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Abstract 

In this study we present methods for processing of the biomedical information that take into 

consideration the limitations, unique characteristics and challenges of this field. One of the common 

routines of biomedical information analysis is the detection of extrema points within the data. For 

that, we proposed a method called Sequential Desmoothing Extremum Tracking (SDET). This algorithm 

allows for the automatic detection of the extrema points of quasi-periodic, noisy signals. The approach 

is robust and insensitive to noise or variations of the signal’s cycles. This method was shown to work 

reliably on different types of biomedical signals, provided the correct subroutines. Additional 

dedicated solutions were proposed for obstacle avoidance strategy assessment in the study of human 

gait. Gait Related Potential (GRP) variability assessment procedure named Amplitude Pattern 

Variability (APC) was presented in gait assessment using electroencephalography (EEG). A novel 

algorithm called Cumulative Curve Fitting Approximation (CCFA) is presented for missing samples 

approximation, resampling and signal filtration. It was used in a study of human gait for accurate 

approximation of the missing samples within the recorded data. When compared to the conventional 

methods, CCFA’s performance was more accurate by a large margin. Just like SDET, it was shown to 

work accurately on different types of biomedical signals. In the study of human brain using fNIRS 

technology, CCFA based filtering provides a robust and reliable solution for the removal of the time-

dependent first statistical moment (i.e. signal drift). For the removal of high-frequency contamination 

sources, Intrinsic Component Filtering (ICF) method was developed. ICF uses Empirical Mode 

Decomposition (EMD) that was presented in Hilbert-Huang Transform (HHT) as its core to avoid any 

stationarity assumptions. The performance of these filtering techniques was assessed using simulated 

short-Hemodynamic Response Function’s (sHRF) signals. The comparison demonstrates that CCFA and 

ICF decouple the simulated sHRF from the noise with a higher fidelity and Signal to Noise Ratio (SNR) 

in comparison to Discrete Cosine Transform (DCT) and spectral based filtering as proposed in the 

widely used NIRS-SPM toolbox. Artifact detection methods: Maximal Variability Expectation (MVE), 

Cross Segment Validation (CSV) and spike detection using the 3 scaled Median Absolute Deviations 

(sMAD) away from the median, outlier detection are proposed. MVE is shown to be able to detect 

coupling artifacts within the fNIRS data with a very high accuracy. CSV provides a reliable detection of 

motion artifacts. sMAD based detection of the outliers together with MVE and CSV provides a full 

integrity map of the recorded data. The integrity map shows the quality of the recorded data in regard 

to artifact occurrences as well as providing their exact locations within the signals. 

 

Keywords 

Biomedical Signals, CCFA, DCT, Detrending, EEG, EMD, Extrema Detection, fNIRS, Gait Analysis, GLM, 

HRF, Missing Data, Noisy Signals, non-Stationary Signals, Quasi-Periodic Signals, SNR. 
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Introduction 

General 

The field of information processing and analysis is very broad. It overlaps with countless of other fields, 

for example: Electrical Engineering, Communications Engineering, Biomedical Engineering, Smart 

devices/vehicles/houses, and many more. Temporal information is one of the main types of assessed 

information since every action, sampling procedure or state can be observed in time to understand its 

behavior and patterns. Understanding how a certain process behaves in time can teach us many things 

about the nature of that process. This, in turn will allow us to better understand the phenomena that 

the process originated from. Understanding the natural phenomena allows us to use that knowledge 

to improve our technologies in the related fields. In most cases of quasi-periodic and state-based 

phenomena it is possible to predict future behavior and states to come. Being able to accurately 

predict future behavior of the phenomena, allows us to prepare in advance and use it for our purposes. 

It should be noted that the methods for processing and analysis of temporal information are applicable 

for many other, not temporal types of information. For example, methods used in multi-dimensional 

signal processing can be applied for temporal information as well as for spatial information processing, 

or at that point, for any process that has at least one dependent and one independent variable. The 

field of computer vision is a good example of information that can be treated as a multi-dimensional 

signal. The image can be seen as a collection of samples of a 2-dimentional function, where the 

coordinates of a pixel are the independent variables, while the value (or vector of values) of that pixel 

is the dependent one. Following this logic, video becomes a temporal information possessing one 

more independent variable which is time. This shows how broad this field is and how many different 

applications there are for the methods developed in this field. 

Biomedical field has a long history and is quickly progressing. Nowadays, most of the information 

collected for biomedical purposes is digital and a lot of efforts are made to digitalize the information 

collected before global digitalization took place. The reason for wanting to digitalize every bit of 

information is the ability to quickly process and analyze it using advanced technologies and state of 

the art algorithms. The utilization of modern technologies and advanced methods allows to study 

phenomena faster and more accurately, in turn allowing for faster and more accurate disorder and 

disease diagnoses and treatments. The knowledge and understanding of certain phenomena, may not 

only help to improve the treatment, but also allow for preventive procedures to take place. The vast 

majority of the information collected in the biomedical field is temporal. This is due to the fact that 

almost all biological processes are time dependent, thus the best way to understand them is to analyze 

their behavior in time. A large number of biomedical information sources are also quasi-periodic. Thus, 

the usage of techniques dedicated to quasi-periodic information analysis is also important. Most of 

the processes in this field are non-stationary. Non-stationarity increases the complexity of the 

processing and analysis stages. Therefore, in order to achieve high accuracy, reliable results, it is 

essential to use non-stationary and in some cases non-linear methods. 

Information processing and analysis is very important and unavoidable field for improving our 

knowledge, understanding, and as a result, our technologies. It is being widely studied in every corner 

of the globe, by countless researchers, scientists and engineers. Every day, new discoveries are made, 

novel methods are developed and modern technologies are utilized to collect, process and analyze 

information from various sources and fields. Among those fields, biomedicine is one of the leaders in 

terms of interest, information accumulation and funding. This is because biomedicine is directly 

related to the wellbeing, life span and the quality of life of people, animals and other lifeforms. Thus 
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making it one of the most important fields for research. For many years, biomedicine was mainly 

researched by people who specialized in medicine, biology or alike. Today, in the era of digital 

technologies, this field is changing drastically. Mathematicians, engineers and other exact sciences’ 

specialists widely research the field, introducing new ideas, methods and solutions for processing and 

analysis of the biomedical information. This already broad and complicated field is becoming even 

larger and more complex than ever before. The multi-disciplinarity of the modern-day biomedicine 

requires specialists from various disciplines to work together. That said, at this time, the majority of 

researchers in the field, come from biomedicine related backgrounds. The community of exact 

science’s specialists working in this field is still comparably small, even though it is growing rapidly. 

This leads to the circumstances where biomedicine specialists have to learn fields like engineering and 

mathematics, for example, to perform a reliable and advanced research in the field. Sometimes, it 

leads to incorrect usage of some methods. In some extreme cases, those methods can even become 

a “gold standard” for some procedures, even though there are major fundamental issues in their 

applications. A good example of misused approaches is the usage of methods that assume stationarity 

of the process, being used on a non-stationary process. Sometimes, it may produce some meaningful 

results and even progress the field, while in others it may completely distort the results and 

conclusions of the study. It is important to fully understand the limitations and the advantages of each 

method in order to use them properly. The commonly used approach of referencing a successful usage 

of a method in a similar study to justify its use in another one, may not always be correct when dealing 

with complex biological systems and advanced algorithms. In the field of biomedicine, it is important 

to understand when and how to use the methods, and to understand the unique characteristics of the 

biomedical information. Therefore, it is essential to consult and collaborate with specialist from both 

spheres (biomedicine and exact sciences) in order to provide robust and reliable solutions. 

 

Background 

Today, in the digital era of biomedicine, information processing and analysis methods are drastically 

changing. Thanks to the advanced computational abilities of modern technologies, digital data analysis 

provides more accurate and reliable results much faster than before. It allows the biomedicine 

specialists to reach conclusions and to accumulate knowledge very quickly. Digital information 

processing and analysis methods are playing a big role in the progress of biomedical field, since a large 

portion of the biomedical data is in digital form. Processing and analysis tools, methodologies and 

algorithms from many fields are quickly adopted into the field of biomedicine. Though the adaptation 

of new techniques is essential for the growth of the field, it also brings its own issues with it. It is not 

uncommon to see exact sciences’ specialists using methods that neglect certain biomedical factors or 

biomedicine specialists using models that are not suitable for the task. 

The aim of this study is to develop methods dedicated to processing and analysis of the biomedical 

information. By involving specialists from the relevant fields, we aim to provide solutions for 

biomedical information analysis issues while taking into consideration the limitations of both 

biomedicine and exact sciences. Many of the algorithms currently used in the field are general purpose 

solutions that are not designed with biomedicine as their primary use. When used correctly, those 

methods indeed, provide good quality results. That said, just like in many other fields, solutions that 

are designed specifically for biomedical engineering, usually provide better results. That is also true if 

those methods are applicable as general-purpose solutions. Methods from other fields can and should 

also be used in the field of biomedicine. However, it is important to adapt them to the unique qualities 
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of the biomedical information. Which is one of our tasks as well. By properly adopting and integrating 

the methods from other fields, we further contribute to the growth of the biomedical field. 

 

Gait Analysis 

Gait abnormalities and falls are omnipresent among older adults and patients with common 

neurological diseases. In fact, more than twenty percent of older people worldwide fall every year [1]. 

Although falling once increases the chances of falling again [2], only one of two older subjects report 

the fall to their doctor [1]. Based on these statistics, it is evident that studying the risks of falls among 

older adults and methods to reduce those risks is an important task. Advancements in this field may 

significantly improve the quality of life of people with gait abnormalities. 

Gait assessment is an important component of both neurologic and orthopedic examinations. Visual 

gait analysis provides significant contribution to the diagnosis of neuromuscular disorders, treatment 

planning and follow-up. However, three-dimensional motion of the lower limb segments during 

walking cannot be visually observed simultaneously in all planes. 3D motion analysis systems have 

been used to overcome these and other limitations of visual gait assessment. These systems present 

extracted gait cycle parameters in the form of graphs for the use of clinicians with knowledge about 

functional anatomy, neural control of locomotion, muscle and motion mechanics, and kinesiological 

electromyography to interpret these data [3]. 

Quantitative gait analysis while walking on a treadmill was reported in several studies ([4]–[7]). The 

advantage of this approach is the possibility of controlling speed and environmental factors. In recent 

years, there has been a growing interest in studying kinematic patterns, features and alterations of 

gait while walking on a treadmill ([8]–[11]) using measuring devices, sensors and video logging. One 

of the main interests is to test the putative effect of integrating treadmill training with a virtual reality 

environment on gait performance ([12]–[14]). V-TIME is a treadmill-training program augmented by 

virtual reality (VR) to decrease fall risk in older adults [15]. This program provided evidence to the 

added value of VR treadmill-training to address motor-cognitive interactions [15] and advantage in 

reducing falls and fall risk as compared to treadmill training alone ([16], [17]). However, the patterns 

of gait improvement while walking on the treadmill were not evaluated as of yet. 

In order to study gait performance, in general, and gait improvement, in specific, kinematic properties 

should be extracted and analyzed. Extremum detection is essential for many applications including 

gait analysis. There are many algorithms for detection of local extremum, however, some of them are 

not suited for noisy and/or quasi-periodic signals ([18], [19]), while others usually require many input 

parameters or are restricted to a very specific type of signal ([20]–[22]). Scholkmann et al. [23] tackled 

that problem and have reported reasonable results. A major limitation of their suggested algorithm is, 

however, that it is very dependent on the signal’s average period and does not have the flexibility to 

choose which wave pattern to track. In other words, it provides the extrema locations only of the most 

frequent waveform. Furthermore, Scholkmann et al. [23] made an assumption about a frequency 

range, which may be incorrect in some particular cases. Du et al. [24] propose a continuous wavelet 

transform-based pattern matching algorithm that they used for peak detection in mass spectrum, but 

it can also solves a variety of other, more general, peak detection problems. On one hand, this 

algorithm requires an approximation of a waveform to be detected and a few thresholds that may be 

hard to approximate, on the other hand, if provided with accurately approximated parameters, 

produces very promising results. Du et al. [24] present a method that is not restricted to quasi-periodic 
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signals, but at the same time is less flexible in cases that were present in our data, where a system 

error would split a wave form into two similar waves. In such case, the algorithms proposed by Du et 

al. [24] would either not detect a peak in that period or detect two peaks instead of one, depending 

on the predetermined parameters. 

In order to study the changes of gait due to obstacle avoidance task, automatic detection of change 

in walking pattern is essential. For such, signal segmentation methods can be used. Signal 

segmentation techniques that are based on abrupt changes in the signal [25] are well suited for the 

detection of step above obstacle, but are less reliable when trying to detect preparation and recovery 

in obstacle avoidance process, especially when a treadmill based system is used. This is due to a 

constant pace dictated by the treadmill making the changes in the walking pattern more meager. 

Methods utilizing the changes in signal power [26] are affected by the time-dependent changes in the 

first statistical moment (time-dependent expectancy or time-dependent first statistical moment). 

Though it can be removed, doing so would affect the behavior of the signal indicating the preparation 

and recovery related to obstacle avoidance. Hence, resulting in inaccurate segmentation. Preparation 

and recovery phases near the obstacle have overlapping characteristics with the drift of the signal 

itself, thus cannot be separated. Wavelet based algorithms [27] can be a powerful tool when a sudden 

change occurs in frequency pattern. In our case, the frequency patterns in close proximity to the 

obstacle may change significantly, but preparation and recovery regions are not affected as much and 

can be almost undetectable using these techniques. 

For several reasons some sampling systems experience data loss while recording. Unfortunately, the 

system used in this study was no exception. To improve the quality of assessment, the missing 

information should be restored or approximated when possible. Commonly used methods for 

approximation of missing samples are interpolations. The most basic approach is to perform a Linear 

or Spline Interpolation [28]. Although this approach is frequently used, the accuracy of its results is 

usually dependent on a type of the signal and its patterns. Auto Regressive (AR) models [29] tend to 

be more robust to the type and structure of the signal. They usually provide more accurate results 

than Interpolation methods, thus they are also popular for missing data approximation. 

To accommodate for the issues explained above, two general purpose methods and one tailormade 

solution were developed. Algorithm named Sequential Desmoothing Extremum Tracking (SDET) ([30], 

[31]) was proposed as a solution for peak detection within noisy, quasi-periodic data. The procedure 

presented in [30] was adjusted to the specifics of the data collected from V-Time system. A 

combination of signal segmentation technique and a kernel-based clustering method was proposed 

for the detection of the preparation and recovery phases, as well as for the detection of abnormal 

steps related to obstacle avoidance task. Missing samples approximation method named Cumulative 

Curve Fitting based Adjustment (CCFA) [30] was also presented. In the following studies, as well as in 

this work, this method is called Cumulative Curve Fitting Approximation (CCFA). The experimental 

research was funded by the European Commission and done in collaboration between multiple 

research institutions worldwide. The developed algorithms and solutions were developed based on 

the needs and requirements of Tel Aviv Sourasky Medical Center’s: Center for the study of Movement, 

Cognition and Mobility (CMCM), Department of Neurology in Israel and were used by their researchers 

to process and analyze the collected data. 
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Gait and the Brain 

Gait is one of the keys to functional independence. Walking is achieved by coordinated movements of 

body segments while integrating external and internal factors. It is now well established that gait is 

controlled and defined by higher cognitive processes involving complex neural networks that 

incorporates sensory information with motor adaptation ([32], [33]). Hausdorff et.al. [34] and Yogev-

Seligmann et.al. [35] show that adding a simultaneous task to walking taxes executive function and 

attention, and leads to changes in gait performance. This effect is exacerbated with ageing and 

neurodegenerative diseases such as Parkinson’s Disease (PD) ([33], [35], [36]), and is related to falls 

[36] providing indirect evidence of the importance of the interconnection between motor and 

cognitive functions during walking. 

In recent years, various neuroimaging techniques were used to study the role of cognitive resources 

during walking. fMRI studies used motor imagery ([37], [38]) and alternating movements of feet ([39], 

[40]) to mimic gait in the scanner. These studies reported increased activation in various frontal 

regions related to the attentional networks ([37], [38], [40]), however the findings are limited as they 

do not directly capture actual gait. Recent studies using functional Near Infrared Spectroscopy (fNIRS), 

a neuroimaging technique measuring blood oxygenation levels from the brain convexity during actual 

walking, showed increased activation of the prefrontal cortex in healthy young and older adults during 

dual task walking, as compared to usual walking ([41]–[43]). Patients with PD presented similar 

findings but also showed increased activation already during usual walking [44] suggesting a reliance 

on cognitive resources already during simple tasks. However, similar to fMRI, the temporal resolution 

of the fNIRS is low and it measures hemodynamic responses only in specific superficial areas of interest, 

unable to distinguish isolated effects from network function [45]. 

Spontaneous electroencephalographic (EEG) recording as well as event-related potentials (ERPs) are 

direct measurements of neuronal activity, with high temporal resolution, that can be applied during 

walking. In recent years, the use of EEG to explore the neural mechanism of gait is starting to emerge 

([46]–[49]). The high temporal resolution of EEG allows for the assessment of the coupling between 

gait cycle phases and electrical activity, and reveal the neurophysiology of gait. Most studies utilized 

Event Related Spectral Perturbation (ERSP) to identify alterations in the EEG oscillations of different 

frequency bands during a gait cycle ([46]–[49]). The main finding was that neural oscillations of alpha, 

beta, and gamma frequency bands are modulated and time locked to gait cycle phases in specific brain 

areas such as the sensorimotor cortex and the supplementary motor cortex ([46], [48], [50]).  

Variations in ERP responses including amplitude, polarity, distribution, and latency have been 

associated with various cognitive measures ([51]–[53]). Changes were mainly observed in P300, the 

most studied ERP related to attention and cognitive decline, elicited using the ‘‘oddball” task. Task in 

which a random sequence of stimuli is presented and subjects are required to mentally count the rare 

target events [54]. Accumulating evidence from EEG and fMRI studies show that P300 generation 

stems from the connection between frontal lobe and hippocampal/temporoparietal function ([55]–

[57]). It has been suggested that frontal areas account for the attention mechanism that directs neural 

responsivity to a new stimulus ([58], [59]), whereas the tempo-parietal regions correspond to the 

attentional resources used to maintain memory entries ([55], [60]). Patients with PD have decreased 

P300 amplitude and increased peak latency during sitting tasks as compared to healthy older adults 

and as the severity of cognitive dysfunction increases [61]. Although these changes in P300 were highly 

sensitive to cognitive decline and attentional impairments [62], they were also observed in other 

pathologies such as Alzheimer’s disease [63] showing low specificity. 
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In our study [64], we combined the oddball task with walking to evaluate the dual-task effect of an 

attentional demanding task while walking in healthy young adults, healthy older adults and patients 

with PD. Using this approach, we aimed to reveal specific changes in P300 while walking and dual-

tasking in older adults and patients with PD. The high temporal resolution EEG findings provide an 

additional layer to our knowledge regarding executive function deficits in aging and PD demonstrating 

new direct evidence of the physiological recruitment of attentional networks during walking and their 

impact by ageing and disease [64]. ERP is a direct measurement of neuronal activity that is commonly 

used in neurocognitive science. Variations in ERP responses including amplitude, polarity, and latency 

have been associated with various motor and cognitive impairments ([51], [53], [65]). This approach 

can also be applied to gait analysis and variations in ERPs of a gait cycle can be measured to evaluate 

motor and cognitive interactions, aging and dual tasking [31]. There are no reports of work examining 

ERPs during a gait cycle but as gait is an automatic learned function, one would expect that it would 

generate a specific electrical potential that will have a recognized pattern similar to that of cognitive 

response [31]. The studies used EEG to explore the effects of dual tasking on electrical activity mainly 

concentrate on attention and cognitive decline elicited during "oddball" and "visual Go-NoGo" tasks 

([64], [66]). Relative delay and attenuation of these ERPs were observed during walking compared to 

standing in young and older adults ([64], [66]). These findings suggest that walking increases the 

motor-cognitive load that in turn reduces the attentional processing speed and prolongs latency [64]. 

However, changes in the electrical pattern induced by a cognitive task performed during gait have not 

been evaluated. It is most likely that activation of neural networks associated with the cognitive task 

will interact with motor networks that elicit the electrical pattern of gait [31]. 

