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4. Abstract 

In the hippocampal dentate gyrus, new granule cells are produced throughout the 

lifetime of mammals. Immature adult-born neurons (ABNs) are more excitable, less 

coupled to inhibitory circuits, and more plastic than other granules cells, suggesting 

that these neurons have an important role in memory and learning. However, their 

specific function in these processes is unknown. To address this issue, I analyzed 

recordings of the Ca2+ activities of individual ABNs throughout a contextual-fear 

conditioning memory paradigm. For this, I developed an algorithm that allows tracking 

the activity of individual ABNs across memory encoding, consolidation, and retrieval.  

ABNs were predominantly active when mice were exploring a novel environment. I 

found that fear learning did not recruit a distinct population of ABN. In sharp contrast, 

a completely different ABN population was recruited during fear memory retrieval. This 

was caused by the progressive remapping of ABN activities during the memory 

consolidation period. On the one hand, these results indicate that ABNs do not hold 

the putative properties expected for engram cells, since different populations were 

active during memory encoding and retrieval. On the other hand, this remapping of 

activities may serve ABNs to segregate memories encoded at different times. These 

results provide new insights into how ABNs operate during memory processing. 

 

Graphical Abstract 
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5. Introduction 

5.1. The unique properties of the young ABNs in the dentate gyrus. 

Adult-born neurons (ABNs) in the dentate gyrus (DG) are constantly being integrated 

into the hippocampal circuit (Altman, 1963). These ABNs undergo a process of 

maturation that ultimately leads to synaptic and electric properties that are equivalent 

to those of developmentally born granule cells (DBNs) (Esposito, 2005; Praag et al., 

2006; Stone et al., 2011). However, when ABNs are still immature, they display 

properties that largely differ from their mature counterparts, such as increased 

synaptic plasticity and excitability (Esposito, 2005; Ge et al., 2007; Gu et al., 2012; 

Schmidt-Hieber et al., 2004), and weaker inhibitory inputs (Alvarez et al., 2016; 

Groisman et al., 2020) (Figure 1).  

 

Figure 1. Synaptic and intrinsic properties of young adult-born neurons vs. mature neurons in the 

dentate gyrus. Behavioral data suggests a critical period for 4-week-old adult-born granule cells on 

memory processing. Mature granule cells and young ABNs display comparable output connectivity onto 

excitatory and inhibitory neurons in the CA3 region; however, young ABNs display increased amplitude 

and decreased induction threshold for long-term potentiation at input and output glutamatergic 

synapses. Moreover, their input resistance is around two-fold higher than mature granule cells, meaning 

that similar synaptic inputs are translated into larger voltage fluctuations. Young ABNs also receive 

weaker feedback and feedforward inhibition from parvalbumin (PV) and somatostatin (SOM) 

interneurons, while receiving modestly developed entorhinal cortex glutamatergic inputs. This is 

translated into a larger excitation/inhibition balance in comparison to mature neurons.   
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These properties may bestow ABNs with unique roles during memory processing; 

indeed, several studies indicate that ABNs contribute to each of the three main stages 

of memory: encoding, consolidation, and retrieval (Arruda-Carvalho et al., 2011; 

Danielson et al., 2016; Gu et al., 2012; Kumar, Vergara, et al., 2020; Shors et al., 

2001). We have recently found that the ABNs activity during REM sleep is necessary 

for memory consolidation (Kumar, Vergara, et al., 2020) (Figure 2). By imaging the 

Ca2+ activity of ABNs (Figure 3) in sleeping mice during memory consolidation, we 

found that, overall, ABNs become less active during rapid-eye-movement (REM) sleep 

after mice form a fear memory consisting of an association between a context and 

shock but not after they are exposed to context or shock alone. Interestingly, the 

fraction of ABNs that were active during REM sleep were predominantly related to the 

reactivation of ABNs that were active during learning. Disruption of ABNs activity 

during REM sleep by optogenetic activation or inhibition led to memory impairments, 

demonstrating that the sparse activity of ABNs during REM sleep is necessary for 

memory consolidation, at least in mice. 

 

Figure 2. Sparse activity of ABNs during REM sleep is necessary for memory consolidation. Contextual 

fear conditioning recruits a subset of ABNs that reactivate in subsequent REM sleep. Disruption of 

ABNs activity during REM sleep by optogenetic activation or silencing impairs memory consolidation. 
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Figure 3. Imaging Ca2+ activity through GCaMP sensors. (A) Ca2+ imaging uses genetically encoded 

Ca2+ sensors (such as GCaMP) to monitor the Ca2+ activity of neurons.  Action potentials trigger Ca2+ 

influx through voltage-gated Ca2+ channels producing a 10 to 100 fold increase in Ca2+ concentration 

inside a neuron (Berridge et al., 2000). Therefore, the spiking activity of a neuron can be inferred by 

monitoring its internal Ca2+ concentration (although other sources of Ca2+ may hinder this estimation). 

The GCaMP sensors are composed of a circularly permuted enhanced GFP (cpEGFP) attached to the 

calcium-binding protein calmodulin (CaM) and the CaM-binding peptide M13. In the absence of Ca2+, 

cpEGFP is in a non-fluorescent state. When Ca2+ concentrations are high, the CaM hinge region binds 

to the M13 peptide triggering a conformational change of cpEGFP. In this conformation, cpEGFP 

displays bright fluorescence in response to blue light stimulation. (B) Using a miniature microscope 

(microendoscope) mounted on the mouse head and a gradient-index implanted above target neurons, 

the activity of several neurons, genetically modified to express GCaMP, can be monitored. (C) A 

representative field of view captured with a microendoscope (after processing the signal) in GCaMP3-

expressing ABNs.  

5.2. Are ABNs engram cells? 

The ABNs contribute to memory encoding, consolidation, and retrieval; however, the 

exact mechanism by which ABNs contribute to each of these stages is unknown. One 

possibility is that ABNs operate as engram cells (Semon, 1921; for a review see: 

Josselyn & Tonegawa, 2020) (Figure 4). The fact that animals can recall a previous 

experience suggests that an internal representation of this experience is stored in the 

brain. The term “engram” refers to the neural substrate that constitutes this 

representation of a memory. Engrams operate by two fundamental principles: the first 

principle is the law of engraphy (Figure 4A), which posits that the simultaneous 

activation of neural ensembles during learning binds these ensembles together, which 

forms an interconnected network that constitutes the engram. For example  —in a 
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classic contextual-fear conditioning memory paradigm— the engram storing the 

context-fear association is formed by the synaptic interconnection created by the 

simultaneous activation of the neurons responding to the explored context (green 

circles in Figure 4) and the neurons responding to the shock (red circles in Figure 4). 

