タンパク質スキャフォールド SPINK2 を用いた MMP-9 特異的阻害剤の創製に 関する研究

2021年7月

矢野 秀法

タンパク質スキャフォールド SPINK2 を用いた MMP-9 特異的阻害剤の創製に 関する研究

筑波大学大学院 生命環境科学研究科 生物機能科学専攻 博士(農学)学位論文

矢野 秀法

第1章	背景	р3
第2章	MMP-9 特異的阻害剤の取得	р9
第1節	MMP-9 の調製	p9
1. 実験	材料および方法	p9
2. 結果		p10
3. 考察		p11
第2節	MMP-9 特異的阻害剤のスクリーニングおよび評価	p16
1. 実験	材料および方法	p16
2. 結果		p20
3. 考察		p21
小括		p31
第3章	MMP-9 特異的阻害剤の認識機構の解析	p32
第1節	MMP-9の各種ドメイン欠損体および変異体の調製	p32
1. 実験	材料および方法	p32
2. 結果		p34
3. 考察		p35
第2節	阻害剤による MMP-9 認識部位の推定	p42
1. 実験	材料および方法	p42
2. 結果		p43
3. 考察		p45
小括		p56
第4章	タンパク質スキャフォールド SPINK2 を用いた創薬に関する今後の展望	p57
総括		P58
参考文献	2 X	p60
謝辞		p66

目次

第1章 背景

略語集	
APMA	: 4-aminophenylmercuric acetate
CDR	: complementarity-determining region
EC ₅₀	: 50% effective concentration
EK	: enterokinase
IC ₅₀	: 50% inhibitory concentration
KLK	: kallikrein related peptidase
MMP	: matrix metalloproteinase
PDB	: protein data bank
SEC	: size-exclusion chromatography
SPINK2	: serine protease inhibitor Kazal type 2
TIMP	: tissue inhibitor of metalloproteinases

第1章 背景

1. モダリティーの多様化とその特徴

近年、ゲノムやトランスクリプトーム、プロテオーム等、各種オミックス解析技術 の進歩により、疾患におけるバイオマーカーの同定や疾患原因分子の推定が容易になりつ つある。疾患の分子メカニズムを深く理解し、治療薬の開発を成功させるためには、標的分 子に対して特異的に作用する化合物 (アゴニストやアンタゴニスト)を迅速に創製すること が求められている (Figure 1-1)。

標的分子を特異的かつ強力に認識することが可能なタンパク質性のモダリティー として、抗体が挙げられる。その特長を活かして、抗体は *in vitro* および *in vivo* 実験におい て疾患原因分子の検証用ツールとして汎用されている。検証の過程で見出された特定の抗 体が、その疾患の医薬候補品となることもあり、これまでに多くの抗体医薬品が上市されて いる[1-4]。近年では、抗体の取得技術および改変技術の発展により、標的分子を同定後に医 薬候補品を創製するまでの期間が短縮されている。さらに、抗体薬物複合体[5-8]や二重特 異性抗体[9,10]に代表される抗体の高機能化によって、これまで達成できなかった新規の作 用機序を持つ抗体医薬も開発されている。このように多くの医薬候補品創製に用いられて いる抗体であるが、未だにいくつかの課題を抱えている。例として、哺乳類細胞を用いた生 産プロセスが高コストであること、生体での組織浸透性が低いこと、溝やポケット構造の認 識が難しいこと、等が挙げられる(Table 1-1)。

抗体と異なるモダリティーとして、様々なタンパク質スキャフォールドが報告さ れている[11-14]。スキャフォールドの一部のアミノ酸配列をランダムに変異させたライブ ラリーから、標的分子に結合するクローンをスクリーニングすることにより、抗体と同様に 標的分子を特異的かつ強力に認識する化合物を取得することが可能である。タンパク質ス キャフォールドをモダリティーとする医薬候補品のうち、いくつかは既に臨床試験におい て使用されており、上市を目指した開発が進められている[11,15]。これらのスキャフォール ドの分子量は抗体(およそ 150 kDa)と比較して極めて小さく(10 kDa 未満)、微生物宿主 を用いた生産が可能、熱安定性が高い、組織浸透性が高い、等の特長を示す。しかしながら、 報告されているタンパク質スキャフォールドの多くは、抗体と同様に標的分子の溝やポケ ット構造の認識が難しいという課題を抱えている(Table 1-1)。

疾患原因分子の生化学的活性に重要な活性中心領域は、多くの場合、タンパク質の 立体構造上、溝やポケット構造を構成する。任意の溝やポケット構造を認識する化合物を確 実に取得できることは、疾患原因分子の検証用ツールや医薬候補品の迅速な創製に繋がる。 実際に低分子医薬候補品の多くが溝やポケット構造を認識しており、低分子化合物は活性 中心領域を認識する化合物を創製する上で有用なモダリティーである。しかしながら、活性 中心領域は一般的に配列保存性が高いこと、低分子化合物は分子量がおよそ 500 以下で標 的分子と相互作用可能な表面積が小さいことから、標的分子特異的にその活性中心領域を 認識する化合物を取得することが難しい(Table 1-1)。

2. SPINK2の開発

我々は先行研究において、標的分子の溝やポケット構造を特異的に認識するタン パク質スキャフォールドとして serine protease inhibitor Kazal type 2 (SPINK2)を開発した[16]。 野生型の SPINK2 はトリプシンやアクロシンといったセリンプロテアーゼを阻害する[17]。 先行研究では、トリプシンとの相互作用に関わるループ部分のアミノ酸配列をランダムに 変異した変異 SPINK2 (engineered SPINK2) をデザインし、それらを提示するファージディ スプレイライブラリーを構築した[16]。この変異 SPINK2 ライブラリーに対して、キモトリ プシンや kallikrein related peptidase 1、4、8 (KLK1、4、8) といったセリンプロテアーゼを ベイトタンパク質として用いたバイオパニングを実施し、標的プロテアーゼを阻害する変 異 SPINK2 クローンをスクリーニングした。その結果、野生型 SPINK2 の標的であるトリプ シンは阻害せず、標的プロテアーゼを特異的かつ強力に認識して阻害する変異 SPINK2 クロ ーンを複数取得することができた。さらに、阻害クローン K41043 と KLK4 との複合体結晶 の X 線構造解析結果から、K41043 が KLK4 の活性中心に加えて、その周辺の広い範囲を認 識して結合することが示された。

SPINK2 は、セリンプロテアーゼの活性中心の特異的認識に強みを持つことに加え て、他のタンパク質スキャフォールドと同様に、抗体と比較して極めて分子量が小さい(お よそ 7 kDa) ため高い組織浸透性が期待できる、微生物宿主を用いた生産が可能、熱安定性 が高い、等の特長を持つ[16]。したがって SPINK2 は、低分子化合物はもとより、抗体やこ れまで報告されているタンパク質スキャフォールドとも性質の異なる、新規の創薬モダリ ティーになり得ると期待される(Table 1-1)。

3. 創薬標的としてのプロテアーゼ

プロテアーゼはその活性中心の基質分解機構の違いから、セリンプロテアーゼ、ア スパラギン酸プロテアーゼ、メタロプロテアーゼ、システインプロテアーゼ等に分類される。 マトリックスメタロプロテアーゼ(matrix metalloproteinases : MMPs)は、細胞外マトリック スタンパク質(例:コラーゲン、エラスチン、フィブロネクチン、ラミニン等)の分解や、 サイトカインおよびケモカイン(例:IL-1β、IL-8 等)のプロセシング等に寄与し、細胞増 殖や分化、遊走、アポトーシス等、多くの重要な生理機能に関与するメタロプロテアーゼで ある。MMPsの異常な発現や活性化は、炎症や癌転移等の病態を引き起こすことが報告され ている[18,19]。これまでヒトにおいては 23 種類の MMPs が報告されており、いくつかの MMPs は、炎症性大腸炎等、細胞外マトリックスタンパク質の異常な分解が生じる疾患にお いて亢進することが知られている[20,21]。疾患の発症や病態の進展における個々の MMP の 役割をより深く理解するために、標的 MMP のプロテアーゼ活性を特異的に抑える阻害剤の 創製が強く求められている。 MMPs の活性中心(active site)は、グルタミン酸残基と、亜鉛イオンを配位する3 つのヒスチジン残基から成る。MMPs の活性中心の配列モチーフ HEXGHXXGXXHは MMPs ファミリー分子間で高度に保存されている。MMPs は基質分解活性を持たない pro-form (pro-MMPs)として翻訳、分泌される。Pro-MMPs において、活性中心およびその周辺の溝構造 の領域(active-site cleft と定義)はプロペプチドによって完全にマスクされ、基質と活性中 心との相互作用は妨げられている[21]。Pro-MMPs の活性化は、酵素(例:プラスミン、ト リプシン、他の MMPs 等)による切断[22,23]や非酵素的な修飾[24-26]によってプロペプチ ドが除去され、active-site cleft が露出することによって生じる。

MMPs は共通の基質切断モチーフ (P3 サイトのプロリン残基および P1'サイトの疎 水性残基)を示すが、これは active-site cleft の高い配列相同性に起因するものである[27,28]。 一方で、高分子のタンパク質基質に対してはそれぞれの MMP が一定の基質特異性を示す [20]。この理由は、高度に保存された活性中心だけでなく、活性中心から離れた別の部位 (exosite と定義)もまた基質認識に関わっているためと推測される。例えば、MMPs のいく つかのドメイン (MMP-1、-8、-13、-14 におけるヘモペキシンドメイン、MMP-2 および-9 に おけるフィブロネクチンドメイン (Fn-like domain))は高分子基質であるコラーゲンの分解 に必須である[29–31]。保存性の高い活性中心と比べて、これらのドメインには一定の配列 多様性がある。MMPs においては、これらのドメインが高分子基質の認識における exosite として機能し、基質切断部位と活性中心との空間的位置関係が適切に制御され、特異的な高 分子基質分解に寄与していると考えられている。

MMPs の基質分解活性は、活性中心に結合する阻害剤によって完全に阻害される。 そのような作用機序を示す阻害剤は "active-site inhibitors" と呼ばれ、ヒドロキサム酸誘導体 を中心にこれまで 60 種類以上の低分子化合物が報告されている[32]。これらの阻害剤の多 くは active-site cleft にある活性中心の亜鉛イオンに配位することによって強力な阻害活性を 示す。しかしながら、活性中心および active-site cleft といった保存性の高い領域のみしか認 識できないため、MMPs ファミリー分子全般に対して広範な阻害活性を示す。このような低 分子の非特異的 MMPs 阻害剤のうちいくつかは、抗がん剤開発を目的とした前臨床試験で 有望な薬理作用を示して臨床試験に進んだものの、広範な阻害活性に起因する筋骨格系疼 痛や炎症等の重篤な有害事象を示し、それらの開発は中止されている[33]。臨床応用の観点 でも、MMPs に対する特異的な active-site inhibitors は強く求められている。

低分子化合物よりも相互作用面積が大きく、高分子基質と同様に活性中心と exosite の両方を認識可能なタンパク質性の active-site inhibitors も複数報告されている。抗 MMP 抗 体 SDS3 および SDS4 は、MMPs の活性中心を模倣した低分子化合物を免疫原として取得さ れた。それらは MMP-9 の活性中心に結合し、強力な阻害活性を示す active-site inhibitors で ある。しかしながら、それらは MMP-9 と配列相同性が最も高い MMP-2 も阻害してしまう ため特異的阻害剤とは呼べない[34]。一方、元々広範な MMPs 阻害活性を持つタンパク質か ら、タンパク質工学を駆使して特異的な active-site inhibitors を創製する試みもある。内在の メタロプロテアーゼ阻害タンパク質である tissue inhibitors of metalloproteinases (TIMPs) は、 活性中心の亜鉛イオンと相互作用することにより、強力かつ非特異的な MMPs 阻害活性を 示す[35]。MMPs の exosite と相互作用する残基にランダム変異を導入してスクリーニング により取得した改変 TIMPs は、特定の MMPs に対する特異性が向上している[36–38]。しか しながら、単一の MMP に対してのみ特異的な阻害活性を示す改変 TIMPs の創製は難しく、 未だ成功例は報告されていない。抗体取得技術やタンパク質工学技術の発展にも関わらず、 MMPs の保存性の高い溝やポケット構造を特異的に認識する分子を創製することには未だ 技術的課題がある[39]。

MMPsの中でも MMP-9 は IV 型コラーゲンやゼラチン、エラスチン等を含む ECM タンパク質の分解に寄与している[26]。MMP-9 による ECM 等の物理的バリアの破壊は、癌 転移や炎症反応の促進に繋がる[18,32,40]。さらに、MMP-9 の異常な活性は、多発性硬化症、 脳卒中、てんかん、脳腫瘍、アルツハイマー病などの多くの神経変性疾患に関与する血液脳 関門の破壊を引き起こす[41,42]。MMP-9 阻害剤がいくつかの病態モデルにおいて有望な薬 理作用を示すことが報告されているが[43-46]、他の MMPs 阻害剤と同様に、より高い阻害 活性と特異性を併せ持つ MMP-9 阻害剤の創製が求められている[32]。

本研究では、MMP-9 を標的分子として選択し、変異 SPINK2 ライブラリーからメ タロプロテアーゼ MMP-9 に対する特異的阻害剤を創製した結果を第2章にまとめた。次い で第3章では、MMP-9 のアミノ酸配列および三次元構造情報を基に、酵素学的手法を用い て、取得された阻害剤が MMP-9 を特異的に認識する機構を明らかにした。SPINK2 がセリ ンプロテアーゼとは異なる溝やポケット構造を持つメタロプロテアーゼに対しても特異的 阻害を達成したことで、SPINK2 を用いた創薬研究の発展性が示唆されたことから、第4章 にて今後の展望を考察した。

			タンパク質ス	キャフォールド
_	低分子化合物	抗体	Affibody®, Anticalin®, DARPin®, etc.	SPINK2
バインダー取	へよニノブニリ	動物免疫	ゴーマプレノ仕生	ゴッフプレノ井街
得方法	合成フィノフリー	ディスプレイ技術	アイベノレイ技術	アイベノレイ技術
結合活性	○ (高い)	○ (高い)	○ (高い)	○ (高い)
特異性	× (低い)	○ (高い)	○ (高い)	○ (高い)
生産コスト	○(低い:化学合成)	×(高い:動物細胞)	○ (低い:微生物)	○ (低い : 微生物)
組織浸透性	○ (高い)	× (低い)	○ (高い)	○ (高い)
熱安定性	○ (高い)	× (低い)	○ (高い)	○ (高い)
溝やポケット	○ (洋桝市ふ)	> (難しい)	✓ (#41.1.)	○(セリンプロテア
構造の認識				ーゼの活性中心)
分子量	<1 kDa	150 kDa	<10 kDa	7 kDa

Table 1-1. 各種モダリティーの特徴

Figure 1-1. 様々な作用機序によって創薬標的の同定および治療薬開発に貢献する各種モダ リティー

第2章 MMP-9 特異的阻害剤の取得

変異 SPINK2 ファージディスプレイライブラリーから MMP-9 阻害剤を取得するこ とを試みた。まず、阻害剤のスクリーニングとその詳細な評価に必要な実験材料である MMP-9 および関連タンパク質をタンパク質工学に基づいて適切に設計し、調製した。続い てファージディスプレイパニングによって MMP-9 に結合する変異 SPINK2 を濃縮し、MMP-9 阻害活性を指標としたスクリーニングによって MMP-9 阻害 SPINK2 クローンを取得した。 選抜した阻害クローンの精製タンパク質を調製し、種々の評価系を用いてその阻害活性と 特異性を評価した。

