ · ∥J as ⟨x, y⟩ := trace(x ◦ y) and ∥x∥J :=

√
⟨x, x⟩, respectively. For any

x ∈ E having decomposition x =
∑r

i=1 λici as in Proposition 2.1, we also define ∥x∥1 := |λ1|+ · · ·+ |λr|,
∥x∥∞ := max{|λ1|, . . . , |λr|}. For x ∈ K, we obtain the following equivalent representations: ∥x∥1 =
⟨e, x⟩, ∥x∥∞ = λmax(x). The following is a list of other definitions and frequently used symbols in the
paper.

• d: the dimension of the Euclidean space E corresponding to K,

• FPS∞ (A): the feasible region of PS∞(A),

• PA(·): the projection map onto kerA,

• PK(·): the projection map onto K,

• λ(x) ∈ Rr: an r-dimensional vector composed of the eigenvalues of x ∈ K,

• λ(xℓ) ∈ Rrℓ : an rℓ-dimensional vector composed of the eigenvalues of xℓ ∈ Kℓ (ℓ = 1, . . . , p),

• c(xℓ)i ∈ Kℓ: the i-th primitive idempotent of xℓ ∈ Eℓ. When K is simple, it is abbreviated as ci.

• [·]+: the projection map onto the nonnegative orthant, and

• A∗(·): the adjoint operator of the linear operator A(·), i.e., ⟨A(x), y⟩ = ⟨x,A∗(y)⟩ for all x ∈ K
and y ∈ Rm.

6

3 Extension of Roos’s method to the symmetric cone problem

3.1 Outline of the extended method

We focus on the feasibility of the following problem PS∞(A), which is equivalent to P(A):

PS∞(A) find x ∈ intK s.t. A(x) = 0, ∥x∥∞ ≤ 1.

The alternative problem D(A) of P(A) is

D(A) find y ∈ K s.t. y ∈ rangeA∗, y ̸= 0,

where rangeA∗ is the orthogonal complement of kerA. As we mentioned in section 2.2, we assume that
K is given by a Cartesian product of p simple symmetric cones Kℓ(ℓ = 1, . . . , p), i.e., K = K1× · · · ×Kp.
In our method, the upper bound for the sum of eigenvalues of a feasible solution of PS∞(A) plays a
key role, whereas the existing work focuses on the volume of the set of the feasible region [10] or the
condition number of a feasible solution [13]. Before describing the theoretical results, let us outline the
proposed algorithm when K is simple. The algorithm repeats two steps: (i). find a cut for PS∞(A), (ii)
scale the problem to an isomorphic problem equivalent to PS∞(A) such that the region narrowed by the
cut is efficiently explored. Given a feasible solution x of PS∞(A) and a constant 0 < ξ < 1, our method
first searches for a Jordan frame {c1, . . . , cr} such that the following is satisfied:

⟨ci, x⟩ ≤ ξ (i ∈ H), ⟨ci, x⟩ ≤ 1 (i /∈ H),

where H ⊆ {1, . . . , r} and |H| > 0. In this case, instead of PS∞(A), we may consider PCut
S∞

(A) as follows:

PCut
S∞

(A) find x ∈ intK s.t. ⟨ci, x⟩ ≤ ξ (i ∈ H), ⟨ci, x⟩ ≤ 1 (i /∈ H),
A(x) = 0, ∥x∥∞ ≤ 1.

Here, we define the set SRCut = {x ∈ E : x ∈ intK, ∥x∥∞ ≤ 1, ⟨ci, x⟩ ≤ ξ (i ∈ H), ⟨ci, x⟩ ≤ 1 i /∈ H)}
as the search range for the solutions of the problem PCut

S∞
(A). The proposed method then creates a

problem equivalent and isomorphic to PS∞(A) such that SRCut, the region narrowed by the cut, can be
searched efficiently. Such a problem is obtained as follows:

PS∞(AQg) find x̄ ∈ intK s.t. AQg(x̄) = 0, ∥x̄∥∞ ≤ 1,

where g is given by g =
√
ξ
∑

i∈H ci +
∑

i/∈H ci ∈ intK for which e = Qg−1(u) holds for u =
∑

i∈H ξci +∑
i/∈H ci.

In the succeeding sections, we explain how the cut for PS∞(A) is obtained from some v ∈ rangeA∗; we
also explain the scaling method for the problem in detail. To simplify our discussion, we will assume
that K is simple, i.e., p = 1, in section 3.2. Then, in section 3.3, we will generalize our discussion to the
case of p ≥ 2.

3.2 Simple symmetric cone case

Let us consider the case where K is simple. It is obvious that, for any feasible solution x of PS∞(A), the
constraint ∥x∥∞ ≤ 1 implies that ⟨e, x⟩ ≤ r, since x ∈ K. In Proposition 3.3, we show that this bound
may be improved as ⟨e, x⟩ < r by using a point v ∈ rangeA∗ \ {0}. To prove Proposition 3.3, we need
the following Lemma 3.1 and Proposition 3.2.

Lemma 3.1. Let (E, ◦) be a Euclidean Jordan algebra with the associated symmetric cone K. For any
y ∈ E, the following equation holds:

max
0≤λ(x)≤1

⟨y, x⟩ = ⟨PK (y) , e⟩ .

7

Proof. Using the decomposition y =
∑r

i=1 λici obtained by Proposition 2.1, we see that

max
0≤λ(x)≤1

⟨y, x⟩ = max
0≤λ(x)≤1

〈
r∑

i=1

λici, x

〉
= max

0≤λ(x)≤1

r∑
i=1

λi ⟨ci, x⟩ . (2)

Noting that x ∈ K, e − x ∈ K from 0 ≤ λ(x) ≤ 1, since ci ∈ K is primitive idempotent, we find that
⟨ci, x⟩ ≥ 0 and ⟨ci, e − x⟩ ≥ 0, which implies that 0 ≤ ⟨ci, x⟩ ≤ 1. Thus, letting I1 be the set of indices
for which λi ≤ 0 and I2 be the set of indices for which λi > 0, if there exists an x satisfying

⟨ci, x⟩ =

{
0 i ∈ I1

1 i ∈ I2
, (3)

then such an x is an optimal solution of (2). In fact, if we define x∗ =
∑

i∈I2
ci, then by the dedfinition

of the Jordan frame, x∗ satisfies (3) and 0 ≤ λ(x) ≤ 1 and becomes an optimal solution of (2). In this
case, the optimal value of (2) turns out to be

max
0≤λ(x)≤1

r∑
i=1

λi ⟨ci, x⟩ =
r∑

i=1

λi ⟨ci, x∗⟩ =
∑
i∈I2

λi =

r∑
i=1

[λi]
+ = ⟨PK(y), e⟩.

Proposition 3.2. Let (E, ◦) be a Euclidean Jordan Algebra with the corresponding symmetric cone K.
For a given c ∈ E, consider the problem

max ⟨c, x⟩ s.t A(x) = 0, 0 ≤ λ(x) ≤ 1.

The dual problem of the above is

min ⟨PK (c− u) , e⟩ s.t u ∈ rangeA∗.

Proof. Define the Lagrangian function L(x,w) as L(x,w) := ⟨c, x⟩ − w⊤A(x) where w ∈ Rm is the
Lagrange multiplier. Supoose that x∗ is an optimal sotution of the primal problem. Then, for any
w ∈ Rm, we have ⟨c, x∗⟩ = L(w, x∗) ≤ max0≤λ(x)≤1 L(w, x), and hence,

⟨c, x∗⟩ ≤ min
w

max
0≤λ(x)≤1

L(x,w) = min
w

max
0≤λ(x)≤1

{⟨c, x⟩ − ⟨A∗(w), x⟩}

= min
w

max
0≤λ(x)≤1

{⟨c−A∗(w), x⟩}

= min
w
⟨PK (c−A∗(w)) , e⟩ (by lemma 3.1)

= min
u∈rangeA∗

⟨PK (c− u) , e⟩.

Proposition 3.3. Suppose that v ∈ rangeA∗ is given by v =
∑r

i=1 λici as in Proposition 2.1. For each

i ∈ {1, . . . , r} and α ∈ R, define qi(α) := [1− αλi]
+
+
∑r

j ̸=i [−αλj]
+
. Then, the following relations hold

for any x ∈ FPS∞ (A) and i ∈ {1, . . . , r}:

⟨ci, x⟩ ≤ min
α∈R

qi(α) =

{
min

{
1,
〈
e,PK

(
− 1

λi
v
)〉}

if λi ̸= 0,

1 if λi = 0.
(4)

Proof. For each i ∈ {1, 2, . . . , r}, we have

PK (ci − αv) = PK

ci − α

r∑
j=1

λjcj

 = PK

(1− αλi)ci −
r∑

j ̸=i

αλjcj

 ,

8

and hence,

⟨PK (ci − αv) , e⟩ =

〈
PK

(1− αλi)ci −
r∑

j ̸=i

αλjcj

 ,

r∑
i=1

ci

〉
= [1− αλi]

+
+

r∑
j ̸=i

[−αλj]
+
= qi(α). (5)

Note that, since qi(α) is a piece-wise linear convex function, if λi = 0, it attains the minimum at α = 0
with qi(0) = 1, and if λi ̸= 0, it attains the minimum at α = 0 with qi(0) = 1 or at α = 1

λi
with

q

(
1

λi

)
=

r∑
j ̸=i

[
−λj

λi

]+
=

r∑
j=1

[
−λj

λi

]+
=

〈
e,PK

(
− 1

λi
v

)〉
.

Thus, we obtain equivalence in (4). Since αv ∈ rangeA∗ for all α ∈ R, for each i ∈ {1, . . . , r}, Proposition
3.2 and (5) ensure that ⟨ci, x⟩ ≤ ⟨PK (ci − αv) , e⟩ = qi(α) for all α ∈ R, which implies the inequality in
(4).

Since
∑r

i=1 ci = e holds, Proposition 3.3 allows us to compute upper bounds for the sum of eigenvalues
of x. The following proposition gives us information about indices whose upper bound for ⟨ci, x⟩ in
Proposition 3.3 is less than 1.

Proposition 3.4. Suppose that v ∈ rangeA∗ is given by v =
∑r

i=1 λici as in Proposition 2.1. If v

satisfies
〈
e,PK

(
− 1

λi
v
)〉

= ξ < 1 for some ξ < 1 and for some i ∈ {1, . . . , r} for which λi ̸= 0 holds,

then λi has the same sign as ⟨e, v⟩.

Proof. First, we consider the case where λi > 0. Since the assumption implies that ⟨e,PK(−v)⟩ = λiξ,
we have

⟨e, v⟩ = ⟨e,PK(v)⟩ − ⟨e,PK(−v)⟩ = ⟨e,PK(v)⟩ − λiξ ≥ λi(1− ξ) > 0,

where the first equality comes from Lemma 2.3.

For the case where λi < 0, since the assumption also implies that ⟨e,PK(v)⟩ = −λiξ, we have

⟨e, v⟩ = ⟨e,PK(v)⟩ − ⟨e,PK(−v)⟩ = −λiξ − ⟨e,PK(−v)⟩ ≤ −λiξ − (−λi) = (1− ξ)λi < 0.

This completes the proof.

The above two propositions imply that, for any v ∈ rangeA∗ with v =
∑r

i=1 λici, if we compute ⟨ci, x⟩
according to Proposition 3.3 for i ∈ {1, . . . , r} having the same sign as the one of ⟨e, v⟩, we obtain an
upper bound for the sum of eigenvalues of x over the set FPS∞ (A). The following proposition concerns
the scaling method of problem PS∞(A) when we find such a v ∈ rangeA∗.

Proposition 3.5. Let H ⊆ {1, . . . r} be a nonempty set, c1, . . . , cr be a Jordan frame, and ξ be a real
number satisfying 0 < ξ < 1. Let us define g ∈ intK as

g :=
√

ξ
∑
h∈H

ch +
∑
h/∈H

ch i.e., g−1 =
1√
ξ

∑
h∈H

ch +
∑
h/∈H

ch. (6)

For the two sets SRCut = {x ∈ E : x ∈ intK, ∥x∥∞ ≤ 1, ⟨ci, x⟩ ≤ ξ (i ∈ H), ⟨ci, x⟩ ≤ 1 (i /∈ H)} and,
SRScaled = {x̄ ∈ E : x̄ ∈ intK, ∥x̄∥∞ ≤ 1}, Qg(SR

Scaled) ⊆ SRCut holds.

9

Proof. Let x̄ be an arbitrary point of SRScaled. It suffices to show that (i) Qg(x̄) ∈ intK, (ii) ∥Qg(x̄)∥∞ ≤
1, (iii) ⟨ci, Qg(x̄)⟩ ≤ ξ (i ∈ H) and (iv) ⟨ci, Qg(x̄)⟩ ≤ 1 (i /∈ H) hold.

(i): Let us show that Qg(x̄) ∈ intK. Since g and x̄ lie in the set intK, from Propositions 2.4 and 2.5,
we see that

Qg(x̄) ∈ K, detQg(x̄) = det(g)2 det(x̄) > 0,

which implies that Qg(x̄) ∈ intK.

(ii): Next let us show that ∥Qg(x̄)∥∞ ≤ 1. Since x̄ ∈ SRScaled, we see that x̄ ∈ intK, ∥x̄∥∞ ≤ 1 and
hence e− x̄ ∈ K. Since g ∈ intK, Proposition 2.4 guarantees that

Qg(e− x̄) ∈ K. (7)

By the definition (6) of g, the following equations hold for c1, . . . , cr:

For any i ∈ H, Qg(ci) = 2g ◦ (g ◦ ci)− (g ◦ g) ◦ ci

= 2g ◦
√

ξci −

(
ξ
∑
h∈H

ch +
∑
h/∈H

ch

)
◦ ci

= 2ξci − ξci = ξci.

For any i /∈ H, Qg(ci) = 2g ◦ (g ◦ ci)− (g ◦ g) ◦ ci

= 2g ◦ ci −

(
ξ
∑
h∈H

ch +
∑
h/∈H

ch

)
◦ ci

= 2ci − ci = ci.

Thus, we obtain Qg(e) = ξ
∑

i∈H ci +
∑

i/∈H ci. Combining this with the facts ci ∈ K and (1 − ξ) > 0
and (7), we have

K ∋ (1− ξ)
∑
i∈H

ci +Qg(e− x̄) = (1− ξ)
∑
i∈H

ci +Qg(e)−Qg(x̄)

= (1− ξ)
∑
i∈H

ci +

(
ξ
∑
i∈H

ci +
∑
i/∈H

ci

)
−Qg(x̄)

= e−Qg(x̄).

Since we have shown that Qg(x̄) ∈ intK, we can conclude that ∥Qg(x̄)∥∞ ≤ 1.

(iii) and (iv): Finally, we compute an upper bound for the value ⟨Qg(x̄), ci⟩ over the set SRScaled. It
follows from ci ∈ K and (7) that ⟨Qg(e− x̄), ci⟩ ≥ 0, i.e., ⟨Qg(e), ci⟩ ≥ ⟨Qg(x̄), ci⟩ holds. Since we have
shown that Qg(e) = ξ

∑
i∈H ci +

∑
i/∈H ci, this implies ⟨Qg(x̄), ci⟩ ≤ ξ holds if i ∈ H and ⟨Qg(x̄), ci⟩ ≤ 1

holds if i /∈ H.

Note that Proposition 3.5 implies that if a cut is obtained for PS∞(A) based on Proposition 3.3, we can
expect a more efficient search for solutions to problem PS∞(AQg) rather than trying to solve problem
PS∞(A).

10

3.3 Non-simple symmetric cone case

In this section, we consider the case where the symmetric cone is not simple. Propositions 3.6 and 3.7
are extensions of Proposition 3.3 and 3.4, respectively.

Proposition 3.6. Suppose that, for any v ∈ rangeA∗, the ℓ-th block element vℓ of v ∈ E is decomposed
into vℓ =

∑rℓ
i=1 λ(vℓ)ic(vℓ)i as in Proposition 2.1. For each ℓ ∈ {1, . . . , p} and i ∈ {1, . . . , rp}, define

qℓ,i(α) := [1− αλ(vℓ)i]
+
+

rℓ∑
k ̸=i

[−αλ(vℓ)k]
+
+

p∑
j ̸=ℓ

rj∑
k=1

[
−αλ(vj)k

]+
. (8)

Then, the following relations hold for any feasible solution x of PS∞(A), ℓ ∈ {1, . . . , p} and i ∈
{1, . . . , rp}.