The second principle is the law of ekphory (Figure 4B), which posits that the 

reactivation of some of the engram neurons in response to a stimulus presented during 

learning, leads to the complete reactivation of the engram, as a result of the 

interconnectivity of the circuit.  For example, re-exposure to the conditioned context 

triggers the activation of not only the neuron that intrinsically respond to this stimulus 

but also the neurons that were previously activated by the shock experience.  

Collectively, both principles constitute the hypothetical mechanism of memory 

association.  

 

Figure 4. Activity dynamics of engram cells. (A)  Law of engraphy, operating during memory formation 

(B) Law of ekphory, operating during memory retrieval. 

5.3. Ca2+ imaging in ABNs. 

Monitoring the activity of single neurons in vivo is fundamental for understanding the 

brain mechanisms of memory and learning. If ABNs operate as engram cells, then 
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their activity dynamics should satisfy at least two conditions: 1) A specific population 

of ABNs should be activated during learning, and 2) this same population should be 

reactivated when animals remember the encoded memory.  To address these two 

points, it is necessary to accurately estimate ABNs activity throughout memory 

processing. Traditionally, neural activity has been monitored by electrodes acutely or 

chronically implanted in the brain. These electrodes are used to record “spikes” 

corresponding to the action potential of single neurons. Different features of these 

spikes (amplitude, width, etc.) are then used to segregate and classify the spikes 

corresponding to different neurons, a process that is known as spike sorting (Rey et 

al., 2015). Spike features can also be used to segregate different neural types, such 

as excitatory neurons from fast-spiking interneurons; however, for populations of 

neurons with similar spike dynamics but different molecular profiles —as occurring 

with ABNs and other granules cells— spike segregation is not possible. To tackle this 

limitation, we expressed the Ca2+ sensor GCaMP3 in ABNs (Figure 3). Although more 

recent indicators, such as GCaMP6 variants, are usually preferable, their transgenic 

lines (Madisen et al., 2015) show very low or absent expression in ABNs (see the 

specific transgenic lines used in Figure 10 and methods). Indeed, Kumar et al., tested 

several versions of GCaMP, including GCaMP3, 6s, 6f, 7f, and 8, but only GCaMP3 

showed consistent expression in young ABNs. We speculate that the expression of 

recently developed GCaMP sensors in early neural progenitors interferes with Ca2+ 

signaling mechanisms essential for immature ABN survival. 

One of the biggest limitations of Ca2+ imaging is its limited temporal resolution in 

contrast to electrophysiological approaches: while electrophysiological data is usually 

sampled within kilohertz resolution, Ca2+ imaging in freely behaving mice is usually 

sampled within 5 to 30 frames/s (Aharoni et al., 2019; Ghosh et al., 2011). This 
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temporal resolution is limited to the temporal dynamics of the Ca2+ sensors (Rising 

time: ~95ms. Decay time: 650ms, for GCaMP3 (Tian et al., 2009)), which is several 

orders of magnitude slower than the duration of a single spike (in the order of 1ms). 

Although the specific timing of isolated spikes cannot be determined with millisecond 

resolution, we can still determine the number of spikes occurring in broader temporal 

windows (in the order of ~100ms). This is because the relationship between GCaMP3 

fluorescence intensity and the number of action potentials occurring in a short period 

of time (1-2s) is approximately linear when the number of consecutive action potentials 

is less than 10 (Tian et al., 2009). Although isolated action potential can be detected 

with GCaMP3 ex vitro (Tian et al., 2009), in in vivo recordings single spikes may not 

be reliably detected given the larger contribution of background fluctuations 

(contamination from surrounding neuropil and neurons outside the focal plane). 

Therefore, activity estimated by Ca2+ imaging may be biased to detect bursting activity 

over isolated spikes. However, burst activity is often linked with relevant physiological 

functions in granule cells. For example, granule cells in the DG reliably activate 

postsynaptic neurons in CA3 when they fire in bursts, but not through isolated spikes 

(Henze et al., 2002). Moreover, burst activity may specifically drive synaptic plasticity 

in hippocampal neurons (Thomas et al., 1998), including granule cells (Orr et al., 2001).  

5.3.1. Processing Ca2+ imaging data. 

The algorithm used to extract the neural signal would depend on whether a one-photon 

or a two-photon microscope is used (Figure 5). Overall, two-photon microscopes have 

better resolution and cause less bleaching than one-photon microscopes; however, 

miniaturize two-photon microscopes are not currently commercially available. In 

contrast, there are several open-source projects (Aharoni & Hoogland, 2019; 

Srinivasan, Vergara, et al., 2019) and commercially available miniaturized one-photon 
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microscopes (Inscopix,  Palo Alto, USA; Doric, Québec, Canada). Despite the 

resolution differences between two- and one-photon microscopes, the somatic Ca2+ 

signals extracted by both methods display similar properties (Glas et al., 2019). 

Additionally, miniaturized one-photon microscopes allow monitoring the activity of 

ABNs in freely behaving animals, whereas recordings with two-photon microscopes 

require head-fixed animals. This can importantly reduce stress in mice (Juczewski et 

al., 2020), which affects memory and REM sleep dynamics (Moreira et al., 2016; Nollet 

et al., 2019). Considering the active role of ABNs in REM sleep and memory 

processing, we opted for 1-photon miniaturized microscopes.  

 

Figure 5. Ca2+ imaging with one-photon microscopy (wide-field) vs 2-photon microscopy.  In one-photon 

imaging, the whole field of view is stimulated with blue light. This stimulates neurons inside and outside 

the focal plane, leading to the contamination of target regions with neural signals outside the focal plane. 

In two-photon imaging, two photons of light, with approximately twice the wavelength used in one-

photon imaging, are used to excite GCaMP. Instead of stimulating the whole field of view, a laser 

sequentially scans small segments within the field of view. This produces an image with reduced 

background contamination from neurons outside the focal plane and higher spatial resolution than one-

photon imaging. Additionally, the use of larger wavelengths increases tissue penetration and decreases 

bleaching. The main disadvantage of two-photon imaging is the lower sampling rates compared to one-

photon imaging. Also, two-photon miniaturized microscopes are not currently commercially available, 

therefore recordings in freely behaving animals are currently restricted to one-photon imaging.  

Before extracting the neural signals from the Ca2+ imaging video, it is necessary to 

align each frame in the video to a common reference frame to correct artifacts arising 
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from brain motion. State-of-the-art algorithm (Pnevmatikakis & Giovannucci, 2017) 

can correct brain motions in most cases, but not all of them (Figure 6).  