第1節 MMP-9 の調製

1. 実験材料および方法

1. 1. 試薬

4-aminophenylmercuric acetate (APMA) は Merck から、TPCK 処理トリプシンは Thermo Fisher Scientific から購入した。

1. 2. MMP-9 および MMP-3 発現ベクターの構築

MMP-9 を調製するため、pro-hMMP-9(NCBI Reference Sequence: NP_004985.2)の フィブロネクチンドメインを含む活性ドメイン(Ala-20~Pro-449; pro-MMP-9_Cat と定義) の C 末端に 6×His タグを融合した(pro-MMP-9_Cat-H6 と定義)。ビオチン標識 MMP-9 を 調製するため、pro-MMP-9_Cat の N 末端に 6×His タグ、C 末端に FLAG タグとビオチンア クセプターペプチド(BAP[47])を融合した(pro-MMP-9_Cat-BAP と定義)。MMP-9 の活性 化に用いる MMP-3 を調製するため、pro-hMMP-3(NCBI Reference Sequence: NP_002413.1) の C 末端に 6×His タグを融合した。Pro-MMP-9_Cat-H6 および pro-MMP-9_Cat-BAP、pro-MMP-3 の遺伝子は、GeneArt 人工遺伝子合成サービス(Thermo Fisher Scientific)でコドンを ヒト型に最適化して合成した。合成した DNA を鋳型に、PCR でインサート DNA 断片を調 製した。哺乳類細胞発現用ベクターpcDNA3.3(Thermo Fisher Scientific)を鋳型に、PCR で ベクターDNA 断片を調製した。In-Fusion HD Cloning Kit(Takara Bio)でベクターDNA とイ ンサート DNA を連結し、大腸菌 DH5α(Takara Bio)を形質転換した。QIAprep Spin Miniprep Kit(QIAGEN)または NucleoBond Xtra Midi/Maxi(MACHEREY-NAGEL)を用いて形質転 換体からプラスミド DNA を抽出して塩基配列を確認し、MMP 発現ベクターを得た。

1. 3. MMP-9 および MMP-3 の発現精製

Pro-MMP-9_Cat-H6 および pro-MMP-9_Cat-BAP、pro-MMP-3 を調製するため、PEI MAX 40000 (Polysciences) を用いて MMP 発現ベクターDNA を HEK293F 細胞 (Thermo Fisher

Scientific) にトランスフェクションし、培養 6 日後の培養上清を回収した。20 mM sodium phosphate, 0.5 M NaCl, pH7.4 で平衡化した HisTrap excel (Cytiva) に培養上清をアプライし、 イミダゾールで溶出後、PBSにバッファー交換し、pro-MMP-9_Cat-H6および pro-MMP-9_Cat-BAP、pro-MMP-3 を得た。タンパク質濃度は、波長 280 nm の吸光度を測定し、アミノ酸配 列のモル吸光係数を基に算出した。

Pro-MMP-9_Cat-BAPの部位特異的ビオチン標識はビオチンリガーゼ BirA (Avidity) のプロトコルに従い実施した。

1. 4. MMP-3 の活性化

MMP-9 の活性化に用いる active MMP-3 を得るため、TNC バッファー(50 mM Tris-HCl, 200 mM NaCl, 2 mM CaCl₂, pH 7.5) で調製した 18.7 μM pro-MMP-3 に等容量の 1 mM APMA を添加、37°C で 4 時間活性化した。SEC 用樹脂 Sephadex G-25 (Cytiva) を用いて 4°C で活性化反応液を PBS にバッファー交換し、active MMP-3 を得た。

1. 5. Active MMP-3 による MMP-9 の活性化

Active MMP-9 およびビオチン標識 active MMP-9 を得るため、TNC バッファーで調 製した 20.4 µM pro-MMP-9_Cat-H6 またはビオチン標識 pro-MMP-9_Cat-BAP に、等容量の 2.2 µM active MMP-3 を添加、37℃ で 4 時間活性化した。反応液を PBS にバッファー交換 し、active MMP-9 およびビオチン標識 active MMP-9 を得た。

1. 6. トリプシンによる MMP-9 の活性化

Active MMP-9 を得るため、TNC バッファーで調製した 8 µM pro-MMP-9_Cat-H6 に、 等容量の 5.3 µM TPCK 処理トリプシンを添加、37℃ で 3 時間活性化した。

2. 結果

はじめに、MMP-9 のどのドメインをベイトタンパク質に用いることが適切かを検 討した。MMP-9 はプロペプチドドメイン (Pro) と活性ドメイン、フィブロネクチン様ドメ イン (Fn-like)、ヘモペキシンドメインから成る (Figure 2-1)。MMP-9 の酵素活性を阻害す る変異 SPINK2 を得るため、活性ドメインは必須であった。プロペプチドドメインは MMP-9 の活性中心を構造的にマスクしてしまうため (PDB ID: 1L6J, [21])、ベイトタンパク質か ら除く必要があった。フィブロネクチンドメインは活性ドメインに直接接しているため

(PDB ID: 1L6J, [21])、欠損させた場合には天然の MMP-9 の活性ドメインの表面構造とは 異なるベイトタンパク質となる可能性がある。そのため、フィブロネクチンドメインはベイ トタンパク質に必要なドメインと考えた。一方、ヘモペキシンドメインは長くフレキシブル なリンカーを介して活性ドメインと繋がっているため[48]、ヘモペキシンドメインを欠損さ せても活性ドメインの表面構造には影響を与えないと考えた。以上のことから本研究のベ イトタンパク質には、フィブロネクチンドメインを含む活性ドメイン(active MMP-9_Cat と 定義)を用いることが適切と判断した。

次に、パニング時にベイトタンパク質をストレプトアビジン標識磁気ビーズに固 定化するため、ベイトタンパク質のビオチン標識方法を検討した。一般に、N-ヒドロキシス クシンイミド (NHS) エステルを用いてタンパク質表面の第一級アミン (N 末端およびリジ ン残基の側鎖)を化学標識することが可能である。しかしながら、この方法は標識部位を制 御できないランダムな標識方法であるため、仮にベイトタンパク質の活性中心近傍がビオ チン標識されて立体構造的に活性中心がマスクされた場合、所望の阻害剤を得ることがで きない。そこで本研究では、ベイトタンパク質の活性中心から離れた C 末端にビオチンア クセプターペプチド (BAP)を融合し (active MMP-9_Cat-BAP と定義)、BAP を認識するビ オチンリガーゼ (BirA)を用いて、ベイトタンパク質の C 末端を部位特異的にビオチン標 識した。

最後に、十分な純度や活性を持つベイトタンパク質を調製するため、pro-MMP-9 から active MMP-9 を調製するための活性化方法を検討した。初めに、トリプシンを用いて pro-MMP-9_Cat-H6 を活性化した結果、C 末端部分の分解が認められた(Figure 2-2)。この方法 では C 末端に標識したビオチンが脱落してしまうため、活性化方法として不適であると判 断した。次に APMA と active MMP-3 を用いて pro-MMP-9 の活性化を検討した結果、以前 の報告[49]と同様に、APMA を用いた場合よりも active MMP-3 を用いた場合の方が、得ら れる active MMP-9 の活性が高いことが分かった(data not shown)。加えて、active MMP-3 を 用いて活性化した後に SDS-PAGE で解析した結果、未活性化体の pro-MMP-9 や active MMP-3 の分解物の混在が少ないことが分かった(Figure 2-3)。以上の検討結果から、フィブロネ クチンドメインを含む活性ドメインの MMP-9 の C 末端にビオチンを標識し、active MMP-3 で活性化したもの(biotinylated active MMP-9_Cat-BAP)を、パニングに用いるベイトタンパ ク質として調製した。

3. 考察

ファージディスプレイライブラリーから所望の阻害剤を取得するためには、高い 品質(純度や活性)を保持するベイトタンパク質を適切に設計・調製し、パニングに使用す ることが重要である[50]。

本研究では、天然の MMP-9 の活性ドメインの表面構造を認識するバインダーを取 得するため、フィブロネクチンドメインを含む活性ドメインをベイトとすることが適切と 判断した。MMP-9 において、タンパク質性の基質であるコラーゲンやゼラチンの分解には フィブロネクチンドメインが必須であることからも、SPINK2 のように表面積の大きなタン パク質性のバインダーの取得には、フィブロネクチンドメインを含む活性ドメインを用い ることが望ましいと考えられる。

吸着によってベイトをビーズに固定化する方法はベイトの変性に繋がる可能性が

あり、ストレプトアビジンやベイト認識抗体等を介してビーズに固定化することが望ましい[50]。本研究では MMP-9 の C 末端に付加した BAP を部位特異的にビオチン標識した。 MMPs をベイトに用いた他の研究では、NHS でランダムにビオチン標識した MMP-2、-9、-14 を用いた例[51]や、具体的なビオチン標識方法を開示していない多数の例が報告されている。本研究においてランダム標識と部位特異的標識との直接比較はしていないため、その 重要性を明確に判断することはできないが、標的とする領域に Lys 残基が多く含まれる場合や、標的とする領域がベイトのN 末端または C 末端から離れた位置にある場合には、BAP を N 末端もしくは C 末端に付加して部位特異的にビオチン標識することが有用と期待される。

活性化後の active MMP-9 が高い基質分解活性を示すことは、基質との相互作用に 関わる活性中心周辺の構造が適切に保持されていることを示唆する。また、分解物や不純物 を多く含むベイトを用いたパニングでは、標的分子以外を認識する不要なバインダーの濃 縮に繋がる。本研究では、複数の活性化方法によって得た active MMP-9 の活性および品質 を分析して比較し、active MMP-3 を用いた活性化方法が最適であることを示した。

以上のように、ドメイン、ビオチン化方法、活性化方法をそれぞれ最適化して適切 なコンストラクトを設計することにより、パニングに適した高い品質のベイトタンパク質 を調製することができた。

Figure 2-1. Schematic overview of the structure of MMP-9.

Figure 2-2. C-terminal degradation of MMP-9 during activation reaction using trypsin. For MMP-9 activation using trypsin, the final 4 μ M pro-MMP-9_Cat-H6 was incubated with 2.7 μ M TPCK trypsin (Thermo Fisher Scientific, 20233) in TNC buffer at 37°C. Western blot analysis of the activation reaction solution (0.6 μ g of MMP-9 per gel lane) was performed under reducing conditions. After electrophoresis, the proteins were transferred to a PVDF membrane followed by blocking with 5% skim milk in PBS-T. After washing with PBS-T, Penta His HRP Conjugate (QIAGEN, 34460) was added (1:10,000 dilution in PBS-T with 0.5% skim milk) and incubated for 1 h at room temperature. After washing with PBS-T, the reaction was developed with ECL Prime Western Blotting Detection Reagent (Cytiva) at room temperature. The pre-stained visible protein markers and the chemiluminescent signals were captured using a ChemiDoc XRS+ CCD camerabased imager system (Bio-Rad). *Black arrowhead* and *red arrowhead* indicate the band of the product obtained by the activation reaction using trypsin and the band of C-terminal fragment of pro-MMP-9_Cat-H6, respectively.

Figure 2-3. SDS-PAGE analysis of purified MMP-9. Pro-MMP-9_Cat-H6 was purified and activated by active MMP-3, as described in "Materials and methods." SDS-PAGE analysis of the purified pro-MMP-9 (1 µg per gel lane) and active MMP-9_Cat-H6 (0.5 µg per gel lane) was performed under reducing conditions followed by Coomassie Brilliant Blue G-250 staining.

第2節 MMP-9 特異的阻害剤のスクリーニングおよび評価

1. 実験材料および方法

1.1. 試薬

消光性蛍光ペプチド基質 MOCAc-Arg-Pro-Lys-Pro-Val-Glu-Nva-Trp-Arg-Lys(Dnp)-NH₂ (3168-v) および MOCAc-Lys-Pro-Leu-Gly-Leu-A₂pr(Dnp)-Ala-Arg-NH₂ (3226-v) はペ プチド研究所から購入した。

Active hMMP-2 (PF023) と active hMMP-15 活性ドメイン (475938) は EMD Millipore から購入した。Active hMMP-7 活性ドメイン (BML-SE181) と active hMMP-10 活性ドメイン (BML-SE329)、active hMMP-12 活性ドメイン (BML-SE138) は Enzo Life Sciences から購入した。Active hMMP-14 活性ドメイン (RP-77531) は Thermo Fisher Scientific から購入した。Pro-hMMP-16 活性ドメイン (1785-MP) と pro-hMMP-17 活性ドメイン (7796-MP) は R&D Systems から購入した。各メーカーのプロトコルに従い、pro-hMMP-16 は Furin で、pro-MMP-17 は APMA で活性化した。

1. 2. 特異性評価に用いる MMPs の調製

Active MMP-1 を調製するため、pro-hMMP-1 (NCBI Reference Sequence: NP 002412.1) の活性ドメイン (Phe-20~Gly-261) の N 末端に 6×His タグを融合した。Active MMP-8 を 調製するため、pro-hMMP-8(NCBI Reference Sequence: NP_002415.1)の活性ドメイン(Phe-21~Gly-262)の N 末端に 6×His タグを融合した。Active MMP-13 を調製するため、prohMMP-13 (NCBI Reference Sequence: NP 002418.1)の活性ドメイン (Leu-20~Gly-267)のN 末端に 6×His タグを融合した。Pro-MMP-1、pro-MMP-8、pro-MMP-13の遺伝子は GeneArt 人工遺伝子合成サービスでコドンをヒト型に最適化して合成した。合成した DNA を鋳型に、 PCR でインサート DNA 断片を調製した。哺乳類細胞発現用ベクターpcDNA3.3 を鋳型に、 PCR でベクターDNA 断片を調製した。In-Fusion HD Cloning Kit でベクターDNA とインサー ト DNA を連結し、大腸菌 DH5α を形質転換した。QIA prep Spin Miniprep Kit または NucleoBond Xtra Midi/Maxi を用いて形質転換体からプラスミド DNA を抽出して塩基配列を確認し、 MMPs 発現ベクターを得た。PEI MAX 40000 を用いて MMPs 発現ベクターDNA を HEK293F 細胞にトランスフェクションし、培養6日後の培養上清を回収した。20mM sodium phosphate, 0.5 M NaCl, pH7.4 で平衡化した HisTrap excel に培養上清をアプライし、イミダゾールで溶 出後、PBS にバッファー交換し、pro-MMP-1 および pro-MMP-8、pro-MMP-13 を得た。タン パク質濃度は、波長 280 nm の吸光度を測定し、アミノ酸配列のモル吸光係数を基に算出し た。Active MMP-1 を得るため、TNC バッファーで調製した 31.6 μM pro-MMP-1 に等容量の 1 mM APMA を添加、37℃ で1時間活性化した。Active MMP-8 を得るため、TNC バッファ ーで調製した 31.8 μM pro-MMP-8 に等容量の1 mM APMA を添加、37°C で1時間活性化し た。Active MMP-13 を得るため、TNC バッファーで調製した 31.0 μM pro-MMP-13 に等容量

の 100 μM APMA を添加、37°C で 1 時間活性化した。SEC 用樹脂 Sephadex G-25 を用いて 4°C でそれぞれの活性化反応液を PBS にバッファー交換し、active MMP-1、active MMP-8、 active MMP-13 を得た。

1. 3. 変異 SPINK2 ファージディスプレイライブラリー

既報告[16]の変異 SPINK2 ファージディスプレイライブラリーを用いた。本ライブ ラリーは、M13 バクテリオファージの表面上に提示された gIII タンパク質の N 末端側に、 TEV プロテアーゼ認識配列を介して SPINK2 変異体が融合されたものである。野生型ヒト SPINK2 タンパク質のアミノ酸配列のうち、15 番目の Ser から 21 番目の Gly、および 23 番 目の Pro から 27 番目の Asn にランダム変異が導入されており(Figure 2-4)、その機能的多 様性は 1.2×10¹⁰ である。