⟨c(vℓ)i, xℓ⟩ ≤ min
α∈R

qℓ,i(α) =

{
min

{
1,
〈
e,PK

(
− 1

λ(vℓ)i
v
)〉}

if λ(vℓ)i ̸= 0,

1 if λ(vℓ)i = 0
. (9)

Proof. Let c ∈ E be an element whose ℓ-th block element is cℓ = c(vℓ)i and other block elements take 0.
For any real number α ∈ R, Proposition 3.2 ensures that

⟨c(vℓ)i, xℓ⟩ = ⟨c, x⟩ ≤ ⟨PK (c− αv) , e⟩

= ⟨PKℓ
(c(vℓ)i − αvℓ) , eℓ⟩+

p∑
j ̸=ℓ

〈
PKj

(−αvj) , ej
〉

= [1− αλ(vℓ)i]
+
+

rℓ∑
k ̸=i

[−αλ(vℓ)k]
+
+

p∑
j ̸=ℓ

rj∑
k=1

[
−αλ(vj)k

]+
= qℓ,i(α). (10)

We obtain (9) by following a similar argument to the one used in the proof of Proposition 3.3.

The next proposition follows similarly to Proposition 3.4, by noting that ⟨e,PK(−v)⟩ = λ(vℓ)iξ holds if
λ(vℓ)i > 0 and that ⟨e,PK(v)⟩ = −λ(vℓ)iξ if λ(vℓ)i < 0.

Proposition 3.7. Suppose that, for any v ∈ rangeA∗, each ℓ-th block element vℓ of v is decomposed
into vℓ =

∑rℓ
i=1 λ(vℓ)ic(vℓ)i as in Proposition 2.1. If v satisfies

λ(vℓ)i ̸= 0 and
〈
e,PK

(
− 1

λ(vℓ)i
v
)〉

= ξℓ < 1 (11)

for some ξ < 1, ℓ ∈ {1, . . . , p} and i ∈ {1, . . . , rℓ}, then λ(vℓ)i has the same sign as ⟨e, v⟩.

From Proposition 3.6, if we obtain v ∈ rangeA∗ satisfying (11) for a block ℓ ∈ {1, . . . , p} with an index
i ∈ {1, . . . rℓ}, then the upper bound for the sum of the eigenvalues of any feasible solution x of PS∞(A)
is reduced by ⟨e, x⟩ ≤ r − 1 + ξℓ < r. In this case, as described below, we can find a scaling such that
the sum of eigenvalues of any feasible solution of PS∞(A) is bounded by r. Let Hℓ be the set of indices i
satisfying (11) for each block ℓ. According to Proposition 3.5, set gℓ =

√
ξℓ
∑

h∈Hℓ
c(vℓ)h+

∑
h/∈Hℓ

c(vℓ)h
and define the linear operator Q as follows:

Qℓ :=

{
Qgℓ if |Hℓ| ̸= 0,

Iℓ otherwise,

Q(E1, . . . ,Ep) := (Q1(E1), . . . , Qp(Ep)) ,

11

where Iℓ is the identity operator of the Euclidean Jordan algebra Eℓ associated with the symmetric cone
Kℓ. From Proposition 3.5 and its proof, we can easily see that

Qg−1
ℓ

(ci) =
1

ξ
ci (i ∈ Hℓ), Qg−1

ℓ
(ci) = ci (i ̸∈ Hℓ), (12)

and the sum of eigenvalues of any feasible solution of the scaled problem PS∞(AQ) is bounded by
⟨e, e⟩ = r =

∑p
ℓ=1 rℓ.

4 Basic procedure of the extended method

4.1 Outline of the basic procedure

In this section, we describe the details of our basic procedure. First, we introduce our stopping criteria
and explain how to update yk when the the stopping criteria is not satisfied. Next, we show that
the stopping criteria is satisfied within a finite number of iterations. Our stopping criteria is new and
different from the ones used in [10, 13], while the method of updating yk is similar to the one used in
[10] or in the von Neumann scheme of [13]. Algorithm 1 is a full description of our basic procedure.

4.2 Termination conditions of the basic procedure

For zk = PA(y
k), vk = yk − zk and a given ξ ∈ (0, 1), our basic procedure terminates when any of the

following four cases occurs:

1. zk ∈ intK meaning that zk is a solution of P(A),

2. zk = 0 meaning that yk is feasible for D(A),

3. yk − zk ∈ K and yk − zk ̸= 0 meaning that yk − zk is feasible for D(A), or

4. there exist ℓ ∈ {1, . . . , p} and i ∈ {1, . . . , rℓ} for which

λ(vkℓ)i ̸= 0 and
〈
e,PK

(
− 1

λ(vk
ℓ)i

vk
)〉

= ξℓ ≤ ξ < 1, (13)

meaning that ⟨e, x⟩ < r holds for any feasible solution x of PS∞(A) (see Proposition 3.6).

Cases 1 and 2 are direct extensions of the cases in [3], while case 3 was proposed in [9, 10]. Case 3
helps us to determine the feasibility of P(A) efficiently, while we have to decompose yk− zk for checking
it. If the basic procedure ends with case 1, 2, or 3, the basic procedure returns a solution of P(A) or
D(A) to the main algorithm. If the basic procedure ends with case 4, the basic procedure returns to the
main algorithm p index sets H1, . . . , Hp each of which consists of indices i satisfying (13) and the set of
primitive idempotents Cℓ = {c(vkℓ)1, . . . , c(v

k
ℓ)rℓ} of v

k
ℓ for each ℓ.

4.3 Update of the basic procedure

The basic procedure updates yk ∈ intK with ⟨yk, e⟩ = 1 so as to reduce the value of ∥zk∥J . The following
proposition is essentially the same as Proposition 13 in [10], so we will omit its proof.

12

Proposition 4.1 (cf. Proposition 13, [10]). For yk ∈ intK satisfying ⟨yk, e⟩ = 1, let zk = PA(y
k). If

zk /∈ intK and zk ̸= 0, then the following hold.

1. There exists c ∈ K such that ⟨c, zk⟩ = λmin(z
k) ≤ 0, ⟨e, c⟩ = 1 and c ∈ K.

2. For the above c, suppose that PA(c) ̸= 0 and define

α = ⟨PA(c), PA(c)− zk⟩∥zk − PA(c)∥−2
J . (14)

Then, yk+1 := αyk + (1 − α)c satisfies yk+1 ∈ intK, ∥yk+1∥1,∞ ≥ 1/p, ⟨yk+1, e⟩ = 1, and
zk+1 := PA(y

k+1) satisfies ∥zk+1∥−2
J ≥ ∥zk∥−2

J + 1.

A method of accelerating the update of yk is provided in [15]. For ℓ ∈ {1, 2, . . . , p}, let Iℓ := {i ∈
{1, 2, . . . , rℓ} | λi(z

k
ℓ) ≤ 0} and set N =

∑p
ℓ=1 |Iℓ|. Define the ℓ-th block element of c ∈ K as cℓ =

1
N

∑
i∈Iℓ

c(zkℓ)i. Using PA (c), the acceleration method computes α by (14) so as to minimize the norm

of zk+1 and update y by yk+1 = αyk+(1−α)c. We incorporate this method in the basic procedure of our
computational experiment. As described in [13], we can also use the smooth perceptron scheme [17, 18] to
update yk in the basic procedure. As explained in the next section, using the smooth perceptron scheme
significantly reduces the maximum number of iterations of the basic procedure. A detailed description
of our basic procedure is given in Appendix A.

4.4 Finite termination of the basic procedure

In this section, we show that the basic procedure terminates in a finite number of iterations. To do so,
we need to prove Lemma 4.2 and Proposition 4.3.

Lemma 4.2. Let (E, ◦) be a Euclidean Jordan algebra with the corresponding symmetric cone K given
by the Cartesian product of p simple symmetric cones. For any x ∈ E and y ∈ K, [⟨x, y⟩]+ ≤ ⟨PK(x), y⟩
holds.

Proof. Let x ∈ E and suppose that each ℓ-th block element xℓ of x is given by xℓ =
∑rℓ

i=1 λ(xℓ)ic(xℓ)i
as in Proposition 2.1. Then, we can see that

[⟨x, y⟩]+ =

[
p∑

ℓ=1

〈
rℓ∑
i=1

λ(xℓ)ic(xℓ)i, yℓ

〉]+

=

[
p∑

ℓ=1

(
rℓ∑
i=1

λ(xℓ)i ⟨c(xℓ)i, yℓ⟩

)]+

≤
p∑

ℓ=1

rℓ∑
i=1

[λ(xℓ)i ⟨c(xℓ)i, yℓ⟩]
+

=

p∑
ℓ=1

rℓ∑
i=1

[λ(xℓ)i]
+ ⟨c(xℓ)i, yℓ⟩ =

p∑
ℓ=1

〈
rℓ∑
i=1

[λ(xℓ)i]
+
c(xℓ)i, yℓ

〉
= ⟨PK(x), y⟩ .

where the inequality follows from the fact that c(xℓ)1, . . . , c(xℓ)rℓ , and yℓ lie in Kℓ.

Proposition 4.3. For a given y ∈ K, define z = PA(y) and v = y − z. Suppose that v ̸= 0 and each
ℓ-th element vℓ is given by vℓ =

∑rℓ
i=1 λ(vℓ)ic(vℓ)i, as in Proposition 2.1. Then, for any x ∈ FPS∞ (A),

ℓ ∈ {1, . . . , p} and i ∈ {1, . . . , rℓ},

⟨c(vℓ)i, xℓ⟩ ≤ min
α

qℓ,i(α) ≤
1

⟨yℓ, c(vℓ)i⟩
∥z∥J (15)

hold where qℓ,i(α) is defined in (8).

13

Proof. The first inequality of (15) follows from (10) in the proof of Proposition 3.6. The second inequality
is obtained by evaluating qℓ,i(α) at α = 1

⟨yℓ,c(vℓ)i⟩
, as follows:

qℓ,i

(
1

⟨yℓ, c(vℓ)i⟩

)
=

[
1− 1

⟨yℓ, c(vℓ)i⟩
λ(vℓ)i

]+
+

rℓ∑
k ̸=i

[
− 1

⟨yℓ, c(vℓ)i⟩
λ(vℓ)k

]+
+

p∑
j ̸=ℓ

rj∑
k=1

[
− 1

⟨yℓ, c(vℓ)i⟩
λ(vj)k

]+

=

[
1−
⟨yℓ − zℓ, c(vℓ)i⟩
⟨yℓ, c(vℓ)i⟩

]+
+

rℓ∑
k ̸=i

[
−⟨yℓ − zℓ, c(vℓ)k⟩

⟨yℓ, c(vℓ)i⟩

]+
+

p∑
j ̸=ℓ

rj∑
k=1

[
−
⟨yj − zj , c(vj)k⟩
⟨yℓ, c(vℓ)i⟩

]+
(since λ(vℓ)i = ⟨vℓ, c(vℓ)i⟩ and vℓ = yℓ − zℓ)

=

[
⟨zℓ, c(vℓ)i⟩
⟨yℓ, c(vℓ)i⟩

]+
+

rℓ∑
k ̸=i

[
⟨zℓ, c(vℓ)k⟩ − ⟨yℓ, c(vℓ)k⟩

⟨yℓ, c(vℓ)i⟩

]+
+

p∑
j ̸=ℓ

rj∑
k=1

[
⟨zj , c(vj)k⟩ − ⟨yj , c(vj)k⟩

⟨yℓ, c(vℓ)i⟩

]+

≤
[
⟨zℓ, c(vℓ)i⟩
⟨yℓ, c(vℓ)i⟩

]+
+

rℓ∑
k ̸=i

[
⟨zℓ, c(vℓ)k⟩
⟨yℓ, c(vℓ)i⟩

]+
+

p∑
j ̸=ℓ

rj∑
k=1

[
⟨zj , c(vj)k⟩
⟨yℓ, c(vℓ)i⟩

]+
(since yℓ, c(vℓ)i ∈ Kℓ and then ⟨yℓ, c(vℓ)i⟩ ≥ 0)

=
1

⟨yℓ, c(vℓ)i⟩

 rℓ∑
k=1

[⟨zℓ, c(vℓ)k⟩]
+
+

p∑
j ̸=ℓ

rj∑
k=1

[
⟨zj , c(vj)k⟩

]+
≤ 1

⟨yℓ, c(vℓ)i⟩

 rℓ∑
k=1

⟨PKℓ
(zℓ) , c(vℓ)k⟩+

p∑
j ̸=ℓ

rj∑
k=1

⟨PKj (zj) , c(vj)k⟩

 (by Lemma 4.2)

=
1

⟨yℓ, c(vℓ)i⟩

⟨PKℓ
(zℓ) , eℓ⟩+

p∑
j ̸=ℓ

⟨PKj (zj) , ej⟩

=
⟨PK (z) , e⟩
⟨yℓ, c(vℓ)i⟩

=
∥PK (z) ∥1
⟨yℓ, c(vℓ)i⟩

≤ ∥PK (z) ∥J
⟨yℓ, c(vℓ)i⟩

≤ ∥z∥J
⟨yℓ, c(vℓ)i⟩

.

Proposition 4.4. Let rmax = max{r1, . . . , rp}. The basic procedure (Algorithm 1) terminates in at

most
p2r2max

ξ2 iterations.

Proof. Suppose that yk is obtained at the k-th iteration of Algorithm 1. Proposition 4.1 implies that
∥yk∥1,∞ ≥ 1

p and an ℓ-th block element exists for which ⟨yℓ, eℓ⟩ ≥ 1
p holds. Thus, by letting vk = yk−zk

and the ℓ-th block element vkℓ of vk be vkℓ =
∑rℓ

i=1 λ(v
k
ℓ)ic(v

k
ℓ)i as in Proposition 2.1, we have

max
i=1,...,rℓ

〈
ykℓ , c(v

k
ℓ)i
〉
≥ (prℓ)

−1. (16)

Since Proposition 4.1 ensures that 1
∥zk∥2

J
≥ k holds at the k-th iteration, by setting k =

p2r2max

ξ2 , we see

that ξ ≥ prmax∥zk∥J , and combining this with (16), we have

ξ ≥ prmax∥zk∥J ≥ prℓ∥zk∥J ≥
1

maxi=1,...,rℓ

〈
ykℓ , c(vℓ)i

〉∥zk∥J .
The above inequality and Proposition 4.3 imply that for any ℓ ∈ {1, . . . , p} and i ∈ {1, . . . , rp},

⟨c(vkℓ)i, xℓ⟩ ≤ min
α

qℓ,i(α) ≤
1

⟨ykℓ , c(vkℓ)i⟩
∥zk∥J ≤ ξ.

14

From the equivalence in (9) and the setting ξ ∈ (0, 1), we conclude that Algorithm 1 terminates in at

most
p2r2max

ξ2 iterations by satisfying (13) in the fourth termination condition at an ℓ-th block and an
index i.

An upper bound for the number of iterations of Algorithm 5 using smooth perceptoron scheme can be
found as follows.

Proposition 4.5. Let rmax = max{r1, . . . , rp}. The basic procedure (Algorithm 5) terminates in at

most 2
√
2prmax

ξ iterations.

Proof. From Proposition 6 in [13], after k ≥ 1 iterations, we obtain the inequality ∥zk∥2J ≤ 8
(k+1)2 .

Similarly to the previous proof of Proposition 4.4, if ξ ≥ prmax∥zk∥J holds, then Algorithm 5 terminates.

Thus, k ≤ 2
√
2prmax

ξ holds for a given k satisfying
(

ξ
prmax

)2
≤ 8

(k+1)2 .

Here, we discuss the computational cost per iteration of Algorithm 1. At each iteration, the two most
expensive operations are computing the spectral decomposition on line 5 and computing PA(·) on lines
24 and 26. Let Csd

ℓ be the computational cost of the spectral decomposition of an element of Kℓ. For
example, Csd

ℓ = O(r3ℓ) if Kℓ = Srℓ+ and Csd
ℓ = O(rℓ) if Kℓ = Lrℓ , where Lrℓ denotes the rℓ-dimensional

second-order cone. Then, the cost Csd of computing the spectral decomposition of an element of K is
Csd =

∑p
ℓ=1 C

sd
ℓ . Next, let us consider the computational cost of PA(·). Recall that d is the dimension of

the Euclidean space E corresponding to K. As discussed in [10], we can compute PA = I−A∗(AA∗)−1A
by using the Cholesky decomposition of (AA∗)−1. Suppose that (AA∗)−1 = LL∗, where L is an m×m
matrix and we store L∗A in the main algorithm. Then, we can compute PA(·) on lines 24 and 26, which
costs O(md). The operation uµ(·) : E → {u ∈ K | ⟨u, e⟩ = 1} in Algorithm 5 can be performed within
the cost Csd [18, 13]. From the above discussion and Proposition 4.4, the total costs of Algorithm 1 and

Algorithm 5 are given by O
(

p2r2max

ξ2 max(Csd,md)
)
and O

(
prmax

ξ max(Csd,md)
)
, respectively.