 

Figure 6. Motion correction algorithms may solve some, but not all the problems associated with motion. 

(A) Rigid motion occurring as uniform displacement in the XY-axis can be automatically corrected by 

most motion correction algorithms. (B) Modest movements in the z-axis can be corrected by non-rigid 

motion correction algorithms (Pnevmatikakis & Giovannucci, 2017) or by a rigid motion correction 

algorithm implementing expansions and rotations (MOSAIC software, Inscopix). However, correcting 

this type of motion may require manual parameter tunning and may not be corrected automatically in 

some cases. (C) Even if the frames of a video are correctly aligned, changes in the stimulation intensity 

caused by vignetting (reduction of an image's brightness toward the periphery) may not be corrected, 

especially if the movement of the brain is desynchronized with the movement of the microscope.   

After motion correction, neurons’ locations and their fluorescence traces are extracted 

from the motion-corrected data. The most widely used algorithm to extract Ca2+ signal 

from one-photon imaging data is constrained non-negative matrix factorization for 

microendoscopic data (CNMF-E) (Zhou et al., 2018). Briefly, CNMF-E operates on the 

notion that the whole video recording can be expressed as the product of a spatial 

matrix corresponding to the spatial footprint of each neuron and a temporal matrix that 

characterizes the Ca2+ concentration of each neuron over time. This model is further 

enriched to handle one-photon imaging by also modeling the high background 

fluctuation caused by fluorescent signals outside of the focal plane. To properly extract 

the Ca2+ traces, CNMF-E requires an initial approximate estimation of the shape and 

location of neurons (i.e., initialization). The general approach used by CNMF-E is to 
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calculate the local correlation of a pixel and its neighbors (CORR), and the peak-to-

noise ratio (PNR) of each pixel from the whole video file (Figure 7). Intuitively, pixels 

corresponding to active ABNs would display higher CORR and PNR values than pixels 

that do not correspond to active neurons. 

 

Figure 7. Initialization of neurons by CNMF-E. The figure represents a stack of images obtained from 

granule cells data. Each frame in the stack is first spatially filtered to enhance circular regions (i.e., 

neuron shapes) and reduce larger background fluctuations. From this filtered stack we calculate a local 

correlation image (the correlation between neighbor pixels) and a peak-to-noise ratio image. These two 

images are then thresholded to identify pixels associated with candidate neurons. 

Although these parameters may serve to roughly estimate the location and spatial 

shapes of neurons in most experimental conditions, for long recordings—as occurring 

in this study— performance is drastically decreased. This happens because, in one-

photon imaging, pixels associated with a neuron are highly correlated only when that 

neuron is active (Figure 8). Given that ABNs are most of the time inactive, increasing 

the video length would be asymptotically translated into a lower CORR. To solve this 

problem, I propose an overlapping batches approach: instead of analyzing the whole 

video sequence, the video is divided into small overlapping batches. This allows 

estimating the spatial components of ABNs from discrete temporal windows of 

maximum neural activity (Figure 9).  
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Figure 8. CORR images of an ABN in different time windows. In one-photon imaging, the pixels 

constituting a neuron are only highly correlated when that neuron is active. However, granule cells of 

the dentate gyrus are most of the time inactive (Diamantaki et al., 2016), a property that is shared with 

ABNs. For example, the ABN shown in the figure only shows a prominent local correlation in the last 

10 minutes of an 80-minutes-long recording session. If the CORR imaging is calculated using the whole 

video session, then this neuron would end up undetected.  

 

Figure 9. Overlapping batch implementation of CNMF-E for the analysis of lengthy Ca2+ imaging data. 

The video is initially distributed into n batches, which are analyzed through the following pipeline: (1) 

Neurons are detected in the first batch using the standard CNMF-E implementation (yellow circles 
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represent active neurons. Magenta circles indicate detected neurons). (2) Following, the neurons 

detected in batch #1 are spread into batch #2. Because the activity of neurons may change, some 

neurons may appear inactive or display very little activity in subsequent batches (e.g., Magenta circles 

without yellow circles in batch #2). Similarly, neurons that were initially inactive may become active in 

subsequent batches (new yellow circles). (3) Therefore, in each batch new neurons are searched and 

included. (4) The same process is repeated until all batches are analyzed. (5) Finally, the data collected 

across all batches are grouped together.  

6. Research Question, Hypothesis, and Objectives. 

Research question: What is the mechanism by which ABNs mediate memory? 

Hypothesis: ABNs mediate memory by operating as engram cells. 

Objective: Determine whether the activity dynamics of ABNs during memory 

encoding, consolidation, and retrieval are compatible with the activity dynamics 

expected for engram cells.   

7. Results 

7.1. Experimental Design. 

I analyzed the activity of ~4-week-old ABNs in pNestinCreERT2/pCAG-LSL-GCaMP3 

mice throughout the course of a contextual fear conditioning paradigm (Kumar, 

Vergara, et al., 2020) at a population level. Recordings were performed over three 

major consecutive periods: learning, consolidation, and retrieval (Figure 10). 

Immediately after a recording session in a familiar environment (pre-conditioning in 

the home cage, preC; 10 min), the learning period included recording sessions in a 

conditioning context before foot shock (pre-shock in context A, preS; 10 min), and the 

same context after foot shock (post-shock in context A, postS; 5 min). In the 

consolidation period, mice stayed in their home cage for a total of 5.5 h, and recording 

was performed in the final 2.5 h. During this period, memory consolidation depends 

on the sparse activity of ABNs during rapid eye movement (REM) sleep (Kumar, 
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Vergara, et al., 2020). In the post-consolidation period, mice were re-exposed to 

context A (test; 10 min), during which they exhibited context-specific freezing behavior 

(Kumar, Vergara, et al., 2020). 

 

Figure 10. Experimental design. Left: Doble transgenic setup used to express GCaMP3 specifically in 

ABNs. In baseline conditions, a stop sequence located after the pCAG (a constitutive promoter) 

prevents the expression of GCaMP3. The CreERT2 recombinase, which is expressed only in progenitor 

cells (by Nestin promoter), is translocated to the nuclear compartment only after Tamoxifen injection. 

This translocation causes the excision of the stop sequence (by recombination of two loxP sequences 

flanking the stop codon). Right: Four weeks after tamoxifen injection, mice were subjected to a fear 

conditioning paradigm. The activity of ABNs was monitored throughout the learning, consolidation, and 

retrieval of this contextual fear memory (see methods for detail). 