1. 4. ファージディスプレイパニング

既報告[16]のプロトコルに従った。ベイトタンパク質とファージライブラリーとの 結合、非結合ファージの洗浄、結合ファージの回収、回収ファージの増幅、の一連の操作を 1 ラウンドと定義した。第1 ラウンドでは、50 nM のベイトタンパク質とストレプトアビジ ンビーズ Dynabeads M-280 Streptavidin(Thermo Fisher Scientific)を 4℃ で 2 時間インキュベ ートしてベイトタンパク質をビーズに固相化した。固相化後のビーズは、3% BSA を含む TNC-T バッファー(50 mM Tris-HCl, 200 mM NaCl, 2 mM CaCl₂, 0.05% Tween 20, pH 7.5)を 用いて 4℃ で 1 時間ブロッキングした。続いて、およそ 1.8×10¹³ cfu の変異 SPINK2 ファー ジディスプレイライブラリーとブロッキング済みのビーズを、3% BSA を含む TNC-T バッ ファー中で 4℃ で一晩インキュベートした。インキュベート後のビーズを TNC-T バッファ ーで洗浄して非結合ファージを除去した後、TEV プロテアーゼ(AcTEV Protease、Thermo Fisher Scientific)を加えて gIII タンパク質と SPINK2 変異体との間を切断することで、ベイ トタンパク質に結合したファージを回収した。回収したファージを大腸菌 XL1-Blue 株 (Agilent Technologies) に感染させて培養することで、回収したファージを増幅させた。第 2 および第3 ラウンドでは、ベイトタンパク質濃度を減らしたり洗浄回数を増やしたりする ことにより、ラウンドを追うごとに段階的に厳しい条件でパニングを実施した。

1. 5. スクリーニングおよびプロファイル評価に用いる変異 SPINK2 タンパク質の調製

既報告[16]のプロトコルに従った。3 ラウンドのパニング後に回収されたファージ ミド DNA を抽出し、制限酵素 Eco RI と Not I で切断して変異 SPINK2 をコードする塩基配 列を含むインサート DNA を精製した。大腸菌発現用ベクターpET32a (EMD Millipore)を改 変したベクターを Eco RI と Not I で切断したベクターDNA と、上述のインサート DNA を ライゲーションすることにより、N 末端側に、チオレドキシン (Trx) タグ、His タグ、トロ ンビン認識配列、S タグを融合した変異 SPINK2 発現ベクターを構築した。構築したベクタ ーを用いて大腸菌 Origami B (DE3) (EMD Millipore) を形質転換し、変異 SPINK2 発現菌を 取得した。発現菌を 2-YT 培地(Thermo Fisher Scientific)に植菌して 37°C で培養した後、 終濃度 1 mM の IPTG を添加して 16°C で一晩培養し、タンパク質発現を誘導した。遠心分 離によって回収した菌体を界面活性剤、リゾチーム、ベンゾナーゼを含むタンパク質抽出試 薬 BugBuster Master Mix (EMD Millipore) で溶解した後、Co-IMAC 樹脂 (TALON Metal Affinity Resin、Clontech)にアプライして Trx タグ融合変異 SPINK2 タンパク質を取得した。取得し た Trx タグ融合変異 SPINK2 タンパク質を用いて、阻害剤のスクリーニングを実施した。さ らに、トロンビン(EMD Millipore)を添加してプロセシングした後に Co-IMAC にアプライ して素通り画分を回収し、SEC(Superdex 75、Cytiva)で精製することにより、Trx タグと His タグを除いた変異 SPINK2 タンパク質 (変異 SPINK2 の N 末端側に S タグが融合されて いる)を取得した。取得した変異 SPINK2 タンパク質を用いて、阻害剤の詳細なプロファイ ルを評価した。

1. 6. MMP-9 阻害剤のスクリーニング

TNC バッファーで希釈した Trx タグ融合変異 SPINK2 タンパク質を黒色の 96 ウェ ルプレート (96-well PROTEOSAVE black plate、Sumitomo Bakelite) に添加し、active MMP-9_Cat-H6 を混合(終濃度 0.6 nM) して 37°C で 10 分間プレインキュベートした。ペプチド 基質 3226-v を添加(終濃度 10 μM) した後、励起波長 328 nm/蛍光波長 393 nm の蛍光シ グナル強度の経時的変化を蛍光プレートリーダーEnSpire (PerkinElmer) で測定した。基質 添加後の時間を横軸、蛍光シグナル強度を縦軸にプロットしたデータの線形近似式の傾き を算出し、酵素反応の初期反応速度とした。各阻害剤の IC₅₀ 値は、GraphPad Prism version 5.0 (GraphPad Software)を用いて、阻害剤濃度に対する初期反応速度の 4 パラメータロジス ティック回帰曲線から算出した。IC₅₀ 値は 2 回以上の独立した実験結果から算出した。

1. 7. 抗 MMP-9 抗体の調製

抗 MMP-9 抗体 GS-5745 をコードする DNA 配列(WO2013/130078A1)を、GeneArt 人工遺伝子合成サービスでコドンをヒト型に最適化して合成した。H 鎖と L 鎖をそれぞれ 哺乳類細胞発現用ベクターpcDNA3.3 にクローニングした。PEI MAX 40000 を用いて H 鎖 発現ベクターおよび L 鎖発現ベクターDNA を HEK293F 細胞にトランスフェクションし、 培養 6 日後の培養上清を回収した。培養上清から MabSelect SuRe 樹脂(Cytiva)を用いて抗 体を精製し、PBS にバッファー交換して GS-5745 を得た。タンパク質濃度は、波長 280 nm の吸光度を測定し、アミノ酸配列のモル吸光係数を基に算出した。

1. 8. MMP-9 結合 ELISA

MMP-9 を固相化する場合、PBS で 50 nM に希釈した biotinylated pro-MMP-9_Cat-BAP または biotinylated active MMP-9 Cat-BAP を、ストレプトアビジンが固相化された 96 ウェルプレート (96-well Nunc Immobilizer streptavidin clear plate、Thermo Fisher Scientific) に 添加し、4°C で 2 時間インキュベートして固相化した。プレートを PBS-T (0.05% Tween 20 を含む PBS) で洗浄した後、3% BSA を含む PBS-T を加えて室温で 1 時間ブロッキングし た。プレートを PBS-T で洗浄した後、PBS-T で調製した 2 倍希釈系列の阻害剤 (0~1,000 nM) を添加して室温で 90 分間インキュベートした。プレートを PBS-T で洗浄した後、HRP 標識抗 S タグ抗体 (Bethyl Laboratories) (PBS-T で 10,000 倍希釈したもの) を添加して室温 で 1 時間インキュベートした。プレートを PBS-T で洗浄した後、ELISA POD 基質 A.B.T.S. キット (ナカライテスク)を用いて発色反応させ、波長 405 nm の吸光度を EnSpire で測定 した。各阻害剤の EC₅₀ 値は、GraphPad Prism version 5.0 を用いて、阻害剤濃度に対する吸光 度の 4 パラメータロジスティック回帰曲線から算出した。EC₅₀ 値は 2 回の独立した実験結 果の平均値から算出した。

阻害剤を固相化する場合、PBS で 10 µg/ml に希釈した阻害剤を、高吸着性の 96 ウ エルプレート (96-well Nunc MaxiSorp plate、ThermoFisherScientific) に添加し、4°C で一晩 インキュベートして固相化した。プレートを PBS-T で洗浄した後、5% スキムミルクを含 む PBS-T を加えて室温で 2 時間ブロッキングした。プレートを PBS-T で洗浄した後、PBS-T で調製した 5 倍希釈系列の pro-MMP-9_Cat-BAP または active MMP-9_Cat-BAP (0~100 nM) を添加して室温で 2 時間インキュベートした。プレートを PBS-T で洗浄した後、HRP 標識抗 FLAG タグ抗体 (Merck) (PBS-T で 2,500 倍希釈したもの)を添加して室温で 1 時間 インキュベートした。プレートを PBS-T で洗浄した後、ELISA POD 基質 A.B.T.S.キットを 用いて発色反応させ、波長 405 nm の吸光度を EnSpire で測定した。

1. 9. MMP-9 阻害活性評価(阻害定数 K_i算出)

TNC バッファーで希釈した阻害剤を黒色の 96 ウェルプレートに添加し、active MMP-9_Cat-H6 を混合(終濃度 0.4 nM) して 37°C で 1 時間プレインキュベートした。ペプ チド基質 3226-v を添加(終濃度 10 μ M) した後、励起波長 328 nm/蛍光波長 393 nm の蛍 光シグナル強度の経時的変化を蛍光プレートリーダーEnSpire で測定した。基質添加後の時間を横軸、蛍光シグナル強度を縦軸にプロットしたデータの線形近似式の傾きを算出し、酵素反応の初期反応速度とした。阻害定数 K_i は Morrison 式[52]に従い算出した。阻害剤濃度 を横軸、相対反応速度(初期反応速度を、阻害剤非添加時の初期反応速度で除したもの)を 縦軸にプロットしたデータを、GraphPad Prism version 5.0 を用いた非線形回帰分析により式 1 にフィッティングした。

$$\frac{V}{V_0} = 1 - \frac{[E]_t + [I] + K_i^{\text{app}} - \sqrt{([E]_t + [I] + K_i^{\text{app}})^2 - 4[E]_t[I]}}{2[E]_t} \qquad (\not \exists 1)$$

$$K_i^{\text{app}} = K_i \left(1 + \frac{[S]}{K_m} \right) \qquad (\neq 2)$$

式1および式2において*V*は初期反応速度、*V*₀は阻害剤非添加時の初期反応速度、 [*E*],は全酵素濃度、[*I*]は阻害剤濃度、[*S*]は基質濃度、 K_m はミカエリス・メンテン定数、 K_i^{app} は見かけの阻害定数である。 K_m 値は、active MMP-9_Cat-H6 による終濃度 2.5-10 μ M のペプ チド基質 3226-v 分解反応の初期反応速度を測定し、GraphPad Prism version 5.0 を用いてミカ エリス・メンテン式[53]により算出した。 K_i 値は 3 回の独立した実験結果から平均値±SD として算出した。

1. 10. MMP-9 阻害活性評価(高分子基質)

TNC バッファーで希釈した阻害剤を黒色の 96 ウェルプレートに添加し、active MMP-9_Cat-H6 を混合(終濃度 0.6 nM)して 37°C で1時間プレインキュベートした。高分子基質 Dye-quenched (DQ) gelatin (Thermo Fisher Scientific)を添加(終濃度 10 µg/mL)した後、励起波長 495 nm/蛍光波長 515 nm の蛍光シグナル強度の経時的変化を蛍光プレートリーダーEnSpire で測定した。基質添加後の時間を横軸、蛍光シグナル強度を縦軸にプロットしたデータの線形近似式の傾きを算出し、酵素反応の初期反応速度とした。各阻害剤の IC₅₀値は、GraphPad Prism version 5.0 を用いて、阻害剤濃度に対する初期反応速度の4 パラメータロジスティック回帰曲線から算出した。IC₅₀値は 3回の独立した実験結果から平均値±SD として算出した。

1. 11. MMPs 阻害活性評価

12種のヒト MMPs に対する阻害活性評価条件は Table 2-1 にまとめた。TC バッフ アー(50 mM Tris-HCl, 10 mM CaCl₂, pH 7.5)(MMP-17 阻害アッセイ用)または TNC バッフ アー(その他の MMPs 阻害アッセイ用)で希釈した阻害剤(終濃度 1 µM)を黒色の 96 ウ ェルプレートに添加し、各 active MMP を混合して 37°C でプレインキュベートした。ペプ チド基質を添加した後、励起波長 328 nm/蛍光波長 393 nm の蛍光シグナル強度の経時的変 化を蛍光プレートリーダーEnSpire で測定した。基質添加後の時間を横軸、蛍光シグナル強 度を縦軸にプロットしたデータの線形近似式の傾きを算出し、酵素反応の初期反応速度と した。阻害剤非添加条件の初期反応速度を 100%として、阻害剤添加時の初期反応速度(残 存酵素活性)を算出した。残存酵素活性値は 3 回以上の独立した実験結果から平均値±SD として算出した。

2. 結果

変異 SPINK2 ファージディスプレイライブラリーを用いて、第1節で調製したベイトタンパク質(biotinylated active MMP-9 Cat-BAP)に対するパニングを実施した。計3ラウ

ンドのパニングの結果、ベイト濃度依存的なファージ回収量の増加が認められた(data not shown)。回収後のファージミドベクターから切り出した変異 SPINK2 をコードする塩基配列を用いて Trx タグ融合変異 SPINK2 発現用ベクターを構築した。構築したベクターで大腸菌 Origami B (DE3)を形質転換し、Trx タグ融合変異 SPINK2 発現菌を取得した。約 2,000 クローンの発現菌をそれぞれ 1 mL のスケールで培養して IPTG を添加し、一晩誘導培養した後に菌体を回収した。菌体を溶解した後に Co-IMAC で精製して Trx タグ融合変異 SPINK2 を取得した。MMP-9 酵素阻害活性を指標にスクリーニングした結果、阻害活性を示すものが 380 クローン以上認められた。それらの塩基配列を解析した結果、ユニークなアミノ酸配列を持つものは 130 クローンであった。このことから、実施したスクリーニングのヒット率(ユニークな配列を持つ阻害クローン数/スクリーニング数)は 6.5%であった。各ユニーククローンの阻害活性 IC₅₀を算出した結果、IC₅₀<10 nM の MMP-9 阻害クローンが 14 種類得られた。さらに詳細な解析をするため、阻害活性の強さを指標に 4 つのクローン (M91002、M91005、M91011、M91012)を選択した。4 クローンの Trx タグ融合変異 SPINK2 タンパク質をトロンビンでプロセシングして Trx タグを除去し、さらに SEC で精製することで、詳細解析用の変異 SPINK2 タンパク質を得た。

既報告の MMP-9 基質配列[27,54]およびプロテアーゼデータベース(MEROPS) に 登録済みの MMP-9 基質配列と比較した結果、4 種の阻害クローンのループ部分の配列 (Figure 2-4D) には MMP-9 基質のモチーフ配列は含まれなかった。

各阻害クローンの MMP-9 に対する結合活性および阻害活性を評価した。ELISA に おいて、全ての阻害クローンが active MMP-9 に対して濃度依存的な結合を示し (Figure 2-5A)、その結合活性 EC₅₀ 値は 16~47 nM であった (Table 2-2)。既報告の抗 MMP-9 抗体 GS-5745[55]が active MMP-9 と pro-MMP-9 の両方に結合した (Figure 2-6) こととは対照的に、 全ての阻害クローンが 1 μ M においても pro-MMP-9 に結合しなかった (Figure 2-5B)。ペプ チド基質を用いた MMP-9 酵素アッセイにおいて、全ての阻害クローンが MMP-9 の酵素活 性を阻害し、その阻害定数 *K_i* 値は 1.4~2.3 nM であった (Figure 2-5C、Table 2-2)。タンパク 質性の基質としてゼラチンを用いたアッセイにおいても全ての阻害クローンが阻害活性を 示し (Figure 2-5D)、その阻害活性 IC₅₀ 値は 5.0~8.6 nM であった (Table 2-2)。

各阻害クローンの MMP-9 に対する特異性を評価するため、他の MMPs ファミリー 分子に対する酵素阻害活性を評価した。全23 種類の MMPs ファミリー分子のうち、酵素の 入手性や評価系構築に問題が無かった12 種類を評価に用いた。阻害剤濃度1μMにおいて、 低分子阻害剤 sc-311438 は MMP-7 を除く全ての MMPs を完全に阻害したのに対して、4 種 の阻害クローンはいずれの MMPs も阻害しなかった(Figure 2-7、Table 2-3)。