15

Algorithm 1 Basic procedure (von Neumann scheme)

1: Input: PA, y
1 ∈ intK such that ⟨y1, e⟩ = 1 and a constant ξ such that 0 < ξ < 1

2: Output: (i) a solution to P(A) or (ii) D(A) or (iii) a certificate that, for any feasible solution x to
PS∞(A), ⟨e, x⟩ < r

3: initialization: k ← 1, z1 ← PA(y
1), v1 ← y1 − z1,H1, . . . , Hp = ∅

4: while k ≤ p2r2max

ξ2 do

5: For every ℓ ∈ {1, . . . , p}, perform spectral decomposition: zkℓ =
∑rℓ

i=1 λ(z
k
ℓ)ic(z

k
ℓ)i and vkℓ =∑rℓ

i=1 λ(v
k
ℓ)ic(v

k
ℓ)i

6: if zk ∈ int K then
7: stop basic procedure and return zk (Output (i))
8: else if zk = 0 or vk ∈ K \ {0} then
9: stop basic procedure and return yk or vk (Output (ii))

10: end if
11: if ⟨vk, e⟩ > 0 then
12: for ℓ ∈ {1, . . . , p} do
13: Iℓ ←

{
i | λ(vkℓ)i > 0

}
and then Hℓ ←

{
i ∈ Iℓ|

〈
e,PK

(
− 1

λ(vk
ℓ)i

vk
)〉
≤ ξ
}

14: end for
15: else
16: for ℓ ∈ {1, . . . , p} do
17: Iℓ ←

{
i | λ(vkℓ)i < 0

}
and then Hℓ ←

{
i ∈ Iℓ|

〈
e,PK

(
− 1

λ(vk
ℓ)i

vk
)〉
≤ ξ
}

18: end for
19: end if
20: if |H1|+ · · ·+ |Hp| > 0 then
21: For every ℓ ∈ {1, . . . , p}, let Cℓ be {c(vkℓ)1, . . . , c(v

k
ℓ)rℓ}.

22: stop basic procedure and return H1, . . . , Hp and C1, . . . , Cp (Output (iii))
23: end if
24: Let u be an idempotent such that ⟨e, u⟩ = 1 and ⟨zk, u⟩ = λmin(z

k)

25: yk+1 ← αyk + (1− α)u, where α = ⟨PA(u),PA(u)−zk⟩
∥zk−PA(u)∥2

J

26: k ← k + 1 , zk ← PA(y
k) and vk ← yk − zk

27: end while
28: return basic procedure error

5 Main algorithm of the extended method

5.1 Outline of the main algorithm

In what follows, for a given accuracy ε > 0, we call a feasible solution of PS∞(A) whose minimum
eigenvalue is ε or more an ε-feasible solution of PS∞(A). This section describes the main algorithm.
To set the upper bound for the minimum eigenvalue of any feasible solution x of PS∞(A), Algorithm 2
focuses on the product det(x̄) of the eigenvalues of the arbitrary feasible solution x̄ of the scaled problem
PS∞(AkQk). Algorithm 2 works as follows. First, we calculate the corresponding projection PA onto
kerA and generate an initial point as input to the basic procedure. Next, we call the basic procedure
and determine whether to end the algorithm with an ε-feasible solution or to perform problem scaling
according to the returned result, as follows:

1. If a feasible solution of P(A) or D(A) is returned from the basic procedure, the feasibility of P(A)
can be determined, and we stop the main algorithm.

16

2. If the basic procedure returns the sets of indices H1, . . . , Hp and the sets of primitive idempotents
C1, . . . , Cp that construct the corresponding Jordan frames, then for the total number of cuts
obtaibed in the ℓ-th block numℓ,

(a) if numℓ ≥ rℓ
log ε
log ξ holds for some ℓ ∈ {1, . . . p}, we determine that PS∞(A) has no ε-feasible

solution according to Proposition 5.1 and stop the main algorithm,

(b) if numℓ < rℓ
log ε
log ξ holds for any ℓ ∈ {1, . . . p}, we rescale the problem and call the basic

procedure again.

Note that our main algorithm is similar to Lourenço et al.’s method in the sense that it keeps information
about the possible minimum eigenvalue of any feasible solution of the problem. In contrast, Pena and
Soheili’s method [13] does not keep such information. Algorithm 2 terminates after no more than
− r

log ξ log
(
1
ε

)
− p+ 1 iterations, so our main algorithm can be said to be a polynomial-time algorithm.

We will give this proof in section 5.2. We should also mention that step 24 in Algorithm 2 is not
a reachable output theoretically. We have added this step in order to consider the influence of the
numerical error in practice.

Algorithm 2 Main algorithm

1: Input: A, K, ε and a constant ξ such that 0 < ξ < 1
2: Output: a solution to P(A) or D(A) or a certificate that there is no ε feasible solution.
3: k ← 1 , A1 ← A , numℓ ← 0, Q̄ℓ ← Iℓ, RPℓ ← Iℓ, RDℓ ← Iℓ for all ℓ ∈ {1, . . . , p}
4: Compute PAk and call the basic procedure with PAk , 1

r e, ξ
5: if basic procedure returns z then
6: stop main algorithm and return RPz (RPz is a feasible solution of P(A))
7: else if basic procedure returns y or v then
8: stop main algorithm and return RDy or RDv (RDy or RDv is a feasible solution of D(A))
9: else if basic procedure returns Hk

1 , . . . , H
k
p and Ck

1 , . . . , C
k
p then

10: for ℓ ∈ {1, . . . , p} do
11: if |Hk

ℓ | > 0 then
12: gℓ ←

√
ξ
∑

h∈Hk
ℓ
ck(vℓ)h +

∑rℓ
h/∈Hk

ℓ
ck(vℓ)h

13: Qℓ ← Qgℓ , RPℓ ← RPℓQgℓ , RDℓ ← RDℓQg−1
ℓ

14: numℓ ← |Hk
ℓ |+ numℓ

15: if numℓ ≥ rℓ
log ε
log ξ then

16: stop main algorithm. There is no ε feasible solution.
17: end if
18: Q̄ℓ ← Qg−1

ℓ
Q̄ℓ

19: else
20: Qℓ ← Iℓ
21: end if
22: end for
23: else
24: return basic procedure error
25: end if
26: Let Qk = (Q1, . . . , Qp)
27: Ak+1 ← AkQk , k ← k + 1. Go back to line 4.

5.2 Finite termination of the main algorithm

Here, we discuss how many iterations are required until we can determine that the minimum eigenvalue
λmin(x) is less than ε for any x ∈ FPS∞ (A). Before going into the proof, we explain the Algorithm 2 in

17

more detail than in section 5.1. At each iteration of Algorithm 2, it accumulates the number of cuts |Hk
ℓ |

obtained in the ℓ-th block and stores the value in numℓ. Using numℓ, we can compute an upper bound
for λmin(x) (Proposition 5.1). On line 18, Q̄ℓ is updated to Q̄ℓ ← Qg−1

ℓ
Q̄ℓ, where Q̄ℓ plays the role of an

operator that gives the relation x̄ℓ = Q̄ℓ(xℓ) for the solution x of the original problem and the solution
x̄ of the scaled problem. For example, if |H1

ℓ | > 0 for k = 1 (suppose that the cut was obtained in
the ℓ-th block), then the proposed method scales A1

ℓQ
1
ℓ and the problem to yield x̄ℓ = Qg−1

ℓ
(xℓ) for the

feasible solution x of the original problem. And if |H2
ℓ | > 0 even for k = 2, then the proposed method

scales x̄ again, so that ¯̄xℓ = Qg−1
ℓ

(x̄ℓ) = Q̄ℓ(xℓ) holds. Note that Q̄ℓ is used only for a concise proof of

Proposition 5.1, so it is not essential.

Now, let us derive an upper bound for the minimum eigenvalue λmin(xℓ) of each ℓ-th block of x obtained
after the k-th iteration of Algorithm 2. Proposition 5.2 gives an upper bound for the number of iterations
of Algorithm 2.

Proposition 5.1. After k iterations of Algorithm 2, for any feasible solution x of PS∞(A) and ℓ ∈
{1, . . . , p}, the ℓ-th block element xℓ of x satisfies

rℓ log (λmin(xℓ)) ≤ numℓ log ξ. (17)

Proof. At the end of the k-th iteration, any feasible solution x̄ of the scaled problem PS∞(Ak+1) =
PS∞(AkQk) obviously satisfies

det x̄ℓ ≤ det eℓ (ℓ = 1, 2, . . . , p). (18)

Note that det x̄ℓ can be expressed in terms of det xℓ. For example, if |H1
ℓ | > 0 when k = 1, then using

Proposition 2.5, for any feasible solution x̄ of PS∞(A2), we find that

det x̄ℓ = detQg−1
ℓ

(xℓ) = det(g−1
ℓ)2 detxℓ =

(
1√
ξ

)2|H1
ℓ |

detxℓ =

(
1

ξ

)|H1
ℓ |

detxℓ.

This means that det x̄ℓ can be determined from det xℓ and the number of cuts obtained so far in the
ℓ-th block. In Algorithm 2, the value of numℓ is updated only when |Hk

ℓ | > 0. Since x̄ satisfies
x̄ℓ = Q̄ℓ(xℓ) (ℓ = 1, 2, . . . , p) for each feasible solution x of PS∞(A), we can see that

det x̄ℓ = det Q̄ℓ(xℓ) =

(
1

ξ

)|Hk
ℓ |

×
(
1

ξ

)|Hk−1
ℓ |

· · · ×
(
1

ξ

)|H1
ℓ |

× detxℓ =

(
1

ξ

)numℓ

detxℓ.

Therefore, (18) implies det xℓ ≤ ξnumℓ det eℓ = ξnumℓ and the fact (λmin(xℓ))
rℓ ≤ detxℓ implies

(λmin(xℓ))
rℓ ≤ ξnumℓ . By taking the logarithm of both sides of this inequality, we obtain (17).

Proposition 5.2. Algorithm 2 terminates after no more than − r
log ξ log

(
1
ε

)
− p+ 1 iterations.

Proof. Let us call iteration k of Algorithm 2 good if |Hk
ℓ | > 0 for some ℓ ∈ {1, 2, . . . , p} at that iteration.

Suppose that at least − rℓ
log ξ log

(
1
ε

)
good iterations are observed for a cone Kℓ. Then, by substituting

− rℓ
log ξ log

(
1
ε

)
into numℓ of inequality (17) in Proposition 5.1, we have log (λmin(xℓ)) ≤ log ε and hence,

λmin(xℓ) ≤ ε. This implies that Algorithm 2 terminates after no more than

p∑
ℓ=1

(
− rℓ
log ξ

log

(
1

ε

)
− 1

)
+ 1 = − r

log ξ
log

(
1

ε

)
− p+ 1

iterations.

18

6 Computational costs of the algorithms

This section compares the computational costs of Algorithm 2, Lourenço et al.’s method [10] and Pena
and Soheili’s method [13]. Section 6.1 compares the computational costs of Algorithm 2 and Lourenço
et al.’s method, and Section 6.2 compares those of Algorithm 2 and Pena and Soheili’s method under
the assumption that kerA ∩ intK ̸= ∅.

Both the proposed method and the method of Lourenço et al. guarantee finite termination of the main
algorithm by termination criteria indicating the nonexistence of an ε-feasible solution, so that it is
possible to compare the computational costs of the methods without making any special assumptions.
This is because both methods proceed by making cuts to the feasible region using the results obtained
from the basic procedure. On the other hand, Pena and Soheili’s method cannot be simply compared
because the upper bound of the number of iterations of their main algorithm includes an unknown value
of δ(kerA ∩ intK) := maxx

{
det(x) | x ∈ kerA ∩ intK, ∥x∥2J = r

}
. However, by making the assumption

kerA ∩ intK ̸= ∅ and deriving a lower bound for δ(kerA ∩ intK), we make it possible to compare
Algorithm 2 with Pena and Soheili’s method without knowing the specific values of δ(kerA ∩ intK).

6.1 Comparison of Algorithm 2 and Lourenço et al.’s method

Let us consider the computational cost of Algorithm 2. At each iteration, the most expensive operation
is computing PA on line 4. Recall that d is the dimension of the Euclidean space E corresponding to K.
As discussed in [10], by considering PA to be an m × d matrix, we find that the computational cost of
PA is O(m3 +m2d). Therefore, by taking the computational cost of the basic procedure (Algorithm 1)
and Proposition 5.2 into consideration, the cost of Algorithm 2 turns out to be

O
(
− r

log ξ
log

(
1

ε

)(
m3 +m2d+

1

ξ2
p2r2max

(
max

(
Csd,md

))))
(19)

where Csd is the computational cost of the spectral decomposition of x ∈ E.

Note that, in [10], the authors showed that the cost of their algorithm is

O

((
r

φ(ρ)
log

(
1

ε

)
−

p∑
i=1

ri log(ri)

φ(ρ)

)(
m3 +m2d+ ρ2p3r2max

(
max

(
Cmin,md

))))
(20)

where Cmin is the cost of computing the minimum eigenvalue of x ∈ E with the corresponding idempotent,
ρ is an input parameter used in their basic procedure (like ξ in the proposed algorithm) and φ(ρ) =
2− 1/ρ−

√
3− 2/ρ.

When the symmetric cone is simple, by setting ξ = 1/2 and ρ = 2, the maximum number of iterations
of the basic procedure is bounded by the same value in both algorithms. Accordingly, we will compare
the two computational costs (19) and (20) by supposing ξ = 1/2 and ρ = 2 (hence, − log ξ ≃ 0.69 and
φ(ρ) ≃ 0.09). As we can see below, the cost (19) of our method is smaller than (20) in the cases of
linear programming and second-order cone problems and is equivalent to (20) in the case of semidefinite
problems. First, let us consider the case where K is the n-dimensional nonnegative orthant Rn

+. Here,
we see that r = p = d = n, r1 = · · · = rp = rmax = 1, and max

(
Csd,md

)
= max

(
Cmin,md

)
= md hold.

By substituting these values, the bounds (19) and (20) turn out to be

O
(

n

0.69
log

(
1

ε

)(
m3 +m2n+ 4mn3

))
and

O
(

n

0.09
log

(
1

ε

)(
m3 +m2n+ 4mn4

))
.

19

This implies that for the linear programming case, our method (which is equivalent to Roos’s original
method [15]) is superior to Lourenço et al.’s method [10] in terms of bounds (19) and (20) .

Next, let us consider the case where K is composed of p simple second-order cones Lni (i = 1, . . . , p). In
this case, we see that d =

∑p
i=1 ni, r1 = · · · = rp = rmax = 2 and max

(
Csd,md

)
= max

(
Cmin,md

)
=

md hold. By substituting these values, the bounds (19) and (20) turn out to be

O
(

2p

0.69
log

(
1

ε

)(
m3 +m2d+ 16p2md

))
and

O
(

2p

0.09

(
log

(
1

ε

)
− log 2

)(
m3 +m2d+ 16p3md

))
.

Note that ε is expected to be very small (10−6 or even 10−12 in practice) and 1
0.69 log

(
1
ε

)
≤ 1

0.09

(
log
(
1
ε

)
− log 2

)
if ε ≤ 0.451. Thus, even in this case, we may conclude that our method is superior to Lourenço et al.’s
method in terms of the bounds (19) and (20) .

Finally, let us consider the case where K is a simple n×n positive semidefinite cone. We see that p = 1,

r = n, and d = n(n+1)
2 hold, and upon substituting these values, the bounds (19) and (20) turn out to

be

O
(

n

0.69
log

(
1

ε

)(
m3 +m2n2 + 4n2 max

(
Csd,mn2

)))
and

O
(

n

0.09
log

(
1

ε

)(
m3 +m2n2 + 4n2 max(Cmin,mn2)

))
.

From the discussion in Section 6.3, we can assume O
(
Csd

)
= O

(
Cmin

)
, and the computational bounds

of two methods are equivalent.

6.2 Comparison of Algorithm 2 and Pena and Soheili’s method

In this section, we assume that K is simple since [13] has presented an algorithm for the simple form. We
also assume that kerA∩intK ̸= ∅, because Pena and Soheili’s method does not terminate if kerA∩intK =
∅ and rangeA∗ ∩ intK = ∅. Furthermore, for the sake of simplicity, we assume that the main algorithm
of Pena and Soheili’s method applies only to kerA ∩ intK. (Their original method applies the main
algorithm to rangeA∗ ∩ intK as well.)