7.2. Extraction of Ca2+ traces from individual ABNs. 

Determining the activity dynamics of ABNs across all the recording sessions requires 

tracking the activity of individual ABNs. To extract the spatial and temporal structure 

of neurons I implemented an overlapping batching (OB) approach for the original 

CNMF-E algorithm (Zhou et al., 2018) (Figure 9, Figure 11). The main advantage of 

the overlapping batch implementation is that it allows detecting neurons overall 

displaying low activity but high activity over brief periods (e.g., a neuron that is only 

active during learning but remains inactive in the following hours during memory 

consolidation and sleep). This is depicted in Figure 11A, in which the CORR and Ca2+ 

transients of three close ABNs are shown for three consecutive batches. Note that 

ABNs display prominent Ca2+ transients that translate into a higher CORR (above the 

detection threshold), particularly in the third batch. Because the spatial component of 
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each neuron is shared across batches, only the third batch is necessary to initialize 

those ABNs, even if other batches have CORR comparable to the background level. 

Having obtained a good initial estimation of the spatial components, the CNMF-E 

algorithm can extract temporal traces from other batches, even if its CORR or PNR is 

below the defined threshold. An overlapping batch approach produces a cleaner 

estimation of CORR, in contrast to the analysis of the entire video sequence (Figure 

11B). In some cases, artifacts are introduced in the concatenation point between 

batches. Thus, I implemented a multi-batch algorithm using 50% overlap. This 

approach can extract reliable Ca2+ traces from ABNs in most cases. To illustrate the 

differences between the OB method and the conventional CNMF-E (CC) method (i.e., 

running CNMF-E on the whole video sequence), I compared the spatial and temporal 

components extracted by both methods (Figure 11C). True-positive neurons are 

expected to display circular shapes and Ca2+ transients distinguishable from noise. 

Neurons extracted by the OB method display higher circularity and PNR than those 

extracted by the CC method (Figure 11D). Indeed, several neurons extracted by the 

CC method display spatial components that largely differ from a circular shape. 

Considering those spatial components with circularities five standard deviations below 

those extracted by the OB method, I estimated that 34% of components extracted by 

the CC method are false positives (Figure 11D, left, red dots). Next, I examined how 

the final temporal and spatial components of the transients extracted by the OB or CC 

method (analysis of >30,000 frames) differ from those extracted from the analysis of 

an individual batch (analysis of ∼1,000 frames) (Figure 11E). Components extracted 

by the OB method were spatially and temporally more similar to those extracted from 

an individual batch (Figure 11F). Furthermore, I estimated that, on average, 61% of 

neurons remain undetected in each batch (compared with the total neurons found in 
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the OB method) (Figure 11G, left). This happens because most of the active ABNs 

display PNR significantly below the detection threshold (Figure 11G, right). These 

results indicate that the OB method minimizes the number of false positives without 

compromising true-positive detection. 

 

Figure 11. Analysis of Ca2+ imaging data. (A) Ca2+ transients detected and CORR for three neurons in 

three consecutive batches. Black trace shows the final estimated signal for the entire recording. 
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(B) Normalized CORR for a 3-h video obtained by analyzing the entire video sequence versus the 

maximum projection of the CORR images obtained by the overlapping batch implementation. Note that 

CORR of the entire video sequence includes many highly correlated non-circular shapes that are 

unlikely to represent real ABNs. Analysis of the entire video will introduce several false positives and 

noisier estimation of Ca2+ transients in this case. (C) Spatial and temporal features of Ca2+ transients 

extracted by conventional CNMF-E (CC) and overlapping batches (OB) methods. The two transients 

were randomly chosen from those extracted by CC or OB methods. (D) Circularities (isoperimetric 

quotient) of spatial components and PNR of temporal traces. (E) Example of spatial components 

extracted from an individual batch (i), the OB method (ii), or the CC method (ii) in the same time period. 

Because there are more neurons in the entire recording period than in an individual batch, spatial 

components were weighted by average activity during the period. (F) Left: Cosine similarity of spatial 

components for the individual batch versus CC method and individual batch versus OB method. The 

star symbol in the figure corresponds to the spatial components shown in (G). Right: Temporal 

correlation of Ca2+ transients of common neurons for the individual batch versus CC method and 

individual batch versus OB method. A neuron extracted by the CC or OB method was considered to be 

the same as that in an individual batch if its spatial component had a cosine similarity >0.8. If more than 

two pairs of neurons satisfied this condition, the pair with the higher temporal correlation was used for 

calculations. (H) Left: percentage of active neurons not detected in an individual batch. Right: PNR of 

missed neurons. Data were analyzed by Mann-Whitney tests (D, F) and one-sample t-tests (G). 

Previous reports indicate that ABN Ca2+ transients occur at very low rates (~1 

transient/min) (Danielson et al., 2016; Kumar, Vergara, et al., 2020). However, each 

Ca2+ transient usually shows polyphasic dynamics (i.e., contains multiple peaks) (Fig. 

4A), reflecting the integration of several unitary Ca2+ events. To precisely estimate the 

Ca2+ activity of ABNs, complex Ca2+ transients were decomposed into isolated events 

by deconvolution of the raw Ca2+ traces (Figure 12A) (Friedrich et al., 2017). To 

examine the temporal aggregation of these events, I calculated a mean circular 

autocorrelation function (Figure 12B), which provides an estimate of the likelihood of 

observing one event soon after another (Aljadeff et al., 2016). The autocorrelation 

function assumes a constant value when events are randomly distributed in time, as 

occurs when events are temporally shuffled (Figure 12B, green). By contrast, the 

autocorrelation function for actual events showed an exponential decay within 10 s 

(Figure 12B, red), suggesting that ABN activity is temporally aggregated. 
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Figure 12. ABNs display burst-like activity. (A) Six examples of Ca2+ trace deconvolution. Raw signal 

(red, top) was decomposed into unitary Ca2+ events with amplitude (height) and timing information 

(bottom, black bars). Overlaying blue traces (top) show reconstructed Ca2+ signal. (B) Circular 

autocorrelation function of mean activity from actual data (red dots) and temporally shuffled data (green 

dots). The blue line is an exponential fit. 

7.3. ABNs activity increase when mice explore a new context. 

I found that the mean activity of ABNs increased when mice explored the fear 

conditioning context (Figure 13A-C). I estimate that ~28% of ABNs showed increased 

activity during the preS period (Figure 13C, top). However, event frequency returned 

to preC levels during the postS and test periods. Indeed, ~10% of the ABNs showed 

decreased activity after shock experience (i.e., preS to PostS, Figure 13C, bottom).  