3. 考察

変異 SPINK2 ファージディスプレイライブラリーから、IC₅₀<10 nM の MMP-9 阻 害クローンが 14 種類得られた。そのうち 4 種類のクローンの阻害活性は、強力な阻害活性 を示すヒドロキサム酸誘導体の低分子阻害剤 sc-311438 と同等(Table 2-2) であり、いずれのクローンも強力な MMP-9 阻害剤であることが示された。また、MMPs に対する阻害活性評価の結果(Figure 2-7、Table 2-3)から、広範な MMPs 阻害活性を示す低分子阻害剤とは異なり、MMP-9 に対する高い特異性を持つことが示された。

本研究で取得した MMP-9 阻害剤の阻害活性と特異性を、既報告のタンパク質性の MMP-9 阻害剤と比較した。抗 MMP 抗体 SDS4 は、MMP-9 に対して阻害定数 K_i値 54 nM、 MMP-2 に対して IC₅₀ 値 56 nM の強い阻害活性を示し、4 μM においても MMP-1、-7、-12 を 阻害しなかった[34]。抗 MMP-9 抗体 GS-5745 は MMP-9 に対して IC₅₀ 値 0.218 nM の非常に 強い阻害活性を示した。ただしその阻害様式は非競合阻害であり、最大阻害強度は 56%で あった。GS-5745 は 10 種類の MMPs (MMP-1、-2、-3、-7、-8、-10、-12、-13、-14、-16) に結合せず、MMP-9に対する高い特異性を示した[55,56]。抗 MMP-9 抗体 CALY-001 は MMP-9に対して IC₅₀値 0.97 nM の強い阻害活性を示した。さらに CALY-001 は 100 nM において も 8 種類の MMPs (MMP-1、-2、-3、-8、-12、-13、-14、-19) を阻害せず、MMP-9 に対す る高い特異性を示した[57]。一方、本研究で取得した MMP-9 阻害剤は、MMP-9 に対して Ki 値 1.4~2.3 nM の強い阻害活性を示し、1 μM においても 12 種類の MMPs (MMP-1、-2、-3、 -7、-8、-10、-12、-13、-14、-15、-16、-17)を阻害せず、MMP-9に対する高い特異性を示 した。以上のことから、本研究で変異 SPINK2 ライブラリーから取得した MMP-9 阻害剤は、 既報告のタンパク質性の阻害剤に匹敵する強い阻害活性と高い特異性を併せ持つMMP-9阻 害剤であることが示された。変異 SPINK2 ファージディスプレイライブラリーから、わずか 3 ラウンドのパニングにより、このような MMP-9 阻害剤が複数得られたことから、変異 SPINK2 ライブラリーは MMP-9 に対する強力かつ特異的な阻害剤の創製に有用であること が示された。

	Final concentration	Dra in substian		Final
Enzyme	r mar concentration	time (min)	Substrate	concentration of
	of enzyme (mvi)	time (mm)		substrate (μM)
MMP-1	5	60	3226-v	10
MMP-2	1.4	60	3226-v	50
MMP-3	25	60	3168-v	10
MMP-7	1	60	3226-v	10
MMP-8	0.6	60	3226-v	10
MMP-10	4	60	3226-v	10
MMP-12	4	60	3226-v	10
MMP-13	2	10	3226-v	10
MMP-14	1	60	3226-v	10
MMP-15	1	60	3226-v	10
MMP-16	3	60	3226-v	10
MMP-17	3	10	3226-v	10

Table 2-1. MMP enzymatic assay conditions.

	ELISA	Peptide	Gelatin
Clone	$EC_{50} (nM)^a$	$K_i (\mathrm{nM})^b$	$IC_{50} (nM)^c$
M91002	47	2.3 ± 0.6	8.5 ± 2.1
M91005	46	1.4 ± 0.2	8.2 ± 1.2
M91011	16	1.6 ± 0.1	5.0 ± 0.5
M91012	46	2.1 ± 0.1	8.6 ± 1.7
sc-311438	N/A^d	1.5 ± 0.2	2.3 ± 0.1

Table 2-2. Binding affinity and inhibitory activity of inhibitors against active MMP-9

^{*a*}EC₅₀ was determined by ELISA as the mean (n = 2).

 ${}^{b}K_{i}$ was determined by the MMP-9 inhibitory assay with 10 μ M peptide substrate 3226-v. The K_{i} values are shown as the mean \pm standard deviation (S.D.) (n = 3).

 $^{c}IC_{50}$ was determined by the MMP-9 inhibitory assay with 10 µg/ml DQ-gelatin substrate. The IC₅₀ values are shown as the mean ± S.D. (n = 3).

^{*d*}N/A denotes "not applicable".

Table 2-3. MMP inhibitory activities of inhibitors against eight MMPs. The cross-reactivities against MMP-3, -7, -10, -12, -14, -15, -16, and -17 were measured by enzymatic assay using peptide substrate. Each active MMP was incubated with inhibitors (1 μ M), and then the peptide substrate (10 μ M 3168-v for MMP-3, 10 μ M 3226-v for the other MMPs) was added as described under "Materials and methods." Enzymatic activity was determined by monitoring the hydrolysis of the peptide substrate and each remaining enzymatic activity was normalized to the activity in the absence of inhibitors. Data are shown as the mean \pm S.D. (n = 3).

Engrand	Remaining enzymatic activity with inhibitor											
Enzyme	M91002	M91005	M91011	M91012	sc-311438							
MMP-3	$116\pm6\%$	$114\pm4\%$	$115 \pm 3\%$	$118\pm2\%$	$1.6\pm1.5\%$							
MMP-7	$121\pm1\%$	$123\pm2\%$	$124\pm1\%$	$120\pm4\%$	$45\pm2\%$							
MMP-10	$144\pm13\%$	$141\pm9\%$	$159\pm26\%$	$144\pm11\%$	0%							
MMP-12	$125\pm18\%$	$122\pm18\%$	$124\pm21\%$	$123\pm20\%$	0%							
MMP-14	$115 \pm 4\%$	$112\pm6\%$	$114\pm8\%$	$112\pm7\%$	0%							
MMP-15	$121\pm11\%$	$117\pm9\%$	$115\pm13\%$	$115\pm11\%$	0%							
MMP-16	$110\pm7\%$	$110\pm8\%$	$117\pm7\%$	$107\pm6\%$	$3.0\pm0.1\%$							
MMP-17	$124\pm7\%$	$127\pm2\%$	$132\pm16\%$	$132\pm18\%$	0%							

Figure 2-4. Scheme of a randomized region of the engineered SPINK2. (A) Amino acid sequence of wild-type SPINK2. Lines indicate disulfide bonds (Cys-14–Cys-44, Cys-22–Cys-41, Cys-30–Cys-62). (B) Region randomized to create the engineered SPINK2 library. (C) Three-dimensional structure of wild-type SPINK2 (PDB code, 2JXD). SPINK2 is shown as a gray and red semi-transparent surface model; red indicates the randomized region. The right figure represents the left image turned 90° counterclockwise about the y-axis. (D) Aligned sequences of the engineered SPINK2-derived inhibitors against MMP-9.

Figure 2-5. Binding and inhibitory activity of engineered SPINK2-derived inhibitors. (A) The binding activity to active MMP-9 was measured by ELISA. Various concentrations of engineered SPINK2-derived inhibitors or wild-type SPINK2 (1–1,000 nM) were added to the biotinylated active MMP-9_Cat-BAP (50 nM)-coated plate, and then inhibitors bound to active MMP-9 were detected by HRP-conjugated anti-S tag antibody. (B) The binding activities to pro- and active MMP-9 were measured by ELISA. Biotinylated pro-MMP-9_Cat-BAP or biotinylated active MMP-9_Cat-BAP (50 nM each) was coated on the plate, to which inhibitors (1 μ M) were then added. The inhibitors bound to MMP-9 were detected by HRP-conjugated anti-S tag antibody. (C) MMP-9 inhibitory activity of M91005 was measured by enzymatic assay using peptide substrate. Active MMP-9_Cat-H6 (0.4 nM) was incubated with various concentrations of M91005 (0–25 nM) for 1 h at 37°C, and then peptide substrate, and the activity in the absence of M91005 was taken as 100%. (D) MMP-9 inhibitory activity of engineered SPINK2-derived inhibitors was measured by enzymatic assay using the macromolecular substrate. Active MMP-9_Cat-H6 (0.6 nM) was incubated with various concentrations of M9109_Cat-H6 (0.6 nM) was incubated with various concentrations of M9109_Cat-H6 (0.6 nM) was incubated with various concentrations of M9109_Cat-H6 (0.6 nM) was incubated with various concentrations of M9109_Cat-H6 (0.6 nM) was incubated with various concentrations of M9109_Cat-H6 (0.6 nM) was incubated with various concentrations of inhibitors was measured by enzymatic assay using the macromolecular substrate. Active MMP-9_Cat-H6 (0.6 nM) was incubated with various concentrations of inhibitors (0–100 nM) for 1 h at 37°C, and then DQ-gelatin (10 μ g/ml) was added.

MMP-9 activity was determined by monitoring the hydrolysis of DQ-gelatin and the activity in the absence of inhibitor was taken as 100%. Data are shown as the mean of duplicate experiments in (A) and the mean \pm S.D. (n = 3) in (B–D). All curves were obtained by non-linear curve fitting as described in "Materials and methods."

Figure 2-6. The binding properties of inhibitors were evaluated by ELISA. Various concentrations of pro-MMP-9_Cat-BAP or active MMP-9_Cat-BAP (0.8–100 nM) were added to M91005 or GS-5745 (10 µg/ml each)-coated plates, and then C-terminal FLAG tag of captured MMP-9 was detected by HRP-conjugated anti-FLAG tag antibody. All curves were obtained by non-linear curve fitting.

Figure 2-7. Cross-reactivity of engineered SPINK2-derived inhibitors against MMP-9. The crossreactivities against MMP-1, -2, -8, and -13 were measured by enzymatic assay using the peptide substrate. Each active MMP (MMP-1, 5 nM; MMP-2, 1.4 nM; MMP-8, 0.6 nM; MMP-13, 2 nM) was incubated with inhibitors (1 μ M) for 10 min (for MMP-13) or 60 min (for MMP-1, -2, and -8) at 37°C, and then peptide substrate 3226-v (10 μ M for MMP-1, -8, and -13, or 50 μ M for MMP-2) was added. Enzymatic activity was determined by monitoring the hydrolysis of the peptide substrate, and each remaining enzymatic activity was normalized to the activity in the absence of inhibitors. Each *bar* represents the mean ± S.D. (n = 3).

小括

変異 SPINK2 ライブラリーから MMP-9 阻害 SPINK2 クローンを取得するため、フ アージディスプレイパニングに用いるベイトタンパク質を調製した。発現コンストラクト のデザイン、ビオチン標識条件、活性化条件等を検討し、パニングに適したベイトタンパク 質 (biotinylated active MMP-9_Cat-BAP)を取得した。調製したベイトタンパク質を用いて変 異 SPINK2 ライブラリーからのパニングおよびスクリーニングを実施した結果、複数の MMP-9 阻害クローンが得られた。そのうち4 種類の阻害クローン(M91002、M91005、M91011、 M91012)を詳細に解析した結果、いずれのクローンも MMP-9 に対する強力な阻害活性(阻 害定数 K_i : 1.4~2.3 nM)と高い特異性(1 μ M においても他の MMPs を阻害しない)を示し た。以上のことから、変異 SPINK2 ライブラリーは MMP-9 に対する強力かつ特異的な阻害 剤の創製に有用であることが示された。

第3章 MMP-9 特異的阻害剤の認識機構の解析

MMPs ファミリー分子は互いに高い配列相同性を示すにも関わらず、第2章において取得した MMP-9 阻害剤は、なぜ高い特異性を実現できたのか。このメカニズムを明らかにするため、MMP-9 阻害 SPINK2 クローン M91005 がどのように MMP-9 を認識しているのかを解析した。第1節では、解析に用いる MMP-9 の各種変異体を設計して調製した。第2節では、M91005 と各種変異体との相互作用を解析し、M91005 による MMP-9 の特異的阻害メカニズムを推察した。

第1節 MMP-9の各種ドメイン欠損体および変異体の調製

1. 実験材料および方法

1.1. MMP-9の各種ドメイン欠損体の設計と発現ベクター構築

MMP-9 全長体を調製するため、pro-hMMP-9 (NCBI Reference Sequence: NP_004985.2) の全長の C 末端に 6×His タグを融合した(full-length pro-MMP-9 と定義)。MMP-9 のヘモ ペキシンドメインとフィブロネクチンドメインを欠損させた MMP-9 活性ドメインを調製す るため、pro-hMMP-9 (NCBI Reference Sequence: NP_004985.2)の活性ドメイン (Ala-20~Gly-215 および Gln-391~Asp-707)の C 末端に 6×His タグを融合した (pro-MMP-9 catalytic domain と定義)。Full-length pro-MMP-9 および pro-MMP-9 catalytic domain の遺伝子は、GeneArt 人 工遺伝子合成サービスでコドンをヒト型に最適化して合成した。合成した DNA を鋳型に、 PCR でインサート DNA 断片を調製した。哺乳類細胞発現用ベクターpcDNA3.3 を鋳型に、 PCR でベクターDNA 断片を調製した。In-Fusion HD Cloning Kit でベクターDNA とインサー ト DNA を連結し、大腸菌 DH5 α を形質転換した。QIAprep Spin Miniprep Kit または NucleoBond Xtra Midi/Maxi を用いて形質転換体からプラスミド DNA を抽出して塩基配列を 確認し、各種ドメイン欠損体発現ベクターを得た。

1. 2. MMP-9の各種変異体の設計と発現ベクター構築

活性中心に変異を導入した MMP-9 を調製するため、full-length pro-MMP-9 をテン プレートとして、KOD -Plus- Mutagenesis Kit (TOYOBO) を用いて 1 残基置換を導入するこ とにより、3 種類の pro-MMP-9 活性中心変異体 (full-length pro-MMP-9 H401A、H405A、 H411A) を構築した。また、pro-MMP-9_Cat-H6 をテンプレートとして、QuikChange Site-Directed Mutagenesis Kit (Agilent) を用いて 1 残基置換を導入することにより、pro-MMP-9 活性中心変異体 (pro-MMP-9_Cat_E402Q-H6) を構築した。

エンテロキナーゼ(EK)を用いて活性化可能な pro-MMP-9 を調製するため、pro-MMP-9_Cat の N 末端に 6×His タグを融合し、Arg-106 と Phe-107 の間に EK 認識切断サイ ト(アミノ酸配列: DDDDK)を挿入した(pro-EK-MMP-9_Cat と定義)。Pro-EK-MMP-9_Cat をテンプレートとして、KOD -Plus- Mutagenesis Kit を用いて1残基置換を導入することにより、13 種類の pro-MMP-9_Cat cleft mutants(pro-EK-MMP-9_Cat_F110A、Y179A、D185A、G186A、L187A、L188A、F192A、Y393A、L397A、V398A、L418A、P421A、Y423A)と10 種類の pro-MMP-9/MMP-2 chimeric mutants (pro-EK-MMP-9_Cat_Q108N、T109F、E111P、P193A、I198V、Q199G、D410E、S413Q、Y420A、M422I)を構築した。

哺乳類細胞発現用ベクターpcDNA3.3 を鋳型に、PCR でベクターDNA 断片を調製 した。In-Fusion HD Cloning Kit でベクターDNA とインサート DNA を連結し、大腸菌 DH5 αを形質転換した。QIAprep Spin Miniprep Kit または NucleoBond Xtra Midi/Maxi を用いて形 質転換体からプラスミド DNA を抽出して塩基配列を確認し、各種変異体発現ベクターを得 た。