To evaluate the dual-task effect of an attentional demanding task while walking, we combined the 

oddball task with walking and assessed the ERP measurements [64]. Next, we explored the 

stereotypical electrical brain pattern during gait cycle, Gait Related Potential (GRP), and investigated 

the effects of aging and a secondary attentional, dual task on this pattern [31]. One of the main 

challenges when assessing GRP is the strong noise resulting from motion. The conventional methods 

of assessment provide faulty results due to being overwhelmed by these noise. Algorithm SDET ([30], 

[31]) was used to overcome the noise interference when detecting GRPs and evaluating their 

parameters. A new analysis procedure named: Amplitude Pattern Consistency (APC) [31] was 

proposed for comparison of different subject groups. This research was conducted in collaboration 

with Tel Aviv Sourasky Medical Center’s: Laboratory for Early Markers of Neurodegeneration (LEMON) 

in Israel. All of the solutions were developed in respect to the requirements set by the researchers 

from the medical field and used by them for the processing and analysis of the collected data. 

 

Brain Research 

Near infrared spectroscopy (NIRS) is used to study variations in cerebral hemodynamics and oxygen 

saturation during predetermined tasks and at rest [67]. During the past three decades, functional NIRS 

(fNIRS) has shed light on the hemodynamic response to cognitive, visual and motor tasks, as well as 

assessed hemodynamic connectivity (sometimes referred to as functional or resting state functional 

connectivity) ([68], [69]). However, despite an extensive research activity by hundreds of researchers 

([45], [70]), there are currently no widely accepted clinical applications, based on fNIRS, that enable 

diagnosis or monitoring of brain health or disease. One of the reasons for this is the lack of accepted 

protocols and algorithms that outline the required preprocessing steps and pipeline for analyzing 

fNIRS signals, as are available for functional Magnetic Resonance Imaging (fMRI)[71]. 
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NIRS measurements are based on detection of red and near-infrared light that travels through 

perfused tissue. Light is introduced through the skin, and scattered light is collected at a certain 

distance from the emitting source. The distance between the emitter and collector (or detector) 

determines the path through which the collected light travels. In order to reach the cerebral 

vasculature, the emitter-collector separation should be larger than 2.5cm in adults [67]. The detected 

signal is affected by the coupling of light into and out of the tissue. This coupling is affected by hair 

follicles, sweat and movement of the emitter or the collector. Changes in this coupling affect the 

signal’s quality. In addition, as the light travels through extracerebral layers on its way in and out of 

cerebral layers, changes in blood flow and oxygen saturation within the extracerebral vasculature are 

picked up during collection and may contaminate the cerebral related hemodynamic response. 

Consequently, preprocessing methods should focus on reducing the effect of physiologic and 

extracerebral contamination on the collected signals. Such preprocessing methods should be robust 

enough, but also sensitive enough, such that cerebral hemodynamics are correctly identified and 

analyzed. Some of the mixed interferences are quasi-periodic, while others are completely random, 

thus increasing the complexity of the task. These temporal information sources are mixed together in 

the recorded signals. Since many of such sources are non-stationary, it is important to use suitable 

methods in order to receive reliable results. 

The goal of our study is to develop robust methods for preprocessing fNIRS signals that can be 

automatically applied to any fNIRS data and provide a comprehensive approach for analysis. 

Identifying artifacts that result from coupling issues is an important task that should be performed 

early on in the processing pipeline to assure that those artifacts don’t affect the received results and 

conclusions. The contamination of the Hemodynamic Response Function (HRF) by extra-cerebral 

sources is heavy and leads to Signal to Noise Ratio (SNR) of the HRF being negative. In addition to 

severe contamination of the information function, it is also a non-stationary process. Meaning that 

the filtration of the signals should be carefully designed taking those factors into account, since some 

solutions may create a severe distortion of the information function. Although this temporal mixture 

of many sources is quasi-periodic, due to strong contribution of cardiorespiratory source, the brain 

hemodynamics do not necessarily have any type of periodicity. 

In most NIRS systems, light is coupled into and out of the tissue using optical fibers, lenses or light-

guides [72]. These coupling elements are positioned in close contact to the skin, which has a different 

index of refraction. In addition, hair follicles, sweat or debris also affect the coupling efficiency. Most 

commercial NIRS systems analyze the detected light intensity, and the level of noise in order to 

determine coupling efficiency and identify Noisy Channels (NCs). It is clear that low light levels will 

result in a poor signal and low SNR. However, there are additional features of the signal that can 

indicate whether the coupling efficiency is adequate. 

As red and near infrared light travels through the tissue, it is mainly absorbed by the hemoglobin 

chromophores (mainly oxygenated and de-oxygenated hemoglobin). Their concentration is 

modulated by the dilation and constriction of the arterial blood vessels during the cardiac cycle. This 

modulation is manifested by a clear peak in the power spectra of the detected light intensity (or in the 

calculated chromophore concentrations), at the cardiac rhythm. The modulation is missing in the case 

of poor coupling, as the light travels outside the tissue. Several groups have identified this modulation 

as a feature for determining coupling efficiency ([73], [74]). In addition to cardiac modulation of the 

signal, respiration and blood pressure modulation also affect the detected signals [75], we therefore 

collectively call these noise sources “cardio-respiratory” sources. 
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As the optical elements are in free contact with the skin, any relative movement between them results 

in an artifact. Such artifacts may exhibit a sharp change (spike). In addition, slow movements, due to 

drift or shifts in the coupling of the optical elements are also apparent. There are several approaches 

for identifying these events, some examine the individual channel and determine whether and when 

a motion artifact occurs ([76], [77]) while others look at the collective dynamics of all channels and 

analyze their statistics ([78], [79]). Different strategies, ranging from spline interpolation [76] to 

wavelets [79] have been recently described for reducing the effect of motion artifacts on the detected 

data. 

The low frequency trend, or drift, in the recorded signals is observed in the majority of physical or 

natural processes. Such temporal processes are stochastic by nature, thus it is logical to use the field 

of probability and statistics when processing and analyzing these types of data. Therefore, the trend 

or drift can be regarded as a time-dependent first statistical moment. Whereas cases with a constant 

offset (instead of a changing trend) demonstrate time-independent first statistical moments. The 

definition of Wide Sense Stationarity (WSS) demands the first two statistical moments to be time 

independent. Hence, the signals with a drift are automatically labeled as non-stationary. That said, in 

many cases, the non-stationarity resides mainly in the first statistical moment, thus if removed, the 

signals may become stationary. Even though it is extremely hard, and in some cases not possible, to 

remove the time dependency of the second statistical moment, it is still highly recommended to 

remove the time-dependent first statistical moment. The resulted signals will still remain non-

stationary, but the effect of the non-stationarity on the processing and analysis tools’ performance 

will be significantly reduced. 

In order to extract the hemodynamic changes that are related to neuronal activity from the detected 

signal, the contribution of systemic physiological sources, should be identified and reduced. Open-

source tools for fNIRS analysis, like HOMER 2&3 [80] or SPM-fNIRS [81], use bandpass filtering to 

reduce the effect of the cardiac and respiratory dynamics. Recent, more sophisticated approaches 

include using short-separation channels (using a shorter distance than 2.5cm between the emitter and 

collector) that collect light from superficial layers that are not related to cerebral hemodynamics ([82], 

[83]). Alternatively, Principal Component Analysis (PCA)[84] or targeted PCA [85] and other filtering 

techniques including wavelets [85], have been proposed to remove the effect of physiological sources, 

in the absence of a short-separation signal. 

There is currently no accepted gold standard for evaluating the efficiency and quality of different 

filtering techniques for removal of physiological sources or motion artifacts. Pinti et. al. [86] have 

recently reviewed common filtering techniques, and have compared their performance using artificial 

data combined with real NIRS data acquired during rest. The outcome of different filtering techniques 

was evaluated in the framework of a General Linear Model (GLM). Yet, it is still unclear which 

processing procedure is the optimal one. If we assume that the cardio-respiratory, physiologic, noise 

sources are quasi-periodic and stationary, then simple band-pass filtering can remove their 

contributions. However, simple band-pass filtering, and even more elaborate wavelet-based filtering 

of the NIRS signal, fail to remove all of the physiologic contributions. This is demonstrated in the high 

correlation between different NIRS channels during rest [68]. Empirical Mode Decomposition (EMD), 

is an empirical method for processing non-stationary signals [87]. It has been used extensively for 

filtering EEG signals and removing common noise sources [88]. We’ve applied this filtering method to 

NIRS signals and compared its output to that of wavelet filtering [89]. This technique has also been 

applied to NIRS signals in order to extract the cardiac component of the signal [90] and motion artifact 

correction [91]. EMD decomposes the signal into Intrinsic Mode Functions (IMFs), that are extracted 
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using the formulation of Huang [87]. Each IMF contains a certain source that was mixed in the signal, 

therefore the decomposition allows for independent processing of signal’s source components. 

To address the challenges of fNIRS processing we developed methods for artifact detection and 

filtering of the signals. The NCs detection algorithm, called Maximal Variability Expectation (MVE), 

looks at the statistical distribution of a random parameter representing the behavior of variance 

within the signals, and compares it between the recorded signals. Our underlying assumption is that 

efficient coupling is demonstrated by a strong cardio-respiratory component in the signals. 

Consequently, noisy channels introduce an increased skewness of the Probability Mass Function (PMF) 

of the calculated random variable, similarly to the idea presented in [85], where wavelet coefficients 

were assessed using kurtosis. Therefore, noisy channels are identified as the ones that increase the 

skewness of the PMF above the predefined threshold. The motion artifact detection algorithm, called 

Cross Segment Validation (CSV), is aimed at identifying substantial motion artifacts, that result in a 

large variability between channels during a relatively short period of time. We start by identifying a 

minimal variability section to serve as a reference segment. The potential artifact segments are then 

compared to this reference based on two parameters extracted from the data of the individual subject. 

Periods with higher variability than a fixed threshold are identified as artifacts. The recorded fNIRS 

signals have quite significant drifts that hold no value regarding the information of the brain 

hemodynamic activity. Therefore, the detrending procedure is commonly done at the early stage of 

the processing to remove the time-dependent first statistical moment. The common methods of 

detrending include High-Pass Filter (HPF)[86] and Discrete Cosine Transform (DCT)[81]. The CCFA 

algorithm [30] was initially developed for high accuracy filtration and missing samples approximation. 

It was shown that this algorithm can reconstruct the missing information from the surrounding 

samples with an exceptionally high accuracy. Therefore, we decided to use CCFA algorithm [30] with 

some adaptations. CCFA is a non-stationary, non-linear method of data filtration. The idea of the 

algorithm is to reconstruct a filtered signal by sequentially assessing the curve of the data using curve 

fitting within a predefined moving window. Our proposed extracerebral and physiologic hemodynamic 

contribution filtration method employs EMD. Once the data is decomposed into the IMFs, we calculate 

their frequency ranges and remove IMFs with main power contributors lying outside of the desired 

frequency band. The proposed methods were tested based on ([79], [92], [93]). The above mentioned 

methods and their applications are explained in a work entitled: “Artifact Detection in fNIRS Data and 

non-Stationary Preprocessing Methods” by D.Patashov et.al. This research was partially funded by the 

BSMT consortium of the Israeli Innovation authority and began as a large collaboration of multiple 

industrial companies and research institutions. For comparison of fNIRS and fMRI was collected at Tel 

Aviv Sourasky Medical Center’s: Laboratory for Brain and Emotion Experience Sagol Brain Institute, 

Wohl Institute for Advanced Imaging in Israel. 

 

Summary 

To summarize, in this work we address the challenges of information related to motoric and neurologic 

activity using the main assessment devices in that field (i.e. EEG, fNIRS, fMRI, Video, IMU). Gait Analysis 

section provides solutions for the assessment of human gait for orthopedic and neurologic assessment. 

Gait and the Brain section presents the way to assess the complicated relation between the gait and 

the neural activity, as well as how they affect each other. Brain Research section proposes methods 

that allow the assessment of the neural activity through the hemodynamics of the brain and the 

solutions for the detection of motor activity distorting the information source. 
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Methods 

Sequential Desmoothing Extremum Tracking – SDET 

Sequential Desmoothing Extremum Tracking or SDET for short, can be used as a general-purpose 

solution for peak detection in noisy, quasi-periodic, multidimensional signals. It can be applied to 

many types of sources, not necessarily temporal ones. Also, depending on the chosen procedure steps, 

it can be used for both stationary and non-stationary signals. SDET is a heuristic algorithm that can be 

adjusted to many types of tasks due to its flexibility. The adjustment is only needed once. The following 

filtrations of the same signal type can all be performed automatically. 

SDET – General Heuristic Procedure: 

1. Filter the signal using any smoothing procedure until the highest frequency of the filtered 

signal is the same as the pattern that is being assessed. Denote this filtered signal as 𝑓1(𝑥̅). 

2. Filter the signal using same smoothing procedure multiple times with decreasing smoothness 

of the resulted signal. The smoothest signal should be the one resulting from step “1” and the 

least smooth one should be the original signal. Denoted as 𝑓1(𝑥̅), … , 𝑓𝑘(𝑥̅), where 𝑘 is the 

number of filtration stages. The order of 𝑓1(𝑥̅), 𝑓2(𝑥̅), … creates a sequential desmoothing, 

meaning that the higher the index the less smooth the signal is, up to 𝑓𝑘(𝑥̅) which is the 

original unfiltered signal. 

3. Detect all the local extrema points on the 𝑓1(𝑥̅), that is the smoothest signal. Denote the time 

stamps of these extrema points as 𝑥̅1
(1)

, … , 𝑥̅𝑝
(1)

, where 𝑝 is the number of extrema points and 

the upper index is the iteration number. 

Begin the sequential procedure (set 𝑚 = 1): 

4. Use 𝑥̅1
(𝑚)

, … , 𝑥̅𝑝
(𝑚)

 as starting points on 𝑓1+𝑚(𝑥̅). Adjust each of the points to match the peaks 

of 𝑓1+𝑚(𝑥̅), producing 𝑥̅1
(𝑚+1)

, … , 𝑥̅𝑝
(𝑚+1)

. Gradient ascent can be used before adjustment to 

accommodate for the shape distortion created by the filtration. 

5. Increment 𝑚 by one and repeat step <4>. The procedure should be repeated until 𝑚 = 𝑘 − 1 

(included) to receive the peaks on the original signal. 

Using the proposed procedure, it is possible to detect peaks of different quasi-periodic components 

within the assessed process accurately as long as other peak contributors can be filtered out. By 

removing any other sources creating the undesired peaks, we are able to assess the number of the 

peaks that we are aiming to detect as well as a rough estimation of their locations. In cases where a 

lower frequency band creates additional peaks, it can be filtered out as well in step <1> and then 

slowly restored through the desmoothing procedure from step <2>. The logic in this case would be 

exactly the same, where the larger the 𝑚 the closer the 𝑓𝑚(𝑥̅) to the original unfiltered signal. The 

number of timestamps in step <3> provides us with the number of peaks to be detected, while their 

temporal values provide an estimation of the peaks’ locations. In step <4>, the estimated peaks 

indicate that the correct peak for that iteration is in the close by area. Therefore, the peaks should be 

adjusted to suit the current filtration stage of the signal. The adjustment should be made based on 

the desired type of the peak. For example, if the desired outcome is the highest position, then the 

adjustment should select the highest point near the current estimation. If the desired outcome is the 

accurate time stamp, then the most centered one could be selected and so on. The number of 

filtration stages can be selected as a number of possible sequential filtration stages. This approach will 

provide an automatic solution that will always work and will not require additional adjustments, but 
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at the same time, it would produce a higher runtime for the procedure. To reduce the runtime, 

filtration stages should be defined based on the components that reappear within the less filtered 

stages. Usually, the optimal solution would be based on the number of different patterns that were 

initially filtered out. It is best to avoid reintroduction of more than one pattern type per stage. Thus 

reducing the number of stages to the number of interfering patterns or to double of that number to 

create an additional safety margin. It should be noted that selection of a filtration method may be 

important in some cases. For example, when dealing with a non-stationary process, it is important to 

use filtration procedure that does not assume stationarity. 

Cumulative Curve Fitting Approximation – CCFA 

Cumulative Curve Fitting Approximation, shortly called CCFA is a multipurpose, non-stationary, non-

linear method of signal processing that serves as a general solution for many types of tasks (e.g. 

filtration, missing samples approximation, resampling, etc.). The approximated process does not have 

to be quasi-periodic or temporal source of information either. The general definition of the algorithm 

is designed to provide a solution for a large variety of tasks, while being very adjustable to the specific 

requirements of each task and allowing the usage of additional information that is available in some 

cases, to increase the accuracy of the calculations. 

CCFA – General Purpose Algorithm: 

Denote CCFA algorithm order as 𝑘  and a random process (i.e. signal) before any adjustments as: 

(

𝑠1

⋮
𝑠𝐿

)

(0)

 where 𝐿 is the length of the signal. The upper index indicates the iteration count, meaning 

the number of times the signal was adjusted. The iterative cumulative approximation procedure is 

defined as follows: 

(

𝑠𝑖+1

⋮
𝑠𝑖+𝑘

)

(𝑖+1)

= 𝜒 ∙ (
𝛽𝑖+1

⋮
𝛽𝑖+𝑘

)

(𝑖)

° (

𝑠𝑖+1

⋮
𝑠𝑖+𝑘

)

(𝑖)

+ (1 − 𝜒) ∙ (

𝛾1

⋮
𝛾𝑘

)

(𝑖)

° (
𝑓1

⋮
𝑓𝑘

)

(𝑖)

 

Where° is Hadamard multiplication, 𝑖 = 0, … , 𝐿 − 𝑘 is the running index, (
𝑓1

⋮
𝑓𝑘

)

(𝑖)

is the weighted curve 

fitting function for the approximated section, 𝜒 ∈ (0,1) defines the balance between the signal and 

the curve fitted function for the correction procedure and (
𝛽1

⋮
𝛽𝐿

)

(0)

are the reliability weights for 

samples (

𝑠1

⋮
𝑠𝐿

)

(0)

where ∀𝑗, 𝛽𝑗 ∈ [0,1]  with 𝛽𝑗 = 0  treated as a missing sample. The value of 𝛽𝑗 

represents how reliable the corresponding sample 𝑠𝑗 is. Whenever such information is available, it 

should be provided to the algorithm to increase the accuracy of the approximation process, otherwise, 

the values of 𝛽𝑗 should be set to 1. The counterweights 𝛾𝜏 are derived from the reliability weights and 

the balancing parameter: 

𝛾𝜏
(𝑖) =

1 − 𝜒 ∙ 𝛽𝑖+𝜏
(𝑖)

1 − 𝜒
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Where 𝜏 = 1,2, … , 𝑘 is index within the sliding window. Counterweights’ purpose is to assure the 

convergence of the iterative correction procedure by restoring the balance of the equation that is 

affected by the reliability weights. Next, the unreliable samples indicating function, 𝛿𝑗  is defined to 

provide the correct adjustment procedure to each sample within the signal: 

∀𝑗, 𝛿𝑗 = {

𝜆 𝜆 ∈ {0,1}

1 − 𝑠𝑖𝑔𝑛 (𝛽𝑗
(0)

− 𝜃)

2
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑠𝑖𝑔𝑛(𝑞) = {
−1 𝑞 ≤ 0
1 𝑞 > 0

 

Where 𝜃 ∈ [0,1) being the reliability threshold. Any values of 𝛽𝑗
(0)

 that are equal or lower than 𝜃 

indicate the samples that would be approximated using closed loop procedure while others are 

approximated using open loop procedure, when semi-open loop procedure is performed. Parameter 

𝜆 ∈ {0, 0.5, 1} defines open, semi-open or closed loop procedure, respectively. When performing an 

open loop procedure, all the approximations are calculated using the original samples that were not 

tempered with in any way. In closed loop procedure, for each iteration, the used samples are those 

that resulted from the correction performed by the previous iteration. The semi-open loop procedure 

is the combination of the two, where some samples of the signal would be approximated using closed 

loop procedure, while others are approximated by the open loop procedure. The purpose of the semi-

open loop procedure is mainly for cases with unreliable sample regions. For example, if there are large 

sections of missing samples within the processed signal, open loop procedure cannot be performed 

using a small order. For the procedure to work, order of the algorithm must be larger than the largest 

missing samples section. This is because CCFA is a window-based method, thus when the window that 

is defined by the order of the algorithm would be in a section of missing samples, there might not be 

enough existing samples for the curve fitting approximation if the selected window is too small. This 

issue does not exist when using the closed loop approximation since the procedure itself approximates 

these samples and then uses these approximations for the following steps. Semi-open loop procedure 

provides the solution for cases where the open loop procedure is needed to be performed with a 

window size that is small relative to the missing samples gap sizes. This is solved by performing an 

open loop procedure on all the reliable samples and closed loop procedure on the missing ones. 