 

Figure 13. Adult-born neurons react to novel context encoding. (A) Mean Ca2+ activity in different 

contexts. Bootstrap, *p<0.05, n= 94 neurons from 4 mice (same sample size applies for all the figures 

in this manuscript). Error bars are 95% confidence interval (same applies for the rest of the manuscript) 

(B) Activity heatmaps of neurons significantly increasing their activities in the preS context. Block 

Bootstrap, *p<0.05. Each time bin is 10 s. (C) Pie chart of the ABNs responding to preS and postS. 
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7.4. ABNs active during learning do not overlap with the ABNs active during 

memory retrieval.  

These observations of individual ABN activity, however, do not clarify whether a similar 

or different population of ABNs is recruited in different periods. For instance, a 

difference in activity could reflect the recruitment of a new population that is active in 

a specific period (Figure 14A, model 1) or a change in the activity of the same 

population (Figure 14A, model 2). To address this issue, I arranged the mean activities 

of individual ABNs into column vectors across different periods (Figure 14B, hereafter 

referred to as activity vectors). If a similar population of ABNs is recruited in two 

different periods, its activity will be correlated. I analyzed this possibility by creating a 

similarity matrix (i.e., cosine similarity) considering all possible comparisons between 

activity vectors (Figure 14C). Subsequent hierarchical clustering of this matrix 

revealed that a similar population of ABNs is active across the preC, preS, and postS 

periods, suggesting that neither novel context exposure nor shock experience recruits 

a different ABN population. Surprisingly, a different ABN population was predominantly 

active during the test period, suggesting that active ABN populations do not overlap 

between learning and retrieval. This phenomenon was detected in all the mice 

included in this study 14 Appendix 3). 
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Figure 14. No overlap between ABN populations active during learning versus retrieval. (A) Two 

potential models by which population ABN activity could change between two different periods. (B) ABN 

activity vectors in different periods. Each row represents the mean activity of individual ABNs. Each 

activity vector was rescaled from 0 to 1. (C) Similarity matrix (i.e., cosine similarity) between pairs of 

activity vectors for the original data (top) and after random shuffling (bottom). The overlaying 

dendrogram represents the results of hierarchical clustering, with significant clusters (p < 0.05) shown 

in red. 

7.5. ABNs remap during the consolidation period.  

This segregation of ABN population activity may take place during memory 

consolidation. To address this possibility, I divided the consolidation period into 15-

min bins and calculated an activity vector for each bin (Figure 15A). Next, I calculated 

a remapping index that indicates whether a given activity vector is closer to that at the 

beginning or end of the consolidation period. This remapping index ranges from -1 to 

1;  a value of 1 indicates a perfect match to the first bin of the consolidation period, a 

value of -1 indicates a perfect match to the last bin, and a value of 0 indicates 

equidistance from both. Remapping indices were strongly correlated with time, 

indicating that ABN activity gradually remapped during the consolidation period (Figure 

15B). This remapping was detected regardless of whether mice were awake or asleep. 

It was not possible to calculate remapping indices during REM sleep given the limited 
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amount of REM sleep during the consolidation period (<10% of total time) and the 

sparse activity of ABNs during this sleep stage (<6% of total ABN activity occurs in 

REM sleep) (Kumar, Vergara, et al., 2020). Gradual activity remapping was detected 

in all recorded mice 14 Appendix 3). 

Activity remapping may occur in all or a specific population of ABNs. To discern 

between these two possibilities, I traced ABNs with activities significantly correlated 

with time during the memory consolidation period. This revealed two subgroups of 

neurons, one gradually decreasing their activities, and another one increasing their 

activities (Figure 15C-D). The ABNs decreasing their activities were predominately 

active during the preS/postS periods; in contrast, the ABNs increasing their activities 

were predominantly active during the test period (Figure 15E). Accordingly, significant 

clusters in the similarity matrix were only detected for the ABNs that showed significant 

changes in activity during consolidation and not among those that showed no 

correlation (Figure 15F). Collectively, these results suggest that the populations of 

ABNs that are active during fear learning and retrieval are segregated over time by an 

activity remapping process. 
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Figure 15. ABN activity remapping during fear memory consolidation. (A) Activity vectors during memory 

consolidation (15-min bins). To represent data in the same range, the maximum activity of each neuron 

was scaled to 1. (B) Remapping index relative to the first and last activity vectors shown in (A). All, 

r= -0.97 p <0.0001; Sleep, r=-0.98 p <0.000; Wake, r=-0.93 p =0.008 (C) Changes in ABN activity were 

correlated with time (Pearson’s correlation, p < 0.05; adjusted by false discovery rate, q < 0.05). (D) Pie 

chart of ABNs showing decreasing, increasing, or no change (i.e., non-remapping) in activity over time. 

(E) Mean activity of remapping and non-remapping ABNs during learning (preS and postS, averaged), 

consolidation, and test periods. Means were calculated after scaling activity vectors. *p < 0.05 between 

red and blue bars (bootstrap). (F) Similarity matrix between remapping and non-remapping ABNs. 

Significant clusters (red lines; hierarchical clustering, p < 0.05) were found only among remapping ABNs. 
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8. Discussion 

Here we have shown that ABN activities increased when mice explore a novel context, 

in line with the notion that ABNs act as novelty detectors (Denny et al., 2012; Danielson 

et al., 2016). However, activity levels dropped back to home cage level after mice 

received a shock in this context (i.e., post-shock period) (Fanselow, 1980, 1986). On 

the one hand, this could reflect a lower exploratory activity after the shock experience 

(i.e. freezing behavior), given that ABNs are predominantly active during running 

(Danielson et al., 2016). On the other hand, this decrease in activity may reflect 

changes in the properties of ABNs. For instance, it is well known that contextual fear 

learning leads to several synaptic changes in ABNs (Kumar, Vergara, et al., 2020; 

Petsophonsakul et al., 2017). Possibly, contextual fear learning may change the 

connectivity of ABNs with the inhibitory circuit (Groisman et al., 2020). Indeed, I have 

recently proposed that an increased coupling with the inhibitory circuits in response to 

learning may influence how ABN synapses are processed during memory 

consolidation, presumably by allowing ABNs to coordinate with hippocampal rhythms 

and enabling spike-timing-dependent synaptic plasticity phenomena in the ABN-

entorhinal synapses (Vergara & Sakaguchi, 2020). 