First, we will briefly explain the idea of deriving an upper bound for the number of iterations required
to find x ∈ kerA ∩ intK in Pena and Soheili’s method. Pena and Soheili derive it by focusing on
the indicator δ(kerA ∩ intK) := maxx

{
det(x) | x ∈ kerA ∩ intK, ∥x∥2J = r

}
. If kerA ∩ intK ̸= ∅, then

δ(kerA∩ intK) ∈ (0, 1] holds, and if e ∈ kerA∩ intK, then δ(kerA∩ intK) = 1 holds. If e ∈ kerA∩ intK,
then the basic procedure terminates immediately and returns 1

r e as a feasible solution. Then, they prove
that δ(Qv (kerA) ∩ intK) ≥ 1.5 · δ(kerA ∩ intK) holds if the parameters are appropriately set, and
derive an upper bound on the number of scaling steps, i.e., the number of iterations, required to obtain
δ(Qv (kerA) ∩ intK) = 1.

In the following, we obtain an upper bound for the number of iterations of Algorithm 2 using the index
δsupposed (kerA ∩ intK) := maxx

{
det(x) | x ∈ kerA ∩ intK, ∥x∥2J = 1

}
. Note that δ (kerA ∩ intK) =

r
r
2 ·δsupposed (kerA ∩ intK). In fact, if x∗ is the point giving the maximum value of δsupposed (kerA ∩ intK),

then the point giving the maximum value of δ (kerA ∩ intK) is
√
rx∗. Also, if kerA ∩ intK ̸= ∅, then

δsupposed(kerA ∩ intK) ∈ (0, 1/r
r
2], and if 1√

r
e ∈ kerA ∩ intK, then δsupposed(kerA ∩ intK) = 1/r

r
2 .

20

The outline of this section is as follows: First, we show that a lower bound for δsupposed (kerA ∩ intK) can
be derived using the index value δsupposed

(
Qg−1 (kerA) ∩ intK

)
for the problem after scaling (Proposition

6.5). Then, using this result, we derive an upper bound for the number of operations required to obtain
δsupposed

(
Qg−1 (kerA) ∩ intK

)
= 1/r

r
2 (Proposition 6.6). Finally, we compare the proposed method

with Pena and Soheili’s method. To prove Proposition 6.3 used in the proof of Proposition 6.5, we use
the following propositions from [8].

Proposition 6.1 (Theorem 3 of [8]). Let c ∈ E be an idempotent and Nλ(c) be the set such that
Nλ(c) = {x ∈ E | c ◦ x = λx}. Then Nλ(c) is a linear maniforld, but if λ ̸= 0, 1

2 , and 1, then Nλ(c)
consists of zero alone. Each x ∈ E can be represented in the form

x = u+ v + w, u ∈ N0(c), v ∈ N 1
2
(c), w ∈ N1(c),

in one and only one way.

Proposition 6.2 (Theorem 11 of [8]). c ∈ E is a primitive idempotent if and only if N1(c) = {x ∈ E |
c ◦ x = x} = Rc.

Proposition 6.3. Let c ∈ E be a primitive idempotent. Then, for any x ∈ E, ⟨x,Qc(x)⟩ = ⟨x, c⟩2 holds.

Proof. From Propositions 6.1 and 6.2, for any x ∈ E, there exist a real number λ ∈ R and elements
u ∈ N0(c) and v ∈ N 1

2
(c) such that x = u+ v + λc.

First, we show that ⟨x, c⟩ = λ. For v ∈ N 1
2
(c), we see that ⟨v, c⟩ = ⟨v, c◦c⟩ = ⟨v◦c, c⟩ = ⟨c◦v, c⟩ = 1

2 ⟨v, c⟩,
which implies that ⟨v, c⟩ = 0. Thus, since u ∈ N0(c) and u ◦ c = 0, ⟨x, c⟩ is given by

⟨x, c⟩ = ⟨u+ v + λc, c⟩ = ⟨u, c⟩+ ⟨v, c⟩ = λ⟨c, c⟩ = 0 + 0 + λ.

On the other hand, by using the facts x = u + v + λc, c2 = c, c ◦ u = 0 and c ◦ v = 1
2v repeatedly, we

have

⟨x,Qc(x)⟩ = ⟨x, 2c ◦ (c ◦ x)− c2 ◦ x⟩
= ⟨x, 2c ◦ (c ◦ (u+ v + λc))− c ◦ (u+ v + λc)⟩

= ⟨x, 2c ◦ (1
2
v + λc)− (

1

2
v + λc)⟩

= ⟨x, (1
2
v + 2λc)− (

1

2
v + λc)⟩ = ⟨x, λc⟩ = λ2.

Thus, we have shown that ⟨x,Qc(x)⟩ = ⟨x, c⟩2 holds.

Remark 6.4. It should be noted that the proof of Proposition 3 in [13] is not correct since equation (14)
does not necessarily hold. The above Proposition 6.3 also gives a correct proof of Proposition 3 in [13].
See the computation ⟨y,Qg−2(y)⟩ in the proof of Proposition 6.5.

Proposition 6.5. Suppose that kerA∩intK ̸= ∅ and that, for a given nonempty index set H ⊆ {1, . . . r},
Jordan frame c1, . . . , cr, and 0 < ξ < 1,

⟨ci, x⟩ ≤ ξ (i ∈ H), ⟨ci, x⟩ ≤ 1 (i /∈ H)

holds for any x ∈ FPS∞ (A). Define g ∈ intK as g :=
√
ξ
∑

h∈H ch +
∑

h/∈H ch. Then, the following
inequality holds:

δsupposed (kerA ∩ intK) > ξ · δsupposed
(
Qg−1 (kerA) ∩ intK

)
.

Proof. For simplicity of discussion, let |H| = 1, i.e., H = {i}. Let us define the points x∗, y∗, and x̄∗ as
follows:

x∗ = arg max
{
det(x) | x ∈ kerA ∩ intK, ∥x∥2J = 1

}
,

y∗ = arg max
{
det(y) | y ∈ kerA ∩ intK, ∥Qg−1(y)∥2J = 1

}
,

x̄∗ = arg max
{
det(x̄) | x̄ ∈ Qg−1 (kerA) ∩ intK, ∥x̄∥2J = 1

}
.

21

Note that the feasible region with respect to y is the set of solutions whose norm is 1 after scaling.
First, we show that ∥y∥2J < 1, and then det(x∗) > det(y∗). Proposition 2.5 ensures that ∥Qg−1(y)∥2J =
⟨Qg−1(y), Qg−1(y)⟩ = ⟨y,Qg−2(y)⟩. To expand Qg−2(y), we expand the following equations by letting
a = 1√

ξ
− 1:

g−2 = e+ (2a+ a2)ci,

g−4 = e+
(
2(2a+ a2) + (2a+ a2)2

)
ci

g−2 ◦ y = y + (2a+ a2)ci ◦ y,
g−2 ◦ (g−2 ◦ y) = y + 2(2a+ a2)ci ◦ y + (2a+ a2)2ci ◦ (ci ◦ y),

g−4 ◦ y = y +
(
2(2a+ a2) + (2a+ a2)2

)
ci ◦ y.

Thus, Qg−2(y) turns out to be

Qg−2(y) = 2g−2 ◦ (g−2 ◦ y)− g−4 ◦ y
= y + 2(2a+ a2)ci ◦ y + 2(2a+ a2)2ci ◦ (ci ◦ y)− (2a+ a2)2ci ◦ y
= y + 2(2a+ a2)ci ◦ y + (2a+ a2)2Qci(y),

and hence, we obtain ∥Qg−1(y)∥2J as

⟨y,Qg−2(y)⟩ = ∥y∥2J + 2(2a+ a2)⟨y, ci ◦ y⟩+ (2a+ a2)2⟨y,Qci(y)⟩

= ∥y∥2J + 2(2a+ a2)⟨y ◦ y, ci⟩+ (2a+ a2)2 (⟨y, ci⟩)2

where the second equality follows from Proposition 6.3. Here, y ∈ intK and ci ∈ Kimply that ⟨y, ci⟩ > 0,
and y ◦ y = y2 ∈ intK implies ⟨y ◦ y, ci⟩ > 0. Noting that a > 0 and ∥Qg−1(y)∥2J = 1, ∥y∥2J < 1 should

hold and hence, 1
∥y∗∥J

> 1, which implies that det
(

1
∥y∗∥J

y∗
)
> det(y∗). Since

∥∥∥ 1
∥y∗∥J

y∗
∥∥∥2
J
= 1 holds,

we find that det(x∗) > det(y∗). Next, we describe the lower bound for det(y∗) using det(x̄∗). Since the
largest eigenvalue of x̄ satisfying ∥x̄∥2J = 1 is less than 1, by Proposition 3.5, we have:{

Qg(x̄) ∈ E | x̄ ∈ Qg−1 (kerA) ∩ K, ∥x̄∥2J = 1
}
⊆ kerA ∩K.

This implies det(y∗) ≥ det (Qg(x̄
∗)), and by Proposition 2.5, we have det(y∗) ≥ det(g)2 det(x̄∗) =

ξ|H| det(x̄∗) = ξ det(x̄∗). Thus, det(x∗) > det(y∗) ≥ ξ det(x̄∗) holds, and we can conclude that
δsupposed (kerA ∩ intK) > ξ · δsupposed

(
Qg−1 (kerA) ∩ intK

)
.

Next, using Proposition 6.5, we derive the maximum number of iterations until the proposed method
finds x ∈ kerA ∩ intK by using δ (kerA ∩ intK) as in Pena and Soheili’s method.

Proposition 6.6. Suppose that kerA ∩ intK ̸= ∅ holds. Algorithm 2 returns x ∈ kerA ∩ intK after at
most logξ δ (kerA ∩ intK) iterations.

Proof. Let kerĀ be the linear subspace at the start of k iterations of Algorithm 2 and suppose that
δsupposed

(
kerĀ ∩ intK

)
= 1/r

r
2 holds. Then, from Proposition 6.5, we find that δsupposed (kerA ∩ intK) >

ξk/r
r
2 . This implies that δ (kerA ∩ intK) > ξk since δ (kerA ∩ intK) = r

r
2 · δsupposed (kerA ∩ intK)

holds. By taking the logarithm base ξ, we obtain logξ δ (kerA ∩ intK) > k.

From here on, using the above results, we will compare the computational complexities of the methods
in the case that K is simple and kerA ∩ intK ̸= ∅ holds. Table 1 summarizes the upper bounds on the

22

number of iterations of the main algorithm (UB#iter) of the two methods and the computational costs
required per iteration (CC/iter). As in the previous section, the main algortihm requires O(m3 +m2d)
to compute the projection PA. Here, BP shows the computational cost of the basic procedure in each
method.

Table 1: Comparison of our method and Pena and Soheili’s method in the main algorithm

Method UB#iter CC/iter

Proposed method logξ δ (kerA ∩ intK) m3 +m2d+ BP
Pena and Soheili’s method − log1.5 δ (kerA ∩ intK) m3 +m2d+ BP

The upper bound on the number of iterations of Algorithm 2 is given by logξ δ (kerA ∩ intK) =

log1.5 δ (kerA ∩ intK) / log1.5 ξ, where we should note that 0 < ξ < 1. Since 0 < 1
− log1.5 ξ ≤ 1 when

ξ ≤ 2/3, if ξ ≤ 2/3, then the upper bound on the number of iterations of Algorithm 2 is smaller than
that of the main algorithm of Pena and Soheili’s method.

Next, Table 2 summarizes upper bounds on the number of iterations of basic procedures in the proposed
method (UB#iter) and Pena and Soheili’s method and the computational cost required per iteration
(CC/iter). It shows cases of using the von Neumann scheme and the smooth perceptron in each method
(corresponding to Algorithm 1 and Algorithm 5 in the proposed method). As in the previous section, Csd

denotes the computational cost required for spectral decomposition, and Cmin denotes the computational
cost required to compute only the minimum eigenvalue and the corresponding primitive idempotent.

Table 2: Comparison of our method and Pena and Soheili’s method in the basic procedure

von Neumann scheme smooth perceptron
Method UB#iter CC/iter UB#iter CC/iter

Proposed method r2

ξ2 max(Csd,md) 2
√
2r
ξ − 1 max(Csd,md)

Pena and Soheili’s method 16r4 max(Cmin,md) 8
√
2r2 − 1 max(Csd,md)

Note that by setting ξ = (4r)−1, the upper bounds on the number of iterations of the basic procedure
of the two methods are the same. If ξ = (4r)−1, then 1

− log1.5 ξ = 1
log1.5 4r ≤

1
log1.5 4 = 0.292, and the

upper bound of the number of iterations of Algorithm 2 is less than 0.3 times the upper bound of the
number of iterations of the main algorithm of Pena and Soheili’s method, which implies that the larger
the value of r is, the smaller the ratio of those bounds becomes. From the discussion in Section 6.3, we
can assume O(Csd = Cmin), and Table 2 shows that the proposed method is superior for finding a point
x ∈ kerA ∩ intK.

6.3 Computational costs of Csd and Cmin

This section discusses the computational cost required for spectral decomposition Csd and the com-
putational cost required to compute only the minimum eigenvalue and the corresponding primitive
idempotent Cmin.

There are so-called direct and iterative methods for eigenvalue calculation algorithms, briefly described

23

on pp.139-140 of [4]. (Note that it is also written that there is no direct method in the strict sense
of an eigenvalue calculation since finding eigenvalues is mathematically equivalent to finding zeros of
polynomials).

In general, when using the direct method of O(n3), we see that Csd = O(n3) and Cmin = O(n3). The
Lanczos algorithm is a typical iterative algorithm used for sparse matrices. Its cost per iteration of
computing the product of a matrix and a vector once is O(n2). Suppose the number of iterations at
which we obtain a sufficiently accurate solution is constant with respect to the matrix size. In that case,
the overall computational cost of the algorithm is O(n2). Corollary 10.1.3 in [7] discusses the number
of iterations that yields sufficient accuracy. It shows that we can expect fewer iterations if the value of
”the difference between the smallest and second smallest eigenvalues / the difference between the second
smallest and largest eigenvalue” is larger. However, it is generally difficult to assume that the above
value does not depend on the matrix size and is sufficiently large. Thus, even in this case, we cannot
take advantage of the condition that we only need the minimum eigenvalue, and we conclude that it is
reasonable to consider that O(Csd) = O(Cmin).

7 Numerical experiments

7.1 Outline of numerical implementation

Numerical experiments were performed using the authors’ implementations of the algorithms on a posi-
tive semidefinite optimization problem with one positive semidefinite cone K = Sn+ of the form

P(A) find X ∈ Sn++ s.t. A(X) = 0 ∈ Rm

where Sn++ denotes the interior of K = Sn+. We created strongly feasible ill-conditioned instances, i.e.,
kerA∩Sn++ ̸= ∅ and X ∈ kerA∩Sn++ has positive but small eigenvalues. We will explain how to make a
such instance in section 7.2. In what follows, we refer to Lourenço et al.’s method [10] as Lourenço (2019),
and Pena and Soheili’s method [13] as Pena (2017). We set the termination parameter as ξ = 1/4 in
our basic procedure. The reason for setting ξ = 1/4 is to prevent the square root of ξ from becoming an
infinite decimal, and to prevent the upper bound on the number of iterations of the basic procedure from
becoming too large. We also set the accuracy parameter as ε = 1e-12, both in our main algorithm and in
Lourenço (2019) and determined whether PS∞(A) or PS1

(A) has a solution whose minimum eigenvalue
is greater than or equal to ε. Note that [13] proposed various update methods for the basic procedure.
In our numerical experiments, all methods employed the modified von Neumann scheme (Algorithm 4)
with the identity matrix as the initial point and the smooth perceptron scheme (Algorithm 5). This
implies that the basic procedures used in the three methods differ only in the termination conditions
for moving to the main algorithm and that all other steps are the same. All executions were performed
using MATLAB R2022a on an Intel (R) Core (TM) i7-6700 CPU @ 3.40GHz machine with 16GB of
RAM. Note that we computed the projection PA using the MATLAB function for the singular value
decomposition. The projection PA was given by PA = I − A⊤(AA⊤)−1A using the matrix A ∈ Rm×d

which represents the linear operator A(·) and the identity matrix I. Here, suppose that the singular
value decomposition of a matrix A is given by A = UΣV ⊤ = U(Σm O)V ⊤ where U ∈ Rm×m and
V ∈ Rd×d are orthogonal matrices, and Σm ∈ Rm×m is a diagonal matrix with m singular values on the
diagonal. Substituting this decomposition into A⊤(AA⊤)−1A, we have

A⊤(AA⊤)−1A = A⊤(UΣΣ⊤U⊤)−1A

= A⊤U−⊤(Σ2
m)−1U−1A

= V Σ⊤Σ−2
m ΣV ⊤ = V

(
Im O
O O

)
V ⊤ = V:,1:mV ⊤

:,1:m,

24

where V:,1:m represents the submatrix from column 1 to column m of V . Thus, for any x ∈ E, we can
compute PA(x) = x− V:,1:mV ⊤

:,1:mx.