Meaning that throughout the iterations, reliable samples are used for the approximation without any 

adjustments, while the unreliable ones being estimated in each iteration anew and then used for the 

approximation in that area in the following iterations. Correction of the reliability weights is performed 

as follows: 

𝛽𝑖+𝜏
(𝑖+1)

= 1 − 𝜀𝜏
𝛿𝑖+𝜏 ∙ (1 − 𝛽𝑖+𝜏

(𝑖) ) = (1 − 𝜀𝜏
𝛿𝑖+𝜏) + 𝜀𝜏

𝛿𝑖+𝜏 ∙ 𝛽𝑖+𝜏
(𝑖)  

1 − ⌈𝜆⌉ = 𝜀1 ≤ ⋯ ≤ 𝜀𝑘 = 1 

Where 00 = 1, 𝜀𝜏 is the inaccuracy suppression rate function. Through the procedure, the samples of 

the signal are corrected with each iteration. Therefore, the reliability of these samples also improves 

throughout the procedure. To take this into account, reliability weights 𝛽𝑗 are also corrected after 

each iteration. Meaning that with every correction of the signal’s sample 𝑠𝑗, corresponding reliability 

weight’s value is approaching the value of 1. The rate at which 𝛽𝑗  will approach the value of 1 is 

defined by the 𝜀𝜏 function. For example, evenly spaced 𝜀𝜏 values would result in a constant increment 

rate of 𝛽𝑗 , whereas logarithmically spaced ones would produce an increasing increment rate. The 
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weighted curve fitting function (
𝑓1

⋮
𝑓𝑘

)

(𝑖)

 should be selected based on the properties of the 

approximated signal. It is defined by the operator 𝑊𝐶𝐹{∙,∙} as a general operator for any type of 

weighted curve fitting function: 

(
𝑓1

⋮
𝑓𝑘

)

(𝑖)

= 𝑊𝐶𝐹 {(
𝑠̌𝑖+1

⋮
𝑠̌𝑖+𝑘

)

(𝑖)

, (

𝑤1

⋮
𝑤𝑘

)

(𝑖)

} 

(
𝑠̌𝑖+1

⋮
𝑠̌𝑖+𝑘

)

(𝑖)

= (
1 − 𝛿𝑖+1

⋮
1 − 𝛿𝑖+𝑘

) ° (

𝑠𝑖+1

⋮
𝑠𝑖+𝑘

)

(0)

+ (
𝛿𝑖+1

⋮
𝛿𝑖+𝑘

) ° (

𝑠𝑖+1

⋮
𝑠𝑖+𝑘

)

(𝑖)

 

The approximation, 𝑊𝐶𝐹{∙,∙} is calculated using weights (

𝑤1

⋮
𝑤𝑘

)

(𝑖)

 provided by: 

(

𝑤1

⋮
𝑤𝑘

)

(𝑖)

= (

𝛼1

⋮
𝛼𝑘

) ° (
𝛽𝑖+1

⋮
𝛽𝑖+𝑘

)

(𝑖)

 

With (

𝛼1

⋮
𝛼𝑘

) being the distribution function for weighted curve fitting, where ∀𝑗, 𝛼𝑗 ∈ [0,1]. Note 

that it is assumed that 𝑊𝐶𝐹{∙,∙} operator is either insensitive to the sum of the (

𝑤1

⋮
𝑤𝑘

)

(𝑖)

 values or that 

it performs normalization of the sum to 1 internally. The complete approximation procedure can be 

described by: 

𝑠̃𝑛 = 𝜒𝑘 ∙ 𝑠𝑛
(0)

∙ ∏ 𝛽𝑛
(𝑛−𝑗−1)

𝑘−1

𝑗=0

+ (1 − 𝜒) ∙ ∑ 𝜒𝑚 ∙ 𝛾𝑚+1
(𝑛−𝑚−1)

∙ 𝑓𝑚+1
(𝑛−𝑚−1)

∙ [∏ 𝛽𝑛
(𝑛−𝑗−1)

𝑚−1

𝑗=0

]

Δ(𝑚)
𝑘−1

𝑚=0

 

𝑘 ≤ 𝑛 ≤ 𝐿 − 𝑘 Δ(𝑞) = {
0 𝑞 = 0
1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

It is clear that parameter 𝜒 affects this procedure by influencing the curve fitting through the iterative 

procedure. In the final equation, it becomes a predefined recombination distribution in addition to 

the mentioned effect that resides inside parameters 𝛽, 𝛾 and 𝑓. Since there is no reason to limit the 

recombination distribution, the predefined 𝜒 multipliers were redefined to general recombination 

weights 𝜔𝑗 as follows: 

𝜒𝑘 → 𝜔0 , (1 − 𝜒) ∙ 𝜒𝑚 → 𝜔𝑘−𝑚 

Where 𝜔𝑗 ∈ [0,1] for 𝑗 = 1,2, … , 𝑘, are the recombination distribution weights and 𝜔0 ∈ ℝ0
+ is the 

source function recombination weight. Due to this substitution, normalization of the equation is 

required to assure convergence to the desired curvature. Therefore, the final approximation equation 

is defined by: 
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𝑠̃𝑛 =

𝜔0 ∙ 𝑠𝑛
(0)

∙ ∏ 𝛽̃𝑛
(𝑛−𝑗−1)

𝑘−1

𝑗=0
+ ∑ 𝜔𝑘−𝑚 ∙ 𝛾𝑚+1

(𝑛−𝑚−1)
∙ 𝑓𝑚+1

(𝑛−𝑚−1)
∙ [∏ 𝛽̃𝑛

(𝑛−𝑗−1)
𝑚−1

𝑗=0
]

Δ(𝑚)𝑘−1

𝑚=0

𝜔0 ∙ ∏ 𝛽̃𝑛
(𝑛−𝑗−1)

𝑘−1

𝑗=0
+ ∑ 𝜔𝑘−𝑚 ∙ 𝛾𝑚+1

(𝑛−𝑚−1)
∙ [∏ 𝛽̃𝑛

(𝑛−𝑗−1)
𝑚−1

𝑗=0
]

Δ(𝑚)𝑘−1

𝑚=0

 

𝑘 ≤ 𝑛 ≤ 𝐿 − 𝑘 Δ(𝑞) = {
0 𝑞 = 0
1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Where 𝛽̃𝜏
(𝑖)

 are the normalized weights explained below. The equation above defines the 

approximation for a specific sample 𝑛 within the processed signal. Since it is iterative moving window-

based procedure, the number of the iteration can be substituted with the index of the sample. Thus 

allowing for the explicit form of the equation to be extracted. Every variable in the final formula is 

received through the iterative procedure defined above and then used in this equation to receive the 

filtered signal. Signal’s samples are unchanged until they are within the moving window range, 

meaning that: 

𝑠𝑛
(𝑛−𝑘)

= 𝑠𝑛
(0)

, 𝛽𝑛
(𝑛−𝑘)

= 𝛽𝑛
(0) 

The normalization of the weights is required for two reasons; First is to reduce the effects of the 

window size on the error estimations. Second is to avoid computational issue when calculating a large 

number of fraction multiplications. 

𝛽̃𝜏
(𝑖) = (𝛽𝜏

(𝑖))
𝜂

 

𝜂 = {

1

(1 − min
𝑗

{𝛽𝑗}) ∙ (𝑘 − 1) + 1
(min

𝑗
{𝛽𝑗})

𝑘

≤ ℓ

1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

With ℓ being the calculation accuracy for 𝛽𝑗 corrections. Notice that when the calculating machine’s 

accuracy is sufficient, 𝛽𝑗 weights are unchanged. This is because in cases where the accumulating error 

is much smaller than the calculation values, the result should be accurate without any additional steps. 

On the other hand, if the accumulating error is sufficiently large, the resulted approximation may be 

quite far off unless the calculation procedure is normalized in such a way that the approximated 

fractions are significantly larger than the accumulating error. The explicit formula for 𝛽̃𝑛 is: 

𝛽̃𝑛
(𝑛−𝑚)

= 1 − (1 − 𝛽̃𝑛
(0)

) ∙ ∏ 𝜀𝑗
𝛿𝑛

𝑘

𝑗=𝑚+1

= (1 − ∏ 𝜀𝑗
𝛿𝑛

𝑘

𝑗=𝑚+1

) + 𝛽̃𝑛
(0)

∙ ∏ 𝜀𝑗
𝛿𝑛

𝑘

𝑗=𝑚+1

0 ≤ 𝑚 < 𝑘 

It is also important to note that in most cases the signal should not have any missing samples and the 

reliability of each sample is also, often unknown. Therefore, the equation for the filtration of these 

common cases can be significantly simplified: 

𝑠̃𝑛 =

𝜔0 ∙ 𝑠𝑛
(0)

+ ∑ 𝜔𝑘−𝑚 ∙ 𝑓𝑚+1
(𝑛−𝑚−1)

𝑘−1

𝑚=0

∑ 𝜔𝑘−𝑚
𝑘
𝑚=0

𝑘 ≤ 𝑛 ≤ 𝐿 − 𝑘 
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In addition, default values can be used for many of the defined parameters. Our suggested default 

input parameters are: 𝜒 =
1

2
, 𝜃 = 0, evenly distributed 𝜀𝑗, evenly distributed 𝛼𝑗 and evenly distributed 

𝜔𝑗 where 𝑗 = 1,2, … , 𝑘. The correction accuracy is suggested to be: ℓ = 10−12. For weighted curve 

fitting approximation, we suggest using weighted polynomial curve fitting due to its flexibility. 

Recombination weight for the source function is suggested to be: 

𝜔0 = {
0 𝜆 = 0

min
𝑗

{𝜔𝑗} 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

In cases where the signal has no noise or inaccurate samples, when performing missing samples 

approximation, the source function recombination weight should be 𝜔0 ≥ 1 to reduce the distortion 

of the reliable samples. Proposed default parameters should provide relatively high accuracy results 

for most cases, while significantly simplifying the algorithm. Under the proposed settings, the 

remaining required parameters are: algorithm order 𝑘 , procedure type 𝜆  and degree of the 

polynomial for the weighted curve fitting approximation 𝑝𝑜𝑟𝑑. It should be noted that semi-open and 

closed loop approximations are asymmetrical, meaning that they will produce different results when 

perform in different directions on the signal. Similar phenomena may occur if asymmetric distribution 

is selected for 𝜔𝑗 or 𝛼𝑗. Therefore, in such cases using the algorithm twice - once in each direction (if 

applicable) and averaging the results may increase the accuracy. 

CCFA can perform filtration and missing samples approximation routines simultaneously and 

independently. The ability to approximate missing samples also provides an additional use for this 

algorithm, which is the resampling of the processed signal. By adding missing samples in the locations 

of the desired samples, CCFA is able to approximate them and thus produce the resampled signal. 

 

Gait Analysis 

Gait: Experimental Setup 

154 subjects (age: 70±12) with high incident rate of falls, participated in a six-week long training 

program on a V-Time system [15]. Data were acquired at five clinical centers across five countries 

(Belgium, Israel, Italy, Netherlands, and the UK). The study had full ethical approval from local human 

studies’ committees. The subjects were informed about the experimental task to be undertaken prior 

to the experiment. The detailed description of the experiment is explained in [16]. 

V-Time program participants underwent a series of training sessions. In each session, the system 

continuously monitored the position of the subject's feet and the reference point for each trial was 

set as a mean of the feet coordinates. The recorded video was pre-processed by the V-TIME and 

provided data describing feet location in space as time series (temporal information). The system also 

stored training-related parameters, such as obstacle locations and their properties, e.g. height and 

length. Taking the system axes and gait cycle into consideration, the Toe Off (TO) and Heel Strike (HS) 

points along the Z-axis are in correlation with local maxima and minima, respectively, as shown in 

Figure 1. 
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Figure 1. V-Time system. VR augmented treadmill with Kinect and HD cameras upfront for gait 

detection and tracking while navigating in a virtual environment. Axes orientation is as shown. 

 

Gait: SDET Peak Detection 

Let us examine a quasi-periodic, noisy, temporal signal [Figure 2] collected during gait performance 

on the V-Time system. It can be clearly seen that the noise appearing in these signals are reducing the 

amplitude near the local maxima locations. In this dataset, there was little to no noise interfering with 

local minima points. System errors produces flat parts just as can be seen in the example. Both types 

of distortions were mainly near local maxima locations due to system setup limitations. 
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Figure 2. V-Time recorded signal. The upper part of the waveform has a strong noise affecting 

the pattern. The period within 93-94 seconds has a flat section beginning at 93.5 seconds 

resulting from a short duration system failure (i.e. missing samples). The amplitude shows the 

change in feet location along the treadmill length. 

 

In order to reduce the effects of noise and errors on local extremum estimation, an optimization 

method for detection of a global extremum (or getting as close to it as possible) in each period of 

quasi-periodic functions was developed and used in a simplified form on our signals. The idea behind 

SDET algorithm was to create a sequence of filtered signals and track the changes of extrema points 

from the smoothest signal back to the original. First let us define all the parameters which will be used 

in this heuristic algorithm: 

1. Let 𝑓(𝑥̅) be a quasi-periodic n-dimensional noisy signal. 

2. Multi-dimensional ellipsoid body is defined as follows: 

𝐸 = {𝑥̅ = (

𝑥1

⋮
𝑥𝑛

) , (
𝑥1

𝑎1
)

2

+ ⋯ + (
𝑥𝑛

𝑎𝑛
)

2

≤ 1} 

where  𝑎1, ⋯ , 𝑎𝑛 ∈ ℝ+ which denotes the semi-major axes. 

3. Denote by 𝑐̅ = (

𝑎1

⋮
𝑎𝑛

) the vector of semi-major axes of E. 

4. Define the sequence of concentric n-dimensional ellipsoid bodies: 𝐸1, ⋯ , 𝐸𝑘  with 

corresponding vectors 𝑐1̅, ⋯ , 𝑐𝑘̅ such that (𝑐𝑚̅+1 − 𝑐𝑚̅) ∈ ℝ+
𝑛  where 𝑚 = 1,2, … , 𝑘 − 1. 
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5. The standard n-dimensional Fourier transform is:  

ℑ{𝑓(𝑥̅)} =
1

(2𝜋)
𝑛

2⁄
∫ 𝑓(𝑥̅)𝑒−𝑖𝑥̅𝜔̅ 𝑑𝑥̅

 

ℝ𝑛

= 𝐹(𝜔̅) 

6. Define 𝑓𝑚(𝑥̅) = ℑ−1{𝐹(𝜔̅) ∙ 𝟏𝐸𝑚
}, 1 ≤ 𝑚 ≤ 𝑘, where 𝟏𝐸𝑚

 denotes the indicator function 

of 𝐸𝑚. 

 

Heuristic Algorithm – Low Pass Filtering based SDET: 

1. Set 𝑐1̅ such that it filters the maximum range of frequencies under the constraint that the 

number of signal cycles after filtering does not change. 

2. Choose 𝑐2̅, 𝑐3̅, … , 𝑐𝑘̅−1, 𝑐𝑘̅ , where 𝐸𝑘 contains the whole bandwidth of the signal without the 

high frequency noise. 

3. Calculate 𝑓1(𝑥̅), … , 𝑓𝑘−1(𝑥̅). 

4. Find all the local maxima on 𝑓1(𝑥̅). 

5. Apply a Gradient Ascent method on the received local maxima’s 𝑥̅ values (from 4) using the 

values as a start location on 𝑓2(𝑥̅) to calculate new local maxima positions related to 𝑓2(𝑥̅). 

6. Select n-dimensional parallelepiped taking into consideration 
‖𝑐𝑚̅‖

‖𝑐𝑚̅+1‖
 and periods of the 

𝑓1(𝑥̅). 

7. Adjust the center of the above-mentioned parallelepiped at the local maxima (from 5) and 

choose the largest value point of 𝑓2(𝑥̅) within the parallelepiped as authentic local maxima 

for 𝑓2(𝑥̅). 

8. Repeat the procedure from (5), increasing the signal indices by one, i.e., instead of 𝑓1(𝑥̅) use 

𝑓1+𝑚(𝑥̅)  and instead of 𝑓2(𝑥̅)  use 𝑓2+𝑚(𝑥̅) , where 𝑚  is the iteration number until 

exhausting all iterations such that 𝑓2+𝑚(𝑥̅) = 𝑓𝑘(𝑥̅) [Figure 3]. 

The above procedure provides a solution for Low Pass Filter (LPF) based highest point detection within 

each cycle of a quasi-periodic, noisy, multidimensional signal. This procedure, when referring to the 

general SDET definition, uses a LPF for smoothing steps. Point adjustment here is done after 

performing gradient ascent. The adjustment itself is defined to select a highest point within a 

precalculated time window. It is important to note that gait signals in this study were close to being 

WSS processes, thus allowing us to discard the effects of the present non-stationarity and use LPF for 

the smoothing steps. Secondly, in this particular task, the time stamp of the detected peak was not 

important for further processing. Hence, the highest point was selected when detecting the local 

extrema. The noise in this case, are non-Gaussian and asymmetric. More accurately, the noise always 

reduced the amplitude wherever they appeared and never the opposite (due to system limitations). 

Therefore, selecting the highest position would provide the closest value to the true amplitude of the 

peak. 
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Figure 3. SDET flowchart and graphical illustration of two iterations (3-stage procedure) on the 

gait signal. 

The above example shows the use of the algorithm on one dimensional signal. It should be noted that 

depending on the task, the logic of point adjustment step should be altered (e.g. instead of choosing 

the highest point within the given window, choosing a peak that is located on a section with more 

energy). Type of smoothing filtration should also be selected depending on a type of the signal. 

In this study, the above explained procedure was used on one dimensional signal recorded along the 

Z-axis [Figure 2]. The optimal value of k was determined to be 3. Taking into consideration the period 
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time and its variance among different subjects, the conclusion was that three is the minimum number 

of steps needed to locate all of the local extremum, which at the same time are global within their 

period. For three steps case, two filtered signals had to be calculated, therefore, two Low Pass Filters 

(LPF) were used independently: one that removed noise from Z-axis signal and one that removed both 

noise and system errors [Figure 3], thus receiving three signals (unfiltered signal, filtered signal 

containing errors and filtered signal without noise or errors). The first step was to determine the cutoff 

frequencies for the LPFs. After thoroughly analyzing the spectral patterns of our signals, it was found 

that the layout of the spectral power is almost identical for all the subjects. In order to extract this 

layout pattern, a Moving Average Filter (MAF) with a symmetric padding and window size of 20 

samples (empiric size suited for 25-30 Hz sampling system) was applied, followed by the LPF (0.05 Hz), 

which preserved only the pattern line. On the resultant pattern line, if we define the maxima point 

located at 0Hz as maxima number zero and the following minima as minima number one, then the 

cutoff frequencies are at the second and third minima points [Figure 4]. 

 

Figure 4. Trial absolute frequency spectrum in dB. The black line represents the pattern of the 

absolute frequency spectrum. The cutoff frequencies for LPFs are the second and third minima 

peak locations. 

𝑐1 and 𝑐2 were set as mentioned in the first step, providing the 
‖𝑐𝑚̅‖

‖𝑐𝑚̅+1‖
 ratio suitable for the signal (in 

cases where determining all of 𝑐𝑘 is unpractical, determine 𝑐1 and use minimal step size allowed by 

the sampling rate). A window (parallelepiped in a 1D time series) was defined by a half window size 

equal to absolute value of time shift caused by the LPF. Window size was re-calculated in each iteration 

separately. The half window size must be smaller than the signal's shortest period. 
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Gait: Detection of Gait Abnormalities 

Gait abnormalities can be assessed through the irregularities in the walking pattern and the obstacle 

avoidance performance. The location and parameters of the obstacles in the virtual course are known, 

thus the segmentation method can be targeted towards the areas of the obstacle occurrences, 

followed by detection of irregular steps to assess the gait avoidance strategy. 

Signal segmentation 

To assess walking performance related to obstacle negotiation, each signal was divided into segments 

with walking instability periods due to obstacle avoidance, i.e. comprising segments in which walking 

pattern changed due to proximity to obstacle avoidance task. First, the complex envelopes of the Z-

axis signal were calculated for each foot. Linear interpolation was applied on each pair of consecutive 

extremum points (calculated using SDET) for envelope estimation. Next, the top mean envelope was 

defined as the mean of left and right foot signals’ top envelopes. The bottom mean envelope was 

calculated in a similar manner and the total mean envelope was computed as an average of the two 

mentioned mean envelopes. The exponent was then applied for fluctuations hyperbolizing followed 

by subtraction of minimum from each of the resulted functions. The same procedure was done to the 

envelope means reflected across time-axis yielding six new auxiliary functions as a result. On these 

functions, any value below a threshold of 10% (empiric value) was detected. The segment was then 

defined to be part of the signal matching the time interval between two points closest to the obstacle 

(one on each side) and lower than the set threshold. For the mth obstacle, denote 𝐼𝑘
𝑚 as time segment 

of kth auxiliary function, where 𝑘 = 1,2, … ,6 and 𝑚 = 1,2, … , 𝑀 with M being the total number of 

obstacles. Finally, the obstacle negotiation segment was defined as follows: 𝐼𝑚 = ⋃ 𝐼𝑘
𝑚6

𝑘=1  [Figure 5].  
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Figure 5. Signal segmentation. The bottom graph presents the segment related to obstacle 

avoidance, detected by the proposed approach. The upper graph shows the signal region 

containing the detected segment. Dashed lines provide a visual explanation for the detection. 