1. 3. MMP-9の各種ドメイン欠損体および変異体の発現精製

PEI MAX 40000 を用いて MMP-9 ドメイン欠損体および変異体発現ベクターDNA を HEK293F 細胞にトランスフェクションし、培養 6 日後の培養上清を回収した。20 mM sodium phosphate, 0.5 M NaCl, pH7.4 で平衡化した HisTrap excel に培養上清をアプライし、イ ミダゾールで溶出後、PBS にバッファー交換し、pro-MMP-9 ドメイン欠損体および活性中 心変異体を得た。Pro-MMP-9_Cat cleft mutants および pro-MMP-9/MMP-2 chimeric mutants は HisTrap excel での精製後、gelatin-Sepharose 樹脂 (Cytiva)を用いてさらに精製し、PBS にバ ッファー交換して取得した。タンパク質濃度は、波長 280 nm の吸光度を測定し、アミノ酸 配列のモル吸光係数を基に算出した。

1. 4. MMP-9の各種ドメイン欠損体および変異体のプロセシングおよび活性化

Active MMP-9 を得るため、TNC バッファーで調製した 20.4 μM full-length pro-MMP-9 または pro-MMP-9_Cat-H6、 pro-MMP-9 catalytic domain に、等容量の 2.2 μM active MMP-3 を添加、37°C で 4 時間活性化し、各 pro-MMP-9 由来の active MMP-9 (full-length active MMP-9、 active MMP-9 Cat、 the catalytic domain) を得た。

Pro-peptide を除いた活性中心変異体 MMP-9 E402Q(MMP-9_Cat_E402Q-H6)を得 るため、TNC バッファーで調製した 20.4 μM pro-MMP-9_Cat_E402Q-H6 に等容量の 6.8 μM active MMP-3 を添加し、37°C で 4 時間反応させた。反応液を PBS にバッファー交換して MMP-9 Cat E402Q-H6 を取得し、純度を SDS-PAGE で確認した。

EK で活性化した active MMP-9 を得るため、EK 切断用バッファー (20 mM Tris-HCl, 50 mM NaCl, 2 mM CaCl₂, pH 7.4) で調製した 4 µM の pro-MMP-9 (pro-EK-MMP-9_Cat、 pro-MMP-9_Cat cleft mutants、 pro-MMP-9/MMP-2 chimeric mutants) に、終濃度 32 U/mL の EKMax Enterokinase (Thermo Fisher Scientific) を添加し、4°C で 2 時間活性化した。EKapture Agarose (Merck) を用いて反応液から EK を除去した後、 PBS にバッファー交換して EK で活性化 した active MMP-9 を取得し、純度を SDS-PAGE で確認した。

1. 5. MMP-9 酵素活性測定

EK で活性化した active MMP-9 を終濃度 1 nM となるように TNC バッファーで希 釈して黒色の 96 ウェルプレートに添加し、終濃度 10 μM となるようにペプチド基質 3226v を添加した後、励起波長 328 nm/蛍光波長 393 nm の蛍光シグナル強度の経時的変化を蛍 光プレートリーダーEnSpire で測定した。基質添加後の時間を横軸、蛍光シグナル強度を縦 軸にプロットしたデータの線形近似式の傾きを算出し、酵素反応の初期反応速度(酵素活性) とした。酵素活性値は 3 回の独立した実験結果から平均値±SD として算出した。

2. 結果

2. 1. MMP-9 ドメイン欠損体の設計と調製

M91005 との相互作用に関わるドメインを解析するため、含まれるドメインが異なる3種類の pro-MMP-9 を発現精製して active MMP-3 で活性化し、3種類の active MMP-9、 すなわち完全長型の MMP-9 (full-length active MMP-9)、ヘモペキシンドメインを欠損させた MMP-9 (active MMP-9_Cat)、ヘモペキシンドメインに加えてフィブロネクチンドメイン も欠損させた MMP-9 活性ドメイン (the catalytic domain)を取得した。

2. 2. MMP-9 活性中心変異体の設計と調製

M91005 と MMP-9 の活性中心との相互作用を解析するため、活性中心変異体を設計した。MMP-9 の活性中心は、亜鉛イオン、グルタミン酸残基(Glu-402: Figure 3-1 青)、 亜鉛イオンをキレートする 3 つのヒスチジン残基(His-401、His-405、His-411: Figure 3-1 緑) から構成される。以前の報告[58]に従い、4 種類の活性中心変異体(H401A、H405A、H411A、 E402Q)の発現ベクターを構築し、HEK293F 細胞を用いて発現を試みた。その結果、E402Q 変異体(pro-MMP-9_Cat_E402Q-H6)は良好な発現が認められた一方、その他の変異体は培養上清への分泌が全く認められなかった(Figure 3-2)。精製して取得した pro-MMP-9_Cat_E402Q-H6は、そのままではプロペプチドによって活性中心がマスクされているため、 active MMP-3 でのプロセシングを試みた。野生型 MMP-9(pro-MMP-9_Cat-E402Q-H6 は良好にプロセシングされ MMP-9_Cat_E402Q-H6 が得 られた(Figure 3-3)。MMP-9_Cat_E402Q-H6 は良好にプロセシングされ MMP-9_Cat_E402Q-H6 が得 られた(Figure 3-3)。MMP-9_Cat_E402Q-H6 は良好にプロセシングされ MMP-9_Cat_E402Q-H6 が得

2. 3. MMP-9 アラニン置換変異体 (cleft mutants) の設計と調製

M91005 と MMP-9 の活性中心周辺の溝構造(active-site cleft と定義) との相互作用 を解析するため、active-site cleft にある残基をアラニンに置換した変異体(cleft mutants と定 義)を設計した。相互作用する残基を網羅的に探索するため、以下に示す 3 つのクライテリ アを満たす 13 残基(Phe-110 および Tyr-179、Asp-185、Gly-186、Leu-187、Leu-188、Phe-192、 Tyr-393、Leu-397、Val-398、Leu-418、Pro-421、Tyr-423: Figure 3-1 マゼンタ)を変異導入残 基として選抜した。3つのクライテリアは(1)既報告のペプチド基質とMMP-9 との複合体 構造(PDB ID: 4JIJ)において基質と相互作用している残基、(2) MMP-2 のアミノ酸配列と 同一である残基、(3) 側鎖が溶媒側に露出している残基、とした。

各 pro-MMP-9 変異体を HEK293F 細胞で発現して精製し、SDS-PAGE で分析した結果、いずれの変異体も良好な純度で精製された(Figure 3-4A)。EK で活性化して得られた各 active MMP-9 変異体を SDS-PAGE で分析した結果、いずれの変異体も良好な純度を示した

(Figure 3-4B)。ペプチド基質分解活性を指標に各変異体の酵素活性を評価した結果、変異 導入によって酵素活性が著しく変化したものの、L188Aを除く12種類の変異体については、 酵素アッセイに用いる上で問題無いレベルの酵素活性を保持していることが確認された (Figure 3-4C)。

2. 4. MMP-9/-2 キメラ変異体 (exosite mutants) の設計と調製

M91005 が MMP-9 のどの残基を認識することで、MMP-2 との構造的違いを見分け ているかを解析するため、active-site cleft 周辺にある残基を MMP-2 の残基に置換した変異 体 (exosite mutants と定義)を設計した。相互作用する残基を網羅的に探索するため、以下 に示す 2 つのクライテリアを満たす 10 残基 (Gln-108 および Thr-109、Glu-111、Pro-193、 Ile-198、Gln-199、Asp-410、Ser-413、Tyr-420、Met-422: Figure 3-1 シアン)を変異導入箇所 として選抜した。2 つのクライテリアは (1) active-site cleft 近傍にある残基、(2) MMP-2 の アミノ酸配列と異なる残基、とした。各 pro-MMP-9 変異体を HEK293F 細胞で発現して精製 し、SDS-PAGE で分析した結果、いずれの変異体も良好な純度で精製された (Figure 3-4A)。 EK で活性化して得られた各 active MMP-9 変異体を SDS-PAGE で分析した結果、いずれの 変異体も良好な純度を示した (Figure 3-4B)。ペプチド基質分解活性を指標に各変異体の酵 素活性を評価した結果、変異導入によって酵素活性が著しく変化したものの、いずれも酵素 アッセイに用いる上で問題無いレベルの酵素活性を保持していることが確認された (Figure 3-4C)。

3. 考察

HEK293F 細胞で 4 種類のヒト MMP-9 活性中心変異体の調製を試みたが、E402Q を除く 3 種類(H401A、H405A、H411A)は全く発現が認められなかった。以前の報告[58] では、ヒト肝癌由来細胞株 HepG2 でマウス MMP-9 の H401A、H405A、H411A 変異体が発 現可能であった。両者の実験条件には発現宿主細胞(HEK293F または HepG2)と MMP-9 遺 伝子の由来(ヒトまたはマウス)に違いがある。どの条件が変異体の発現に直接影響したか は明らかでないが、HEK293F 細胞でのヒト MMP-9 の発現においては、活性中心のヒスチ ジン残基によって亜鉛イオンが適切にキレートされることが重要であると示唆された。

第2章においては pro-MMP-9の活性化に active MMP-3を用いたが、この方法で各

MMP-9変異体の適切な活性化条件を見出すことは難しい。その理由として二点挙げられる。 一点目は active MMP-3 によって生じる active MMP-9 自身の酵素活性も、pro-MMP-9 のプロ セシングに寄与する点である。実際に、酵素活性の無い MMP-9 E402Q 変異体をプロセシン グするには、野生型 MMP-9 をプロセシングする場合に比べて 3 倍量の active MMP-3 が必 要であった。すなわち、変異導入箇所によって各 active MMP-9 変異体の酵素活性が影響を 受ける場合、各 pro-MMP-9 変異体の活性化条件(active MMP-3 濃度、反応時間)を変異体 ごとに最適化する必要がある。二点目は、pro-MMP-9の活性化が進行する温度条件(室温~ 37°C) では、active MMP-9 自身の酵素活性によって自己分解が進行する点である(Figure 3-5)。活性化条件を検討する際には自己分解の有無を随時評価する必要があり、複数の MMP-9変異体の活性化条件を全て最適化することは非常に煩雑である。これらの課題を解決する ため、active MMP-3 の代わりに EK を用いて活性化可能な pro-MMP-9 コンストラクトを設 計した。プロセシング後の N 末端が、active MMP-3 でプロセシングした場合と同じく Phe-107 になるよう、プロペプチドと Phe-107 の間に EK 認識配列を挿入した。EK によるプロ セシング反応速度は各 active MMP-9 変異体の酵素活性と無関係であるため、活性化条件を 変異体ごとに最適化する必要が無い。さらに EK は低温下でも活性を有するため 4°C で pro-MMP-9をプロセシングでき、産生した active MMP-9 の自己分解を抑制可能である。まとめ ると、active MMP-9 による自己分解を抑制しながら、全ての active MMP-9 変異体を簡便か つ適切に調製できるコンストラクトを構築することができた。

Figure 3-1. Design of MMP-9 mutants for analysis of interaction between MMP-9 and M91005. (Top) The sequence alignment between MMP-9 and MMP-2 in the active-site cleft and exosite of MMP-9. The residues are numbered according to the generic MMP-9 nomenclature. Catalytic Glu-402 is indicated by an *asterisk* and shown in *blue*. Three histidine residues (His-401, His-405, and His-411) that chelate catalytic zinc ion are indicated by a "Z" and shown with a *green* background. Alanine substitution sites in the active-site cleft (for cleft mutants) and MMP-9/-2 chimeric mutation sites in the exosite (for exosite mutants) are highlighted in *magenta* and *cyan*, respectively. Three residues (Ala-189, His-190, and Ala-191) in the active-site cleft, the side chain of which is not exposed to solvent, are shown with an *orange* background. (Bottom) The structure of the catalytic domain of active MMP-9, colored in *gray* (Protein Data Bank code 4H3X). Each residue is shown with *coloring* as in the *top panel*.

Figure 3-2. Expression of active-site mutants of MMP-9 (H401A, H405A, and H411A). Western blot analysis of the culture supernatants (6.5 µl per gel lane) of HEK293F cells transfected with each MMP-9 expression vector was performed under reducing conditions. After electrophoresis, the proteins were transferred to a PVDF membrane followed by blocking with 5% skim milk in PBS-T. After washing with PBS-T, Penta His HRP Conjugate (QIAGEN, 34460) was added (1:10,000 dilution in PBS-T with 0.5% skim milk) and incubated for 1 h at room temperature. After washing with PBS-T, the reaction was developed with ECL Prime Western Blotting Detection Reagent (Cytiva) at room temperature. The pre-stained visible protein markers and the chemiluminescent signals were captured using a ChemiDoc XRS+ CCD camera-based imager system (Bio-Rad). *Black arrowhead* indicates the band of full-length MMP-9 fused to a C-terminal His₆ tag.

Figure 3-3. SDS-PAGE analysis of purified MMP-9. Pro-MMP-9_Cat_E402Q-H6 was purified and processed by active MMP-3, as described in "Materials and methods." SDS-PAGE analysis of the purified pro-MMP-9 (1 µg per gel lane) and MMP-9_Cat_E402Q-H6 (0.5 µg per gel lane) was performed under reducing conditions followed by Coomassie Brilliant Blue G-250 staining.

Figure 3-4. Purification and activation of MMP-9 mutants. (A) and (B) Pro-EK-MMP-9_Cat (WT), pro-forms of the cleft mutants, and exosite mutants were purified using HisTrap excel gel and gelatin-Sepharose resin. Each pro-MMP-9 ($4 \mu M$) was incubated with EKMax Enterokinase (32 U/m) for 2 h at 4°C. After the activation of MMP-9, EK was removed by EKapture Agarose and buffer was exchanged for PBS at 4°C. SDS-PAGE analysis of the purified pro-MMP-9 (A, 1 μ g per gel lane) and activated MMP-9 (B, 0.5 μ g per gel lane, *asterisk* indicates 1 μ g per gel lane) was performed under reducing conditions followed by Coomassie Brilliant Blue G-250 staining. All of the pro- and active MMP-9 mutants were highly purified. (C) MMP-9 activities of each mutant were determined by enzymatic assay using peptide substrate. Active MMP-9_Cat (WT) or activated mutants (1 nM each) were incubated with peptide substrate 3226-v ($10 \mu M$), and then MMP-9 activities of each mutant were normalized to that of WT. Most of the activated mutants, except for the L188A mutant, showed sufficient proteolytic activity to use for enzymatic assays. Each *bar* represents the mean \pm S.D. (n = 3).

Figure 3-5. Autolysis of active MMP-9 upon long-term incubation at 25°C. To evaluate the stability of the bait protein, 2.4 μ M of biotinylated active MMP-9_Cat-BAP was incubated in PBS at 25°C for 16 h. SDS-PAGE analysis of the biotinylated active MMP-9_Cat-BAP after incubation (0.5 μ g per gel lane) was performed under reducing conditions followed by Coomassie Brilliant Blue G-250 staining. *Black arrowhead* and *red arrowhead* indicate the band of the biotinylated active MMP-9_Cat-BAP and the band of degradation product, respectively.