Although ABN activity increased when mice explored a new environment, this increase 

did not represent the recruitment of a specific neural population. Essentially, the same 

population of ABNs active in the HC was then active in both, the pre- and post-shock 

periods. In sharp contrast, the ABN activities during memory retrieval did not overlap 

with the ones during learning. This indicates that ABNs, at least at the population level, 

do not hold engram properties in a conventional manner (Josselyn and Tonegawa, 

2020). Instead, I speculate that ABNs may influence memory by controlling the activity 

of engram stored in CA3 or the DG (Luna et al., 2019; Temprana et al., 2015). For 
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instance, ABNs may preferentially recruit inhibitory circuits in CA3 and promote 

memory discrimination (Rangel et al., 2013; Vergara & Sakaguchi, 2020).  

I have found evidence suggesting that the orthogonalization of population activities 

between learning and retrieval occur as a consequence of a gradual remapping of 

ABNs activities during the consolidation period. Neurons decreasing their activity 

during the consolidation period are those that were predominantly active during 

learning. In contrast, the neurons increasing their activities during the consolidation 

period were preferentially active during memory retrieval. Although the physiological 

implication of this remapping process is unknown, I speculate that this remapping 

process may serve to segregate memories in time (Figure 16). Segregating memories 

in the timescales of days and weeks is a function that has been previously proposed 

for ABNs (J. B. Aimone et al., 2006; J. B. B. Aimone et al., 2009; Deng et al., 2010). 

This activity remapping process may potentially allow ABNs to segregate memories in 

even shorter time scales (i.e. 6 hours). 

 

Figure 16. Potential implications of activity remapping. Because ABNs can inhibit or excite other 

neurons in CA3 and the DG, the population of active ABNs may influence the memory traces that are 

recruited during the encoding of different memories. In the hypothetical case that activity remapping 

does not occur (left panel), two different stimuli encoded 6 hours apart would likely compromise 

overlapping ABNs population during memory encoding, which would promote the generalization of 
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encoded memories in downstream circuits. In contrast, if there is activity remapping (right panel), 

different ABNs populations would be engaged during memory encoding, potentially allowing for the 

separation of memory traces encoded in CA3 or the DG. 

One open question is whether the vigilance state of the animal influences activity 

remapping. A possible approach to address this would be to correlate ABNs activities 

during individual sleep or wakefulness episodes with activity remapping (Grosmark et 

al., 2012). However, this approach is unfeasible given the sparse nature of ABNs firing 

(Kumar, Vergara, et al., 2020). Other important questions include whether ABN activity 

remapping is learning-dependent and specific to immature ABNs. This can be 

addressed by an immediate shock experiment, an experimental paradigm in which 

shock is delivered but there is no context-shock association (Blanchard et al., 1976). 

In summary, our results indicate that ABN activity gradually remaps during fear 

memory consolidation, which leads to the emergence of different ABN populations that 

are active during learning versus retrieval. This activity remapping may potentially 

allow ABNs to segregate fear memories encoded a few hours apart. These results 

advance our understanding of the role of adult neurogenesis in the mammalian 

memory system. 

9. Materials and Methods. 

9.1. Experimental model. 

The data in this manuscript were obtained by reanalyzing the Ca2+ imaging data 

related to Figure 1I-J in Kumar, Vergara, et al. (2020). The methods used to obtain 

these data are described in detail by Carrier-Ruiz, Vergara, et al. (2021).  

All animal experiments were approved by the University of Tsukuba Institutional 

Animal Care and Use Committee. Mice were maintained in home cages in an insulated 

chamber with an ambient temperature of 23.5 ± 2.0°C under a 12-h light/dark cycle 
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with ad libitum access to food and water. Mice (Jackson Laboratory) harboring 

pNestin-CreERT2 (nestin mice, stock #016261) and Rosa26-pCAG-loxP-stop-

loxP(LSL)-GCaMP3 (GC mice, Ai38, stock #014538) were backcrossed in a C57BL6/J 

background more than 10 times. Nestin+/WT mice were bred with GC+/+ mice, resulting 

in F1 GCnestin and GCWT offspring at a nearly 1:1 ratio. Only male F1 mice were 

used. Mice were habituated to experimenter handling by two or three 2-min handling 

sessions/day for a total of 11 sessions before behavioral experiments.  

To induce GCaMP3 expression in ABNs, all F1 mice were treated with tamoxifen at 7 

weeks of age. Tamoxifen (120 mg/kg) was injected into the peritoneal cavity five times 

at 1- or 2-day intervals, with completion of the injection period within 10 days.  

9.2. Implantation of lens and EEG/EMG electrodes. 

Surgery was performed at 9 weeks of age. Mice were anesthetized with isoflurane and 

fixed in a stereotaxic frame (Stoelting, USA). The height of bregma and lambda were 

adjusted to be equal. The microendoscope lens (1-mm diameter, 4-mm length, 

Inscopix, USA) was placed at anterior-posterior (AP) -2.0 mm, medial-lateral (ML) +1.2 

mm, and dorsal-ventral (DV) -1.95 mm. EEG electrodes were placed at AP +1.5 mm 

and -3 mm and ML -1.7 mm. EMG electrodes were bilaterally placed into the trapezius 

muscles. One week after surgery, the baseplate for a miniaturized microendoscope 

camera (nVista, Inscopix, USA) was attached above the implanted microendoscope 

lens. Mice were habituated to the attached microendoscope camera for 7-8 days 

before recording. After each experiment, mice were subject to histological analysis to 

confirm the location of the lens in the brain. 
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9.3. Ca2+ imaging. 

Ca2+ imaging was performed at 11 weeks of age. Recordings were done at ZT = ~0. 

Images were recorded at a rate of 5 frames per second. EEG/EMG data were collected 

at a sampling rate of 100 Hz. Coaxial electric and optic (Doric Lenses, Canada) slip 

rings allowed mice to move and sleep naturally. 

9.4. Sleep stage analysis. 

Offline sleep architecture analysis and Fast Fourier Transform analysis were 

performed using Sleep Sign software (KISSEI COMTEC). Wakefulness was defined 

by continuous mouse movement or de-synchronized low-amplitude EEG with tonic 

EMG activity. NREM sleep was defined by dominant high-amplitude, low-frequency 

delta waves (1-4 Hz) accompanied by less EMG activity than that observed during 

wakefulness. REM sleep was defined as dominant theta rhythm (6-9 Hz), and the 

absence of tonic muscle activity. Vigilant states were defined with a 1 s resolution. If 

a 1 s epoch contained more than one sleep state (NREM sleep, REM sleep, or 

wakefulness), the most represented state was assigned for the epoch. 