Kernel based clustering 

In order to statistically group steps or strides into different categories, Kernel based clustering was 

used. Let 𝑓̅ ∈ ℝ𝑑 be a feature vector of a single step. Assuming that we have n steps to classify, define 

𝐹 = {𝑓1̅ , ⋯ , 𝑓𝑛̅} and a kernel function 𝐾𝐹 ∶  ℝ𝑑 → ℝ as: 

𝐾𝐹(𝑓̅) =  
1

𝑚
‖(

‖𝑓1̅ − 𝑓̅‖
2

⋮
‖𝑓𝑛̅ − 𝑓̅‖

2

)‖

1

 

Where  𝑚 = max
𝑖,𝑗

‖𝑓𝑖̅ − 𝑓𝑗̅‖2
  ,  1 ≤ 𝑖, 𝑗 ≤ 𝑛  . Denote 𝑤̅ = (

𝐾𝐹(𝑓1̅)

⋮
𝐾𝐹(𝑓𝑛̅)

). 𝑤̅  can be regarded as one-

dimensional signal. Thus, median filter can be applied to reduce its noise. Median filter order may vary 

depending on the feature vector parameters. Division into groups may be set in accordance with 

desired result classes. In this study, median filter with a half window size of 25 (empirical value) was 

applied, followed by division of the steps into two groups: regular and abnormal ones using a threshold 

calculated as follows: 

𝜏 = 𝑚𝑒𝑎𝑛(𝑤̅) + 
1

2
(max

 
𝑤̅ − min

 
𝑤̅) 

Regular steps correspond to entries of 𝑤̅ below the threshold. Our feature vector consisted of step 

length, step duration, distance from TO to HS and their differences between successive steps. 

Gait: CCFA – Missing Samples Approximation 

Assuming that the location of missing data region is known a priori, let us denote [𝑡1, 𝑡2] as a time 

period indexes of missing data. The missing data points between 𝑡1 and 𝑡2 were filled with values 

received from linear interpolation. CCFA algorithm requires input of algorithm order 𝑘𝑜𝑟𝑑, procedure 

type 𝜆 and polynomial degree 𝑝𝑜𝑟𝑑 (in case of polynomial curve fitting). In this case, default settings 

were used for all relevant parameters. Reliability weights were neutralized ∀𝑗, 𝛽𝑗 = 1  due to 

substitution of the missing samples section with interpolation values. Closed loop (𝜆 = 1) procedure 

was used for the approximation. The 𝜔𝑗 weights were set to 𝜔𝑘−𝑚 = (1 − 𝜒) ∙ 𝜒𝑚, 𝜔0 = 𝜒𝑘. When 

using a default value for the balancing factor (𝜒 =
1

2
), the resulting recombination distribution is 

exponential. This type of distribution provides better ability of extending the approximation beyond 

the samples’ range. Therefore, is more suitable to correct the missing samples that occurred in our 

data since they were always located near the local maxima locations (due to system limitations). 

Assuming that the correct input parameters (𝑘𝑜𝑟𝑑 and 𝑝𝑜𝑟𝑑) were provided, the procedure is provided 

by the following equation: 

𝑠̃𝑛 = (
1

2
)

𝑘𝑜𝑟𝑑

∙ 𝑠𝑛
(0)

+ ∑ (
1

2
)

𝑚+1

∙ 𝑓𝑚+1
(𝑛−𝑚−1)

𝑘𝑜𝑟𝑑−1

𝑚=0
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The correction was performed only for the samples in the section [𝑡1, 𝑡2]. Exponential distribution of 

the recombination weights is asymmetric, meaning that the results will be different if CCFA is 

performed in different directions along the signal. Therefore, the algorithm was used twice on each 

signal (once in each direction independently). The corrected section was defined as the average of the 

two results. In [30], this same procedure was defined differently. That is because at the time, the 

general form as presented in this work was yet to be developed. Nonetheless, the result and the 

calculations are the same since only difference are in the way that the procedure is presented and not 

in the procedure itself. 

Gait: CCFA – Input Parameters Forecasting for Missing Samples Approximation 

CCFA is very accurate algorithm if provided with correct parameters, but forecasting these parameters 

is a different task. We propose a Machine Learning (ML) algorithm that can forecast the required input 

parameters for CCFA. To evaluate this algorithm, we collected the recorded signals from subjects that 

had no missing samples occurrences, then chunks of information were removed to emulate missing 

data occurrences. These artificial data were designed to mimic the missing samples events observed 

in the recorded signals of the gait assessment trials. The created data contained almost 850,000 

examples, which were randomly split into training and test sets, 80% and 20% of the data, respectively. 

Let us define Training Data as: 𝑇𝐷 ⊂ ℝ𝑙. Each data sample 𝑠̅ ∈ 𝑇𝐷 was normalized to unit vector 𝑠̂. 

Assume that in TD the optimal parameters needed for CCFA to correct each sample signal are known. 

In our study, parameter range was limited to: 1 < 𝑘𝑜𝑟𝑑 ≤ 50   𝑎𝑛𝑑   1 ≤ 𝑝𝑜𝑟𝑑 ≤ 5  in order to 

calculate the “best” input parameters for given examples (brute force approach). Since there are two 

parameters for each signal to be predicted, this was a Multi-Class Dual-Labeling, meaning that for each 

feature vector there was a 2D label vector with multiple classes for each component. Next, the 

Probability Mass Function (PMF) was approximated using statistical approach. PMF provides us with 

the probability of encountering each and every possible pair of parameters representing algorithm 

order denoted as 𝑘 and polynomial degree denoted as 𝑝: ℘(𝑘, 𝑝). Using Bayes’ theorem, probability 

vector of 𝑘 if provided with 𝑝, was calculated. Bayes’ theorem: 

℘(𝑘|𝑝) =
℘(𝑝|𝑘) ∙ ℘(𝑘)

℘(𝑝)
=

℘(𝑘, 𝑝)

℘(𝑝)
 

Probability vector: 

℘(𝑘̅|𝑝) = (

℘(𝑘1|𝑝)

℘(𝑘2|𝑝)
⋮

℘(𝑘𝑚|𝑝)

) 

Principal Component Analysis (PCA) was used to project the data into subspace with considerably 

smaller dimension: 𝐷 ⊂ ℝ𝑑 where: 𝑑 ≪ 𝑙. The sum of 𝑑 largest singular values made up 95% of the 

total sum of all the singular values from TD. Next, Random Forest Classifier (RFC) was applied on D to 

train the model. The process was done twice - independently for parameter 𝑘 and for parameter 𝑝. 

After the model was trained as explained above, the parameters 𝑘 and 𝑝 could be calculated for a new 

signal containing missing data [Figure 6]. 
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Figure 6. Machine Learning algorithm flowchart. The flowchart describes the classification steps 

for both parameters (labels). PMF, PCA and RFCs were already calculated and trained. 

For a new signal denoted by 𝑥̅ ∈ ℝ𝑙  with unknown parameters 𝑘  and 𝑝, forecasting was done as 

follows: normalize the signal to a unit vector 𝑥 and use PCA to project the data into same subspace as 

D: 𝑥̃ ∈ ℝ𝑑. Next, use trained RFCs to calculate the probabilities for each 𝑘 and 𝑝: 

℘(𝑘̅|𝑥̅) = (

℘(𝑘1|𝑥̅)

℘(𝑘2|𝑥̅)
⋮

℘(𝑘𝑚|𝑥̅)

) , ℘(𝑝̅|𝑥̅) = (

℘(𝑝1|𝑥̅)

℘(𝑝2|𝑥̅)
⋮

℘(𝑝𝑛|𝑥̅)

) 

Then, define: 

℘(𝑝𝛼|𝑥̅) = max
𝑖

{℘(𝑝𝑖|𝑥̅)} 

Since parameter 𝑝 has only five possible values, RFC forecasts it with fairly high accuracy, as opposed 

to parameter 𝑘. Parameter 𝑘 was adjusted using the probability of 𝑘 given 𝑝 for which 𝑝𝛼  calculated 

from RFC was used: 

℘𝑟(𝑘̅|𝑥̅) =
℘(𝑘̅|𝑥̅) ∘ ℘(𝑘̅|𝑝𝛼)

℘(𝑘̅|𝑥̅)
𝑇

∙ ℘(𝑘̅|𝑝𝛼)
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where ∘ is Hadamard product of two vectors. Similarly to the calculation of 𝑝𝛼 , 𝑘𝛽  was calculated 

using the adjusted probability: 

℘𝑟(𝑘𝛽|𝑥̅) = max
𝑖

{℘𝑟(𝑘𝑖|𝑥̅)} 

The forecasted parameters for CCFA algorithm to correct signal 𝑥̅ were (𝑝𝛼 , 𝑘𝛽). Using parameters 

calculated in that manner, high accuracy missing data approximations for the damaged gait signals 

were acquired. 

 

Gait and the Brain 

EEG: Protocol 

Twenty subjects, 10 healthy young adults and 10 healthy older adults, participated in this study. 

Participants were excluded if they had: cognitive impairments as demonstrated by a score of less than 

20 on the Montreal Cognitive Assessment [94], a history of any neurological disorder that would likely 

affect their walking or cognitive performance, the inability to walk at least five minutes, unstable 

medical condition including cardio-vascular instability, hearing problems or significant psychiatric or 

orthopedic co-morbidity. The study was approved by the local ethical committee of Sourasky Medical 

Center and was performed according to the principles of the Declaration of Helsinki. All participants 

gave their informed written consent prior to participation. 

All participants walked on a treadmill with and without the simultaneous performance of the auditory 

oddball task. Wireless EEG was recorded via 20-channel EEG cap (Enobio 20 Neuroelectrics, Barcelona) 

and gait was assessed using 3D-inertial measurement units (IMUs) that were attached to the right and 

left ankles (Opal™, APDM). Subjects were secured by a harness attached to the ceiling and gait speed 

was set according to the comfortable speed of each subject. The same gait speed was used during 

usual and oddball walking. The auditory stimuli consisted of 600 Hz tone bursts as standard stimuli 

and 1200 Hz tone bursts as target stimuli. The tones were presented in a randomized order, with a 

stimulus interval raging between 2.8 and 3.2 seconds. Each of the oddball tasks lasted two minutes 

and consisted of 40 stimuli tones; 30 standard tones and ten odd high frequency tones considered the 

target stimuli (25% of total tones). The subjects were instructed to count the target tones silently and 

report the total odd tones number at the end of each session. Three oddball tasks were performed 

during walking on a treadmill at the subjects' comfortable speed (a total of 90 standard tones and 30 

odd tones) and one continuous walking task of two minutes on a treadmill without oddball. The order 

of the conditions was randomized. After completing the walking tasks, participants performed the 

color trail test (CTT) to assess attentional and executive function. 

EEG: SDET Peak Detection 

EEG signals during walking are extremely noisy and distorted. To compensate for that, the filtering 

technique must be robust and accurate. Furthermore, the decision of point adjustment cannot be 

simply set to the highest peak, as it was in gait research, because unlike in case of gait, in EEG it is very 

important to accurately detect the time stamp of the peak. In [31], SDET was used to detect peak 

locations of the GRPs. These temporal signals were treated as quasi-periodic noisy signals which in 
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this particular case had exactly two periods representing the two steps within the stride. The 

procedure was defined as follows: 

Denote 𝑓0(𝑡) as the signal with maxima points that we would like to detect. Next, denote 𝑓1(𝑡), 𝑓2(𝑡) 

and 𝑓3(𝑡) as instances of 𝑓0(𝑡) which underwent smoothing filtering (i.e. filtration stages): 

1. Define 𝜆 = 104 (empirical value for this type of data) 

2. Apply Hodrick-Prescott (HP) filter on 𝑓0(𝑡) using the defined 𝜆 

3. Count the instances of local maxima 

a. If meets the set criteria (see below), denote filtered signal as 𝑓𝑘(𝑡), where 𝑘 = {1,2,3} 

b. If not, define 𝜆 = 1.01𝜆  (an increase of 1% of filtration strength) and repeat the 

process beginning from step (2). 

4. Complete when 𝑓1(𝑡), 𝑓2(𝑡) and 𝑓3(𝑡) are defined. 

In our case, the criteria were set to two instances for 𝑓3(𝑡) , three instances for 𝑓2(𝑡)  and four 

instances for 𝑓1(𝑡). If one of the criteria was not met due to, for example, signal having only two or 

three waves to begin with, we excluded the corresponding stages from the process. Once all the 

filtered stages of the signal were calculated, we detect all local maxima points on each one of the four 

signals 𝑓𝑛(𝑡) , where 𝑛 = {0,1,2,3} . Denote 𝑀𝑛  as a set of coordinates (𝑥𝑖, 𝑦𝑖)  representing local 

maxima of signal 𝑓𝑛(𝑡) where 𝑖 is the index of a specific coordinate. Define (𝑥01, 𝑦01) as first maxima 

point of 𝑓3(𝑡) and (𝑥02, 𝑦02) as second. Next, track the extremum locations of each of the two maxima 

back to the original and unfiltered signal as follows: 

Define (𝑥𝑎 , 𝑦𝑎) as current maxima location (one of the maxima points from 𝑓3(𝑡)). 

1. Define 𝑝 = 2 

2. For every (𝑥𝑖, 𝑦𝑖) from 𝑀𝑝 calculate: 𝑤𝑖 =

𝑦𝑖−𝑦𝑎

∑ (𝑦𝑗−𝑦𝑎)𝑗

|𝑥𝑖−𝑥𝑎|

∑ |𝑥𝑗−𝑥𝑎|𝑗

 for each 𝑖 

3. Set (𝑥𝑎 , 𝑦𝑎) = (𝑥𝑖, 𝑦𝑖) corresponding to max
𝑖

𝑤𝑖  

4. Set 𝑝 = 𝑝 − 1  and repeat the process from (2) Continue until receival of extremum 

coordinates of 𝑓0(𝑡). 

Repeat this process for every maxima point from 𝑓3(𝑡). At the end of the procedure, (𝑥𝑎 , 𝑦𝑎) are the 

coordinates of the correct peak location on the initial signal. 
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EEG: APC Assessment 

To measure the consistency of ERP responses, we used an Amplitude Pattern Consistency (APC) 

parameter. Denote 𝑓0(t) as signal for assessment. Using linear transformation, the signal was rescaled 

into a range of [0,1]: 

𝑓1(t) =  𝑓0(t) − min
t

𝑓0(t)  

𝑓2(t) =  
𝑓1(t)

max
t

𝑓1(t)
 

Define (xp, yp) as local maxima of signal 𝑓2(t) where p = 1,2,3, … n is the index of a specific peak 

coordinate. Next, a matrix of amplitude ratios is constructed:  

A = [

a1,1 ⋯ a1,n

⋮ ⋱ ⋮
an,1 ⋯ an,n

] 

Where ai,j =
yi

yj
. The received matrix is adjusted using the following steps: 

B = A − min
i,j

(ai,j) ∙ 1n 

C =
1

max
i,j

(bi,j)
∙ B 

where: 

1n = [
1 ⋯ 1
⋮ ⋱ ⋮
1 ⋯ 1

] , B = [

b1,1 ⋯ b1,n

⋮ ⋱ ⋮
bn,1 ⋯ bn,n

] , C = [

c1,1 ⋯ c1,n

⋮ ⋱ ⋮
cn,1 ⋯ cn,n

] 

APC parameter is then defined as: 

γ =
1

n2
∑ ∑ ci,j

ji

 

This parameter produces high values when signal has high consistency in amplitudes of signal wave 

pattern and low values when the amplitudes are inconsistent [Figure 7]. 
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Figure 7. An example of electrical brain pattern of one subject with low APC – dashed line and 

one subject with high APC – solid line. Each pattern represents average of 200 gait cycles. 

EEG: Other Procedures 

Assessment of the effects of aging and PD on cognitive performance during dual task walking [64]. 

Data processing was performed to clean artifacts. This was done for both conditions; standing and 

walking, and included: (1) band pass FIR filter 1–40 Hz to reduce motion artifacts, drift and high-

frequency contamination (2) rejection of channels with prominent artifact based on visual inspection, 

(3) adaptive independent component analysis mixture model algorithm (AMICA) using the default 

extended-mode training parameters, (4) rejection of artifactual components based on manually 

inspection and SASICA toolbox [95]. Matlab EEGLAB toolbox [96] was used for the analysis. The 

analyzed signals were divided into 3 seconds epochs, 1 second pre-stimulus and 2 seconds post-

stimulus. Epochs with probability of occurrence >3 SD from the mean across all epochs were rejected 

from further analysis to reduce noise [97]. For ERP analysis, we randomly chose the same number of 

standard trials as the odd trails and averaged 20 different combinations to represent the ERP of 

standard trials. This was performed due to the different frequency of odd and standard trials (ratio of 

1:4). P300 was identified from the maximum positive deflection peak between 250ms and 650ms from 

the stimulus. Amplitude and latency of the signal were evaluated at a 100ms time window (50ms 

before and after the P300 detected event) and compered to pre-stimulus (at 200ms). P300 was 

measured from channel Pz as P300 scalp distribution is defined as the amplitude change over the 

midline electrodes (Fz, Cz, Pz), which typically increases in magnitude from the frontal to parietal 

electrode sites [98]. 
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Means and standard errors were calculated for all dependent variables. In order to account for 

variability and gain symmetry we transformed P300 latency into Log latency and P300 amplitude into 

square amplitude based on Box cox variance stability methods [99]. Liner mixed model analysis was 

used to examine the effect of condition (standing vs. walking), group (healthy young, healthy older 

adults, and patients with PD), and condition by group interaction on P300 amplitude and latency, while 

controlling for age, gender, and gait speed. Univariate ANOVA was performed to compare between 

groups during each one of the conditions (standing and walking) including measures of gait and 

cognition. The associations between P300 measurements and motor and cognitive performance were 

explored using Pearson correlation coefficients. Statistical significance was set to p = 0.05. Statistical 

analysis was performed using SPSS for Windows version 22. 

Two 3D-IMUs attached to the right and left ankles (OpalTM, APDM) were used to determine 

spatiotemporal gait characteristics while walking on the treadmill. Gait measurements included gait 

speed and stride and step regularity, a measure of the consistency of the stride-to-stride or step-to-

step pattern. These measures were calculated by an unbiased autocorrelation procedure that 

analyzed the pattern of acceleration in the vertical, mediolateral and anteroposterior directions [100]. 

Dual task (DT) cost, a measure that reflects the effect of the second task on gait ability, as compared 

with baseline single task walking was calculated as, DT cost = 100 x (single-task step/stride regularity 

- DT step/stride regularity)/single-task step/stride regularity. 

In this section, the processing and analysis was performed mainly using the existing tools and 

previously proposed solutions with addition of our own, minor automation algorithms. This was 

essential part of assessment before analyzing the gait related potential that is described in the 

following section. 

Assessment of gait related potential [31]. 

EEGLAB toolbox [96] was used for the preprocessing of the raw data collected during the trials. The 

data were filtered using 1-40Hz Band Pass Filter (BPF). Next, independent component analysis (ICA) 

was used to calculate components and remove artifacts. After the reconstruction of the signals from 

the remaining components, the data were cut into stride epochs, which were thereafter resampled 

using cubic-spline interpolation in order to match the number of samples in each epoch. Finally, the 

epochs were grand averaged to compute the stride activation patterns. Recording EEG while walking 

resulted in substantial noise, some of which remained after the above-mentioned process. These 

noise was mainly high frequency artifacts. Since EEG signals are non-stationary, Hilbert-Huang 

Transform (HHT) [101] was used to decompose the EEG signals into Intrinsic Mode Functions (IMF) 

using Empirical Mode Decomposition (EMD) [102]. Next, the IMF containing the highest frequency 

range was removed and the signals were reconstructed and slightly smoothened using Hodrick–

Prescott (HP) filter with λ = 104. 

To rule out the possibility of auditory events creating the observed patterns, we compared between 

epochs of auditory sound within the first half of the gait cycle (defined as a stance) and those within 

the second half of the gait cycle (defined as a swing). We assumed that if the GRPs are largely affected 

by sound, differences in the EEG signal spatiotemporal characteristics will be found between the two 

groups of epochs.  