In what follows, X̄ ∈ Sn denotes the output obtained from the main algorithm and X∗ the result scaled
as the solution of the original problem P(A) multiplied by a real number such that λmax(X

∗) = 1. When
X∗ was obtained, we defined the residual of the constraints as the value of ∥A(X∗)∥2.

We also solved the following problem with a commercial code, Mosek [12], and compared it with the
output of Chubanov’s methods:

(P) min 0 s.t A(X) = 0, X ∈ Sn+,
(D) max 0⊤y s.t −A∗y ∈ Sn+.

Here, Mosek solves the self-dual embedding model by using a path-following interior-point method, so
if we obtain a solution (X∗, y∗), then X∗ and −A∗y∗ lie in the (approximate) relative interior of the
primal feasible region and the dual feasible region, respectively [20]. That is, X∗ obtained by solving a
strongly feasible problem with Mosek is in Sn++, X

∗ obtained by solving a weakly feasible problem is in
Sn+ \ Sn++, and X∗ obtained by solving an infeasible problem is X∗ = O (i.e., −A∗y∗ ∈ Sn++). As well
as for Chubanov’s methods, we computed ∥A(X∗)∥2 for the solution obtained by Mosek after scaling so
that λmax(X

∗) would be 1. Note that (P) and (D) do not simultaneously have feasible interior points.In
general, it is difficult to solve such problems stably by using interior point methods, but since strong
complementarity exists between (P) and (D), they can be expected to be stably solved. By applying
Lemma 3.4 of [11], we can generate a problem in which both the primal and dual problems have feasible
interior points in which it can be determined whether (P) has a feasible interior point. However, since
there was no big difference between the solution obtained by solving the problem generated by applying
Lemma 3.4 of [11] and the solution obtained by solving the above (P) and (D), we showed only the
results of solving (P) and (D) above.

7.2 How to generate instances

Here, we describe how the strongly feasible ill-conditioned instances were generated. In what follows, for
any natural numbers m,n, rand(n) is a function that returns n-dimensional real vectors whose elements
are uniformly distributed in the open segment (0, 1), and rand(m,n) is a function that returns an m×n
real matrix whose elements are uniformly distributed in the open segment (0, 1). Furthermore, for any
x ∈ Rn and X ∈ Rm×n, diag(x) ∈ Rn×n is a function that returns a diagonal matrix whose diagonal
elements are the elements of x, and vec(X) ∈ Rmn is a function that returns a vector obtained by
stacking the n column vectors of X. The strongly feasible ill-conditioned instances were generated by
extending the method of generating ill-conditioned strongly feasible instances proposed in [14] to the
symmetric cone case.

Proposition 7.1. Suppose that x̄ ∈ intK, ∥x̄∥∞ ≤ 1 and ū ∈ K, ∥ū∥1 = r satisfy ⟨x̄, ū⟩ = r. Define
the linear operator A : E → Rm as A(x) = (⟨a1, x⟩, ⟨a2, x⟩, . . . , ⟨am, x⟩)T for which a1 = ū − x̄−1 and
⟨aj , x̄⟩ = 0 hold for any j = 2, . . . ,m. Then,

x̄ = arg max
x

{det(x) : x ∈ K ∩ kerA, ∥x∥∞ = 1} . (21)

Proof. First, note that the assertion (21) is equivalent to

x̄ = arg max
x∈F

{log det(x)} where F := {x ∈ K ∩ kerA : ∥x∥∞ ≤ 1} . (22)

From the assumptions, we see that x̄ ∈ K, ∥x̄∥∞ ≤ 1 and ⟨a1, x̄⟩ = ⟨ū − x̄−1, x̄⟩ = r − r = 0; thus,
A(x̄) = 0 and x̄ ∈ F . Since ∇ log det(x) = x−1, if x̄ satisfies

⟨x− x̄, x̄−1⟩ ≤ 0 for any x ∈ F (23)

25

we can conclude that (22) holds. In what follows, we show that (23) holds.

For any x ∈ F , x ∈ kerA and hence, ⟨a1, x⟩ = ⟨ū − x̄−1, x⟩ = ⟨ū − x̄−1, x⟩ = 0, i.e., ⟨ū, x⟩ = ⟨x̄−1, x⟩.
Thus, we obtain

⟨x− x̄, x̄−1⟩ = ⟨ū, x⟩ − r

≤ ⟨ū, x⟩ − ∥ū∥1∥x∥∞ (by ∥ū∥1 = r and ∥x∥∞ ≤ 1)

≤ 0 (by ⟨ū, x⟩ ≤ ∥ū∥1∥x∥∞)

which completes the proof.

Proposition 7.1 guarantees that we can generate a linear operator A satisfying kerA ∩ Sn++ ̸= ∅ by
determining an appropriate value µ = max

X∈F
det(X), where F = {X ∈ Sn : X ∈ Sn++ ∩ kerA, ∥X∥∞ = 1}.

The details on how to generate the strongly feasible instances are in Algorithm 3. The input consists
of the rank of the semidefinite cone n, the number of constraints m, an arbitrary orthogonal matrix P ,
and the parameter τ ∈ R++ which determines the value of µ. We made instances for which the value of
µ satisfies 1e − τ ≤ µ ≤ 1e − (τ − 1). In the experiments, we set τ ∈ {50, 100, 150, 200, 250} so that µ
would vary around 1e-50, 1e-100, 1e-150, 1e-200, and 1e-250.

Note that Algorithm 3 generates instances using x̄ that has a natural eigenvalue distribution. For
example, let n − 1 = 3 and consider two Xs where one has 3 eigenvalues of about 1e-2, and the others
have 1 each of 1e-1, 1e-2, and 1e-3. det(X) ≃1e-6 is obtained for both Xs, but the latter is more natural
for the distribution of eigenvalues. In our experiment, we generated ill-conditioned instances by using
X having a natural eigenvalue distribution as follows:

1. Find an integer s that satisfies 1e-s ≤ l
1

n−1 ≤ u
1

n−1 ≤ 1e-(s− 1).

2. Generate t = 2s− 1 eigenvalue classes.

3. Decide how many eigenvalues to generate for each class.

For example, when n = 13 and τ = 30, Algorithm 3 yields s = 3, t = 5, a = 2 and b = 2, and since b is
even, we have num = (2, 3, 2, 3, 2)⊤. The classes of t = 5 eigenvalues are shown in Table 3 below. Note

that (l
1

n−1 · 10s−i) · (l
1

n−1 · 10s−(t−i+1)) = l
2

n−1 and (u
1

n−1 · 10s−i) · (u
1

n−1 · 10s−(t−i+1)) = u
2

n−1 hold for
the i-th and t− i+ 1-th classes. This implies that we obtain 1e− τ ≤ µ = det(X) ≤ 1e− (τ − 1) both
when generating n−1 eigenvalues in the sth class and when generating n−1 eigenvalues of X according
to num. When n = 14, τ = 30, Algorithm 3 gives s = 3, t = 5, a = 2, and b = 3, and since b is an odd
number, we have num = (2, 3, 3, 3, 2)⊤. Thus, Algorithm 3 generates the instances by controlling the
frequency so that the geometric mean of the n− 1 eigenvalues of X falls within the s-th class width.

Table 3: Frequency distribution table of eigenvalues of X generated by Algorithm 3 when n = 13 or
n = 14, τ = 30

Class Class width of eigenvalues of x̄ Frequency(num)

Lower bound Upper bound n = 13 n = 14

1 l
1

n−1 · 102 u
1

n−1 · 102 2 2

2 l
1

n−1 · 101 u
1

n−1 · 101 3 3

3 l
1

n−1 u
1

n−1 2 3

4 l
1

n−1 · 10−1 u
1

n−1 · 10−1 3 3

5 l
1

n−1 · 10−2 u
1

n−1 · 10−2 2 2

26

Algorithm 3 Strongly feasible instance

1: Input: n,m, τ, P
2: Output: A
3: l← 1e− τ , u← 1e− (τ − 1), s← ⌈ τ

n−1⌉ and t← 2s− 1

4: b← (n− 1) mod t, a← (n−1)−b
t and num← a · 1 ∈ Rt

5: if b is odd then
6: b̄← b−1

2 and numi ← numi + 1 such that s− b̄ ≤ i ≤ s+ b̄
7: else
8: b̄← b

2 and numi ← numi + 1 such that s− b̄ ≤ i < s or s < i ≤ s+ b̄
9: end if

10: d1 ← 1 and k ← 2
11: for i = 1 to t do
12: for j = 1 to numi do

13: dl← l
1

n−1 · 10s−iand du← u
1

n−1 · 10s−i

14: dk ← dl + (du− dl) rand (1)
15: k ← k + 1
16: end for
17: end for
18: D′ ← diag(d) and then compute C ← PD′PT and c← vec(C)
19: u← (n, 0Tn−1)

T where 0n−1 denotes the n− 1-dimensional vector of zeros

20: U ← P (diag(u)−D′−1
)PT , A′ ← vec(U) and R← I − 1

∥c∥2
2
ccT

21: for i = 1 to m− 1 do
22: A′

i ← rand(n, n) and Ai ←
(
A′

i + (A′
i)

T
)
/2

23: A′ ←
(

A′

vec(Ai)
T

)
24: end for
25: Ā← A′R

26: A←
(
vec(U)T

Ā

)

7.3 Numerical results and observations

We set the size of the positive semidefinite matrix to n = 50, so that the computational experiments
could be performed in a reasonable period of time. To eliminate bias in the experimental results, we
generated instances in which the number of constraints m was controlled using the parameter ν for the

number n(n+1)
2 of variables in the symmetric matrix of order n. Specifically, the number of constraints m

on an integer was obtained by rounding the value of n(n+1)
2 ν, where ν ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. For each

ν ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, we generated five instances, i.e., 25 instances for each of five strongly feasible
cases (corresponding to five patterns of µ ≃ 1e-50, . . . , µ ≃ 1e-250, see section 7.2 for details). Thus, we
generated 125 strongly feasible instances. We set the upper limit of the execution time to 2 hours and
compared the performance of our method with those of Lourenço (2019), Pena(2017) and Mosek. When
using Mosek, we set the primal feasibility tolerance to 1e-12.

Tables 4 and 5 list the results for the (ill-conditioned) strongly feasible case. The “CO-ratio” column
shows the ratio of |N2|/|N1| where N1 is the set of problems for which the algorithm terminated within
2 hours, the upper limit of the execution time, and N2 ⊆ N1 is the set of problems for which a correct
output is obtained, the “times(s)” column shows the average CPU time of the method, the “M-iter”
column shows the average iteration number of each main algorithm, the ∥A(X∗)∥2 column shows the
residual of the constraints, and the λmin(X

∗) column shows the minimum eigenvalue of X∗. The “BP”
column shows which scheme (the modified von Neumann (MVN) or the smooth perceptron (SP)) was

27

Table 4: Results for strongly feasible instances (Correct output (CO-) ratio, CPU time and and M-iter)

Algorithm 2 Lourenço (2019) Pena (2017)
Instance BP CO-ratio time(s) M-iter CO-ratio time(s) M-iter CO-ratio time(s) M-iter

µ ≃ 1e-50
MVN 25/25 7.81 3.28 25/25 25.94 14.48 25/25 3.60 1.00
SP 25/25 0.75 1.00 25/25 10.12 14.08 25/25 0.80 1.00

µ ≃ 1e-100
MVN 25/25 51.62 53.12 25/25 448.05 329.04 1/1 (4513.59) (2.00)
SP 25/25 32.11 36.04 25/25 256.24 365.76 25/25 123.65 23.32

µ ≃ 1e-150
MVN 25/25 99.39 118.12 25/25 888.25 728.68 - - -
SP 25/25 76.98 91.96 25/25 520.73 756.36 25/25 781.88 117.32

µ ≃ 1e-200
MVN 25/25 144.48 185.40 25/25 1328.68 1145.40 - - -
SP 25/25 118.06 151.44 25/25 789.29 1150.20 25/25 1874.20 236.44

µ ≃ 1e-250
MVN 25/25 188.11 251.44 25/25 1827.24 1601.20 - - -
SP 25/25 162.67 215.12 25/25 1074.07 1564.80 25/25 3308.35 376.24

Table 5: Results for ill-conditioned strongly feasible instances (∥A(X∗)∥2 and λmin(X
∗))

Algorithm 2 Lourenço (2019) Pena (2017)
Instance BP ∥A(X∗)∥2 λmin(X

∗) ∥A(X∗)∥2 λmin(X
∗) ∥A(X∗)∥2 λmin(X

∗)

µ ≃ 1e-50
MVN 1.24e-11 4.42e-4 7.64e-12 3.60e-4 1.27e-11 3.95e-4
SP 1.23e-11 8.48e-4 8.22e-12 8.10e-4 1.23e-11 8.48e-4

µ ≃ 1e-100
MVN 9.98e-12 2.73e-6 1.26e-11 3.01e-6 (1.07e-8) (3.34e-6)
SP 4.18e-11 3.19e-5 1.10e-11 3.75e-5 5.38e-9 3.39e-6

µ ≃ 1e-150
MVN 1.96e-10 5.24e-8 4.29e-10 4.10e-8 - -
SP 2.21e-10 3.98e-7 5.60e-10 5.54e-7 6.31e-9 3.78e-7

µ ≃ 1e-200
MVN 1.51e-8 7.86e-10 4.76e-8 1.18e-9 - -
SP 1.09e-8 4.87e-9 3.81e-8 5.93e-9 1.72e-8 5.06e-9

µ ≃ 1e-250
MVN 9.51e-7 8.43e-12 2.58e-6 2.52e-11 - -
SP 1.72e-6 5.14e-11 3.35e-6 7.05e-11 1.73e-6 5.40e-11

used in the basic procedure. The values in parentheses () in row µ ≈ 1e-100 are the average values
excluding instances for which the method ended up running out of time.

First, we compare the results when using MVN or SP as the basic procedure in each method. From
Table 4, we can see that for strongly-feasible problems, using SP as the basic procedure has a shorter
average execution time than using MVN. Next, we compare the results of each method. For µ ≃ 1e-50,
there was no significant difference in performance among the three methods. For µ ≤ 1e-100, the results
in the rows BP=MVN show that our method and Lourenço (2019) obtained interior feasible solutions
for all problems, while Pena (2017) ended up running out of time for 99 instances. This is because Pena
(2017) needs to call its basic procedure to find a solution of rangeA∗ ∩ Sn++. Comparing our method
with Lourenço (2019), we see that Algorithm 2 is superior in terms of CPU time. Finally, we compare
the results for each value of µ. As µ becomes smaller, i.e., as the problem becomes more ill-conditioned,
the number of scaling times and the execution time increase, and the accuracy of the obtained solution
gets worse.

Table 6 summarizes the results of our experiments using Mosek to solve strongly feasible ill-conditioned
instances. Mosek sometimes returned the error message “rescode = 10006” for the µ ≤ 1e − 200
instances. This error message means that ”the optimizer is terminated due to slow progress.” In this

28

Table 6: Results for ill-conditioned strongly feasible instances with Mosek

Instance CO-ratio time(s) ∥A(X∗)∥2 λmin(X
∗)

µ ≃ 1e-50 25/25 1.96 8.73e-13 7.99e-3
µ ≃ 1e-100 25/25 3.18 1.87e-12 4.51e-5
µ ≃ 1e-150 25/25 3.72 2.48e-10 4.45e-7
µ ≃ 1e-200 21/25 6.56 2.58e-7 4.35e-9
µ ≃ 1e-250 1/25 6.88 2.57e-7 5.37e-11

case, the obtained solution is not guaranteed to be optimal, but it may have sufficient accuracy as a
feasible solution. Therefore, we took the CO-ratio when the residual ∥A(X∗)∥2 is less than or equal to
1e-5 to be the correct output. The reason why we set the threshold to 1e-5 is that the maximum value
of ∥A(X∗)∥2 was less than 1e-5 among the X∗ values obtained for the strongly feasible ill-conditioned
instances by the three methods, Algorithm 2, Lourenço (2019) and Pena (2017). On the other hand, for
the µ ≤ 1e − 200 instances, the Chubanov methods had higher CO-ratios. That is, when the problem
was quite ill-conditioned, the solution obtained by each of the Chubanov methods had a smaller value
of ∥A(X∗)∥2 compared with the solution obtained by Mosek, which implies that the accuracy of the
solution obtained by each of the Chubanov methods was higher than that of Mosek.