9.5. Fear conditioning and Ca2+ imaging. 

The fear conditioning chamber consisted of a metal conditioning chamber contained 

a stainless-steel grid floor (310 x 240 x 210 mm; MED Associates, USA). The grid floor 

consisted of bars (3.2-mm diameter) spaced 7.9 mm apart allowing the delivery of 

electric shocks. A stainless-steel drop pan under the grid floor was cleaned with 75% 

ethanol, which also provided a background odor. The conditioning chamber was 

placed inside an isolated behavioral chamber to keep the visual and sensory cues 

constant. A camera was placed at the top of the behavioral chamber and was remotely 

controlled so that mice could not see the experimenter during context exposure.  
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Before the fear conditioning experiment, a test recording was done in the home cage 

to identify mice with significantly active ABNs. At least one active ABNs was detected 

in 7 out of 17 mice.  Mice with active ABNs in the field of view were assigned to a delay 

shock group, whereas mice displaying no active ABNs were assigned to a no-shock 

control group. For the delay shock group: on the conditioning day, we attached the 

microendoscope to mice at ZT = ~0 and performed Ca2+ recording for 10 min in the 

home cage (preC) and an additional 10 min in the fear conditioning chamber (preS) 

before the foot shock. We then detached the microendoscope (<1 min) to avoid a 

change in the field of view due to the mouse hitting the microendoscope against the 

wall during shock. Then, three tones (30 s each, 2800 Hz, 85 dB) were played at 120, 

210, and 300 s, with each tone co-terminating with a 2 s foot shock (0.75 mA, 2 s) 

during a 360 s session. Following, we re-attached the microendoscope (<1 min) and 

performed 5 min of recording after the shock (postS). Immediately after this recording 

session, the microscope was removed and mice were returned to the home cage. 

Subsequently, we performed 2.5 h of recording toward the latter part of the 5.5-h 

consolidation period in the home cage (consolidation period). Finally, mice were re-

exposed to the conditioning context, and Ca2+ activity was recorded for 10 min during 

the memory retrieval (Test). The behavior of the animals was recorded during memory 

retrieval. Freezing behavior was measured using an automated scoring system (Ohara 

system) and was defined as a > 1 s continuous absence of movements except for 

breathing.  

Three hours after the memory test, mice were exposed to a novel context consisting 

of a circular glass chamber (22-cm diameter) with a floor covered with paper and no 

ethanol odor. Mice did not display freezing behavior in this context (Kumar et al., 2020). 
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In the case of the no-shock group, mice underwent the same behavioral protocol 

described for the delay shock group, excepting that a dummy microscope was used, 

and no shock was delivered during the conditioning period.   

9.6. Analysis of Ca2+ imaging videos 

To extract significant Ca2+ transients, recording sessions were concatenated and 

subsequently motion-corrected in mosaic v1.2 (Inscopix). Fluorescence traces from 

single neurons were extracted in MATLAB using constrained non-negative matrix 

factorization for microendoscopic data (CNMF-E) (Zhou et al., 2018). Specific details 

of the extraction of Ca2+ transients are described by Carrier-Ruiz et al. (2021). Ca2+ 

traces were deconvolved using CNMF-E (AR2, thresholded). In this study, only mice 

with at least 10 ABNs in the field of view were considered (a total of 94 neurons from 

4 mice).  

Data was analyzed with MATLAB (Mathworks) using the image processing and 

machine learning toolboxes. 

9.6.1. Bootstrap analysis. 

Statistical comparison of the means in Figure 13A and Figure 15E was performed by 

bootstrap analysis. Points were randomly sampled from the original sample to produce 

a surrogate sample, which was then used to obtain a bootstrap estimate of mean 

differences between groups. This was repeated 10,000 times to obtain a distribution 

of different bootstrap estimates. By defining a 1 - α confidence interval within this 

distribution, I tested whether differences between sample means were statistically 

different from 0. An α value of 0.05 was divided by the number of multiple comparisons 

in each experiment (i.e., Bonferroni-corrected). It has been proposed that the 

bootstrap test may underestimate the expected false positive probability (i.e., Type 1 
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error) (Bradley Efron & Tibshirani, 1994), especially when sample sizes are small. This 

issue is addressed in Appendix 1, where I show that the bootstrap approach applied 

on ABNs data, maintains the type I error in accordance with the hypothetical value of 

0.05. 

9.6.2. Identification of ABNs responding to novel context exposure. 

The mean activity of each neuron in the home cage was compared with its mean 

activities in preS and postS periods (Figure 13B). The statistical significance of these 

differences was estimated by moving block bootstrap (Kunsch, 1989). This method 

differs from classic bootstrap in that blocks of data, rather than individual points, are 

sampled. This was done to preserve temporal correlations in activity traces (see 

Appendix 3). The length of the block (10 s) was estimated from the circular 

autocorrelation function shown in Figure 12B, which reflects the time during which 

ABN activities were aggregated.  

9.6.3. Similarity between activity vectors 

The activity vectors in Figure 14B and Figure 15A are the mean activity of individual 

ABNs arranged in column vectors. To reduce the effect of possible outliers, extreme 

values for each mouse were truncated to the 95th percentile of the distribution of 

activities. Data from each mouse were concatenated into a single activity vector. 

Activity vectors are shown scaled from 0 to 1. The similarity between pairs of activity 

vectors was estimated by cosine similarity (i.e., normalized dot product), defined as: 

  cos (𝐴𝐴,𝐵𝐵) =
𝐴𝐴 ∙ 𝐵𝐵‖𝐴𝐴‖‖𝐵𝐵‖  (1) 

where A and B are two different activity vectors. 
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9.6.4. Hierarchical clustering.  

To identify clusters of activity vectors, I used agglomerative hierarchical clustering. 

Clusters were combined using angular distance (i.e., cosine distance) and Wards 

linkage. Statistically significant cut-off points in the dendrogram were estimated on the 

basis of a reference distribution of linkages obtained by random resampling of activity 

vectors (10,000 replicates) (Sebastiani & Perls, 2016).  

9.6.5. Remapping index. 

The remapping index (RI) is defined as: 

RI =
𝐴𝐴𝐴𝐴(𝐴𝐴,𝐵𝐵𝑡𝑡)− 𝐴𝐴𝐴𝐴(𝐶𝐶,𝐵𝐵𝑡𝑡)𝐴𝐴𝐴𝐴(𝐴𝐴,𝐵𝐵𝑡𝑡) + 𝐴𝐴𝐴𝐴(𝐶𝐶,𝐵𝐵𝑡𝑡) (2)  

Where AD is the angular distance, which is equal to 1 - cosine similarity value, A and 

C are the activity vectors from the first and last 15 min of the consolidation period, 

respectively, and 𝐵𝐵𝑡𝑡 is the activity vector at time t.  