第2節 阻害剤による MMP-9 認識部位の推定

1. 実験材料および方法

1. 1. TIMP-1の調製

TIMP-1 を調製するため、hTIMP-1 (NCBI Reference Sequence: NP_003245.1)のC末 端にFLAG タグを融合した。TIMP-1 の遺伝子は、GeneArt 人工遺伝子合成サービスでコド ンをヒト型に最適化して合成した。合成した DNA を鋳型に、PCR でインサート DNA 断片 を調製した。哺乳類細胞発現用ベクターpcDNA3.3 を鋳型に、PCR でベクターDNA 断片を 調製した。In-Fusion HD Cloning Kit でベクターDNA とインサート DNA を連結し、大腸菌 DH5αを形質転換した。QIAprep Spin Miniprep Kit または NucleoBond Xtra Midi/Maxi を用い て形質転換体からプラスミド DNA を抽出して塩基配列を確認し、TIMP-1 発現ベクターを 得た。PEI MAX 40000 を用いて TIMP-1 発現ベクターDNA を HEK293F 細胞にトランスフェ クションし、培養6日後の培養上清を回収した。ANTI-FLAG M2 Affinity Gel (Sigma-Aldrich) を用いて精製し、PBS にバッファー交換して TIMP-1 を得た。

1. 2. MMP-9 阻害活性評価

TNC バッファーで希釈した阻害剤を黒色の 96 ウェルプレートに添加し、active MMP-9 (full-length MMP-9、MMP-9_Cat、the catalytic domain)を混合(終濃度 0.4 nM)して 37°C で 1 時間プレインキュベートした。ペプチド基質 3226-v を添加(終濃度 10 μ M)した 後、励起波長 328 nm/蛍光波長 393 nm の蛍光シグナル強度の経時的変化を蛍光プレートリーダーEnSpire で測定した。基質添加後の時間を横軸、蛍光シグナル強度を縦軸にプロット したデータの線形近似式の傾きを算出し、酵素反応の初期反応速度とした。GraphPad Prism version 5.0 を用いて、阻害剤濃度に対する初期反応速度の 4 パラメータロジスティック回 帰曲線を 3 回の独立した実験結果から作成した。

TNC バッファーで希釈した阻害剤を黒色の 96 ウェルプレートに添加し、EK で活 性化した active MMP-9 を混合(終濃度 1 nM)して 37°C で 1 時間プレインキュベートした。 ペプチド基質 3226-v を添加(終濃度 10 μ M)した後、励起波長 328 nm/蛍光波長 393 nm の 蛍光シグナル強度の経時的変化を蛍光プレートリーダーEnSpire で測定した。基質添加後の 時間を横軸、蛍光シグナル強度を縦軸にプロットしたデータの線形近似式の傾きを算出し、 酵素反応の初期反応速度とした。各阻害剤の IC₅₀ 値は、GraphPad Prism version 5.0 を用いて、 阻害剤濃度に対する初期反応速度の 4 パラメータロジスティック回帰曲線から算出した。 IC₅₀ 値は 3 回の独立した実験結果から平均値±SD として算出した。

1. 3. 統計解析

統計解析は GraphPad Prism version 5.0 を用いて実施した。サンプルサイズは実験方法または図表の凡例に記載した。実験データは平均値±SD で記載した。MMP-9 阻害剤の

IC₅₀ 値を MMP-9 変異体と野生型 MMP-9 間で比較し、統計的有意性を判断するため、1 元配 置分散分析 (one-way analysis of variance : one-way ANOVA) に続いてダネットの検定 (Dunnett's test)を実施した。*P* 値が 0.05 未満の場合、統計的に有意と判断した。

1. 4. SEC

阻害剤と MMP-9 をモル比 3:1 で混合し、4℃ で 1 時間インキュベートした後、 ACQUITY UPLC BEH200 column (Waters) を用いて SEC 分析した。移動相には PBS を、 分子量マーカーには Gel filtration standard (Bio-Rad) を用いた。

2. 結果

第1節で調製した MMP-9 変異体を用いて、取得した阻害剤のうち最も MMP-9 阻 害活性が高い M91005 が、MMP-9 のどの残基を認識するかを解析した。

2.1. 各ドメインとの相互作用解析

完全長型の MMP-9 (full-length active MMP-9)、ヘモペキシンドメイン欠損型の MMP-9 (active MMP-9_Cat)、ヘモペキシンドメインに加えてフィブロネクチンドメインも 欠損させた MMP-9 活性ドメイン (the catalytic domain) のいずれに対しても、M91005 は同 等の阻害活性を示した (Figure 3-6)。このことは M91005 が活性ドメインと相互作用し、ヘ モペキシンドメインやフィブロネクチンドメインとは相互作用していないことを示唆して いる。以上のことから、以降の検討では活性ドメインに限定して、詳しく解析した。

2. 2. 活性中心との相互作用解析

M91005 は pro-MMP-9 に結合せず active MMP-9 にのみ結合した(Figure 2-5B、2-6) ことから、M91005 は両者の構造的違いを見分けていると考えられた。Pro-MMP-9 にお いては、活性中心およびその周辺の溝構造の領域(active-site cleft)がプロペプチドによって マスクされている。したがって M91005 は活性中心または active-site cleft を認識している可 能性があると考えられた。

M91005 が MMP-9 の活性中心を認識するかどうかを明らかにするため、野生型お よび活性中心変異体の MMP-9 を用いて SEC 分析を行った。対照には天然の MMP-9 阻害タ ンパク質である TIMP-1 を用いた。TIMP-1 は野生型の MMP-9 に強力に結合するが、活性中 心変異体の MMP-9 にも同様に結合することが報告されている[59]。まず、野生型 MMP-9

(active MMP-9_Cat-H6)を用いて解析した。Active MMP-9_Cat-H6の SEC 溶出ピークは保 持時間 7.0 分に検出された。TIMP-1 または M91005 とプレインキュベートした active MMP-9_Cat-H6 のピークは、それぞれ保持時間 6.4 分と 6.7 分に検出された (Figure 3-7A)。これ らの結果から、TIMP-1 と M91005 はそれぞれ active MMP-9_Cat-H6 に結合することが示さ れた。続いて、活性中心変異体の MMP-9 (MMP-9_Cat_E402Q-H6)を用いて解析した。MMP- 9_Cat_E402Q-H6 の SEC 溶出ピークは保持時間 7.1 分に検出された。TIMP-1 とプレインキュベートした MMP-9_Cat_E402Q-H6 のピークは保持時間 6.5 分に検出された一方、M91005 とプレインキュベートした MMP-9_Cat_E402Q-H6 のピークは保持時間 7.1 分からシフトしなかった (Figure 3-7B)。これらの結果から、TIMP-1 は MMP-9_Cat_E402Q-H6 に結合するものの、M91005 は結合しないことが示された。野生型の MMP-9 と活性中心変異体は互いに主鎖構造が一致することが報告されており[60]、両者の構造的な違いは変異が導入された残基の側鎖表面の構造に限定されると考えられる。以上のことから M91005 は MMP-9 の活性中心である Glu-402 残基を認識することが示唆された。

2. 3. Cleft mutants および exosite mutants を用いた相互作用残基推定の妥当性検証

MMP-9 の各種変異体を用いた酵素阻害活性評価結果に基づいて阻害剤の相互作用 残基を推定することの妥当性を検証した。Cleft mutants と exosite mutants を用いて低分子阻 害剤 sc-311438 による MMP-9 阻害活性を評価した。その結果、野生型の MMP-9 に対する阻 害活性と比較して、V398A、L418A、P421A の各変異体に対する sc-311438 の阻害活性は統 計的に有意に変化した(Figure 3-8)。本阻害剤は MMP-9 の S1'ポケットと相互作用すること が報告されており[61]、S1'ポケットを構成するアミノ酸残基には Val-398、Leu-418、Pro-421 が含まれている。以上のことから、MMP-9 の各種変異体を用いた酵素阻害活性評価結果を 基に阻害剤の相互作用残基を推定することは、妥当であると考えられた。

2. 4. Active-site cleft との相互作用解析

M91005 が MMP-9 の active-site cleft を認識するかどうかを明らかにするため、 active-site cleft にある残基をアラニン置換した MMP-9 変異体 (cleft mutants)を用いて M91005 による MMP-9 阻害活性を評価した。その結果、野生型の MMP-9 に対する阻害活性と比較 して、F110A、Y179A、L187A、F192A、Y393A、Y423A の各変異体に対する M91005 の阻 害活性は統計的に有意に低下した (Figure 3-9A、Table 3-1)。このことから、M91005 は MMP-9 の active-site cleft にある Phe-110、Tyr-179、Leu-187、Phe-192、Tyr-393、Tyr-423 の各残基 とそれぞれ相互作用することが示唆された。

2. 5. 活性ドメイン中の exosite との相互作用解析

2. 2. および 2. 4. の結果から、M91005 は MMP-9 の活性中心と active-site cleft の 両方を認識することで、pro-MMP-9 には結合せず、active MMP-9 のみに結合して MMP-9 の 酵素活性を阻害することが示唆された。活性中心および active-site cleft はいずれも MMPs フ ァミリー分子間の配列相同性が非常に高いため、これらの部位との相互作用だけで M91005 の高い特異性が実現されているとは考えにくい。M91005 は、活性中心および active-site cleft に加えて、活性ドメインにある別の部位(exosite と定義)とも相互作用して MMP-9 とその 他の MMPs との構造的違いを見分けていると考えられた。より具体的に、M91005 は MMP- 9 と最も配列相同性が高い MMP-2 であっても阻害しないことから、MMP-9 と MMP-2 との 構造的違いの一部が exosite になっている可能性が高いと考えられた。この可能性を検証す るため、MMP-9 の残基を MMP-2 の配列に置換した MMP-9/-2 キメラ変異体 (exosite mutants) を用いて、M91005 による MMP-9 阻害活性を評価した。その結果、野生型の MMP-9 に対す る阻害活性と比較して、Q199G、Y420A、M422I の各変異体に対する M91005 の阻害活性は 統計的に有意に低下した (Figure 3-9B、Table 3-2)。このことから、M91005 は MMP-9 の Gln-199、Tyr-420、Met-422 の各残基を exosite として認識することが示唆された。

3. 考察

第2節の結果をまとめると、M91005は MMP-9の活性中心の Glu-402 (Figure 3-10 青)に加えて、Phe-110、Try-179、Leu-187、Phe-192、Gln-199、Tyr-393、Tyr-420、Met-422、 Tyr-423の各残基 (Figure 3-10 マゼンタ)と相互作用していることが示唆された。M91005 が 実際にこれらの残基と相互作用している可能性について以下に考察した。

2. 5. において阻害活性の変化が認められた Gln-199 残基は、2. 4. において阻害 活性の特に顕著な変化が認められた Phe-192 残基の近傍に位置している。また、2. 5. にお いて阻害活性の変化が認められた Met-422 残基は、2. 4. において阻害活性の特に顕著な変 化が認められた Tyr-423 残基の近傍に位置している (Figure 3-10)。異なる評価系から推定さ れた相互作用部位が、実際の構造上で近傍に位置していることから、M91005 が実際に Gln-199 と Met-422 の両方の残基を認識している可能性は高いと示唆された。興味深いことに、 Gln-199 と Met-422 は共に、MMP-9 との配列相同性が特に高い 4 つのファミリー分子 (MMP-1、-2、-8、-13) との比較においても、MMP-9 にのみ認められるユニークなアミノ酸残基で ある (Figure 3-11)。以上のことから、M91005 は MMP-9 に特徴的な Gln-199 と Met-422 の 両方の残基 (Figure 3-10 黒点線丸) を exosite として認識することによって、MMP-9 を特異 的に阻害することが示唆された。

Gln-199 残基は MMP-9 の活性ドメインの non-prime side に、Met-422 残基は prime side に位置しており、互いに離れた位置にある。Gln-199 残基の側鎖は MMP-9 の S4 subsite の形成に関わっていると考えられ[62,63]、Met-422 残基は基質の P2'から P4'領域を認識する 溝構造を形成している[64]。したがって M91005 は、MMP-9 の活性中心に加えて S4 と S4' subsite を含む領域と相互作用していると示唆される。MMP-9 の構造情報に基づくと、Gln-199 と Met-422 残基の α 炭素間は 20 Å以上離れている。この長い距離は、先行研究[16]で示 された変異 SPINK2 ライブラリー由来の KLK4 阻害剤 K41043 と KLK4 との間の広い相互作 用界面に匹敵しており、SPINK2 が十分に認識可能な距離と考えられる。K41043 は、SPINK2 が提示するループ部分による KLK4 の S1 ポケットと活性中心周辺領域の両方を含む広い表 面積の認識により、KLK4 に対する高い特異性を達成した。M91005 も K41043 の場合と同様に、SPINK2 のランダム化されたループが生み出す大きな相互作用面積が、MMP-9 の活 性中心と exosite の両方を認識することを可能にしたのかもしれない。

長い CDR を持つ改変抗体を用いた研究として、MMP-14 の活性中心への結合と高 い特異性を両立する Fab 3A2 が報告されている。Fab 3A2 は MMP-14 の S1' subsite を形成す る Phe-260 残基を認識する[51]。興味深いことに、MMP-14 の Phe-260 残基は配列アライメ ントにおいて MMP-9 の Met-422 残基に対応する残基であり、MMP-14 の exosite に位置する 特徴的な残基である。阻害剤が MMPs の特徴的な exosite を認識することが、高い特異性の 実現に重要であることが、SPINK2 とは全く構造の異なる改変抗体を用いた研究でも報告さ れていることは、M91005 による特徴的な exosite 認識が高い特異性に繋がったという本研 究の推察を支持するものと考えられる。本メカニズムのより詳細な理解のためには、MMP-9 と阻害剤との複合体結晶を用いた X 線構造解析等による構造情報の取得が有用である。

以上をまとめると、M91005の MMP-9 特異的認識メカニズムは、MMP-9 の特徴的 な exosite である Gln-199 と Met-422 残基の認識によるものであり、それは SPINK2 の構造 的特徴により生み出される標的との大きな相互作用面積によって達成されたものと推察された。

MMP-9	$IC_{50} (nM)^a$	P value ^b
WT	17 ± 7	-
F110A	69 ± 12	< 0.001
Y179A	55 ± 13	< 0.001
D185A	29 ± 5	0.69
G186A	15 ± 0	0.9997
L187A	120 ± 10	< 0.001
F192A	> 1,000	< 0.001
Y393A	48 ± 14	0.0085
L397A	37 ± 10	0.15
V398A	39 ± 3	0.10
L418A	9.3 ± 2.9	0.96
P421A	23 ± 9	0.99
Y423A	230 ± 20	< 0.001

Table 3-1. Inhibitory activity of M91005 against cleft mutants

^{*a*}IC₅₀ was determined by the MMP-9 inhibitory assay with 10 μ M peptide substrate 3226-v. The IC₅₀ values are shown as the mean \pm S.D. (n = 3).

^bStatistical analysis of cleft mutants *versus* WT was performed by one-way ANOVA with Dunnett's post tests for multiple comparisons.

MMP-9	$IC_{50} (nM)^a$	P value ^b
WT	17 ± 7	-
Q108N	20 ± 6	0.9995
T109F	15 ± 4	0.9995
E111P	31 ± 9	0.50
P193A	13 ± 3	0.999
I198V	16 ± 4	0.9998
Q199G	40 ± 16	0.043
D410E	22 ± 9	0.999
S413Q	30 ± 14	0.50
Y420A	54 ± 8	< 0.001
M422I	45 ± 18	< 0.001

Table 3-2. Inhibitory activity of M91005 against exosite mutants

 ${}^{a}IC_{50}$ was determined by the MMP-9 inhibitory assay with 10 μ M peptide substrate 3226-v. The IC₅₀ values are shown as the mean \pm S.D. (n = 3).

^bStatistical analysis of exosite mutants *versus* WT was performed by one-way ANOVA with Dunnett's post tests for multiple comparisons.