8 Concluding remarks

In this study, we proposed a new version of Chubanov’s method for solving the feasibility problem over
the symmetric cone by extending Roos’s method [15] for the feasible problem over the nonnegative
orthant. Our method has the following features:

• Using the norm ∥ · ∥∞ in problem PS∞(A) makes it possible to (i) calculate the upper bound for
the minimum eigenvalue of any feasible solution of PS∞(A), (ii) quantify the feasible region of
P(A), and hence (iii) determine whether there exists a feasible solution of P(A) whose minimum
eigenvalue is greater than ϵ as in [10].

• In terms of the computational bound, our method is (i) equivalent to Roos’s original method
[15] and superior to Lourenço et al.’s method [10] when the symmetric cone is the nonnegative
orthant, (ii) superior to Lourenço et al.’s when the symmetric cone is a Cartesian product of second-
order cones, (iii) equivalent to Lourenço et al.’s when the symmetric cone is the simple positive
semidefinite cone, under the assumption that the costs of computing the spectral decomposition
and the minimum eigenvalue are of the same order for any given symmetric matrix, and (iv)
superior to Pena and Soheili’s method [13] for any simple symmetric cones under the assumption
that P(A) is feasible.

We also conducted comprehensive numerical experiments comaring our method with the existing mtehods
of Chubanov [10, 13] and Mosek. Our numerical results showed that

• It is considerably faster than the existing methods on ill-conditioned strongly feasible instances.

• Mosek was the better than Chubanov’s methods in terms of execution time. On the other hand,
in terms of the accuracy of the solution (the value of ∥A(X∗)∥2), we found that all of Chubanov’
s methods are better than Mosek. In particular, we have seen such results for strongly-feasible
(terribly) ill-conditioned (µ ≃ 1e− 250) instances.

29

In this paper, we performed computer experiments by setting ξ = 1/4 in the basic procedure to avoid
inducements for calculation errors, but there is room for further study on how to choose the value of ξ.
For example, if the problem size is large, the computation of the projection PA is expected to take much
more time. In this case, rather than setting ξ = 1/4, running the algorithm as ξ < 1/4 may reduce the
number of scaling steps to be performed before completion. As a result, the algorithm’s run time may
be shorter than when we set ξ = 1/4. More desirable approach may be to choose an appropriate value
of ξ at each iteration along to the algorithm’s progress.

Acknowledgments

We would like to express our deep gratitude to the reviewers and editors for their many valuable com-
ments. Their comments significantly enriched the content of this paper, especially sections 3, 5, 6, and 7.
We also would like to sincerely thank Daisuke Sagaki for essential ideas on the proof of Proposition 6.3,
and Yasunori Futamura for helpful information about the computational cost of the eigenvalue calcula-
tion in Section 6.3. We could not complete this paper without their support. This work was supported
by JSPS KAKENHI Grant Numbers (B)19H02373 and JP 21J20875.

References

[1] Alizadeh F. (2012) . An introduction to formally real Jordan algebras and their applications in
optimization. In: Anjos M., Lasserre J. (eds) Handbook on Semidefinite, Conic and Polynomial
Optimization. International Series in Operations Research & Management Science, vol 166. Springer,
Boston, MA.

[2] Chubanov, S. (2012). A strongly polynomial algorithm for linear systems having a binary solution.
Mathematical programming, 134(2), 533-570.

[3] Chubanov, S. (2015). A polynomial projection algorithm for linear feasibility problems. Mathematical
Programming, 153(2), 687-713.

[4] Demmel, J. W. (1997). Applied numerical linear algebra. Society for Industrial and Applied Mathe-
matics.

[5] Faraut, J. & Korányi, A. (1994). Analysis on symmetric cones. Oxford University Press, Oxford, UK.

[6] Faybusovich, L. (1997). Euclidean Jordan algebras and interior-point algorithms. Positivity 1,
331–357.

[7] Golub, G. H., & Van Loan, C. F. (2013). Matrix computations. JHU press.

[8] Jordan, P., Neumann, J. v., & Wigner, E. (1934). On an Algebraic Generalization of the Quantum
Mechanical Formalism. Annals of Mathematics, 35(1), 29–64.

[9] Kitahara, T., & Tsuchiya, T. (2018). An extension of Chubanov’s polynomial-time linear program-
ming algorithm to second-order cone programming. Optimization Methods and Software, 33(1), 1-25.

[10] Lourenço, B. F., Kitahara, T., Muramatsu, M., & Tsuchiya, T. (2019). An extension of Chubanov’
s algorithm to symmetric cones. Mathematical Programming, 173(1-2), 117-149.

[11] Lourenço, B. F., Muramatsu, M., & Tsuchiya, T. (2021). Solving SDP completely with an interior
point oracle. Optimization Methods and Software, 36(2-3), 425-471.

[12] MOSEK, A. Moset optimization toolbox for MATLAB (2019). Release, 9, 98.

30

[13] Pena, J., & Soheili, N. (2017). Solving conic systems via projection and rescaling. Mathematical
Programming, 166(1-2), 87-111.

[14] Pena, J., & Soheili, N. (2019). Computational performance of a projection and rescaling algorithm.
Optimization Methods and Software, 1-18.

[15] Roos, K. (2018). An improved version of Chubanov’s method for solving a homogeneous feasibility
problem. Optimization Methods and Software, 33(1), 26-44.

[16] Schmieta, S., Alizadeh, F. (2003). Extension of primal-dual interior point algorithms to symmetric
cones. Mathematical Programming, Series. A 96, 409–438.

[17] Soheili, N., & Pena, J. (2012). A smooth perceptron algorithm. SIAM Journal on Optimization,
22(2), 728-737.

[18] Soheili, N., & Pena, J. (2013). A primal–dual smooth perceptron–von Neumann algorithm. In
Discrete Geometry and Optimization (pp. 303-320). Springer, Heidelberg.

[19] Wei, Z., & Roos, K. (2019). Using Nemirovski ’s Mirror-Prox method as Basic Procedure
in Chubanov ’s method for solving homogeneous feasibility problems. Manuscript (http://www.
optimization-online. org/DB HTML/2018/04/6559. html).

[20] Wolkowicz, H., Saigal, R., Vandenberghe, L.: Handbook of Semidefinite Programming: Theory,
Algorithms, and Applications, vol. 27. Springer, Berlin (2012)

[21] Yoshise A. (2007) Interior point trajectories and a homogeneous model for nonlinear complemen-
tarity problems over symmetric cones. SIAM Journal on Optimization, 17(4), 1129-1153.

A Basic procedure

Algorithm 4 Basic procedure (Modified von Neumann scheme)

1: Same as lines 1-3 of Algorithm 1

2: while k ≤ p2r2max

ξ2 do
3: Same as lines 5-23 of Algorithm 1
4: for ℓ ∈ {1, . . . , p} do
5: Sℓ ← {i | λ(zkℓ)i ≤ 0} and then uℓ ←

∑
i∈Sℓ

c(zkℓ)i
6: end for
7: u← 1∑p

ℓ=1 |Sℓ|u and yk+1 ← αyk + (1− α)u, where α = ⟨PA(u),PA(u)−zk⟩
∥zk−PA(u)∥2

J

8: k ← k + 1 , zk ← PA(y
k) and vk ← yk − zk

9: end while

Below, we describe the results of updating yk with the smooth perceptron scheme as described in [13].
Given µ > 0, we define operator uµ(·) : E→ {u ∈ K | ⟨u, e⟩ = 1} as uµ(v) := arg min

u∈K,⟨u,e⟩=1

{
⟨u, v⟩+ µ

2 ∥u− ū∥2J
}
.

31

Algorithm 5 Basic procedure (Smooth perceptron scheme)

1: Input: PA and ξ such that a constant 0 < ξ < 1
2: Output: (i) a solution to P(A) or (ii) D(A) or (iii) a certificate that, for any feasible solution x to

PS∞(A), ⟨e, x⟩ < r
3: initialization : ū← 1

r e, µ
0 ← 2, u0 ← ū, k ← 0,H1, . . . , Hp = ∅.

4: compute y0 ← uµ0

(
PA(u

0)
)
, z0 ← PA(y

0), v0 ← y0 − z0.

5: while k ≤ 2
√
2prmax

ξ − 1 do
6: Same as lines 5-23 of Algorithm 1
7: θk ← 2

k+3 and uk+1 ← (1− θk)(uk + θkyk) + (θk)2uµk

(
PA(u

k)
)

8: µk+1 ← (1− θk)µk and yk+1 ← (1− θk)yk + θkuµk+1

(
PA(u

k+1)
)

9: k ← k + 1 , zk ← PA(y
k) and vk ← yk − zk

10: end while

32

B Another new main algorithm

Here, we introduce another new main algorithm, Algorithm 6, whose computational cost may not be
given in polynomials but might better determine ϵ-feasible solutions.

B.1 Outline of Algorithm 6

The procedures of Algorithm 6 are almost identical to Algorithm 2, except for one of the termination
criteria (the criterion indicating the non-existence of ε-feasible solutions). Specifically, to set the upper
bound for the minimum eigenvalue of any feasible solution x of PS∞(A), Algorithm 2 focuses on the
product det(x̄) of the eigenvalues of the arbitrary feasible solution x̄ of the scaled problem PS∞(AkQk),
while Algorithm 6 focuses on the sum ⟨x̄, e⟩ of the eigenvalues. Algorithm 6 works as follows.

1. If a feasible solution of P(A) or D(A) is returned from the basic procedure, the feasibility of P(A)
can be determined, and we stop the main algorithm.

2. If the basic procedure returns the sets of indices H1, . . . , Hp and the sets of primitive idempotents
C1, . . . , Cp that construct the corresponding Jordan frames, then

in Algorithm 6:

(a) if rℓ
(rℓ+(1

ξ−1)mℓ)
< ε holds for some ℓ ∈ {1, . . . p}, we determine that PS∞(A) has no

ε-feasible solution according to Proposition B.1 and stop the main algorithm,

(b) if rℓ
(rℓ+(1

ξ−1)mℓ)
≥ ε holds for any ℓ ∈ {1, . . . p}, we rescale the problem and call the basic

procedure again.

Table 7: Upper bounds on the number of iterations of the main algorithms (cf. proposition 5.2 and
proposition B.2)

Main Algorithm Upper bound on # of iterations

Algorithm 2 − r
log ξ log

(
1
ε

)
− p+ 1

Algorithm 6 ξ
1−ξ

(
1
ε − 1

)
r − p+ 1

Table 7 lists upper bounds on the numbers of iterations required by Algorithms 2 and 6. As shown in
the table, Algorithm 2 can be said to be a polynomial-time algorithm, but Algorithm 6 is not. On the
other hand, the results of the numerical experiments in Appendix C.2 show that Algorithm 6 is superior
to Algorithm 2 at detecting ε-feasibility for the generated instances.

33

Algorithm 6 Main algorithm using another criteria for ε-feasibility

1: Input: A, K, ε and a constant ξ such that 0 < ξ < 1
2: Output: a solution to P(A) or D(A) or a certificate that there is no ε feasible solution.
3: k ← 1 , A1 ← A , mℓ ← 0 , Q̄ℓ ← Iℓ, RPℓ ← Iℓ, RDℓ ← Iℓ for all ℓ ∈ {1, . . . , p}
4: Compute PAk and call the basic procedure with PAk , 1

r e, ξ
5: if basic procedure returns z then
6: stop main algorithm and return RPz (RPz is a feasible solution of P(A))
7: else if basic procedure returns y or v then
8: stop main algorithm and return RDy or RDv (RDy or RDv is a feasible solution of D(A))
9: else if basic procedure returns Hk

1 , . . . , H
k
p and Ck

1 , . . . , C
k
p then

10: for ℓ ∈ {1, . . . , p} do
11: if |Hk

ℓ | > 0 then
12: gℓ ←

√
ξ
∑

h∈Hk
ℓ
ck(vℓ)h +

∑rℓ
h/∈Hk

ℓ
ck(vℓ)h

13: Qℓ ← Qgℓ , RPℓ ← RPℓQgℓ , RDℓ ← RDℓQg−1
ℓ

14: mℓ ←
〈
Q̄ℓ

(∑
h∈Hk

ℓ
ck(vℓ)h

)
, eℓ

〉
+mℓ

15: if rℓ
(rℓ+(1

ξ−1)mℓ)
≤ ε then

16: stop main algorithm. There is no ε feasible solution.
17: end if
18: Q̄ℓ ← Q̄ℓQg−1

ℓ

19: else
20: Qℓ ← Iℓ
21: end if
22: end for
23: else
24: return basic procedure error
25: end if
26: Let Qk = (Q1, . . . , Qp)
27: Ak+1 ← AkQk , k ← k + 1. Go back to line 4.

B.2 Finite termination of Algorithm 6

Here, we prove finite termination of Algorithm 6. Before going into the proof, we explain Algorithm 6 in
more detail than in Appendix B.1. In Algorithm 6, when a cut is obtained in the ℓ-th block, it computes

the value of
〈
Q̄ℓ

(∑
h∈Hk

ℓ
ck(vℓ)h

)
, eℓ

〉
and stores its cumulative value in mℓ. In fact, using this mℓ, we

can compute an upper bound for λmin(x) (Proposition B.1). On line 18, Q̄ℓ is updated as Q̄ℓ ← Q̄ℓQg−1
ℓ

,

and Q̄ℓ of Algorithm 6 plays the role of an operator that gives the relation ⟨x̄ℓ, aℓ⟩ = ⟨xℓ, Q̄ℓ(aℓ)⟩ for the
solution x of the original problem, the solution x̄ of the scaled problem, and any a ∈ E. For example,
as before, if |H1

ℓ | > 0 for k = 1, then ⟨x̄ℓ, aℓ⟩ = ⟨Qg−1
ℓ

(xℓ), aℓ⟩ = ⟨xℓ, Qg−1
ℓ

(aℓ)⟩ is valid. And if |H2
ℓ | > 0

even for k = 2, then the proposed method scales x̄ again, so that ⟨¯̄xℓ, aℓ⟩ = ⟨x̄ℓ, Qg−1
ℓ

(aℓ)⟩ = ⟨xℓ, Q̄ℓ(aℓ)⟩
holds.

Proposition 5.1 guarantees that ε-feasibility of the problem P(A) can be detected by computing det(x̄) of
any feasible solution of PS∞(AkQk). The following proposition ensures that we may use the value ⟨x̄, e⟩
of any feasible solution of PS∞(AkQk) to detect the ε-feasibility of problem P(A), instead of det(x̄).
While the analysis of the computational complexity in section 5.2 does not hold for it, the new criteria
is better able to detect ε-feasibility in the numerical experiments presented in Appendix C.2 .

Proposition B.1. After k iterations of Algorithm 6, for any feasible solution x of PS∞(A) and ℓ ∈

34

{1, . . . , p}, the ℓ-th block element xℓ of x satisfies

λmin(xℓ) ≤
rℓ(

rℓ +
(

1
ξ − 1

)
mℓ

). (24)

Proof. In Algorithm 6, mℓ is updated only when |Hk
ℓ | > 0. Suppose that, at the end of the k-th iteration

of Algorithm 6, the last update of mℓ had been at the k′(≤ k)-th iteration. Then, the stopping criteria
of the basic procedure guarantees that at the beginning of the k′-th iteration, Q̄ℓ satisfies

⟨x, Q̄ℓ(c
k′
(vℓ)i)⟩ ≤

{
ξ i ∈ Hk′

ℓ

1 i /∈ Hk′

ℓ

. (25)

This gives a lower bound for |Hk′

ℓ |:

1

ξ

〈
x, Q̄ℓ

 ∑
i∈Hk′

ℓ

ck
′
(vℓ)i

〉 ≤ |Hk′

ℓ |. (26)

Using the fact that xℓ − λmin(xℓ)eℓ ∈ Kℓ, we obtain

λmin(xℓ)⟨eℓ, Q̄ℓ(eℓ)⟩ ≤ ⟨xℓ, Q̄ℓ(eℓ)⟩

=

〈
xℓ, Q̄ℓ

 ∑
j /∈Hk′

ℓ

ck
′
(vℓ)j

〉+

〈
xℓ, Q̄ℓ

 ∑
j∈Hk′

ℓ

ck
′
(vℓ)j

〉

≤ rℓ − |Hk′

ℓ |+

〈
xℓ, Q̄ℓ

 ∑
j∈Hk′

ℓ

ck
′
(vℓ)j

〉 (by (25))

≤ rℓ −

(
1

ξ
− 1

)〈
xℓ, Q̄ℓ

 ∑
j∈Hk′

ℓ

ck
′
(vℓ)j

〉 (by (26))

≤ rℓ −

(
1

ξ
− 1

)
λmin(xℓ)

〈
eℓ, Q̄ℓ

 ∑
j∈Hk′

ℓ

ck
′
(vℓ)j

〉 ,

and hence,

λmin(xℓ)

〈eℓ, Q̄ℓ(eℓ)
〉
+

(
1

ξ
− 1

)〈
eℓ, Q̄ℓ

 ∑
j∈Hk′

ℓ

ck
′
(vℓ)j

〉 ≤ rℓ. (27)

Next, suppose that, at the beginning of the k′-th iteration of Algorithm 6, the last update of mℓ had
been performed at the i(< k′)-th iteration.