10. Funding.  

This work was partially supported by grants from the World Premier International 

Research Center Initiative from MEXT, JST CREST grant #JPMJCR1655, JSPS 

KAKENHI grants #16K18359, 15F15408, 26115502, 25116530, JP16H06280, 

19F19310, and 20H03552, Shimadzu Science Foundation, The Uehara Memorial 

Foundation, Takeda Science Foundation, Kanae Foundation, Research Foundation 

for Opto-Science and Technology, Ichiro Kanehara Foundation, Kato Memorial 

Bioscience Foundation, Japan Foundation for Applied Enzymology, Senshin Medical 

Research Foundation, Life Science Foundation of Japan, Brain Science Foundation, 

Kowa Life Science Foundation, Inamori Research Grants Program, and GSK Japan 

to M.S. 



37 
 

11. Institutional Review Board Statement. 

All experiments were performed in accordance with the Science Council of Japan's 

Guidelines for Proper Conduct of Animal Experiments. All experimental protocols that 

involved animals were approved by the University of Tsukuba Institutional Animal Care 

and Use Committee [Protocol#20-268] and the Recombinant DNA Use Committee 

[Protocol#180089 and 190035]. 

12. Data Availability Statement. 

 The data (raw Ca2+ transients and activity traces) and the code supporting the finding 

of this study (MATLAB) are available at: 

https://github.com/vergaloy/Remapping_ABNs 

13. Acknowledgments.  

I am very grateful to Dr. Sakaguchi for his patience and enthusiasm. I would also like 

to thank my previous mentor Dr. Magdalena Sanhueza who formed me as a scientist. 

Finally, I would like to thank my parents, who raised me and made me the person I am 

today.  

14. Appendix. 

14.1. Appendix 1. Controlling bootstrap Type I error.  

Bootstrap analysis was used to compare the activity vectors shown in Figure 13A and 

Figure 15E. These activity vectors are lognormally distributed and zero-inflated (e.g., 

~30% of the ABNs are completely inactive in the home cage condition) (Figure 17A). 

Commonly used statistical approaches, such as t-test or Wilcoxon-Mann-Whitney test, 

may not perform well in these conditions (McElduff et al., 2010). To address this issue, 

I used bootstrap (Efron, 1979, see section 8.6.1). One of the main advantages of using 

bootstrap for statistical inference is that it is asymptotically more accurate than a t-test 

https://github.com/vergaloy/Remapping_ABNs
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when assumptions of normality and equality of variance between conditions are not 

met (DiCiccio & Efron, 1996). The main disadvantage is that its accuracy is limited to 

the representative sample (i.e., is biased).  If the representative sample is small, the 

number of possible bootstrap replicates that can be produced may not be rich enough 

to represent the parameter of interest (B. Efron, 1979). For example, when means are 

compared in normally distributed data, the bootstrap approach display higher false-

positive probability (type I error) when the number of samples is very small (Efron, 

1979, N <50). One usual way to calculate the type I error of resampling approaches, 

such as bootstrap, is to run the resampling test several times on simulated data  (Boos 

& Zhang, 2000). For example, the type I error of the bootstrap test for normally 

distributed data (Figure 17B) can be calculated as follows:  

 1) N data points are randomly sampled from a normal distribution (mean = 0, 

standard deviation = 1), and assigned to two different groups.  

 2) The sample means between these two groups are then compared by 

bootstrap. The result of the statistical test is stored (reject the null hypothesis?). 

 3) This process is repeated 1000 times. 

Because samples were obtained from the same normal distribution, counting the 

number of times that the null hypothesis was rejected can serve to estimate the false-

positive probability (type I error) of the bootstrap test. This simulation shows that, for 

normally distributed data, the observed type I error converges to the hypothetical value 

(α = 0.05) when the sample size is above 40. 

The example illustrated above shows the type I error for normally distributed data. To 

calculate the bootstrap type I error in our data (96 ABNs, non-normally distributed), 

instead of sampling from a normal distribution, data points were pseudo-randomly 

produced by sampling from the empirical cumulative probability density function of 
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ABNs activities (shown in Figure 17A, right). Therefore, the produced bootstrap 

replicates were lognormally distributed and zero-inflated as occurring with the actual 

mean-ΔF/F data. The estimated type I error corresponded to the theoretical value of 

α = 0.05 (Figure 17C), corroborating that bootstrap does not underestimate the 

number of false positives. 

 

 

 

Figure 17. Estimating type I error in bootstrap. (A) Left: Histogram of the mean ΔF/F of 96 ABNs in 

home cage. Right: Empiric cumulative probability density function of the mean ΔF/F (B) Example 

showing type I error produced by the bootstrap test for different sample sizes (only for normally 

distributed data). (C) Type I error for ABNs data.  

14.2. Appendix 2. Bootstrap for temporally correlated data.  

Bootstrap analysis was also used to detect changes in the mean activity of individual 

ABNs (i.e., data in Figure 13B).  In this case, the question to address is whether the 

mean activity of a neuron is different in two conditions. For example, Figure 18A shows 

the activity traces of the same neuron in two different contexts. The conventional 

bootstrap approach will not be appropriate in this case, because Ca2+ traces in ABNs 

display burst-like activity. Therefore, random sampling without considering the 

temporal structure of the data would not preserve the bursting activity in the bootstrap 

replicates (Figure 18B). Instead of using the conventional bootstrap approach, I used 

the box bootstrap approach proposed by Kunsch, 1989, in which consecutive points 
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of data (i.e., boxes of data) are randomly sampled instead of individual points. This 

allows preserving the bursting profile of ABNs Ca2+ traces (Figure 18B, left). Indeed, 

the box bootstrap surrogates and the original samples display a similar average 

autocorrelation function (Figure 18B, right), indicating that the box bootstrap preserves 

the burstiness of the original data.  

 

Figure 18. The box bootstrap approach preserves the burstiness of the original traces. (A) Ca2+ activity 

traces of the same neuron in two different contexts. (B) Conventional bootstrap vs box bootstrap. Left: 

original trace (blue); conventional bootstrap replicate (green); box bootstrap replicate (red). Note that 

the box bootstrap replicate preserves the burstiness of the original trace. Right: mean autocorrelation 

function for the original data (blue), for surrogate data produced by conventional bootstrap (green), and 

for surrogate data produced by box bootstrap (Red). 

  



41 
 

14.3. Appendix 3. Remapping can be detected in individual mice. 

 

Figure 19. Remapping can be detected in individual mice. (A) Similarity matrix of the activity vectors of 

each mouse. (B) Remapping index vs time correlation for each mouse. The number of neurons in each 

mouse is n= 37, 30, 13, and 14. 
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