Means and standard errors were calculated for all dependent variables. Linear mixed model analysis 

was used to examine the effect of task (usual walking vs. dual task walking), group (healthy young vs. 

healthy older adults), and task x group interaction on gait measures (e.g., stride time, stride time 
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variability) and GRPs in the central channels (e.g., amplitude, latency, and APC) while controlling for 

gender and gait speed. The associations between gait measures and electrical brain measures of gait 

cycle were explored using Pearson correlation coefficients. Statistical significance was set to p=0.05. 

Statistical analysis was performed using SPSS for Windows version 22. 

The two 3D-IMUs were used to determine spatiotemporal gait characteristics while walking on the 

treadmill [103]. Gait measurements included gait speed that was constant during usual and dual task, 

mean stride time, and stride time variability. These measures were calculated by an unbiased 

autocorrelation procedure that analyzed the pattern of acceleration in the vertical, mediolateral and 

anteroposterior directions [100]. 

Heel strike events were detected using the accelerometers as described below [103]. By coupling the 

signals from both accelerometers, the algorithm detected regions in the signal that were defined as 

swings of each leg. Using the assumption that during gait only one leg can be at swing phase at a given 

time, parts of the signal were marked as stance regions. Heel strike was identified in the stance region 

as the minimum value in the medial-lateral angular velocity signal that occurs before the instant of 

maximum peak in the anterior-posterior acceleration of the same leg [103]. This process was repeated 

for each step and leg. 

 

Brain Research 

fNIRS: Setup 

Twenty-five subjects (at the time of this report, the data is still being collected), 6 Major Depressive 

Disorder (MDD) patients, 7 Attention Deficit and Hyperactivity Disorder (ADHD) subjects and 12 

healthy subjects were recruited as part of a general study on brain disorders. None of the subjects had 

any known cardio-respiratory ailments. The study was approved by the institutional ethical review 

board of Sourasky Medical Center, Tel Aviv, Israel. All subjects signed an informed consent. 

The NIRS system (ETG-4000, Hitachi, Japan) includes 10 emitters (695nm and 830nm), and 10 

detectors - Avalanche Photodiodes (APD), with a sampling frequency (𝑓𝑠) of 10 Hz. They are coupled 

to the tissue using optical fibers and are positioned over the temporal lobes of the head. Figure 8 

shows the locations of the emitters and detectors using the 10-20 system. Twenty-four (24) channels, 

defined between pairs of emitters and detectors located 3cm apart, (twelve on each hemisphere), are 

available using this topographical arrangement. 
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Figure 8. Arrangement of NIRS optodes based on the 10-20 system. RED-emitters, Grey-

detectors. 

Subjects were asked to sit quietly in front of a dark screen for 300 seconds, with their eyes open, while 

fixating on a white cross at the center of the screen. Following, they performed a cognitive Go-NoGo 

task that consisted of random letters. Whenever a letter appeared on the screen, the subjects were 

required to press a button using their finger. Any time the letter “X” appeared, they were to refrain 

from pressing the button. The task was composed of three (3) blocks of about 220 seconds long. A 

subgroup of subjects performed the experiment twice, once using NIRS setup as explained above and 

once more while lying supine inside a 3 Tesla MRI machine. 

Definitions 

Throughout the “Brain Research” section, the following parameters are fixed:  

• The sampling frequency is denoted as 𝑓𝑠  

• The half window size for window-based algorithms is 2.5 seconds long and the number of 

samples within that window is defined as 𝑁. That value was chosen because hemodynamic 

response function peaks at 6-8 seconds following stimulation [92]. Hence, our window size is 

5sec (2𝑁) when we require a window shorter than the response time and 10sec (4𝑁) when 

the required window should be longer than the response time.  

• The calculated change in concentration of oxyhemoglobin signals denoted as 𝑆̃𝑐 where 𝑐 =

1,2, … , 𝜂 is the number of the channel and 𝜂 is the total number of channels. In our case the 

initial value of 𝜂 is 24.  

• The number of samples in each signal is denoted as 𝐿. 
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fNIRS: MVE 

When setting up a fNIRS headset, in some cases, the coupling of the fibers, or optical elements, to the 

head may introduce artifacts and noise due to poor coupling. These NCs should not be used for 

analysis regardless of the preprocessing methods. In Figure 9, an example of ∆HbO2 concentration 

recorded from one subject is presented. In the panel (a) all channels are shown, and in the lower panel 

the noisy channel (panel c) is separated from the remaining clean channels (panel b). 

 

Figure 9. Presenting all the channels with one exhibiting a coupling artifact. Panel (a)-all channels, 

(b)-clean channels, without noise, (c)-noisy channel. 

NCs, if not detected properly, affect the result of analysis and in some cases may even lead to wrong 

conclusions. Therefore, it is essential to detect them and exclude from any analyses of the data. In 

order to detect NCs automatically, we developed the Maximal Variability Expectation (MVE) algorithm. 

As fNIRS signals are strongly affected by the systemic physiological parameters. Cardio-respiratory 

activity becomes the main component of all the recorded signals regardless of their position on the 

head. This temporal activity is a quasi-periodic, nearly wide-sense stationary process that should 

demonstrate a statistical behavior of a bell-like shaped distribution. Chiarelli et. al. [85] for example, 

look for Gaussian distribution outliers within wavelet coefficients of the signals in order to detect the 

ones that correspond to artifacts. Our algorithm assumes bell-like or half bell-like shaped statistical 

distribution, but does not require a specific distribution type, therefore, in the following algorithms 

we refer to all such distributions as Quasi-Bell (QB) distributions. The expectation value of fNIRS signals 

holds no information regarding brain activity, and may complicate the statistical and probabilistic 

calculations, thus it is removed from each signal: 

𝑆𝑐 = 𝑆̃𝑐 − 𝐸[𝑆̃𝑐] 

Where 𝐸[∙] represents the expectation operator. To simplify the following calculations let us assume 

that 𝑆𝑐  is a gaussian random process. Following that assumption, the Running Standard Deviation 

(RSD) was calculated as follows: 
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𝑆⏞𝑐 (𝑛) = {

𝑆𝑐(𝑁 + 1 − 𝑛) , 0 < 𝑛 ≤ 𝑁

𝑆𝑐(𝑛 − 𝑁) , 𝑁 < 𝑛 ≤ 𝐿 + 𝑁

𝑆𝑐(2𝐿 + 𝑁 + 1 − 𝑛) , 𝐿 + 𝑁 < 𝑛 ≤ 𝐿 + 2𝑁

 

𝑉𝑐(𝑛) = √
1

2𝑁
∑ (𝑆⏞𝑐 (𝑖) −

1

2𝑁 + 1
∑ 𝑆⏞𝑐 (𝑗)

𝑛+2𝑁

𝑗=𝑛

)

2
𝑛+2𝑁

𝑖=𝑛

, 𝑛 = 1,2, … , 𝐿 

The RSD procedure can be regarded as sampling of the standard deviation. The distribution of the 

sample variance collected from a gaussian process, has Chi-squared distribution ([104], [105]). In case 

of standard deviation, we get a root Chi-squared distributed random variable which has a Chi 

distribution. Chi distribution also falls under the QB type of distributions. Next, in order to maintain 

the signal’s length we repeat the padding process as defined above, on the 𝑉𝑐 while 𝑁 is substituted 

with 2𝑁. The received 𝑉⏞𝑐 is used to calculate the Running Maximum: 

𝑀𝑐(𝑛) = max
𝑛≤𝑖≤𝑛+4𝑁

{𝑉⏞𝑐 (𝑖)} , 𝑛 = 1,2, … , 𝐿 

Similarly to RSD, the Running Maximum procedure can be seen as sampling of the maxima value. If 

we examine the maxima value distribution of Chi distributed process, the resulting process has a 

Gumbel distribution [106], which can also be categorized as a QB distribution. The expectation value 

of these Gumbel distributed random variables is then calculated: 

𝑒𝑐 = 𝐸[𝑀𝑐] 

We can interpret 𝑒𝑐 as observations that are calculated by a mean of a large number of samples from 

a Gumbel distributed random variable. Based on the Central Limit Theorem we can deduce that 𝑒𝑐 are 

observations of some QB distributed random variable. Since cardio-respiratory dynamics are the same 

regardless of the location of the measurements, ∀𝑐, 𝑒𝑐 is a sample of a random process tightly related 

to cardio-respiratory dynamics. When all of the channels are recording properly, every such sample is 

related to the same process, whereas any channel recording noise or some other high energy artifact 

throughout most of the recorded trial has a statistical probability that originates from a different 

source. Let us define 𝑋~𝑁̃(𝜇𝑥 , 𝜎𝑥) as a random variable originating from the cardiorespiratory source. 

We assume a QB distribution, denoted as 𝑁̃, based on the explanation provided above. Let us denote 

𝑌 as a random variable with an unknown distribution that originates from the non-cardiorespiratory 

sources and 𝜇𝑦 = 𝐸[𝑌]. Meaning that 𝑒 = 𝑋 with probability of 𝑝 and 𝑒 = 𝑌 with probability of 1 −

𝑝. Note that 𝑋 cannot yield negative samples due to the procedure by which it was acquired. We 

assume that the recording was done properly, thus the majority of collected signals are reliable. 

Implying that 𝑝 ≫ 1 − 𝑝. We also assume that 𝜇𝑦 ∉ {𝜇𝑥 ± 𝜎𝑥} [Figure 10]. 
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Figure 10. The graph presents samples of the random variable 𝑒 collected from all the subjects. 

Zooming in on the X-axis (upper inset) shows a clear half-gaussian or QB distribution as was 

defined earlier. Zooming in on the Y-axis (lower inset) shows the unbalanced tail of the received 

QB distribution. 

When examining Figure 10, it is evident that the assumptions made regarding the distributions of 𝑋 

and 𝑌 random variables were correct. We can see the QB distribution associated with random variable 

𝑋 (upper inset of Figure 10) that is tightly related to the cardio-respiratory dynamics and the high 

value readings associated with random variable 𝑌 that originate from unknown source (lower inset of 

Figure 10), unrelated to the cardio-respiratory dynamics. To the best of our knowledge, none of the 

subjects had any known disorders related to the cardiorespiratory system, thus it is safe to assume 

that samples of random variable 𝑒 collected from different subjects would have a similar behavior, 

thus the presented graph provides some insights on the statistical behavior that should be expected 

for every subject independently. Next, the statistics of 𝑒 are calculated: 

𝜇𝑒 = 𝐸[𝑒] 𝑎𝑛𝑑 𝜎𝑒 = √𝐸[(𝑒 − 𝜇𝑒)2] 

𝛾𝑒 = 𝐸 [(
𝑒 − 𝜇𝑒

𝜎𝑒
)

3

] 

The received skewness value 𝛾𝑒 is then used to determine which of the samples 𝑒𝑐 originated from 

random variable 𝑌. Let us assume that: 

𝑒1 ≤ 𝑒2 ≤, … 

We truncate the set of samples {𝑒1, 𝑒2, … } until 𝛾𝑒 < 1. Meaning that the distribution of 𝑒 is QB since 

a Half-Gaussian, or in our case a Half-Bell distribution has a skewness of just under 1. Our assumption 

is that all of the removed samples using this process originate from 𝑌, meaning they represent the 

NCs. 
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fNIRS: CSV 

The goal of the Cross Segment Validation (CSV) algorithm is to identify motion artifacts within the 

recorded signals. For this algorithm, it is important to exclude the NCs from the calculation as they 

heavily affect the results and accuracy of the method. Meaning that in our case, the value of 𝜂 may be 

lower than 24. In addition, the CCFA algorithm was used to remove the time dependent first statistical 

moment (𝑘𝑜𝑟𝑑 = 4𝑁). Next, RSD is calculated in the same manner as in MVE (denoted as 𝑉̂𝑐) using the 

CCFA filtered signals (denoted as 𝑆̂𝑐) and followed by averaging: 

𝑉𝐴(𝑛) =
1

𝜂
∑ 𝑉̂𝑐(𝑛)

𝜂

𝑐=1

, 𝑛 = 1,2, … , 𝐿 

Afterwards, ordered pair (𝑡𝑠, 𝑡𝑒), representing borders of a section with the lowest variability are 

calculated as follows: 

(𝑡𝑠, 𝑡𝑒) = {(𝑛, 𝑛 + 4𝑁) │
1

4𝑁 + 1
∑ 𝑉𝐴(𝑖)

𝑛+4𝑁

𝑖=𝑛

≤
1

4𝑁 + 1
∑ 𝑉𝐴(𝑖)

𝑚+4𝑁

𝑖=𝑚

, ∀𝑚} 

The running maximum 𝑀𝐴  is calculated for 𝑉𝐴  in the same manner as was described in the MVE 

algorithm. An auxiliary function is then constructed by quantization of 𝑀𝐴. A single quantization level 

is defined as: 

𝑞 = kmin
4𝑁

{𝑉𝐴} 

Where kmin
𝑘

{∙} is the kth smallest element operator. The quantization levels: 0, 𝑞, 2𝑞, 3𝑞, … define 

the possible values of the auxiliary staircase function as follows: 

𝑓(𝑛) = {𝑖𝑞 │ |𝑀𝐴(𝑛) − 𝑖𝑞| ≤ |𝑀𝐴(𝑛) − 𝑗𝑞| , ∀𝑗} 

We determined that sections containing potential artifacts have values of above 2𝑞 on the auxiliary 

function [Figure 11].  
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Figure 11. Panel (a) - changes in HbO2 for all channels. Panel (b) - The auxiliary function is 

displayed in red both as positive values and symmetrically flipped: ±𝑓(𝑛). The amplitude was 

normalized to match the signal’s as it holds no significance. The green section shows the 

detected reference segment. 

 

Therefore, let {(𝑛2𝑚−1, 𝑛2𝑚)}𝑚=1
𝑑  be a sequence of all ordered pairs where the values of the auxiliary 

function are above 2q: 

∀𝑛 ∈ ⋃[𝑛2𝑚−1, 𝑛2𝑚]

𝑑

𝑚=1

, 3𝑞 ≤ 𝑓(𝑛) 

Where 𝑑  is the number of such pairs. In order to improve the temporal resolution of identifying 

artifacts, we further divide these noisy signal segments into sub-segments that have a length of 1s and 

an overlap of 0.5s: 

⋃ {(𝑛2𝑚−1, 𝑛2𝑚−1 + 𝑓𝑠), (𝑛2𝑚−1 +
1

2
𝑓𝑠, 𝑛2𝑚−1 +

3

2
𝑓𝑠) , … , (𝑛2𝑚 − 𝑓𝑠, 𝑛2𝑚)}

𝑑

𝑚=1

 

Where 𝑓𝑠 is a number of samples within 1s, meaning it is equal to the sampling frequency 𝑓𝑠. 

For convenience, let us redefine the ordered pairs as follows: 

{
 
 

 
 

(𝑛1, 𝑛1 + 𝑓𝑠) = (𝑥1, 𝑦1)

(𝑛1 +
1

2
𝑓𝑠, 𝑛1 +

3

2
𝑓𝑠) = (𝑥2, 𝑦2)

⋮ ⋮ ⋮
(𝑛2𝑑 − 𝑓𝑠, 𝑛2𝑑) = (𝑥𝛼 , 𝑦𝛼)

 

The new set is denoted as 𝑃𝐴 = ⋃ {(𝑥𝑗, 𝑦𝑗)}𝛼
𝑗=1 , where 𝛼  is the number of artifact sub-segments. 

Similarly, we divide segment (𝑡𝑠, 𝑡𝑒) and redefine the pairs: 

{(𝑡𝑠, 𝑡𝑠 + 𝑓𝑠), (𝑡𝑠 + 1, 𝑡𝑠 + 𝑓𝑠 + 1), … , (𝑡𝑒 − 𝑓𝑠, 𝑡𝑒)} 

{
 
 

 
 (𝑡𝑠, 𝑡𝑠 + 𝑓𝑠) = (𝑢1, 𝑣1)

(𝑡𝑠 + 1, 𝑡𝑠 + 𝑓𝑠 + 1) = (𝑢2, 𝑣2)

⋮ ⋮ ⋮
(𝑡𝑒 − 𝑓𝑠, 𝑡𝑒) = (𝑢𝛽 , 𝑣𝛽)

 

𝑃𝑅 = ⋃{(𝑢𝜏, 𝑣𝜏)}

𝛽

𝜏=1

 

Where 𝛽 is the number of reference sub-segments. The sets representing reference segments 𝑃𝑅 and 

the potential artifact segments 𝑃𝐴  are then used to compare the statistical behavior of potential 
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artifacts and the reliable, reference data. The average variability of a reference segment was 

calculated by: 

𝜎1
2 =

1

𝜂(𝑡𝑒 − 𝑡𝑠)
∑ ∑ [𝑆̂𝑐(𝑛) −

1

𝜂
∑ 𝑆̂𝑐(𝑛)

𝜂

𝑐=1

]

2𝜂

𝑐=1

𝑡𝑒

𝑛=𝑡𝑠

 

Followed by the calculation of the variability in a potential artifact segment and the combined statistics 

of both reference segment and a potential artifact segment: 

∀(𝑥𝑗, 𝑦𝑗) ∈ 𝑃𝐴 , 𝜎2
2(𝑗) =

1

𝜂𝑓𝑠

∑ ∑ [𝑆̂𝑐(𝑛) −
1

𝜂
∑ 𝑆̂𝑐(𝑛)

𝜂

𝑐=1

]

2𝜂

𝑐=1

𝑦𝑗

𝑛=𝑥𝑗

 

𝜇𝑗,𝜏(𝑛) =

{
 
 

 
 1

2𝜂
∑ (𝑆̂𝑐(𝑛) + 𝑆̂𝑐(𝑛 − 𝑥𝑗 + 𝑢𝜏))

𝜂

𝑐=1

, 𝑥𝑗 ≤ 𝑛 ≤ 𝑦𝑗

1

2𝜂
∑ (𝑆̂𝑐(𝑛) + 𝑆̂𝑐(𝑛 − 𝑢𝜏 + 𝑥𝑗))

𝜂

𝑐=1

, 𝑢𝜏 ≤ 𝑛 ≤ 𝑣𝜏

 

𝜎3
2(𝑗) =

1

2𝛽𝜂𝑓𝑠

∑ [ ∑ ∑[𝑆̂𝑐(𝑛) − 𝜇𝑗,𝜏(𝑛)]
2

+ ∑ ∑[𝑆̂𝑐(𝑛) − 𝜇𝑗,𝜏(𝑛)]
2

𝜂

𝑐=1

𝑣𝜏

𝑛=𝑢𝜏

𝜂

𝑐=1

𝑦𝑗

𝑛=𝑥𝑗

]

𝛽

𝜏=1

 

Where 𝜇𝑗,𝜏(𝑛)  is the expectation approximation over all the channels from both reference and 

potential artifacts combined. Note that the distance between each ordered pair of indices in 𝑃𝐴 and 

𝑃𝑅  is equivalent to one second, thus: ∀𝑗, 𝜏  𝑦𝑗 − 𝑥𝑗 = 𝑣𝜏 − 𝑢𝜏 = 𝑓𝑠 + 1 . If the statement 

(𝑡ℎ1,3 ∙ 𝜎1
2 < 𝜎3

2(𝑗)) ∨ (𝑡ℎ1,2 ∙ 𝜎1
2 < 𝜎2

2(𝑗)) is true, the corresponding segment [𝑥𝑗, 𝑦𝑗] is labeled 

as an artifact, where 𝑡ℎ1,3 = 12 and 𝑡ℎ1,2 = 2.75 are empirically determined thresholds. Note that 

each of the two variability parameters 𝜎2
2, 𝜎3

2  are sensitive to different types of artifacts. The 𝜎2
2 

parameter is more sensitive to artifacts that produce dispersion between the channels while 𝜎3
2 is 

more sensitive to artifacts that create a channel-wise synchronized spike. Next, an iterative process 

was applied to account for the attenuation of the artifact: 

𝑥𝑗
(𝑖+1)

= max
𝑛

{𝑛 ∈ [𝑥𝑗
(𝑖) − 2𝑁, 𝑥𝑗

(𝑖) − 1] │ 𝑓(𝑛) < 𝑓 (𝑥𝑗
(𝑖))} 

𝑦𝑗
(𝑖+1)

= min
𝑛

{𝑛 ∈ [𝑦𝑗
(𝑖) + 1, 𝑦𝑗

(𝑖) + 2𝑁] │ 𝑓(𝑛) < 𝑓 (𝑦𝑗
(𝑖))} 

The process is repeated until convergence ∀𝑗. The purpose of the last step is to inspect the sections 

just before and after the detected segment. Using the proposed procedure, the slope of the auxiliary 

function was assessed and if it was sharp (meaning that: 𝑓(𝑛2) − 𝑓(𝑛1) > 0), the detected segment 

was extended to include it. 
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fNIRS: Spike Detection 

In addition to prolonged motion artifacts, sudden spikes may also appear on one or more channels as 

can be seen in Figure 12. 