Figure 3-6. MMP-9 inhibitory activities of M91005 towards three different MMP-9 constructs. For enzymatic assay with three different MMP-9 constructs, namely, full-length MMP-9, the form with HPX domain deleted (MMP-9_Cat), and the form with both Fn-like domain and HPX domain deleted (the catalytic domain), 0.4 nM active MMP-9 was incubated with threefold serially diluted inhibitors (0–100 nM) for 1 h. Following incubation, substrate 3226-v was added to achieve a final concentration of 10 μ M.

Figure 3-7. M91005 binds to the active site of MMP-9. The binding activity to the catalytic Glu-402 residue of MMP-9 was evaluated by SEC. Active MMP-9_Cat-H6 or MMP-9_Cat-E402Q-H6 (25 μ M each) was incubated with TIMP-1 or M91005 (75 μ M each) in PBS for 1 h at 4°C, and then 10 μ l of the reaction mixture was analyzed by monitoring the absorbance at 280 nm in SEC. Chromatograms are shown in panels as follows: active MMP-9_Cat-H6 (A), MMP-9_Cat_E402Q-H6 (B), and no MMP-9 (C). *Dotted lines* indicate the retention time (RT) of active MMP-9_Cat-H6 (7.0 min, A) and MMP-9_Cat_E402Q-H6 (7.1 min, B). Molecular weights (158, 44, and 17 kDa) of the gel filtration standard are indicated at the top of each panel. The RT of active MMP-9_Cat-H6 but not MMP-9_Cat-E402Q-H6 was shifted to a high molecular weight by incubation with M91005. *mAU*, milliabsorbance units.

MMP-9	IC ₅₀ (nM)	<i>P</i> value
WT	28 ± 7	-
F110A	20 ± 4	0.29
Y179A	20 ± 4	0.21
D185A	22 ± 3	0.63
G186A	19 ± 1	0.16
L187A	27 ± 4	0.9996
F192A	25 ± 6	0.96
Y393A	28 ± 2	>0.9999
L397A	32 ± 6	0.87
V398A	44 ± 5	0.0015
L418A	9.2 ± 3.4	<0.001
P421A	14 ± 5	0.0061
Y423A	24 ± 0	0.95

MMP-9	IC₅₀ (nM)	<i>P</i> value
WT	28 ± 7	-
Q108N	29 ± 1	0.9996
T109F	20 ± 3	0.64
E111P	29 ± 4	0.9997
P193A	27 ± 0	0.9996
I198V	30 ± 4	0.9994
Q199G	37 ± 10	0.54
D410E	34 ± 9	0.90
S413Q	36 ± 12	0.66
Y420A	13 ± 1	0.050
M422I	40 ± 7	0.17

Figure 3-8. Validation of the interaction residue estimation using mutant MMP-9 was performed using sc-311438. MMP-9 inhibitory activities of sc-311438 towards the cleft mutants (A) and the exosite mutants (B) were measured by enzymatic assay using peptide substrate. Active MMP-9_Cat (WT) or the MMP-9 mutants activated by EK (1 nM each) were incubated with various concentrations of sc-311438 (0-330 nM) for 1 h at 37°C. Enzymatic activities were determined by monitoring the

degradation of peptide substrate 3226-v (10 μ M). Each enzymatic activity was normalized to the activity of the MMP-9 mutant without sc-311438. Data are shown as the mean \pm S.D. (n = 3). All curves were obtained by non-linear curve fitting. Statistical analysis of mutants *versus* WT was performed by one-way ANOVA with Dunnett's post tests for multiple comparisons.

Figure 3-9. M91005 recognizes residues in the active-site cleft and the exosite of MMP-9. MMP-9 inhibitory activities of M91005 towards the cleft mutants (A) and the exosite mutants (B) were measured by enzymatic assay using peptide substrate. Active MMP-9_Cat (WT) or the MMP-9 mutants activated by EK (1 nM each) were incubated with various concentrations of M91005 (0–330 nM or 0–1,000 nM) for 1 h at 37°C. Enzymatic activities were determined by monitoring the degradation of peptide substrate 3226-v (10 μ M). Each enzymatic activity was normalized to the activity of the MMP-9 mutant without M91005. Data are shown as the mean ± S.D. (n = 3). All curves were obtained by non-linear curve fitting.

Figure 3-10. Mapping of the possible interaction sites with M91005 onto the structure of active MMP-9. In accordance with the results of binding and enzymatic assay using MMP-9 mutants, the residues identified as being involved in the interaction with M91005 were mapped onto the structure of the catalytic domain of active MMP-9 (*gray*, Protein Data Bank code 4H3X). The results of the binding assays (Figure 3-7) suggested that catalytic Glu-402 (*blue*) contributed to the interaction between M91005 and MMP-9. The results of enzyme inhibitory assays (Figure 3-9, Tables 3-1, 3-2) suggested that M91005 recognized Phe-110, Tyr-179, Leu-187, Phe-192, Gln-199, Tyr-393, Tyr-420, Met-422, and Tyr-423 (*magenta*). The interaction with characteristic residues, Gln-199 and Met-422 (*black dotted circle*), is likely to contribute to the specific inhibition of M91005 toward MMP-9.

MMP-1 MMP-2 MMP-8 MMP-9 MMP-13	1 M M M M	H E F S H	S A S L P	F L L W G	PP MA KT QP VL	L R L	G P A	- - -	- L - -	- T - -	- G - -	- - -	 	10 L A F V F		LCLLF	L L V L	F L L L S	W G H G W	G C V C T	V L Q C H	V L F C	2 SI SI SI A/ - I		SF AF PF AL	P A P Q P	A V R L	T P S Q P	L S S S	P - T G	 G [30 - K - L D E	F F D	E P - D	T G S G L	QDKDS	EVELE	QAKRE	D P N T D	V T N L	DKKLQ	<u>40</u> L T T F	V D V D A	QKQRE	KEDQR	Y L Y L Y
MMP-1 MMP-2 MMP-8 MMP-9 MMP-13	L A L A L	E V E E R	KQKES	Y Y F Y Y	50 Y N L N Y G L Y Y H) L - L R P	K P Y	N T S G T	D F N Y N	G Y Q T L	R G R A		V E K S T E I L	60 K E R M K	RSKRE	R C N G N	NNGEA	S L T S A	GFNKS	P V V S S	V L L M	V K V G T					M M L M	00000	EKRKS	FFFQF	FOF	80 6 L 6 L 6 L 6 L	KPNPE	V Q V E V	T T T T T	GGGGG	KDKEK	PLPLL		A Q E S D	ENEAN	90 T T T T		K E D K D	V T M A V	M M M M
MMP-1 MMP-2 MMP-8 MMP-9 MMP-13	K R K R K	Q K K T K	P P P P	RRRR	10 C G C G C G C G		PPPP		V V S L V	A A G G	QNGRE		V L V F V L Q T V V	<u>11</u> F F F F	0 E P E P	G R G G R	NKNDT	P P P L L	RKKKK	****	E D E H S	QKRHK	1 T I N (T I H I M I	20 H Q V V V	L T I T I T I T L T	Y Y Y Y	RRWR		E I R Q V	NGNN	Y T Y T Y S Y T	13 P P P E P	0 D D Q D D C a		P D S P T	RPERH	AEAAS	DTEVE	V V V V V	DDEDE	HDRDK	14 A A A A A		EAKAK	KRDRK	A A A A A
					<u>15</u>	50	-	D	1	т	C .			<u>16</u>	<u>0</u>	~	0	A	D	1	м		1 s I	70 F	VF	t G	D	н	R	D	NS	<u>18</u> 5 P	0 F	D	G	Р	G	G	N	L	AA	190 H	AA	F	Q	P
MMP-1 MMP-2 MMP-8 MMP-9 MMP-13	FFFF	Q Q E A K	L L L V	w w w w w	S N S D S V S A S D		T S T T	PPP		R I T N	FFFF	S I T I T I T I	x v	H S Y H		G G G R G	E E D I	A A A A	D D D D Ca		M N V M	 	N I Q I S I	F (F (F (G F Y C G V G I	₹W R A K		H H H Z2	G G G G G	D D D 22	G N S G N F N	P P P P P	FFF	D D D Ca	G G G Ca	K P K P	D N D S Ca	GGGG	L L Ca		AAA	H H H Z2	A A A	FFF	A Q P P	PPP
MMP-1 MMP-2 MMP-9 MMP-13 MMP-13 MMP-1 MMP-2 MMP-8 MMP-9 MMP-13	FFFFF	Q Q E A K P T Q P P	L V L L V G G G G N Ca	WWWW WWW VVVV	S N S D S V S A S D C G G G G G G G G G G G G G G G G G G G		A S T T A S A A A A C a	PPPP PHHHHHZ2	FFFFF	R I T N D D D D D Ca(F F F F D A D Ca			SHSYH 21 WWW	0 1 D 1 D 1 D 1 T 1 T 1 S 1 C 2	GGGRG NLNLSCa	EEDI X	A A A X X	D D D D Ca X X	YYYY	M N V M N S N S N				G F C V G G I V V V A V V A	40 A A A A A A A A A A A A A A A A A A A		HHHZ2 EEEEE	G G G G L F F F F	D D D D D D D D D D D D D D D D D D D	G N S N S N S N S N S N S N S N S N S N		F F F F G G G G G G	D D D Ca L L L L L	G G G Ca 410 S E A D D		D N D S Ca S S S S S S	GGGG TQSSK	L L C a D D D V D		AAA GGGEG	H H H Z2 A A A A A			A Q P P 420 Y A Y F	PPP

Figure 3-11. Sequence alignment of pre-pro-form lacking the hemopexin domain of MMP-1, -2, -8, -9, and -13. The residues are numbered according to the generic MMP-9 nomenclature. Fn-like domain of MMP-2 and -9 is represented as XXX. Symbols denote catalytic glutamate residue (*asterisk*), and residues interacting with catalytic zinc ion (Z1), structural zinc ion (Z2), and calcium ions (Ca). Conserved residues among the five MMPs are shown with a *gray* background.

小括

MMP-9 阻害 SPINK2 クローン M91005 が高い特異性を実現するメカニズムを明ら かにするため、MMP-9 の各種変異体(ドメイン欠損体、活性中心変異体、cleft mutants、お よび exosite mutants)を設計して調製した。Cleft mutants および exosite mutants については、 EK で活性化可能なコンストラクトを新たに設計し、簡便かつ適切に active MMP-9 を調製で きること、実際に低分子阻害剤の相互作用部位解析に使用できることを示した。M91005 と 各種変異体との相互作用解析結果から、M91005 が MMP-9 の活性ドメインにある活性中心 の Glu-402 残基を認識することに加え、その周辺にある複数の残基を exosite として認識す る可能性が高いことを示した。M91005 との相互作用が示唆された MMP-9 の Gln-199 およ び Met-422 残基は、MMPs ファミリー分子の中で MMP-9 にのみ認められる特徴的な配列で あり、高い特異性を実現する上で重要な認識領域であることを明らかにした。これらの残基 との相互作用は、SPINK2 の構造的特徴である大きな相互作用面積によって実現可能である ことを、先行研究の知見を基に考察した。以上のことから、M91005 による MMP-9 の特異 的阻害メカニズムは活性中心およびその周辺の exosite に存在する MMP-9 に特徴的なアミ ノ酸残基の認識によるものであり、それは SPINK2 の構造的特徴により達成され得ると推察 された。

第4章 タンパク質スキャフォールド SPINK2 を用いた創薬に関す

る今後の展望

タンパク質の分子進化工学的手法を用いた創薬研究においては、リガンド/レセ プターの関係のように、モダリティー/標的分子のタンパク質間相互作用を三次元構造や アミノ酸レベルから総合的に理解する必要がある。SPINK2を用いた創薬研究の発展のため、 本研究の第2章および第3章で得られた知見を基に、SPINK2モダリティーに適した標的分 子種の可能性について考察した。

第2章において、変異 SPINK2 ライブラリーは MMP-9 に対する強力かつ特異的な 阻害剤の創製に有用であることが明らかとなった。MMPs ファミリー分子は互いに高い配 列相同性を持ち、活性中心周辺構造の保存性は高い[65]が、取得した MMP-9 阻害剤は酵素 活性中心のアミノ酸残基に加え、MMP-9 に特異的なアミノ酸残基を認識することで、特異 的な MMP-9 阻害を達成した。MMPs を代表として metzincins スーパーファミリー(例とし て、adamalysin や astacin 等)[66]に属する分子は活性中心周辺に共通した配列モチーフ HEXXHXXGXXH/D を持ち、三次元構造の相同性も高いこと[67]が特徴として挙げられる。 そのため変異 SPINK2 ライブラリーは、MMP-9 と同様に他の metzincins スーパーファミリ ー分子に対する強力かつ特異的な阻害剤の創製にも有用と考えられる。野生型 SPINK2 およ び既報[16]の変異 SPINK2 はセリンプロテアーゼを標的としているが、第3章での考察の通 り、溝やポケット構造を持つ分子に対する SPINK2 の大きな相互作用面積が特異的阻害剤の 創製に寄与する可能性を勘案すると、他のプロテアーゼファミリーも SPINK2 の標的分子と なり得ると期待される。

SPINK2 と同様に酵素の特異的阻害に強みを持つタンパク質性のモダリティーと して、シングルドメイン抗体 (ラクダ科動物由来抗体やナノボディー等)がある。抗体の抗 原認識部位の表面は一般的に concave shape (凹面)である一方、シングルドメイン抗体は特 徴的な長い CDR ループを持ち、抗原認識部位が convex shape (凸面) であることから、一 般的な抗体ではバインダー取得が難しい溝やポケット構造を持つタンパク質 (酵素の活性 中心、GPCR、イオンチャネル等)に対しても、特異的バインダー取得が可能である[68-70]。 実際に、シングルドメイン抗体 H3 は MMP-10 を強力かつ特異的に阻害すること、MMP-10 の活性中心を認識する可能性が高いことが報告されており、シングルドメイン抗体の CDR の構造的特徴が MMP-10 の溝やポケット構造の特異的認識に寄与した可能性がある[71]。 SPINK2 が提示するループ部分もシングルドメイン抗体と同様に convex shape であることか ら、一般的な抗体ではバインダー取得が難しい標的分子に対しても、SPINK2 を用いること で特異的バインダーの取得可能性が高まると期待される。

総括

創薬研究を進める上で、標的とする分子に特異的に相互作用する化合物が必要で ある。抗体をはじめ、標的分子の表面を特異的かつ強力に認識可能なモダリティーが複数報 告されているが、活性中心領域のような溝やポケット構造の特異的認識は容易でないため、 新たなモダリティーの創製が求められている。このような課題に対して、先行研究ではタン パク質スキャフォールド SPINK2 に着目し、野生型 SPINK2 のループ部分をランダムに変異 させた変異 SPINK2 ライブラリーを構築した。このライブラリーからキモトリプシンや KLKs 等の活性中心領域を特異的に認識する阻害剤が創製されたことから、SPINK2 は任意 のセリンプロテアーゼの溝やポケット構造を特異的に認識可能なモダリティーであること が示された。

本研究では、メタロプロテアーゼに対しても変異 SPINK2 ライブラリーから特異的 な阻害クローンが取得できるかどうかを検証した。標的とした MMP-9 は、活性中心周辺の 配列および構造の保存性がファミリー分子間で非常に高く、多くの試みにも関わらず、活性 中心と相互作用する特異的阻害剤の創製に成功した例が報告されていない、難易度の高い 標的分子であった。