Let Q̄ℓ
pre

be Q̄ℓ obtained at the beginning of the i-th iteration of Algorithm 6, and let Qpre
gℓ

and mpre
ℓ be

Qℓ and mℓ obtained after the update at the i-th iteration. Note that Q̄ℓ at the beginning of the k′-th

35

iteration of Algorithm 6 can be represented by Q̄ℓ = Q̄ℓ
pre

Qpre

g−1
ℓ

. Thus, from (12), we see that

Qpre

g−1
ℓ

(eℓ) = Qpre

g−1
ℓ

 rℓ∑
j=1

ci(vℓ)j

= Qpre

g−1
ℓ

 ∑
j∈Hk′

ℓ

ci(vℓ)j

+Qpre

g−1
ℓ

 ∑
j ̸∈Hk′

ℓ

ci(vℓ)j

=

1

ξ

∑
j∈Hk′

ℓ

ci(vℓ)j +
∑

j ̸∈Hk′
ℓ

ci(vℓ)j

= eℓ +

(
1

ξ
− 1

) ∑
j∈Hi

ℓ

ci(vℓ)j

and hence,

Q̄ℓ(eℓ) = Q̄ℓ
pre

Qpre

g−1
ℓ

(eℓ) = Q̄ℓ
pre

eℓ +

(
1

ξ
− 1

) ∑
j∈Hi

ℓ

ci(vℓ)j

= Q̄ℓ

pre
(eℓ) +

(
1

ξ
− 1

)
Q̄ℓ

pre

∑
j∈Hi

ℓ

ci(vℓ)j

 . (28)

By recursively applying (28) to Q̄ℓ
pre

(eℓ), we finally obtain

〈
eℓ, Q̄ℓ(eℓ)

〉
= rℓ +

(
1

ξ
− 1

)
mpre

ℓ .

Let mk′

ℓ be the value of mℓ obtained after the update at the k′-th iteration. Then,

mk′

ℓ = mpre
ℓ +

〈
eℓ, Q̄ℓ

 ∑
j∈Hk′

ℓ

ck
′
(vℓ)j

〉 (29)

and, by (27), we obtain

λmin(xℓ) ≤
rℓ(

rℓ +
(

1
ξ − 1

)
mpre

ℓ +
(

1
ξ − 1

)〈
eℓ, Q̄ℓ

(∑
j∈Hk′

ℓ
ck′(vℓ)j

)〉)
=

rℓ(
rℓ +

(
1

ξ
− 1

)
mk′

ℓ

) .

Since, at the end of the k-th iteration of Algorithm 6, the last update of mℓ was at the k′-th iteration,
we see that mℓ = mk′

ℓ , and hence (24) holds after k iterations of Algorithm 6.

Using Proposition B.1, we find an upper bound on the number of iterations of Algorithm 6.

Proposition B.2. Algorithm 6 terminates after no more than ξ
1−ξ

(
1
ε − 1

)
r − p+ 1 iterations.

36

Proof. When |Hk
ℓ | > 0 for ℓ ∈ {1, . . . , p} at the k-th iteration of Algorithm 6, we say that the iteration

is “good” for the ℓ-th block. From Proposition B.1, since the (meaningful) upper bound of the minimum
eigenvalue λmin(xℓ) of xℓ of the ℓ-th block of any feasible solution x of PS∞(A) depends on the value of
mℓ, we first calculate a lower bound for the increment of mℓ per good iteration in the ℓ-th block. Similar
to the proof of Proposition B.1, suppose that the k′-th iteration is a good iteration for the ℓ-th block.

As shown in equation (29), the value of mℓ is increased at this time by
〈
eℓ, Q̄ℓ

(∑
j∈Hk′

ℓ
ck

′
(vℓ)j

)〉
using

Q̄ℓ at the beginning of the k′-th iteration. Let us express Qg−1
ℓ

using gℓ obtained at the k-th iteration

as Qk
g−1
ℓ

, i.e., Q̄ℓ = Q1
g−1
ℓ

Q2
g−1
ℓ

. . . Qk′−1

g−1
ℓ

. Then, the increment of mℓ at the k′-th iteration is as follows:〈
eℓ, Q̄ℓ

 ∑
j∈Hk′

ℓ

ck
′
(vℓ)j

〉 =

〈
Qk′−1

g−1
ℓ

. . . Q1
g−1
ℓ

(eℓ) ,
∑

j∈Hk′
ℓ

ck
′
(vℓ)j

〉
. (30)

Note that Qk′−1

g−1
ℓ

. . . Q1
g−1
ℓ

(eℓ) − eℓ ∈ Kℓ holds, as we will prove below using induction. First, if the

first iteration is a good one for the ℓ block, then Q1
g−1
ℓ

(eℓ) =
1
ξ

∑
i∈H1

ℓ
c1(vℓ)i +

∑
j /∈H1

ℓ
c1(vℓ)j = eℓ +(

1
ξ − 1

)∑
i∈H1

ℓ
c1(vℓ)i, and if it is not a good iteration, then Q1

g−1
ℓ

(eℓ) = eℓ. Thus, Q
1
g−1
ℓ

(eℓ)− eℓ ∈ Kℓ

holds. Next, when Qi
g−1
ℓ

. . . Q1
g−1
ℓ

(eℓ)−eℓ ∈ K holds, by Proposition 2.4, Qi+1

g−1
ℓ

(
Qi

g−1
ℓ

. . . Q1
g−1
ℓ

(eℓ)− eℓ

)
∈

Kℓ holds. Furthermore, the same calculation as in the first iteration yields Qi+1

g−1
ℓ

(eℓ)− eℓ ∈ Kℓ, and we

see that

Qi+1

g−1
ℓ

(
Qi

g−1
ℓ

. . . Q1
g−1
ℓ

(eℓ)− eℓ

)
∈ Kℓ ⇔ Qi+1

g−1
ℓ

Qi
g−1
ℓ

. . . Q1
g−1
ℓ

(eℓ)−Qi+1

g−1
ℓ

(eℓ) ∈ Kℓ

⇒ Qi+1

g−1
ℓ

Qi
g−1
ℓ

. . . Q1
g−1
ℓ

(eℓ)− eℓ ∈ Kℓ.

Thus, from (30), we obtain a lower bound for the increment of mℓ as〈
Qk′−1

g−1
ℓ

. . . Q1
g−1
ℓ

(eℓ) ,
∑

j∈Hk′
ℓ

ck
′
(vℓ)j

〉
≥

〈
eℓ,

∑
j∈Hk′

ℓ

ck
′
(vℓ)j

〉

= |Hk′

ℓ | ≥ 1,

which means that the value of mℓ increases by at least 1 per good iteration. Therefore, if the number of

good iterations for the ℓ-th block is
(
rℓ
ε − rℓ

) (
ξ

1−ξ

)
or more, then from Proposition B.1, we can conclude

that λmin(xℓ) ≤ ε holds; i.e., we obtain an upper bound for the number of iterations of Algorithm 6 as
follows:

p∑
ℓ=1

((rℓ
ε
− rℓ

)(ξ

1− ξ

)
− 1

)
+ 1 =

ξ

1− ξ

(
1

ε
− 1

)
r − p+ 1.

It should be noted that the number of iterations required by Algorithm 6 to detect the non-existence of
ε-feasible solutions is actually likely to be much smaller than the value given in Proposition B.2. This
is because Proposition B.2 calculates the lower bound for the increment of mℓ for one good iteration as
1. The increment of mℓ can be calculated using Q̄ℓ, but it is difficult to calculate the exact increment
of mℓ because Q̄ℓ depends on the results returned by the previous basic procedure. Suppose that both
the first and second iterations are good for the ℓ-th block. Then, the increment of mℓ at the second
iteration is 〈

Q1
g−1
ℓ

(eℓ) ,
∑
j∈H2

ℓ

c2(vℓ)j

〉
=

〈
eℓ +

(
1

ξ
− 1

) ∑
i∈H1

ℓ

c1(vℓ)i,
∑
j∈H2

ℓ

c2(vℓ)j

〉
,

but it is difficult to find a lower bound greater than 0 for
〈∑

i∈H1
ℓ
c1(vℓ)i,

∑
j∈H2

ℓ
c2(vℓ)j

〉
.

37

C Additional numerical experiments

In addition to the strongly feasible instances described in section 7.2, we generated the following two
types of instances and conducted numerical experiments.

• Weakly feasible instances, i.e., kerA ∩ Sn++ = ∅, but kerA ∩ Sn+ \ {O} ̸= ∅.

• Infeasible instances, i.e., kerA ∩ Sn+ = O.

C.1 How to generate instances used in the additional experiments

Here, we describe how the weakly feasible instances and infeasible instances were generated. Note that,
due to the rounding error of the numerical computation, the weakly (ill-conditioned strongly) feasible
instances generated in this experiment may not have been weakly (ill-conditioned strongly) feasible, and
could be infeasible or interior feasible. Thus, the term “fragilely” may not be appropriate, but it would
be better to call them “fragilely weakly feasible (fragilely ill-conditioned strongly).”

C.1.1 Weakly feasible instances

The weakly feasible instances were generated by Algorithm 7.

Algorithm 7 Weakly feasible instance

1: Input: n,m, A′ = []
2: Output: A
3: B ← rand(n, n) // B must not be O

4: C ← B+BT

2 // C ̸= O must not be C ⪰ O or C ⪯ O
5: C+ ← PSn+(C) // C+ ̸= O since C ̸= O is not negative semidefinite.

6: C− ← −PSn+(−C) // C− ̸= O since C ̸= O is not positive semidefinite.

7: c+ ← vec(C+) and R← I − 1
∥c+∥2

2
c+c

T
+

8: for i = 1 to m− 1 do
9: A′

i ← rand(n, n) and Ai ←
(
A′

i + (A′
i)

T
)
/2

10: A′ ←
(

A′

vec(Ai)
T

)
11: end for

12: A←
(
vec(C−)

T

A′R

)

Proposition C.1. For any A ∈ Rm×n2

returned by Algorithm 7, no X ∈ Sn++ exists that satisfies
A (vec(X)) = 0, but an X ∈ Sn+ \ {O} exists that satisfies A (vec(X)) = 0.

Proof. First, we show that an X ∈ Sn+\{O} exists that satisfies A (vec(X)) = 0. For the matrix C+ ∈ Sn+
computed on line 5 of Algorithm 7, we see that C+ ̸= O and the following holds:

A (vec(C+)) = Ac+ =

(
vec(C−)

T

A′R

)
c+ =

(
vec(C−)

T c+
A′Rc+

)
=

(
0

A′(c+ − c+)

)
= 0.

Next, we show by contradiction that no X ∈ Sn++ exists that satisfies A (vec(X)) = 0. Suppose that an
X ∈ Sn++ satisfies A (vec(X)) = 0. Since the first row of A is vec(C−)

T , if A (vec(X)) = 0 holds, then

38

vec(C−)
T vec(X) = 0, i.e.,

vec(C−)
T vec(X) = ⟨C−, X⟩ = ⟨PDPT , QEQT ⟩

= ⟨D,PTQEQTP ⟩ =
n∑

i=1

Dii

(
PTQEQTP

)
ii
= 0

where C− = PDPT , X = QEQT , P are Q orthogonal matrices, and D and E are diagonal matrices.
Here, X ∈ Sn++ implies

(
PTQEQTP

)
ii
> 0 for any i ∈ {1, . . . , n} and hence, D should be O, but this

contradicts C− ̸= O. Thus, no X ∈ Sn++ exists satisfying A (vec(X)) = 0.

C.1.2 Infeasible instances

The infeasible instances were generated by Algorithm 8. If we define the linear operator A : Sn → Rm as
A(X) = (⟨A1, X⟩, . . . , ⟨Am, X⟩)T , then by choosing A1 ∈ Sn++, we obtain A such that kerA∩Sn+ = {O}.
On the basis of this observation, by introducing a parameter α > 0, we generated a positive definite
matrix A1 whose minimum eigenvalue is a uniformly distributed random number in (0, α). We chose
α ∈ {1e−1, 1e−2, 1e−3, 1e−4, 1e−5}. The input of Algorithm 8 consisted of the rank of the semidefinite
cone n, the number of constraints m, an arbitrary orthogonal matrix P , and the parameter α > 0.

Algorithm 8 Infeasible instance

1: Input: n,m, α, P , A′ = []
2: Output: A
3: B ← rand(n, n)

4: B′ ← B+BT

2 and then compute an orthogonal matrix Q and diagonal matrix E such that B′ = QDQT

5: E+ = rand (1)× αI + PSn+(E)

6: d← rand(n) and D ← diag(d)
7: B+ ← QE+Q

T and C ← PDPT

8: c = vec(C) and R← I − 1
∥c∥2

2
ccT

9: for i = 1 to m− 1 do
10: A′

i ← rand(n, n) and Ai ←
(
A′

i + (A′
i)

T
)
/2

11: A′ ←
(

A′

vec(Ai)
T

)
12: end for

13: A←
(
vec(B+)

T

A′R

)

Note that the first row of the matrix A returned by Algorithm 8 is vec(B+)
T
. Since B+ ∈ Sn++, we

see that vec(B+)
T
vec(X) > 0 for any positive definite matrix X ∈ Sn++. Thus, there is no X ∈ Sn++

satisfying A (vec(X)) = 0, which implies that the generated instance is infeasible.

C.2 Additional numerical results and observations

As in section 7, we set the size of the semidefinite matrix to n = 50 and the number of constraints m
using ν ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. For each ν ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, we generated five instances, i.e.,
25 instances for a weakly feasible case and 25 instances for each of five infeasible cases (corresponding
to five patterns of α = 1e-1, . . . , α = 1e-5, see section C.1.2 for details). Thus, we generated 25 weakly
feasible instances and 125 infeasible instances. We set the upper limit of the execution time to 2 hours
and compared the performance of our method (Algorithm 2, 6) with those of Lourenço (2019) and
Pena(2017).

39

We classified the output-results into five types: A: an interior feasible solution is found; B: no interior
feasible solution is found (ver.1); C: no ε-feasible solution is found (only for Lorenço (2019) and our
method); D: no interior feasible solution is found (ver.2; only for Pena (2017)); E: Out-of-time. In what
follows, we briefly explain how output-result type D for Pena (2017) differs from output-result type B.

[13] pointed out that if P(A) has no interior feasible solution, meaning that if the main algorithm of
Pena (2017) is applied to only P(A), it does not stop within a finite number of iterations. To overcome
this problem, Pena et al. constructed the main algorithm in a way that it applies not only to P(A) but
also to problem Q(A):

Q(A) find X ∈ Sn++ s.t. X ∈ rangeA∗.

Accordingly, we defined output-result type B as the case where a feasible solution of D(A) is obtained
by applying the main algorithm to P(A) and defined output-result type D as the case where a feasible
solution of Q(A) is obtained by applying the main algorithm to Q(A).

Table 8 summarizes the results for infeasible instances. Similarly to Table 4, the “CO-ratio and “times(s)”
columns respectively show the ratio of correct outputs and the average CPU time of each method (the
values in parentheses () in rows α = 1e-4 and α = 1e-5 are the average CPU times of each method
excluding the instances for which the method ended up running out of time). When using MVN as the
basic procedure, whereas our method and Lourenço (2019) found an element of rangeA∗ ∩ Sn+ for all
instances, Pena (2017) ended up running out of time for one instance for α = 1e-4 and α = 1e-5.