 

Figure 12. Graph presents a single channel with visible spike artifacts. 

We propose a procedure that allows for the detection of such artifacts using scaled Median Absolute 

Deviation (sMAD). Samples that exceed three sMAD away from the median, were detected as outliers 

that represent high amplitude artifacts such as spikes. Each non-NC was assessed using the suggested 

outlier detection. The resulting detection is very localized to the spikes’ occurrences and does not 

include the area close to the spike itself which is commonly affected by the spike as well. To 

compensate, morphological dilation, with a structure element size of 2N, was applied. From our 

observations, we deduced that the affected period after the artifact is longer than the period before 

it. Therefore, additional morphological dilation with the size of N was performed only on the periods 

after the artifacts.  

fNIRS: CCFA – Detrending 

The temporal information in fNIRS signals is non-stationary. Some of the components are quasi-

periodic, while others are not. Therefore, CCFA algorithm was used to approximate and remove the 

time dependent first statistical moment 𝑚[1](𝑛) where 𝑛 = 1,2, … , 𝐿. In this case, the Open-Loop 

(𝜆 = 0) approximation was used due to its relative smoothness compared to other sub-procedure 

types and its relative robustness to noise within the initial data. The value of 𝑘𝑜𝑟𝑑  was empirically 

concluded to be 𝑘𝑜𝑟𝑑 = 45𝑁. A linear polynomial curve fitting function (𝑝𝑜𝑟𝑑 = 1) was used for the 

approximation procedure. Reliability weights were neutralized ∀𝑗, 𝛽𝑗 = 1  since there were no 

missing samples and we had no information regarding the accuracy of the sampling process. All the 

remaining parameters were defined as suggested by default, the uniform distribution for the 

recombination weights was set to 𝜔𝑘−𝑚 =
1

𝑘𝑜𝑟𝑑
 and source function weight was set to zero, 𝜔0 = 0. 

Under the settings defined above, the simplified equation can be used: 
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𝑠̃𝑛 =

𝜔0 ∙ 𝑠𝑛
(0)

+ ∑ 𝜔𝑘−𝑚 ∙ 𝑓𝑚+1
(𝑛−𝑚−1)

𝑘−1

𝑚=0

∑ 𝜔𝑘−𝑚
𝑘
𝑚=0

 

Once the recombination weights are assigned, the equation becomes even simpler: 

𝑚⃡  [1](𝑛) =
1

𝑘𝑜𝑟𝑑
∙ ∑ 𝑓𝑚+1

(𝑛−𝑚−1)

𝑘−1

𝑚=0

 

The proposed procedure provides the 𝑚[1](𝑛) function that is subtracted from the raw signal. Just like 

many other window-based procedures, CCFA requires padding of the signal to avoid information loss 

at the borders. The type of padding is very important for CCFA, as it will strongly affect the resulted 

approximation near the borders of the signal. We used a weighted trend padding to assure that 

window’s entrance gradient matches the signal’s gradient. The padding size is equal to 𝑘𝑜𝑟𝑑 on each 

side of the signal. The weights for the weighted line fit were assigned as one divided by the distance 

of the sample to the edge that is being extended. The extrapolation of the fitted line is defined to be 

the padding of the signal at that border. Let us denote the resulted padded signal as 𝑆𝑐(𝑖). The time 

dependent first statistical moment is then calculated using the 𝑚⃡  [1](𝑖) that is received by applying 

CCFA onto 𝑆𝑐(𝑖) and trimmed as follows: 

𝑚[1](𝑛) = 𝑚⃡  [1](𝑛 + 𝑘𝑜𝑟𝑑) 

where 𝑛 = 1,2, … , 𝐿 and 𝐿 is the length of the signal. The detrended signal is then simply calculated: 

𝑆̂𝑐(𝑛) = 𝑆𝑐(𝑛) − 𝑚[1](𝑛), where 𝑆𝑐(𝑛) is the raw signal and 𝑆̂𝑐(𝑛) is the resulting detrended one. 

fNIRS: ICF 

When processing the temporal information in fNIRS signals, it is essential to firmly understand what 

type of information is relevant for the study. The recorded signals create a phenomenon often called 

a “cocktail party”. It basically means that the recorded signals contain mixed inputs from multiple 

sources. Those sources are referred to as “signal components”. It is important to identify as many such 

components as possible in order to reduce the effects of the irrelevant ones on the target of the study. 

We refer to all components obscuring the target of the study as noise. For example, the cardio-

vascular or cardio-respiratory system has a very dominant and robust, quasi-periodic component 

within the recorded signals, but it has no significant information regarding neuronal activation 

patterns or brain hemodynamics. Therefore, to analyze them, the cardio-vascular system’s 

component should be removed from the signals, meaning that it can be considered as part of the noise 

contaminating the desired information. 

When using standard spectral filtering techniques, one should be careful since these methods may 

not be applicable for all of the components of the signals. This is due to the stationarity assumption 

of most of the standard filtering methods, which may not be true for some of the components. 

Therefore, unless it is clear that there are no significantly non-stationary components within the 

signals, one should avoid using standard Spectral Band Filtering (SBF) (e.g. Fourier transform based 

filtering). Since we know that the fNIRS signals are non-stationary and we have no knowledge 

regarding which components are non-stationary and how far are they from the definition of WSS, we 

propose an alternative method of filtration named Intrinsic Component Filtering (ICF). 
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Empirical Mode Decomposition (EMD) from the Hilbert-Huang Transform (HHT) [87] was used to 

decompose each channel into Intrinsic Mode Functions (IMFs). EMD does not assume stationarity 

when decomposing the signals. The extracted IMFs are components containing the information 

originating from some phenomena rather than a predefined frequency range, meaning that each 

component contains the whole spectrum of frequencies corresponding to that same phenomenon. 

For each IMF, the Power Spectral Density (PSD) was calculated. It is true that PSD assumes stationarity, 

but in our approach, we do not use it for the filtration procedure. In this method, the PSD is used to 

select the components that should be removed, thus allowing for the usage of a band-based filtering 

logic while avoiding the stationarity assumption in the filtration procedure itself. The absolute PSD is 

filtered using Median Filter with a window size of 2𝑁  to reduce the effects of narrow spectrum 

subcomponents on the calculation. The energy of the resulted function is then calculated using a 

running window integration with a window size of 2𝑁. The resulting Spectral Energy Distribution (SED) 

function is then used to decide if the component should remain, or if it should be removed from the 

signal. Similarly to SBF, the Low Pass, Band Pass, Band Stop and High Pass filters can be defined. We 

used an Intrinsic Component Low Pass Filter (IC-LPF) at 0.1Hz. The components in which the area of 

the SED for frequencies above 0.1Hz (colored parts of Figure 13, panel (c)) being greater than the area 

below 0.1Hz (uncolored parts of panel (c)), are removed from the signal entirely. The IMFs with SED’s 

maximal value above 0.1Hz are also removed [Figure 13]. 
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Figure 13. Panel (a) shows the detrended signal using CCFA. Panel (b) shows the first four IMFs 

of the signal shown in panel (a). Panel (c) shows the SED functions of the first four IMFs expanded 

to the range of 0~2Hz. The colored areas of the graph correspond to the frequency range of IC-

LPF (above 0.1Hz). Panel (d) shows the filtered signal using the ICF approach based on all the 

remaining IMFs derived from that signal. 

The filtered signal is then reconstructed by simply summing the remaining components (i.e. after 

removing the upper three IMFs shown in panel (b) of Figure 13. Since the filtering itself removes the 

entire component, this technique is suitable for non-stationary signals. ICF can also be done directly 

from the PSD rather than the SED. Using the PSD will be more sensitive to short frequency spectrum 

subcomponents of the IMF. Note that in case of the PSD, the removal must be based only on the ratio 

of the areas and not on the maximal frequency-value due to high sensitivity to the short frequency 

spectrums. The detrending procedure should be performed prior to the ICF step. 

fNIRS: Data Simulation for Filtration Assessment 

For the effectiveness evaluation a synthetic dataset was constructed in the following way: The 

Hemodynamic Response Function (HRF) was defined in accordance with [92] using the Gamma 

Function described by equation 14 in section 3.2.2. According to Santosa H. et.al. [92], the HRF peaks 

at 6-8 seconds following the stimulation. Therefore, the parameters were set to create a HRF with a 

peak at 7s and 𝑏1 = 1 [
1

𝑠
]. Next, using Dirac comb approach, Hemodynamic Response Trial (HRT) was 

simulated: 

𝐻𝑅𝑇 = 𝐻𝑅𝐹 ∗ ∑ 𝜏𝑖 ∙ 𝛿(𝑡 − 𝑇 ∙ 𝑖)

𝑟

𝑖=0

 

𝛿(𝑗) = {
1, 𝑗 = 0
0, 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

 

Where ∗ is a convolution operator, 𝛿(∙) is Kronecker delta function, 𝑟 is the number of desired HRF 

occurrences in the constructed signal, 𝑇 is HRF occurrence rate, 𝜏𝑖 ∈ {0,1} and 𝑡 is the time stamp in 

seconds. In our setting, the parameters were as follows: at random, four of the 𝜏𝑖 values were set to 

0 while others are equal to 1, 𝑟 = 14 and 𝑇 = 20[𝑠]. The signals for testing were then defined as in 

[86], however, the amplitude multipliers were chosen based on [93]: 

𝑆̌𝜒 = 𝑆̃𝜒 + 𝐴 ∙ 𝐻𝑅𝑇 

{
{𝐴1, … , 𝐴5} = {0.05, 0.08, 0.1, 0.2, 0.3} [𝑓𝑜𝑟 HbO2]

{𝐴1, … , 𝐴5} = (−
1

3
) ∙ {0.05, 0.08, 0.1, 0.2, 0.3} [𝑓𝑜𝑟 HbR]

 

𝐴 ∈ {𝐴1, … , 𝐴5} 

Where 𝑆̌𝜒 is the synthesized, raw fNIRS signal with HRF occurrences, 𝑆̃𝜒 is a raw signal recorded during 

the resting state phase of the study and 𝜒 = 1, … , Χ is an index numbering the signals. An amplitude 

multiplier 𝐴 was defined taking into consideration the HRF values described in [93]. The results of [93] 

indicate that the amplitude of the HRF has a significant variability, thus the above multipliers were 

chosen to assess the performance for different amplitudes of the HRF that may appear in the real data. 

The limits, however, were chosen based on our resting state data and GLM approximation limitations. 
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When testing GLM using random HRF locations on a resting state signal, we concluded that the error 

margin of the method is around 0.02, thus the smallest multiplier was set to be 0.05 for HbO2. On the 

other end of the range, we know that the SNR of those signals cannot be above 0dB if calculated as 

defined in this work. This is due to the fact that HRF cannot have a higher amplitude than the recorded 

signal itself, which should also contain random HRF occurrences. The multiplier of 0.3 on average, 

provided a borderline amplitude that led to a SNR close to 0dB, thus it was chosen as an upper range 

limit. Note that in [86] the HRF is convolved with a functional block, whereas we chose an 

instantaneous HRF. This is due to the fact that our cognitive task involves instantaneous actions that 

will be analyzed in future publications. Let 𝑆̌𝜒
(𝐴𝑖) be a signal with an amplitude multiplier 𝐴 = 𝐴𝑖 , 𝑖 ∈

{1, … ,5}. Every signal was then filtered twice independently; Once using the DCT and SBF methods 

and once using the CCFA and ICF methods. This was done for each of the amplitude multipliers. The 

SBF was defined as a Finite Impulse Response (FIR) LPF of 500th order with a cutoff at 0.1Hz (the same 

as IC-LPF). The signal resulting from DCT and SBF filtration is defined as 𝑆̈ and the one resulting from 

CCFA and ICF filtration as 𝑆. 

fNIRS: General Linear Model Procedure: 

Using the GLM model: 

𝑌 = 𝑋𝐵 + 𝜖 

Where Y is the filtered signal (𝑆̈ 𝑜𝑟 𝑆), X is a matrix with first column containing ones and the second 

column containing the product 𝐴 ∙ 𝐻𝑅𝑇 , 𝐵  is the regression coefficients vector and 𝜖  is the error 

vector. Once the values of 𝐵  were estimated, 𝐵(1)  contains offset coefficient and 𝐵(2) contains 

amplitude gain factor resulting from the filtration process. We denote 𝛽𝜒 = 𝐵(2) calculated for signal 

number 𝜒. A high-quality filtration process should remove the noise sources, without affecting the 

HRT. Therefore, we calculated the relative change in the values of the 𝛽 coefficients, in relation to the 

𝐴 coefficients as proposed by Pinti et. al. in [86]. As expected, the post-filtration values of the 𝛽 are 

always reduced due to the negative gain of the filtration procedures. For each of the filtration methods, 

the 𝛽 reduction fraction was calculated following both the detrending step and the complete filtration. 

The calculation was done as follows: 

𝛽𝜌 =
100

|𝐴|
|𝐴 − Per𝜌

𝜒

(𝛽𝜒)| [%] 

Where Per𝜌 is a function providing the percentile 𝜌 and 𝛽𝜌 is the reduction fraction of the percentile 

𝜌. The 𝛽 value fraction reduction was calculated for percentiles 25, 50 and 75. 

fNIRS: Signal to Noise Ratio Procedure: 

The SNR value, 𝜁𝜒 was calculated as the ratio of the summed squared magnitudes of the signal to the 

noise. The signal was defined as: 𝐻𝑅𝑇 ∙ 𝛽𝜒 and the noise were defined as: 𝑆̈ − 𝐻𝑅𝑇 ∙ 𝛽̈𝜒 for DCT and 

SBF filtration and 𝑆 − 𝐻𝑅𝑇 ∙ 𝛽𝜒 for CCFA and ICF filtration method. Where 𝛽𝜒 is a 𝛽-value using CCFA 

and ICF method and 𝛽̈𝜒 is a 𝛽-value using DCT and SBF filtering method. The multiplication by 𝛽 was 

done to exclude the effect of the negative gain produced by filtration, from the SNR assessment. It 

allows for the assessment of the dominance of the signal over the noise after the filtering procedure. 

Then, the percentiles 25, 50 and 75 were calculated for the SNR. 
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Results 

 

CCFA Algorithm 

CCFA algorithm is a general-purpose solution of filtering, resampling and approximating missing 

samples for nonlinear and non-stationary signals. The target process does not have to be temporal or 

quasi-periodic. In this work, CCFA was used for missing samples’ approximation in gait analysis section 

and for filtration in brain research section. In both cases we present statistical evaluation of the 

method compared to the commonly used solutions, in their respective sections. Here we present 

some graphical examples of CCFA’s performance and capabilities: 

Figure 14. Black line is human gait signal containing some noise. Green line shows the result of 

median filter of 5th order. Light blue line is the result of LPF using cutoff frequency of 2Hz. Red line is 

the result of using polynomial based CCFA with k-order of 10 and polynomial degree of 3. 

 

Figure 14 shows the comparison of non-Gaussian noise filtration using three different methods: 

median filter, LPF and CCFA. Although median filter reduces the noise, it fails to produce the smooth 

waveform that we expect to see in the noisy area. LPF on the other hand, produces a smooth 

waveform as one would expect to see in the noisy regions, but at the same time it creates many 

distortions along the entire signal. CCFA however, provides smooth waveform that seems to be the 

best result out of these three and at the same time produces almost no distortions of the data. 
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Figure 15. In black is human gait signal with a strong spiky noise. In blue is CCFA based filtering 

using polynomial curve fitting with k-order 10 and polynomial degree of 3. In red is CCFA based 

filtering using the same parameters as used for blue line, but with approximated 𝛽 reliability 

weights. 

As can be seen in Figure 15, strong non-Gaussian noise will affect the performance of CCFA. However, 

𝛽 reliability weights can be used to negate these effects. In the example above, the reliability weights 

were estimated using a simple derivative. The reliability of each sample in the signal was defined based 

on the derivative value at that point. High derivative means low reliability and vise-versa. We can see 

that once the estimated reliability weights were provided, the effect of high-amplitude spike was 

almost completely subdued.  

 



49 
 

Figure 16. In black is the human gait signal with high-amplitude spike noise. Green is the filtration 

result using median filter of 5th order. In light blue is the result of LPF with a cutoff frequency of 

2Hz. In red is the result using CCFA based on polynomial curve fitting with k-order of 10, 

polynomial degree of 3 and approximated 𝛽 reliability weights. 

 

Figure 16 shows the comparison between median filter, LPF and CCFA on the signal from Figure 15. As 

expected, median filter removes spiky noise very effectively, but at the same time distorts the signal 

in the local extrema locations. LPF fails to remove the high-amplitude spike and creates distortions 

along the entire signal. CCFA on the other hand, removes the noise and preserves the original function 

quite well. 

 

Figure 17. In black is the human gait signal with a missing section. In green is the cubic spline 

interpolation-based reconstruction of the section. In red is polynomial based CCFA using k-order 

of 15 and polynomial degree of 3. 

 

When examining the reconstruction using cubic spline [Figure 17], we can see a severe “overshoot” in 

the reconstructed area. This is probably due to small noise near the borders of the missing section 

that distort the direction of the samples at the edge. Since CCFA is not sensitive to noise, this distortion 

does not affect its reconstruction curve, thus providing a much more reliable result. 
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Figure 18. Black is the human gait signal. In light blue is the result of up-sampling of the signal 

using cubic spline. In dark blue is the result of up-sampling using Finite Impulse Response (FIR) 

LPF – anti-aliasing filter. 

It is a known fact that any type of resampling produces additional noise. It can be clearly seen on both 

up-sampled signals [Figure 18], as new high-frequency noise were added to the existing noise sources. 

 

Figure 19. In black is human gait signal. In magenta is up-sampled signal using CCFA without 

noise reduction. In red is CCFA up-sampled signal using its noise reduction ability. 
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When using CCFA for resampling, the magnitude of the produced noise is quite small [Figure 19]. If we 

examine the up-sampled signal without noise reduction, that has a magenta color in Figure 19, we can 

see that the resulted signal follows the original one very closely and even slightly reducing the noise, 

while producing almost no high frequency noise that can be seen in methods used in Figure 18. In 

addition, CCFA is capable of reducing the noise while performing resampling of the signal. The example 

of up-sampling with noise reduction is shown in red in Figure 19, where we can see a significant 

reduction of the spike noise, even without the usage of approximated reliability weights. When 

resampling is performed with denoising, CCFA will not produce any high-frequency noise, but it will 

affect the shape of the signal according with the filtration settings as can be seen in the area of the 

local minima just after 67 seconds timestamp [Figure 19]. 

 

Figure 20. In black is human gait signal with non-uniform sampling rate. In light blue is 

resampling of the signal to uniform rate using cubic spline interpolations. In dark blue is 

resampling of the signal to uniform rate using FIR LPF – anti-aliasing filter. In red is resampling 

to uniform rate with noise reduction using polynomial CCFA. 

 

In Figure 20 we can see a closeup of signal’s section resampled to uniform sampling rate using three 

different methods. It is evident that both cubic spline and FIR LPF produce high-frequency noise when 

resampling [Figure 18, Figure 20]. CCFA however, does not produce these noise and even reduces the 

effects of the existing noise in the resampled signal [Figure 19, Figure 20]. The small “undershoot” that 

can be seen in Figure 20, can also be reduced by providing the reliability weights to the algorithms. 
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Gait Analysis 

Gait: SDET Peak Detection 

Using SDET, all the local extremum points that were global within their period on the quasi-periodic 

temporal signal were estimated in [30]. Since there were no classified reference data (true extremum 

point locations), more than a hundred of different signals were inspected visually. Almost no 

miscalculated points were found other than the local extremum near the beginning and the end of 

the signal or in regions with severe data loss [Figure 21]. 

 

Figure 21. Peak detection using SDET on the gait signal. Lower panel shows the detection of all 

local extrema within the time section. The upper panel shows the detection of extrema points 

using the proposed method. 

 

Gait: Detection of Gait Abnormalities 

Using the proposed temporal segmentation, the segments corresponding to obstacle avoidance were 

detected. The kernel-based clustering allowed for the detection of the irregular steps. By combining 

the two solutions, we received the preparation phase for the obstacle avoidance, its recovery phase 

and the irregular steps within these phases [Figure 22]. The detection results were selectively 

inspected by the medical specialists and were confirmed to be reliable. 
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Figure 22. Segments related to obstacle avoidance task for each foot. Section before the obstacle 

is the preparation phase, section after the obstacle is the recovery phase. The abnormal steps 

are marked in red. 