From the results for infeasible instances, we can observe the following three points. First, our method
obtained correct outputs for every instance in a short execution time. This would be because it employed
an efficient scaling and found an element of rangeA∗ ∩ Sn+. Second, the method of Pena (2017) obtained
better results when SP was used as the basic procedure. As shown in Table 8, the method of Pena
(2017) using SP as the basic procedure solved all problems and had shorter execution times than the
method using MVN. Since Pena’s (2017) method calls the basic procedure not only to find points in
kerA ∩ Sn++ but also to find points in rangeA∗ ∩ Sn++, using SP, which can update basic procedures
efficiently, is better than using MVN in terms of execution time. Third, it is not always possible to
detect infeasibility (i.e., to find a point in rangeA∗∩Sn+) in a shorter execution time when using SP than
when using MVN. In fact, according to Lourenço (2019), the execution time is shorter when using MVN
as the basic procedure than when using SP. SP is a more efficient update method than MVN in terms
of satisfying a termination criterion (the criterion for moving to scaling) of the basic procedure. On the
other hand, from the point of view of finding points in rangeA∗ ∩ Sn+, it is not possible to determine
whether SP or MVN is more suitable. Pena (2017) used SP to significantly reduce the execution time,
which is the result of updating the basic procedure for finding points in rangeA∗ ∩ Sn++ more efficiently
than MVN. Mosek obtained a point in rangeA∗ ∩ Sn++ as a feasible solution to the dual problem for all
instances. From the viewpoint of execution time, Mosek was superior to the other methods.

For the weakly feasible instances, we compared our method (Algorithm 2), a modified version with
another criteria for ε-feasibility (Algorithm 6), Lourenço (2019), and Pena (2017). The results are
summarized in Table 9. As described above, we classified the output-results into type A: an interior
feasible solution is found; type B: no interior feasible solution is found (ver.1); type C: no ε-feasible
solution is found (only for Lorenço (2019) and our methods); type D: no interior feasible solution is
found (ver.2; only for Pena (2017)); type E: Out-of-time. Note that B∗ indicates that the output was B,
but when we converted the obtained solution to a solution of D(A), it contained a negative eigenvalue
and violated the SDP constraint. Note that, due to rounding errors, the true state of each generated
weakly feasible instance is unknown, and it is impossible to determine whether the results obtained by
the algorithms are correct or incorrect. Thus, Table 9 lists the output types and average execution time
without noting which are correct.

40

Table 8: Results for infeasible instances

Algorithm 2 Lourenço (2019) Pena (2017) Mosek
Instance BP CO-ratio time(s) CO-ratio time(s) CO-ratio time(s) CO-ratio time(s)

α = 1e-1
MVN 25/25 1.23 25/25 2.37 25/25 0.79

25/25 1.22
SP 25/25 1.01 25/25 21.46 25/25 0.61

α = 1e-2
MVN 25/25 4.39 25/25 37.93 25/25 25.99

25/25 1.25
SP 25/25 3.87 25/25 62.92 25/25 1.05

α = 1e-3
MVN 25/25 5.38 25/25 61.61 25/25 61.55

25/25 1.25
SP 25/25 5.34 25/25 84.08 25/25 2.08

α = 1e-4
MVN 25/25 7.81 25/25 88.32 24/24 (20.80)

25/25 1.24
SP 25/25 7.40 25/25 98.79 25/25 33.48

α = 1e-5
MVN 25/25 9.08 25/25 76.17 24/24 (9.47)

25/25 1.24
SP 25/25 8.00 25/25 91.88 25/25 55.42

Table 9: Output types for weakly feasible instances

Method BP ν = 0.1 ν = 0.3 ν = 0.5 ν = 0.7 ν = 0.9 time(s)

Algorithm 2
MVN AAAAA AAAAA AAAAA AAAAA BBBBB 414.42
SP AAAAA AAAAA AAAAA AAAAA ABABB 226.25

Algorithm 6
MVN CCCCC CCCCC CCCCC CCCCC CCCCC 301.97
SP CCCCC CCCCC CCCCC CCCCC CCCCC 179.72

Lourenço (2019)
MVN AAAAA BB∗B∗B∗B ABAAA ABAB∗B∗ BBBBB 3512.78
SP AAAAA AAAAA AAAAA AAAAA BBBBB 1550.76

Pena (2017)
MVN EEEEE EEEEE EEEEE EEEEE EEEEE
SP AAAAA DAAAD AAAAA AAAAA DDDDD 3239.12

From Table 9, we can observe the following:

• For all the methods, the average execution time was shorter when SP was used as the basic
procedure than when MVN was used.

• All methods except Algorithm 6 sometimes obtained output type A (an interior feasible solution
is found), and Pena(2017) returned output-result D, while the obtained solution had 0 ∼ 5 nega-
tive eigenvalues (about -1e-16) and more than 20 positive eigenvalues (less than 1e-12) when we
converted it into a solution of P(A).

• Lourenço (2019) obtained output type B∗ (no interior feasible solution is found) but when we
converted the obtained solution into a solution of D(A), it contained a negative eigenvalue and
violated the SDP constraint). The obtained solution had 1 ∼ 3 negative eigenvalues (about -1e-6)
and violated the SDP constraint when we converted it into a solution of D(A).

• Our modified method (Algorithm 6) was able to determine the existence of an ε-feasible solution
for all instances. This implies that, at least for this specific set of weakly feasible instances, the
criteria focusing on the total value of the eigenvalues used in Algorithm 6 is more suitable than
the criteria focusing on the product of all the eigenvalues.

Table 10 summarizes the results obtained by Mosek. The error message “rescode = 10006” was obtained

41

Table 10: Results for weakly feasible instances with Mosek

Instance time(s) ∥A(X∗)∥2
weakly feasible 5.42 6.86e-9

Table 11: Average of the constraint residuals ∥A(X∗)∥2 of the solution X∗ obtained for the weakly
feasible instances

Value of ν Algorithm 2 Lourenço (2019) Mosek

ν = 0.1 1.28e-13 5.51e-14 1.45e-12
ν = 0.3 1.56e-13 7.04e-14 2.53e-10
ν = 0.5 1.40e-13 1.05e-13 1.29e-9
ν = 0.7 3.44e-13 1.09e-13 3.75e-9

for 22 instances, similar to the results for the strongly feasible ill-conditioned instances. Note that we
assumed that feasible solutions were obtained for all instances since the constraint residual ∥A(X∗)∥2
was as small as 1.1e-7 or less for all obtained solutions.

Note that for all problems with 0.1 ≤ ν ≤ 0.7, Algorithm 2 and Lourenço (2019) using SP for the basic
procedure returned output A, i.e., a feasible solution to the original problem. Table 11 summarizes the
accuracies of the solutions obtained with Algorithm 2, Lourenço (2019), and Mosek for all instances
with 0.1 ≤ ν ≤ 0.7. Chubanov ’s methods sometimes returned output-result type A for weakly feasible
instances, but Table 11 shows that the average accuracy of feasible solutions obtained by Chubanov ’s
methods was better than that of Mosek.

D More comparisons of the basic procedures

In section 6.1, we showed that the bound of the computational cost of our method is lower than that of
Lourenço et al. when K is the n-dimensional nonnegative orthant Rn

+ or a Cartesian product of simple
second-order cones, and that their bounds on their costs are equivalent when K is a simple positive
semidefinite cone under the assumption that the costs of computing the spectral decomposition and
the minimum eigenvalue are the same for an n × n symmetric matrix. In this section, we make more
detailed comparisons of these algorithms in terms of the performance of the cut obtained from the basic
procedure and the detectability of an ε-feasible solution. Similarly to section 7, we will refer to Lourenço
et al.’s method [10] as Lourenço (2019) throughout this section.

D.1 Performance comparison of the two basic procedures for the simple case

Here, for the sake of simplicity, we will focus on the case where the symmetric cone is simple, i.e., p = 1.
Let E be the Euclidean space corresponding to the symmetric cone K. For any given w, v ∈ E, Lourenço
et al. [10] defined vol(w, v) as the volume of the intersection H(w, v) ∩ K, where H(w, v) is the half
space given by H(w, v) = {x ∈ E | ⟨w, x⟩ ≤ ⟨w, v⟩}.

In this section, we first identify the half-space H(w, v) that will be transferred to the half-space H(e, e/r)

42

Table 12: Comparison of reduction rates of the two algorithms: Theoretical results

Basic procedure UB#iter Reduction rate

Lourenço (2019) ρ2r2max vol(w, v) =
(

rr

detw

) d
r vol(e, e/r) ≤

(
e−φ(ρ)

) d
r vol(e, e/r)

Algorithm 1 r2max/ξ
2 vol(w, v) =

(
ξN
) d

r vol(e, e/r)

after scaling and then find the constant rate ∈ R that satisfies vol(w, v) ≤ rate× vol(e, e/r), so that we
can compare the proposed method and Lourenço (2019). The proposed method and Lourenço (2019) use
the basic procedure results to narrow down the original problem’s feasible region. It can be interpreted
that the algorithm becomes more efficient as the constant rate ∈ R (indicating how much vol(w, v) is
reduced compared with vol(e, e/r)) gets smaller. In what follows, we call the constant rate ∈ R the
reduction rate.

Section D.1.1 derives the reduction rate of the proposed method and section D.1.2 that of Lourenço
(2019). The results in these sections are summarized in Table 12, where the “UB#iter” column shows
the upper bound on the number of iterations required in the basic procedure. The “UB#iter” of
Lourenço (2019) comes from Proposition 14 of [10] (where the authors showed their result by substituting
ρ = 2), whereas that of Algorithm 1 comes from Proposition 4.4 with ℓ = 1. The “Reduction rate” of
Lourenço (2019) comes from Theorem D.2, whereas that of Algorithm 1 comes from (33) with (w, v) =
(Qg−1(e), Qg(e)/r). By setting ρ = 2 and ξ = 1/2, the two bounds in“UB#iter” have the same value;
in this case, the reduction rates turn out to be

Lourenço (2019):

(
rr

detw

) d
r

≤
(
e−φ(2)

) d
r ≃ (0.918)

d
r , Algorithm 1:

(
ξN
) d

r ≤
(
1

2

) d
r

.

The above comparison indicates that Algorithm 1 is superior to the basic procedure in [10] in terms of
the reduction rate of the feasible region.

D.1.1 Theoretical reduction rate of Algorithm 1

Suppose that Algorithm 1 returns a result such that there exists a nonempty index set I ⊆ {1, . . . , r}
with |I| = N for which

⟨ci, x⟩ ≤

{
ξ i ∈ I

1 i /∈ I
(31)

holds for any feasible solution x of PS∞(A), where {c1, . . . , cr} are primitive idempotents that make up a

Jordan frame. Note that Algorithm 1 employs the scaling x̄ = Qg−1(x) with g−1 = 1√
ξ

∑
i∈I ci+

∑
i/∈I ci.

Let us find w, v ∈ E which satisfy

H(e, e/r) = Qg−1 (H(w, v)) . (32)

Since (32) and the scaling x̄ = Qg−1(x) imply that

H(w, v) = Qg (H(e, e/r))

= {Qg(x̄) ∈ E | ⟨x̄, e⟩ ≤ 1}
= {Qg(x̄) ∈ E | ⟨Qg(x̄), Qg−1(e)⟩ ≤ 1}
= {x ∈ E | ⟨x,Qg−1(e)⟩ ≤ ⟨Qg−1(e), Qg(e)/r⟩ = 1},

by setting w = Qg−1(e) and v = Qg(e)/r, we find that the half space H(w, v) is transformed to H(e, e/r)
after the scaling. Since Qg−1(e) ∈ intK, we can apply the following proposition to w = Qg−1(e).

43

Proposition D.1 (Proposition 6 of [10]). Suppose that w ∈ intK. Then,

Q
w−1/2

√
⟨w,v⟩ (H(e, e/r)) = H(w, v),

vol(w, v) =

(
⟨w, v⟩
r
√
detw

)d

vol(e, e/r).

Using the above proposition and the assumption |I| = N for the set I in (31), we can see how the volume
vol(Qg−1(e), Qg(e)/r) of H(Qg−1(e), Qg(e)/r) ∩ K decreases compared with vol(e, e/r):

vol(Qg−1(e), Qg(e)/r) =

(
1

r
√

detQg−1(e)

)d

vol(e, e/r)

=

 1

r

√
1
ξN

d

vol(e, e/r) =
(
ξN
) d

r vol(e, e/r). (33)

D.1.2 Theoretical reduction rate of the basic procedure of Lourenço (2019)

The following theorem gives the reduction rate of the basic procedure of Lourenço (2019).

Theorem D.2 (Theorem 10 of [10]). Let ρ > 1 and y ∈ K \ {0} be such that FPS1
(A) ⊆ H(y, e/ρr). Let

β = r −
(

1
ρ −

1√
ρ(3ρ−2)

)
, w = r−β

⟨y,e⟩ρry + βe, v = w−1. Then, the following hold:

1. FPS(A) ⊆ H(y, e/ρr) ∩H(e, e/r) ⊆ H(w, v)

2. Q√
rw−1/2 (H(e, e/r)) = H(w, v)

3.

vol(w, v) =

(
rr

detw

) d
r

vol(e, e/r) ≤ (exp (−φ(ρ)))
d
r vol(e, e/r)

where φ(ρ) = 2− 1
ρ −

√
3− 2

ρ . In particular, if ρ ≥ 2, we have vol(w, v) < (0.918)
d
r vol(e, e/r).

D.1.3 Comparison of reduction rates of the two algorithms in numerical experiments

To confirm whether similar reduction rates are observed numerically, we conducted an experiment where
we used our method (Algorithms 4 and 6) with ξ = 1/2 and Lourenço (2019) with modified von Neumann
scheme to solve a weakly feasible instance with ν = 0.1. At each iteration of the main algorithms, we
recorded the value of rr

detw of Lourenço (2019) and the value of ξN of our method and computed the
reduction rates of the search region. The results are summarized in Table 13.

The “#iter of M-A” column shows the number of iterations of the main algorithm. The “Average
reduction rate” column shows the average value of rr

detw for Lourenço (2019) and the average value of
ξN for our method (Algorithms 4 and 6). The “Final reduction rate” column shows the value

rkr

detw(1)× detw(2)× · · · × detw(k)

44

Table 13: Comparison of reduction rates of the two algorithms: Numerical results

Algorithm #iter of M-A Output Average reduction rate Final reduction rate
Lourenço (2019) : BP = MVN 3060 A 0.864 3.86e-195

Algorithms 4 and 6 618 C 0.357 9.11e-305

for Lourenço (2019), where w(k) denotes w computed from the result of the basic procedure at the k-th
iteration of the main algorithm, or the value

ξN1+···+Nk .

for our method (Algorithms 4 and 6), where Nk denotes the number of cuts obtained from the basic
procedure at the k-th iteration of the main algorithm.

Here, we observed that our method (Algorithms 4 and 6) terminated at the 618-th iteration of the main
algorithm with a reduction rate of 9.11e-305, while Lourenço (2019) attained a reduction rate of 5.88e-40
at the same iteration of the main algorithm.

D.2 Detection of an ε-feasible solution

Here, we discuss the capabilities of our method and Lourenço (2019) at detecting an ε-feasible solution.
Both methods terminate their main algorithms by detecting the existence of an ε-feasible solution. We
compared them by computing the reduction in log (λmin(xℓ)) per iteration for parameter settings in
which the maximum numbers of iterations of the basic procedures would be the same (i.e., ρ = 2 in
Lourenço (2019) and ξ = 1/2 in our method).

In [10], for each block ℓ, Lemma 16 ensures that log (λmin(xℓ)) is bounded from above by ϵℓ, and

Theorem 17 ensures that ϵℓ decreases at least φ(ρ)
rℓ

> 0 if a good iteration is obtained for the block ℓ.

For our method, Proposition 5.1 ensures that log (λmin(xℓ)) is bounded from above by numℓ

rℓ
log ξ and

Proposition 5.2 ensures that numℓ

rℓ
log ξ decreases − 1

rℓ
log ξ > 0 in the same situation. By substituting

ρ = 2 and ξ = 1/2 into φ(ρ) and − log ξ so that the upper bounds for the numbers of iterations of the
basic procedures are the same, we obtain

φ(2) = 2− 1
2 −
√
2 ≃ 0.085786, − log 1

2 = log 2 ≃ 0.693147

which implies that the rate of reduction in the upper bound log (λmin(xℓ)) of our method is greater than
that of Lourenço (2019).

45

	DP表紙1378.pdf
	Discussion Paper Series
	No.1378
	UNIVERSITY OF TSUKUBA

	DPS1378_KanohYoshise.pdf