 

Gait: CCFA – Missing Samples Approximation 

To examine the accuracy of the proposed CCFA model, it was compared to Linear Interpolation, Cubic 

Spline Interpolation and to back and forth Auto-Regressive fitting model. Almost 850,000 examples of 

signals with missing samples were used. These data were collected from 37 different gait trials done 

by 5 different subjects. The results were compared in terms of Root Mean Square Error (RMSE). CCFA 

was tested with a range of parameters for algorithm order 𝑘𝑜𝑟𝑑 and polynomial degree 𝑝𝑜𝑟𝑑 where:  

1 < 𝑘 ≤ 50   𝑎𝑛𝑑   1 ≤ 𝑝 ≤ 5 [Table 1]. 
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Method RMSE 

Linear Interpolation 4.34 (cm) 

Cubic Spline Interpolation 2.49 (cm) 

Auto Regressive Model 2.42 (cm) 

CCFA (Optimal 𝑘 and 𝑝 in range) 0.75 (cm) 

Table 1. CCFA model performance comparison to other models when optimal parameters within 

the predefined range are used. 

 

The proposed ML algorithm for CCFA parameters prediction was tested 30 times with different 

random seeds for data separation. This was done in order to roll out the possibility of favorable 

division of the data. The results are shown in [Table 2]: 

CCFA using parameters 𝑘 and 𝑝 predicted by 

the ML model over 30 tests 
RMSE 

Maximum 1.25 (cm) 

Minimum 1.24 (cm) 

Mean 1.25 (cm) 

Median 1.25 (cm) 

Table 2. CCFA model performance using the input parameters predicted by the proposed ML 

algorithm. 

Although the proposed ML algorithm did not yield the best possible results (see Table 1), it has still 

provided much better accuracy than that of Interpolations and the Auto-Regressive Model. 

 

Gait: Walking Performance Analysis 

Using the result from the proposed methods, gait performance of all participants was analyzed. Based 

on the result, it is evident that V-TIME system improves walking performance. One of the common 

issues among elderly is the reduced step length and walking speed. In Figure 23, it can be clearly seen 

that step length is increasing while step time is decreasing, indicating the improvement of the walking 

speed and overall performance. 
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Figure 23. The bars show the average step length and duration from second session, middle 

session and final session of the training course. Significant improvement of the steps can be seen 

throughout the training course. The scale is in meters for length and in seconds for duration. 

 

Gait and the Brain 

EEG: Analysis 

Using the procedures as described in the methods section, EEG data was processed and analyzed. 

SDET was able to accurately detect the peak locations of the neuronal activation patterns during gait 

dual task walking. Based on the detected peaks, APC provided comprehensive information regarding 

the differences of the brain activation patterns between different subject groups. 

Assessment of the effects of aging and PD on cognitive performance during dual task walking [64]. 

The analysis showed that MOCA, gait speed, and CTT scores were significantly lower in patients with 

PD, compared to healthy young [Table 3]. 
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Parameter Healthy young 
N=11 

Elderly  
N=10 

PD  
N=10 

p-values 

Age (years) 32.3 ± 1.8 67.1 ± 1.7 ∗ 60.5 ± 3.6 ∗∗ < 0.001 

Gender(M/F) 7/6 4/6 6/4 0.853 

Treadmill Gait 
Speed (m/s) 

0.8 ± 0.02 0.6 ± 0.03 0.6 ± 0.02 ∗∗ 0.015 

MOCA 28.2 ± 0.4 27.7 ± 0.5 25.2 ± 0.8 ∗∗ # 0.003 

CTT (s) 32.2 ± 4.2 51.8 ± 3.4 67.9 ± 14.7 ∗∗ 0.014 

Disease Duration 
(years) 

𝑁/𝐴 𝑁/𝐴 2.9 ± 0.5 𝑁/𝐴 

UPDRS Motor 𝑁/𝐴 𝑁/𝐴 20.2 ± 3.4 𝑁/𝐴 

LEDD (mg) 𝑁/𝐴 𝑁/𝐴 303 ± 114 𝑁/𝐴 

Table 3. Participants’ characteristics. PD - Parkinson’s disease, M - Male, F - Female, MOCA - 

Montreal Cognitive Assessment, CTT - Color Trail Test, UPDRS - Unified Parkinson Disease Rating 

Scale, LEDD - Levodopa Equivalent Daily Dose. * - Significant difference between healthy elderly 

and young. ** - Significant difference between PD and young. # - Significant difference between 

PD and elderly. 

 

All participants were engaged in the oddball task and demonstrated high accuracy of performance 

during standing (healthy young 100 ± 0.0%, healthy older adults 98 ± 1.7%, and patients with PD 97.4 

± 1.1%) and during walking (healthy young 99.2 ± 0.4%, healthy older adults 99.4 ± 0.4%, and patients 

with PD 99.4 ± 0.4%). The P300 potentials of 1 healthy older adult and two patients with PD could not 

be achieved. Therefore, the data of these three subjects were not included in the analysis. Table 4 

summarizes the P300 latency and amplitude during standing and walking. 

Condition Standing Walking 

Variable Subject 
(n) 

Latency 
(ms) 

Amplitude 
(mamp) 

Achieved 
P300 (%) 

Subject 
(n) 

Latency 
(ms) 

Amplitude 
(mamp) 

Achieved 
P300 (%) 

Young 11 396 ± 29 7.1 ± 1.6 91.7 11 415 ± 23 7.7 ± 1.0 75 

Elderly 9 456 ± 32 6.9 ± 0.9 80 9 526 ± 27 7.3 ± 0.7 70 

PD 8 478 ± 13 6.2 ± 0.9 70 8 558 ± 33 3.8 ± 0.6 50 

Table 4. P300 latency and amplitude during each condition in each group. 
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Analysis of differences between conditions (i.e. standing and walking) showed prolonged P300 latency 

during walking compared to standing in all groups (p = 0.005), while P300 amplitude was similar 

between conditions (p = 0.528). Similar results were observed after controlling for LEDD (latency: p = 

0.014, amplitude: p = 0.687) or MOCA (latency: p = 0.012, amplitude: p = 0.687). P300 latency during 

walking was significantly shorter in the healthy young subjects compared to the healthy older adults 

(p = 0.032) and to the patients with PD (p = 0.005). No differences were observed between the healthy 

older adults and the patients with PD in this condition (p = 0.976). Between group differences in P300 

latency during standing were only observed between healthy young and patients with PD (p = 0.041). 

A significant condition by group interaction was found for P300 amplitude (p = 0.008). Similar 

amplitude between standing and walking was shown in healthy individuals (both healthy young and 

healthy older adults) and a smaller P300 amplitude during walking (compared to standing) was 

demonstrated in patients with PD (p = 0.023, Figure 24).  

 

Figure 24. P300 during (A) standing and (B) walking in young adults, elderly, and patients with 

PD. No differences in P300 latency and amplitude are observed between the groups during 

standing. In contrast, P300 amplitude is significantly lower in patients with PD (dash line) 

compared to young and elderly during walking (p = 0.023). 

 

Young healthy adults showed higher stride (p = 0.037) and step regularity (p = 0.050) compared to 

patients with PD during oddball walking. Trend toward significant was observed during usual walking 

(stride regularity p = 0.072, step regularity (p = 0.071). No differences in dual task cost between the 

groups were observed (dual task cost stride time p = 0.616, DT-cost stride regularity p = 0.971, DT-cost 

step regularity p = 0.295). Gait speed was significantly lower in patients with PD (p = 0.018) [Table 3]. 

P300 latency was inversely correlated to gait speed (r = -0.457, p = 0.014) in all participants indicating 

that lower gait speed (worse motor ability) was associated with prolongation of P300. In addition, a 

significant correlation was found between CTT and P300 latency. P300 amplitude was not associated 

with cognitive or gait measures. 
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Assessment of gait related potential [31]. 

Walking speed on the treadmill during both usual and oddball walking was lower in the older adults 

compared to young adults (p=0.030). Among all subjects (no effect of group), compared to usual 

walking, stride time (task effect: p=0.009, group effect: p=0.068) and stride time variability (task effect: 

p=0.021, group effect: p=0.488) were lower during oddball walking [Table 5]. 

 Stride Time mean (s) Stride Time CV (%) 

Task (mean ± SE) Usual Walk Oddball Walk Usual Walk Oddball Walk 

Young 1.39 ± 0.04 1.38 ± 0.04 2.47 ± 0.23 2.53 ± 0.24 

Elderly 1.36 ± 0.04 1.33 ± 0.04 2.79 ± 0.28 2.36 ± 0.11 

Task Effect  
(p-value) 

0.009 0.021 

Table 5. Gait measurements during usual and dual task in young and elderly. 

 

In Figure 25 we can see that the electrical brain pattern during a gait cycle consisted of two main 

positive GRPs, P1 during the stance phase and P2 during the swing phase. The graph shows three 

channels, Pz, Cz and Fz comparing young and elderly subjects during usual walk and an oddball task. 

At the bottom of Figure 25, human gait cycle phases are synchronized with the timeline of the GRPs. 

Stance and swing phases can be seen at 30% and 75% of the gait cycle. 
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Figure 25. The grand mean of gait related potentials (GRP) within a gait cycle during usual and 

oddball walking in young and elderly in Pz, Cz, and Fz. 



60 
 

 

These GRPs differed between young and older adults in Pz by amplitude and in Cz by APC. In Pz, the 

older adults had higher peak amplitudes compared to the young adults (P1: p=0.006, P2: p=0.010) 

[Figure 26]. In Cz, the older adults had lower APC values than in the young adults (p=0.025).  

 

Figure 26. The differences in amplitude’s peak between young and elderly in Pz. Average and 

standard error. 

 

Comparison between usual and oddball walking tasks revealed significant differences in peak latency 

in Cz and Fz among all subjects. More specifically, in Cz, both groups showed shorter latency in oddball 

walking compared to usual walking (task effect: p=0.040), while in Fz the young adults presented 

shorter latency and older adults longer latency during oddball walking (interaction effect, p=0.045). In 

addition, significant differences in APC were found in Cz. While the young adults showed lower APC 

during oddball walking compared to usual walking, the older adults demonstrated the opposite effect, 

i.e. higher APC during oddball walking compared to usual walking (group X task interaction: p=0.006) 

[Figure 27]. 
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Figure 27. The differences in Amplitude Pattern Consistency (APC) between and within young 

and elderly in Cz. 

 

Changes in auditory ERPs (e.g., P300) were previously published, showing direct evidence of 

physiological recruitment of attentional networks during walking and their impact by aging and 

disease [64]. Interestingly, the addition of the auditory events during the oddball task did not affect 

the GRPs. No differences were found in GRPs amplitude (p > 0.097), peak latency (p > 0.154), or APC 

(p < 0.132) between gait cycles in which the oddball sounds were displayed in the first half (stance 

phase) and gait cycles in which the oddball sounds were displayed in the second half (swing phase) 

[Figure 28]. 

 

Figure 28. The electrical brain pattern of gait cycles in which the oddball sounds were heard at 

the first half and gait cycles in which the oddball sounds were heard at the second half in (A) 

older adults and (B) young adults in channel Cz. 
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Gait speed was correlated with APC (r=0.599, p=0.011) in all subjects. Specifically, a higher gait speed 

on the treadmill was correlated with a higher APC in Cz [Figure 29A]. In addition, stride time variability 

was negatively correlated with APC in Cz only in the older adults (r=−0.703, p=0.023). Older adults 

with higher stride time variability (worse gait performance) demonstrated lower APC [Figure 29B]. No 

correlations between gait measures, MOCA, and GRPs amplitude and latency were found (p > 0.050). 

 

Figure 29. Correlations between: (A) gait speed and APC during usual walking in all subjects, and 

(B) stride time variability and APC during oddball walking in elderly. 

 

Brain Research 

fNIRS: MVE 

The validation of the method was done by visually inspecting the signals, which is currently the most 

commonly used method of detecting such faulty channels. Three independent researchers inspected 

each of the 24 recorded channels from 22 different subjects, in total: 528 signals. Every signal received 

a label: Clean, Borderline or Noisy channel. Clean channels are those that have a clearly visible 

heartbeat on the raw signals. Borderline channels are those that have a heart beat visible only after 

removing the high frequency noise (above 1.6Hz). Noisy channels are those that have no visible 

heartbeat even after the removal of the high frequency noise. An entire session of a resting state block 

followed by three blocks of a cognitive task was collected in one continuous recording, when subjects 

were allowed to move a little in between the blocks. Each block was processed independently, 

therefore, the resulting number of labeled signals was 2112 (528 signals X 4 blocks). The MVE 

algorithm was then applied to every block in order to classify the 24 channels of that block as clean 

channels or NCs. The results of the classification were then compared to the labels provided by the 

researchers. Table 6 summarizes the classification, where the columns represent the reviewers’ 

labeling and the rows the MVE algorithm’s classification. Channels that were labeled as Borderline are 

hard to classify even for an expert, thus we have no solid conclusions whether these channels should 

be considered usable for further assessment or not. Therefore, we excluded the Borderline channels 

from the accuracy calculations. 
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Label Clean channels Borderline channels Noisy channels 

MVE Detected as Clean 1614 216 43 

MVE Detected as NCs 19 65 155 

Table 6. The number of signals classified using the MVE algorithm, as either clean or NC, for each 

label type provided by the experts. 

Based on the remaining signals, the MVE’s sensitivity is 98.84%, specificity is 78.28% and classification 

accuracy is 96.61%. Following, all channels that were not classified as NCs by the algorithm were used 

for assessment of motion artifacts and noise removal. MVE’s performance in respect to sensitivity and 

specificity can be adjusted to the needs of the specific research by increasing or decreasing the 

skewness threshold that is set to 1 by default. The default value of 1 was theoretically concluded, but 

in cases where sensitivity or specificity is preferred over the other, it may be reduced to improve 

specificity or increased to improve sensitivity. 

fNIRS: CSV 

Using CSV algorithm, we were able to automatically detect artifact occurrences within the recorded 

signals, as shown in Figure 30. 

 

Figure 30. Output of the CSV algorithm. Panels (a)&(b) show the detrended signals. The red 

rectangles in panel (b) show the segments detected as motion artifacts. 

The validation of the method was done by visually inspecting the signals, and grading the quality of 

detection by the experts, which is a common method for validating motion artifact detection in real-

life data. In a follow-up publication we will describe the use of this method for targeted artifact 

removal. To validate our approach, we performed a visual inspection of the detection output. Each 

session was observed and evaluated in terms of accuracy of artifact detection by two independent 
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research members. The given score was between zero and ten where zero represents an extremely 

poor detection and ten represents a perfect detection of the artifacts (under the subjective decision 

of the researcher). The mean score for the above-mentioned thresholds was 9.22 with a standard 

deviation of 1.13, indicating a reasonably high accuracy of detection with a low variability. 

fNIRS: Artifact Detection 

Using the proposed approach, we were able to detect spike artifacts that occurred in a single channel 

and include the affected area into the detection frame as can be seen in Figure 31.  

 

Figure 31. Red line presents spike artifact detection using the proposed procedure. 

 

Motion artifacts that produce spikes usually affect multiple channels thus allowing for their detection 

using the CSV algorithm. The spikes appearing on a single channel or only on a few of the channels are 

not detected by the CSV algorithm as they are not its designated targets. On the other hand, the spike 

detection procedure, though capable of accurately detecting the spike artifacts, often fails to detect 

less sudden artifacts with a longer duration that are common in cases of motion artifacts. Thus, the 

CSV algorithm and the spike detection complement each other and allow for the detection of almost 

all types of the artifacts. Figure 32 presents an artifact detection map that can be constructed to assess 

the quality of the data. 
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Figure 32. Artifact detection map for all channels (rows): Spike regions in dark blue, motion 

artifact regions detected by the CSV algorithm in orange and NCs (channels 3 and 22) detected 

by the MVE algorithm in dark red. 

 

fNIRS: CCFA Detrending 

Using the CCFA algorithm, with 𝑘𝑜𝑟𝑑 = 4𝑁 for artifact detection purposes and 𝑘𝑜𝑟𝑑 = 45𝑁 for data 

filtering (𝑁 = 2.5𝑠𝑒𝑐 ), we removed the time dependent first statistical moment (i.e. trend). We 

compare our method to the DCT based approach. To better understand the limitations, two different 

filtrations were done using DCT; One was the filtration proposed in the SPM toolbox [81], using the 

default suggested parameter (128 seconds). The other was a suppression of the first 17 coefficients of 

DCT using an exponential function. The 17th coefficient and all of the following ones are unchanged, 

while the first sixteen ones are suppressed in an increasing manner from 16th to the 1st coefficient, 

using an exponential function with a power in range of 0 and -20, equally spaced between the 17 

components. 
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Figure 33. The graphs show the result of detrending using the CCFA algorithm and compares it 

to the DCT method for non-NC. Panel (a) - the original raw data, (b) - detrended data comparison 

using CCFA algorithm 𝑘𝑜𝑟𝑑 = 4𝑁 and 𝑘𝑜𝑟𝑑 = 45𝑁. The latter was given a negative offset of 0.5 

for clarity. (c) - detrended signals using three different filtration methods, CCFA using 𝑘𝑜𝑟𝑑 =

45𝑁, proposed DCT (EXP17) and DCT from the SPM toolbox. 

 

Figure 33 compares the detrending of the raw data (panel (a)) using the proposed CCFA with different 

orders (panel (b)) and DCTs based filters (panel (c)). Visually, detrending provides similar results for 

each of the presented methods. Nonetheless, our proposed method can be used for detrending while 

avoiding any stationarity assumptions. For detrending purposes, setting the 𝑝𝑜𝑟𝑑 = 1 would be the 

optimal choice for most applications. The 𝑘𝑜𝑟𝑑 parameter value will then regulate the strength of the 

effect produced by the filter. As can be seen in panel (b), a smaller input parameter (𝑘𝑜𝑟𝑑  = 4𝑁) 

allows for easier identification of motion artifacts, whereas a larger input parameter (𝑘𝑜𝑟𝑑  = 45𝑁) 

preserves the hemodynamics in the signal with a higher fidelity. 

The synthesized data (as described above) was used to assess the performance of the filtering 

methods. For each HRF multiplier, the performance was compered in terms of 𝛽-value reduction and 

SNR. Any noisy channels were priorly removed using the MVE algorithm as explained in “Artifact 

Detection in fNIRS Data and non-Stationary Preprocessing Methods” by D.Patashov et.al., resulting in 

502 samples in our dataset. Figure 34 shows the effect of the detrending methods on the reduction of 

the 𝛽-values and on the SNR of the signals. The graph presents the output for each of the amplitude 

multipliers of the HRF for HbO2 and HbR. Panels (a)&(c) present the 𝛽 value reduction for HbO2 and 

HbR respectively, while (b)&(d) present their SNR value. 
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Figure 34. The graphs show a comparison of the evaluation parameters for non-filtered raw 

signal (black), the proposed CCFA filtration method (red), the DCT based method as used in the 

SPM (dark blue) and the proposed DCT based method (light blue). Panels (a)&(c) show 𝛽-value 

reduction and panels (b)&(d) present the SNR. Each graph shows the median value and 

percentiles 25 and 75 for different HRF amplitudes. The actual value of HbR multipliers is third 

of the displayed value, as defined before. The black horizontal line in panels (b)&(d) indicates 

0dB. Wilcoxon signed-rank test was used for comparison. Most comparisons between our 

method and spectral based ones were found to be significantly different (p<0.05). For amplitude 

multiplier of 0.05 two comparisons were not significantly different (p>0.05). 
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When inspecting the results, it is evident that low SNR affects the 𝛽 values. Small HRF multipliers 

resulted in reduced 𝛽 values obtained for the unprocessed signals. This is due to noise affecting the 

GLM’s performance. The 𝛽 values’ reduction caused by the DCT method from SPM (labeled as DCTspm) 

and CCFA are comparably small with some cases being slightly in favor of DCTspm. The DCT that filters 

a larger frequency range using exponential filtering (labeled as DCT17), produces a significant reduction 

of 𝛽 values. When assessing the SNR values, CCFA and DCT17 provide comparable results, while DCTspm 

provides a very small improvement over not performing detrending at all. The presented results show 

that using DCT for detrending of fNIRS signals will either create a distortion that significantly reduces 

the 𝛽 values or will have almost no effect on the SNR of the HRF. In contrast, our proposed CCFA  

method improves the SNR while preserving the 𝛽 values. It should be emphasized that DCTspm based 

filtering removes low frequency noise as a matter of fact. Since the trend disappears, it means that 

certain noise source was removed. Nonetheless, 𝛽 and SNR values are almost unchanged, meaning 

that the filtration produces its own noise adding to the contamination. This can be understood from 

the fact that 𝛽 almost did not change, meaning that the filtration mainly removed the noise and not 

the signal. At the same time, SNR also has not changed much, meaning that some new noise appeared 

in place of the previous one. The 𝛽 values reduction and SNR improvement tradeoff can be managed 

by the 𝑘𝑜𝑟𝑑 parameter. For instance, within a certain range of 45𝑁, lowering 𝑘𝑜𝑟𝑑 will improve the 𝛽 

values reduction, but will also lower the SNR, while increasing the parameter will create the opposite 

effect. For an overall acceptable efficiency, we recommend using the proposed order: 𝑘𝑜𝑟𝑑 = 45𝑁. 

fNIRS: ICF 

Using non-stationary methods for the filtration of fNIRS temporal signals provided a more stable 

solution that has relatively low power loss of the information function, while providing higher SNR 

than the reference methods. Figure 35 presents the complete filtration using the three approaches. 

The label SBFspm represents the DCT based detrending proposed by SPM, followed by LPF as described 

above (i.e. FIR-LPF of 500th order with a cutoff at 0.1Hz). Label SBF17 is for DCT17 detrending followed 

by the same LPF. The ICF45 label represents CCFA based detrending with 𝑘𝑜𝑟𝑑 = 45𝑁, followed by IC-

LPF using the same cutoff frequency as the regular LPF. When analyzing the results, it is evident that 

the different detrending methods or even different filtration cutoffs, lead to different effects 

produced by the filtration of the high frequencies in the following stages. Meaning that the reduction 

of 𝛽  values and the improvement of the SNR when performing a Low-Pass filtration is partially 

dependent on the detrending procedure that was performed beforehand. The presented results 

indicate that CCFA and ICF enable the reduction of the noise within the signals with a higher efficiency 

when compared to the conventional DCT and SBF approach, while at the same time generating a 

relatively small distortion affecting the 𝛽 values. 
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Figure 35. A comparison of the evaluation parameters for non-filtered raw signal (black), the 

proposed ICF45 when the ICF filtration is performed after CCFA45 (red), SBFspm when LPF is 

performed after detrending with DCT from SPM (dark blue) and SBF17 when LPF is performed 

after the DCT17 based detrending method (light blue). Panels (a)&(c) show 𝛽-value reduction 

while panels (b)&(d) present the SNR. Each graph shows the median value and percentiles 25 

and 75 for different HRF amplitudes. The actual value of HbR multipliers is third of the displayed 

value, as defined before. The black horizontal line in panels (b)&(d) indicates 0dB. Wilcoxon 

signed-rank test was used for comparison. Most comparisons between our method and spectral 

based ones were found to be significantly different (p<0.05). For amplitude multiplier of 0.3 one 

comparison was not significantly different (p>0.05). 
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fNIRS: Analysis 

The data collected from fNIRS and fMRI was assessed using GLM to better understand the similarities 

and differences of the information within. Figure 36 shows the statistical result of the assessment for 

two subject groups (i.e. Healthy and MDD) using two devices. From examining the results, we can see 

a similar behavior when using different devices. The fNIRS result seems to be more noisy, but that 

could be due to the difference in the number of subjects assessed using each device. 

 

Figure 36. Comparison of the active regions when performing Go-NoGo task. Assessment was 

done using GLM. 

 

When comparing Healthy and MMD subjects [Figure 36], it is evident that activity within the temporal 

regions of MDD subjects is reduced when compared to Healthy ones. Functional connectivity maps 

were calculated to assess the connectivity of the temporal regions both within each hemisphere 

(between the channels) and between the two hemispheres [Figure 37]. 
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Figure 37. Example of a functional connectivity map from a single subject. The graphical 

representation on the right shows the relative positions of the channels on the temporal regions 

of the two hemispheres. The colormap of the single channel connectivity is based on correlation 

levels between each channel and the selected one. The color order is in ascending order from 

low to high correlation: White – Blue – Green – Purple – Red. Channel number and correlation 

level is shown above each node. 

 

From examination of the connectivity maps [Figure 37] of all subjects, a reduction in connectivity levels 

was observed in MDD subjects when compared to Healthy [Figure 38]. 

 

Figure 38. Connectivity patterns comparison between Healthy and MDD subjects. Color of the 

line shows the level of correlation in ascending order: Blue – Orange – Red. The weight of the 

line also represents the correlation level. The thicker the line the higher the correlation. The 

colors are based on the predefined levels while the line weights are gradations within those 

levels. 
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Discussion 

The aim of this work is to develop accurate, robust and reliable algorithms dedicated for processing 

and analysis of the biomedical information. The proposed solutions were developed while addressing 

the unique qualities of the biomedical information, thus provide a better performance than the 

general-purpose methods integrated into the field. 

Location of the extrema points is an important task that frequently arise in biomedical information 

processing and analysis. The SDET algorithm allows for the detection of all local extrema of quasi-

periodic, noisy signals. Depending on the target of interest, using minor adjustments such as running 

fewer iterations or matching the optimal filtration method and point adjustment logic can provide 

more accurate results that are almost unaffected by noise. It can be seen in ([30], [31]) where different 

adjustments were made depending on the task at hand. In [30] the LPF-based smoothing procedure 

was defined that can be used as a general case solution for any task where LPF is applicable. That said, 

the point adjustment was tailormade for the task, thus should be considered separately if the 

proposed procedure is used. On the other hand, in [31], the used point adjustment procedure can be 

used for many other tasks, while the filtration procedure was tailormade for the specific task. This 

shows the flexibility and adjustability of the SDET algorithm. These adjustments allow for the solution 

of a wide spectrum of problems where peak detection of a quasi-periodic signal is required. The 

information source does not have to be temporal and based on the chose filtration procedure, it can 

also be suitable for non-stationary signals. By choosing the optimal filtration and point adjustment 

procedures, this method can solve almost any task of peak detection. 

Obstacle avoidance strategy that includes the preparation phase and the recovery phase can shed 

light on motoric and neurological disorders of the subject when analyzed by a medical specialist. 

Therefore, it is important to detect and extract the information related to the obstacle avoidance task 

for further analysis by the physician. To address this matter, a simple signal segmentation method was 

designed [30]. The approach uses the variability of the signals’ envelope to detect the pattern change. 

This solution is valid for walking on a treadmill only, because the constant pace dictated by the 

treadmill creates a very stable envelope in the walking signals along the treadmill length. Whenever 

this stability is distorted, it means that the subject’s pace was disrupted, thus the irregularity in the 

walking pattern is the segment where the pattern is inconsistent. When subject performs an obstacle 

avoidance task, the walking pattern is usually disrupted. Therefore, we combined these two parts and 

extracted the inconsistent parts of gait around the obstacles. These parts can provide information 

regarding the obstacle avoidance strategy and allow the physician to analyze the performance. The 

irregular steps within the disrupted walking segment were detected using a simple kernel-based 

clustering [30]. While disrupted segments provide information regarding the avoidance strategy, 

detection of irregular steps within those segments can indicate disorders or walking irregularities 

which can lead to falls. Thus, it is very important to both assess the strategy of preparation and 

recovery phases of obstacle avoidance, and the irregularity in individual steps in close proximity to the 

obstacle. 

Gait Related Potential (GRP) that was detected and assessed in [31] was very noisy and unstable due 

to gait performance while recording EEG. The developed APC parameter assesses the variability of the 

wave patterns in the recorded signal and provides additional information regarding brain performance. 

The idea of the measurement is to assess how stable are peak amplitudes of the different waves within 

the epoch (i.e. single stride cycle). Since some subjects had a more chaotic activation patterns while 
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others had relatively stable ones, APC provides an added value to the assessment procedure. Using 

the APC, we were able to better understand the effects of ageing on dual-task walking [31]. 

Cumulative Curve Fitting Approximation is a filtration procedure with multiple capabilities (i.e. 

filtration, missing samples approximation and resampling). CCFA is a powerful tool that can be 

adjusted to almost any type of process. The process does not have to be quasi-periodic or temporal 

and no stationarity or linearity assumptions are being made regarding the target process. It has three 

main parameters – algorithm procedure type 𝜆 that defines open, semi-open or closed loop procedure, 

algorithm order 𝑘 that defines procedure window size and the number of corrections performed on 

every sample, and the type of weighted curve fitting procedure along with any of its own parameters. 

For example, in case of weighted polynomial curve fitting, the degree of the polynomial 𝑝𝑜𝑟𝑑 that is 

used for the approximation, becomes the third input parameter. These parameters should be carefully 

selected for each task separately. For the majority of tasks, all the remaining parameters can be set to 

their default values as suggested in the methods section. Nonetheless, they can also be adjusted for 

each case independently to achieve maximum accuracy. It should be noted though, that selection of 

optimal parameters may be a difficult task of its own and is one of the limitations of the algorithm. 

That said, if the optimal parameters are provided, the accuracy of the algorithm becomes 

exceptionally high. 

It is not uncommon for systems to provide faulty results due to some errors, miscalculations or 

unforeseen events. At times, it results in missing or untrustworthy data. For some types of algorithms, 

these missing data occurrences are devastating when it comes to providing accurate results, even if 

they are not in the regions of interest. CCFA approximates the curvature of the process based on the 

existing samples and can take into account the inaccuracy of samples if such information is available. 

Inaccuracy is defined by weights corresponding to the samples that can have values between zero and 

one. One represents a well recorded sample, while fraction represents an inaccurate one. The value 

of the fraction describes how inaccurate the sample is. The lower the value the less accurate the 

sample is with zero being the extreme case of inaccuracy which is treated as missing sample. 

Depending on the remaining input parameters, CCFA can simultaneously perform filtration and 

missing samples approximation or either of them separately. The resampling can be done using 

algorithm’s ability to approximate missing samples, as new sampling locations can be treated as 

missing samples. In gait analysis study, V-TIME system occasionally produced missing samples [30]. 

CCFA was used to approximate these samples. It is very flexible in terms of adaptation to signal 

structure as long as provided with correct input parameters. Though these parameters are not always 

easy to estimate, they can be predicted using ML techniques such as the one presented in our work 

[30]. We anticipate that if we were to use a better suited forecasting algorithm, even better results 

could be reached. The basis to that statement is the accuracy achieved when using the optimal input 

parameters within a predefined range [Table 1]. It shows the potential of the method that may be 

achieved if a more accurate input parameters’ prediction procedure is used. 

CCFA can be used almost on any type of signal, given the correct input parameters. A good example 

to that statement is the use of CCFA for detrending of the fNIRS signals. Detrending of these signals is 

performed in order to remove low frequency drifts from the data. Several methods have been 

reported, starting from High Pass Filter (HPF) [86] and DCT [81] to wavelet minimum description length 

(MDL)[107]. CCFA was used for the filtration of the first statistical moment within the fNIRS signals (i.e. 

detrending) and compared to detrending using two approaches of DCT based filtering. The filtration 

is performed by accumulation of weighted polynomial-fitted functions, within the overlap of their 

respective windows. The size of the window (𝑘𝑜𝑟𝑑 ) and the degree of the polynomial fit (𝑝𝑜𝑟𝑑 ), 
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determine the filtering response of the CCFA approach. As seen in panel (b) of Figure 33, a lower 𝑘𝑜𝑟𝑑 

parameter results in filtration of higher frequency components. Whereas a higher 𝑝𝑜𝑟𝑑 value results 

in filtration of higher frequency components (not demonstrated). For removal of the first statistical 

moment, 𝑝𝑜𝑟𝑑 = 1 was applied. This approach is non-linear and does not assume stationarity as 

opposed to the HPF or DCT methods, thus is more suitable for processing of fNIRS data. In order to 

test the performance of our novel approach that uses CCFA, we have chosen to follow the method 

described by Pinti et. al. [86], and constructed an artificial comb of HRFs that was added to the resting 

state period in our dataset for all optimally-coupled channels (termed Artificial Data here). The 

Artificial Data was constructed using the amplitudes described by [93], for both oxygenated and 

deoxygenated hemoglobin. Following, we have filtered the Artificial Data using DCT detrending or 

using CCFA filtering. For the two filtered datasets we have calculated the change in the GLM extracted 

𝛽-values, that corresponds to the contribution of the HRF to the Artificial Data, and the SNR. The SNR 

was defined by accounting for the different amplitudes of the HRF and the 𝛽-values’ reduction. There 

are several differences in our process, compared to the one described in [86]: Our dataset includes 

five minutes of rest, followed by a cognitive task with short stimuli, separated by two (2) seconds on 

average. In order to apply our algorithm to this cognitive dataset in the future, we have decided to 

use a Dirac comb, with a period of 20 seconds for convolution with the HRF and not 20 seconds blocks, 

as in [86]. We have observed that the calculated 𝛽-values were not normally distributed and that even 

a small change in the mean value resulted in a significant p-value. Our results indicate that the SNR 

obtained using our methods is higher in comparison to the ones obtained following the conventional 

filtering (using DCT from SPM), for all of the amplitudes of the HRF. At the same time, 𝛽-values’ 

reduction remains considerably small, in comparison to the proposed DCT17. This implies that the HRF 

contributions that lie within the frequency range of our filters are not affected much, while the noise 

that reside in the same spectral band are reduced more significantly when compared to the 

conventional DCT filters. The combination of 𝛽-values’ reduction and SNR measurements provides 

additional information when examined together. Any detrending procedure removes some 

information from the signal. The important question is what information is being removed and how 

does it affect the information that we would like to assess. 𝛽-values’ reduction shows how much 

power loss had occurred in the target component. When using DCTspm, information power loss is quite 

low. Meaning that the procedure does not damage the relevant information component within the 

signal. Which is a very good sign since it means that we mainly remove the noise component. When 

we assess the SNR improvement produced by DCTspm, we find a very low improvement. Which is 

surprising at first glance. If we reduced the noise, and we know for a fact that we did, then the SNR 

value should have increased since the information source was almost unaffected, but it did not. The 

explanation to this phenomena can be the non-stationarity of the signals. Since DCT is a method that 

assumes stationarity, it creates distortion within the fNIRS signals when used. Meaning that, although 

we removed some type of noise, the fact that there was almost no improvement in the SNR suggests 

that a new type of noise was introduced in place of the removed one. The distortion of the target 

function by the stationarity assumption can perfectly explain the results. 

Hemodynamic Response Function (HRF) is the information function that we aim to assess when 

analyzing the fNIRS signals. It is well known that HRF mainly resides in low-frequency spectrum of the 

signals. Therefore, high-frequency contamination of the signals should be removed to allow for more 

accurate assessment of the HRF. For that purpose, ICF method was developed. The idea of this 

approach is to decompose the signals into their IMFs using EMD. Since EMD does not assume 

stationarity or linearity of the process it is applied to, it is a suitable method for processing fNIRS data. 

Our proposed solution uses PSD of the IMFs to allow for thresholding base on desired frequency 

ranges. Meaning that any frequency ranges that previously provided reasonable results, can be used 
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in ICF while avoiding the stationarity assumption made by standard spectral based filtering methods. 

This is due to the filtration procedure used in the ICF. When IMF’s SED is mainly within the frequency 

range that we wish to remove, the entire IMF is removed before the recombination of the signal. Since 

IMFs were calculated without the linearity or stationarity assumptions, their removal produces less 

distortion than the one produced by methods that have those assumptions. Thus resulting in a more 

reliable and accurate removal of the information contamination sources. Result shown in Figure 35 

indicate that just like with the detrending approach, low pass filtering using IC-LPF is more stable and 

reliable than standard LPF procedure. 

 

Conclusions 

Some of the developed methods are dedicated for the very specific tasks within this study, while 

others may serve as general-purpose solutions for almost any type of signals. SDET algorithm is a 

heuristic, general purpose solution that can be applied to any quasi-periodic signal for peak detection. 

The target signal does not have to be temporal, but it must have similar qualities to those of a temporal 

signal. Depending on the filtration procedure used for smoothing, this method can be used on non-

stationary signlas. It should be noted that SDET is not limited to 1-dimensional signals and can be 

applied to high-dimensional data as well. The disadvantages and limitations of this method are the 

requirement to adjust it to every type of peak detection task manually and the assumption that it is 

possible to filter out any unnecessary peaks while preserving the number of relevant ones in their 

respective areas. In some cases, this type of filtration is unachievable, thus may lead to incorrect 

detections on such signals.  

Signal segmentation and kernel-based clustering are solutions that were specifically developed for this 

study and may not be usable for other types of data. While the approach of assessment of the complex 

envelopes can be used as a segmentation method in many types of signals, the developed auxiliary 

function and the further procedure of segmentation rely on signal properties that are normally only 

present when performing gait on a treadmill. Similar limitations are present in the kernel-based 

clustering. Though the kernel function itself is a general purpose one, the full procedure was 

developed specifically for this study. 

CCFA algorithm is yet another general-purpose solution that can be applied to any type of signal. The 

signal does not have to be quasi-periodic or temporal. Also, this method does not assume stationarity 

or linearity of the processes it is applied to. The algorithm can perform different tasks, such as: filtering, 

resampling and approximation of missing samples. It is very robust to noise and other data impurities, 

and provides a very flexible solution that can be adjusted to solve many different tasks with a 

reasonably high accuracy. In theory, CCFA is not limited to 1-dimensional signals, but extending it to 

higher dimensionality is quite hard and severely complicates the solution with each added dimension. 

The disadvantages and limitations of this algorithm are the large number of input parameters that 

sometimes are hard to estimate, even though many of them can be defined using default values as 

proposed in this work; The relatively long runtime of the algorithm makes it impractical for many real-

time applications. 

Artifact detection algorithms: MVE and CSV are dedicated solutions for fNIRS data. The core 

assumptions of these methods are related to human physiology and how that physiology affects fNIRS 

data. Though they may be suitable to fNIRS data collected from animals or other types of data that 
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have qualities matching the method’s assumptions. Also, both methods were developed for multi-

channel systems, and cannot be used on systems with just a few channels. However, these algorithms 

can be used in real-time systems with very minor adjustments. 

Filtration algorithm termed ICF is a general-purpose solution for filtration of nonlinear and non-

stationary data. Filtered process does not have to be quasi-periodic, but should have properties similar 

to those of a temporal process. This algorithm can be used in place of Fourier based filtering to reduce 

the distortions created by the stationarity and linearity assumptions. Any passband or stopband filter 

that can be defined for Fourier domain, can be defined for ICF. The most important part is that the 

frequency ranges for spectral-band filtering can be used exactly the same as in Fourier based filtering. 

The limitations of this method are similar to the limitations of Fourier-based filtering, but without the 

assumption of stationarity or linearity of the filtered signal. In addition, although ICF is not limited to 

1-dimensional data, the increase of dimensionality leads to complication of the procedure. 

The provided solutions allow for classic gait analysis to be performed by the physicians based on the 

extracted information. SDET algorithm accurately detects the peaks of the gait [30] that can be used 

to calculate stride/step length and duration, and assess their variability, degeneration due to fatigue 

through the trial and improvement of the performance through the training course. It also allows for 

analysis of different gait phases. Segmentation and kernel-based clustering allow the physicians to 

assess performance related to obstacle avoidance task, to analyze the strategy and to identify 

abnormalities. This information can provide insights on the neuromuscular diseases, physiological 

abnormalities or disorders. Missing data approximation procedure (CCFA) as proposed in our study 

[30] was able to estimate the missing samples with an outstanding accuracy [Table 1 & Table 2], 

outperforming the commonly used methods by a large margin. 

The proposed SDET solution for the analysis of GRPs is very robust and insensitive to noise, thus 

providing us with accurate information regarding neuronal activation patterns [31]. APC was 

successful in expanding the knowledge that we have regarding the differences of neuronal activation 

patterns between different subject groups [31]. The proposed procedures and algorithms provide 

solutions that allow for assessment of the effects of aging and a parallel motoric task on the 

performance of cognitive task (i.e. odd ball)[64]. Furthermore, they allow for the assessment of GRP 

and of the effects of ageing and parallel cognitive task on the performance of gait [31]. 

The developed methods for the preprocessing of the fNIRS signals provide the complete information 

regarding the integrity of the collected data [Figure 32]. The signals affected by artifacts (MVE [Figure 

9]) or affected signal segments (CSV [Figure 30] and spike detection [Figure 31]) are accurately 

detected allowing the user to take them into consideration for further analysis and processing such as 

artifact removal [108], for example. Non-stationary filtering methods (CCFA and ICF) were shown to 

reduce the noise affecting the signals better than the commonly used solutions, while preserving the 

information function just as well (CCFA [Figure 34] and ICF [Figure 35]). When performing functional 

connectivity analysis like in [89], the proposed methods may improve the accuracy of the assessment 

and allow for more information to be extracted. To conclude, it is evident that methods proposed in 

this study provide additional, robust tools that have a reasonably high accuracy. The solutions take 

into account the unique characteristics and qualities of the assessed data, thus create less distortions 

of the analyzed information. Quantitative accuracy assessments of the proposed algorithms show that 

our methods can achieve higher quality results than those produced by the commonly used methods. 

Therefore, our findings provide a justification for our assumptions and statements throughout this 

work. 
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