変異 SPINK2 ライブラリーから MMP-9 阻害 SPINK2 クローンを取得する上で、フ アージディスプレイパニングに用いるベイトタンパク質を適切に調製することが重要であ った。活性中心周辺と相互作用するバインダーを取得するため、不要なドメインを除いたベ イトタンパク質を設計した。ランダムなビオチン標識によって MMP-9 の活性中心とバイン ダーとの相互作用が妨げられないよう、MMP-9 の C 末端部分を部位特異的に標識した。生 体内で活性化された MMP-9 の状態を模倣できるよう、生体内と同様に MMP-3 で活性化し た MMP-9 を調製し、その品質がベイトタンパク質として問題無いことを示した。そのよう にして得たベイトタンパク質を用いることで、変異 SPINK2 ライブラリーから複数の MMP-9 阻害クローンが得られた。詳細に解析した4種のクローンは、いずれも MMP-9 に対する 強力な阻害活性と高い特異性を示した。変異 SPINK2 ライブラリーは MMP-9 に対する特異 的阻害剤の創製に有用であることが明らかとなり、セリンプロテアーゼとは異なる溝やポ ケット構造を持つメタロプロテアーゼに対しても有用であることが新たに示唆された。

次に、阻害クローン M91005 の MMP-9 特異的認識メカニズムを明らかにするため に、MMP-9 の各種変異体を設計して調製した。変異導入箇所を選抜する際には、MMP-9 の 既知の構造情報を複数比較精査して参考とした。数多くの変異体を適切に活性化する上で MMP-9 の自己分解活性が課題となったが、EK を用いて簡便かつ適切に活性化可能な MMP-9 を新たに設計することで、その課題を解決した。変異体に対する結合活性および阻害活性 評価の結果、M91005 が MMP-9 の活性中心 Glu-402 残基を認識することに加え、その周辺 にある複数の残基を exosite として認識する可能性が高いことが示された。この exosite に、 MMPs ファミリー分子の中で MMP-9 にのみ認められる特徴的な Gln-199 および Met-422 残 基が含まれていたことは、M91005 の MMP-9 特異的認識メカニズムを推定する上で興味深 い知見であった。M91005 の解析から示唆された SPINK2 による MMP-9 の特異的認識メカ ニズムは、MMPs と同様に活性中心周辺の配列相同性がファミリー分子間で非常に高い分 子を標的とする場合にも有用であると期待される。

本研究では、変異 SPINK2 ライブラリーからの特異的 MMP-9 阻害剤取得とその相 互作用解析を通じて、SPINK2 はセリンプロテアーゼに限らず、メタロプロテアーゼを含む 様々な標的分子に存在する溝やポケット構造を特異的に認識することが可能であることを 示した。標的分子を特異的に認識する化合物の創製を通じて、SPINK2 は疾患の分子メカニ ズムの解明や革新的医薬品の創出に貢献する、新たな創薬モダリティーになり得ると期待 される。

参考文献

- van de Putte LBA. Efficacy and safety of adalimumab as monotherapy in patients with rheumatoid arthritis for whom previous disease modifying antirheumatic drug treatment has failed. Ann Rheum Dis. 2004;63: 508–516. doi:10.1136/ard.2003.013052
- Ansell SM, Lesokhin AM, Borrello I, Halwani A, Scott EC, Gutierrez M, et al. PD-1 Blockade with Nivolumab in Relapsed or Refractory Hodgkin's Lymphoma. N Engl J Med. 2015;372: 311– 319. doi:10.1056/NEJMoa1411087
- Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP, et al. Pembrolizumab for the Treatment of Non–Small-Cell Lung Cancer. N Engl J Med. 2015;372: 2018–2028. doi:10.1056/NEJMoa1501824
- Kaplon H, Reichert JM. Antibodies to watch in 2021. MAbs. 2021;13: 1860476. doi:10.1080/19420862.2020.1860476
- Younes A, Bartlett NL, Leonard JP, Kennedy DA, Lynch CM, Sievers EL, et al. Brentuximab Vedotin (SGN-35) for Relapsed CD30-Positive Lymphomas. N Engl J Med. 2010;363: 1812– 1821. doi:10.1056/NEJMoa1002965
- Verma S, Miles D, Gianni L, Krop IE, Welslau M, Baselga J, et al. Trastuzumab Emtansine for HER2-Positive Advanced Breast Cancer. N Engl J Med. 2012;367: 1783–1791. doi:10.1056/NEJMoa1209124
- Modi S, Saura C, Yamashita T, Park YH, Kim S-B, Tamura K, et al. Trastuzumab Deruxtecan in Previously Treated HER2-Positive Breast Cancer. N Engl J Med. 2020;382: 610–621. doi:10.1056/NEJMoa1914510
- Bardia A, Hurvitz SA, Tolaney SM, Loirat D, Punie K, Oliveira M, et al. Sacituzumab Govitecan in Metastatic Triple-Negative Breast Cancer. N Engl J Med. 2021;384: 1529–1541. doi:10.1056/NEJMoa2028485
- Shima M, Hanabusa H, Taki M, Matsushita T, Sato T, Fukutake K, et al. Factor VIII–Mimetic Function of Humanized Bispecific Antibody in Hemophilia A. N Engl J Med. 2016;374: 2044– 2053. doi:10.1056/NEJMoa1511769
- Kantarjian H, Stein A, Gökbuget N, Fielding AK, Schuh AC, Ribera J-M, et al. Blinatumomab versus Chemotherapy for Advanced Acute Lymphoblastic Leukemia. N Engl J Med. 2017;376: 836–847. doi:10.1056/NEJMoa1609783
- Owens B. Faster, deeper, smaller—the rise of antibody-like scaffolds. Nat Biotechnol. 2017;35: 602–603. doi:10.1038/nbt0717-602
- Nord K, Gunneriusson E, Ringdahl J, Ståhl S, Uhlén M, Nygren P-Å. Binding proteins selected from combinatorial libraries of an α-helical bacterial receptor domain. Nat Biotechnol. 1997;15: 772–777. doi:10.1038/nbt0897-772

- Beste G, Schmidt FS, Stibora T, Skerra A. Small antibody-like proteins with prescribed ligand specificities derived from the lipocalin fold. Proc Natl Acad Sci. 1999;96: 1898–1903. doi:10.1073/pnas.96.5.1898
- Stumpp MT, Forrer P, Binz HK, Plückthun A. Designing Repeat Proteins: Modular Leucine-rich Repeat Protein Libraries Based on the Mammalian Ribonuclease Inhibitor Family. J Mol Biol. 2003;332: 471–487. doi:10.1016/S0022-2836(03)00897-0
- Gebauer M, Skerra A. Engineered Protein Scaffolds as Next-Generation Therapeutics. Annu Rev Pharmacol Toxicol. 2020;60: 391–415. doi:10.1146/annurev-pharmtox-010818-021118
- Nishimiya D, Kawaguchi Y, Kodama S, Nasu H, Yano H, Yamaguchi A, et al. A protein scaffold, engineered SPINK2, for generation of inhibitors with high affinity and specificity against target proteases. Sci Rep. 2019;9: 11436. doi:10.1038/s41598-019-47615-5
- Chen T, Lee T-R, Liang W-G, Chang W-SW, Lyu P-C. Identification of trypsin-inhibitory site and structure determination of human SPINK2 serine proteinase inhibitor. Proteins Struct Funct Bioinforma. 2009;77: 209–219. doi:10.1002/prot.22432
- Hu J, Van den Steen PE, Sang Q-XA, Opdenakker G. Matrix metalloproteinase inhibitors as therapy for inflammatory and vascular diseases. Nat Rev Drug Discov. 2007;6: 480–98. doi:10.1038/nrd2308
- Gialeli C, Theocharis AD, Karamanos NK. Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J. 2011;278: 16–27. doi:10.1111/j.1742-4658.2010.07919.x
- Zitka O, Kukacka J, Krizkova S, Huska D, Adam V, Masarik M, et al. Matrix metalloproteinases. Curr Med Chem. 2010;17: 3751–3768. doi:10.2174/092986710793213724
- Elkins PA, Yen SH, Smith WW, Janson CA, D'Alessio KJ, McQueney MS, et al. Structure of the C-terminally truncated human ProMMP9, a gelatin-binding matrix metalloproteinase. Acta Crystallogr Sect D Biol Crystallogr. 2002;58: 1182–1192. doi:10.1107/S0907444902007849
- Ogata Y, Enghild JJ, Nagase H. Matrix metalloproteinase 3 (stromelysin) activates the precursor for the human matrix metalloproteinase 9. J Biol Chem. 1992;267: 3581–3584.
- Okada Y, Gonoji Y, Naka K, Tomita K, Nakanishi I, Iwata K, et al. Matrix metalloproteinase 9 (92-kDa gelatinase/type IV collagenase) from HT 1080 human fibrosarcoma cells. Purification and activation of the precursor and enzymic properties. J Biol Chem. 1992;267: 21712–9. Available: http://www.ncbi.nlm.nih.gov/pubmed/1400481
- 24. Collier IE, Wilhelm SM, Eisen AZ, Marmer BL, Grant GA, Seltzer JL, et al. H-ras oncogenetransformed human bronchial epithelial cells (TBE-1) secrete a single metalloprotease capable of degrading basement membrane collagen. J Biol Chem. 1988;263: 6579–6587.
- Murphy G, Ward R, Hembry RM, Reynolds JJ, Kuhnt K, Tryggvasont K. Characterization of gelatinase from pig polymorphonuclear leucocytes. Biochem J 258, 463-472. 1989;258: 463–472.

- Vandooren J, Van Den Steen PE, Opdenakker G. Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9): The next decade. Crit Rev Biochem Mol Biol. 2013;48: 222–272. doi:10.3109/10409238.2013.770819
- Turk BE, Huang LL, Piro ET, Cantley LC. Determination of protease cleavage site motifs using mixture-based oriented peptide libraries. Nat Biotechnol. 2001;19: 661–667. doi:10.1038/90273
- Maskos K. Crystal structures of MMPs in complex with physiological and pharmacological inhibitors. Biochimie. 2005;87: 249–263. doi:10.1016/j.biochi.2004.11.019
- Steffensen B, Wallon MU, Christopher OM. Extracellular Matrix Binding Properties of Recombinant Fibronectin Type II-like Modules of Human 72-kDa Gelatinase/Type IV Collagenase. J Biol Chem. 1995;270: 11555–11566.
- O'Farrell TJ, Pourmotabbed T. The fibronectin-like domain is required for the type V and XI collagenolytic activity of gelatinase B. Arch Biochem Biophys. 1998;354: 24–30. doi:10.1006/abbi.1998.0662
- Xu X, Chen Z, Wang Y, Yamada Y, Steffensen B. Functional basis for the overlap in ligand interactions and substrate specificities of matrix metalloproteinases-9 and -2. Biochem J. 2005;392: 127–134. doi:10.1042/BJ20050650
- Mondal S, Adhikari N, Banerjee S, Amin SA, Jha T. Matrix metalloproteinase-9 (MMP-9) and its inhibitors in cancer: A minireview. Eur J Med Chem. 2020;194: 112260. doi:10.1016/j.ejmech.2020.112260
- 33. Vandenbroucke RE, Libert C. Is there new hope for therapeutic matrix metalloproteinase inhibition? Nat Rev Drug Discov. 2014;13: 904–927. doi:10.1038/nrd4390
- Sela-Passwell N, Kikkeri R, Dym O, Rozenberg H, Margalit R, Arad-Yellin R, et al. Antibodies targeting the catalytic zinc complex of activated matrix metalloproteinases show therapeutic potential. Nat Med. 2012;18: 143–147. doi:10.1038/nm.2582
- Gomis-Rüth FX, Maskos K, Betz M, Bergner A, Huber R, Suzuki K, et al. Mechanism of inhibition of the human matrix metalloproteinase stromelysin-1 by TIMP-1. Nature. 1997;389: 77–81. doi:10.1038/37995
- Sharabi O, Shirian J, Grossman M, Lebendiker M, Sagi I, Shifman J. Affinity- and specificityenhancing mutations are frequent in multispecific interactions between TIMP2 and MMPs. PLoS One. 2014;9. doi:10.1371/journal.pone.0093712
- 37. Arkadash V, Yosef G, Shirian J, Cohen I, Horev Y, Grossman M, et al. Development of high affinity and high specificity inhibitors of matrix metalloproteinase 14 through computational design and directed evolution. J Biol Chem. 2017;292: 3481–3495. doi:10.1074/jbc.M116.756718
- Shirian J, Arkadash V, Cohen I, Sapir T, Radisky ES, Papo N, et al. Converting a broad matrix metalloproteinase family inhibitor into a specific inhibitor of MMP-9 and MMP-14. FEBS Lett. 2018;592: 1122–1134. doi:10.1002/1873-3468.13016

- Levin M, Udi Y, Solomonov I, Sagi I. Next generation matrix metalloproteinase inhibitors Novel strategies bring new prospects. Biochim Biophys Acta - Mol Cell Res. 2017;1864: 1927– 1939. doi:10.1016/j.bbamcr.2017.06.009
- Itoh T, Tanioka M, Matsuda H, Nishimoto H, Yoshioka T, Suzuki R, et al. Experimental metastasis is suppressed in MMP-9-deficient mice. Clin Exp Metastasis. 1999;17: 177–81. doi:10.1023/a:1006603723759
- Rosenberg GA. Matrix metalloproteinases in neuroinflammation. Glia. 2002;39: 279–91. doi:10.1002/glia.10108
- Weiss N, Miller F, Cazaubon S, Couraud P-O. The blood-brain barrier in brain homeostasis and neurological diseases. Biochim Biophys Acta. 2009;1788: 842–57. doi:10.1016/j.bbamem.2008.10.022
- 43. Lin C, Wu W, Lu H, Li W, Bao Z, Wang Y, et al. MMP-9 Inhibitor GM6001 Prevents the Development of ssTBI-Induced Parkinson's Disease via the Autophagy Pathway. Cell Mol Neurobiol. 2020. doi:10.1007/s10571-020-00933-z
- Kaplan A, Spiller KJ, Towne C, Kanning KC, Choe GT, Geber A, et al. Neuronal matrix metalloproteinase-9 is a determinant of selective neurodegeneration. Neuron. 2014;81: 333–48. doi:10.1016/j.neuron.2013.12.009
- 45. Mishiro K, Ishiguro M, Suzuki Y, Tsuruma K, Shimazawa M, Hara H. A broad-spectrum matrix metalloproteinase inhibitor prevents hemorrhagic complications induced by tissue plasminogen activator in mice. Neuroscience. 2012;205: 39–48. doi:10.1016/j.neuroscience.2011.12.042
- 46. Ishida Y, Kuninaka Y, Nosaka M, Kimura A, Taruya A, Furuta M, et al. Prevention of CaCl2induced aortic inflammation and subsequent aneurysm formation by the CCL3-CCR5 axis. Nat Commun. 2020;11: 5994. doi:10.1038/s41467-020-19763-0
- 47. Beckett D, Kovaleva E, Schatz PJ. A minimal peptide substrate in biotin holoenzyme synthetasecatalyzed biotinylation. Protein Sci. 1999;8: 921–929. doi:10.1110/ps.8.4.921
- Rosenblum G, Van den Steen PE, Cohen SR, Grossmann JG, Frenkel J, Sertchook R, et al. Insights into the Structure and Domain Flexibility of Full-Length Pro-Matrix Metalloproteinase-9/Gelatinase B. Structure. 2007;15: 1227–1236. doi:10.1016/j.str.2007.07.019
- 49. O'Connell JP, Willenbrock F, Docherty AJ, Eaton D, Murphy G. Analysis of the role of the COOH-terminal domain in the activation, proteolytic activity, and tissue inhibitor of metalloproteinase interactions of gelatinase B. J Biol Chem. 1994;269: 14967–73. Available: http://www.ncbi.nlm.nih.gov/pubmed/8195131
- Bradbury AR., Marks JD. Antibodies from phage antibody libraries. J Immunol Methods. 2004;290: 29–49. doi:10.1016/j.jim.2004.04.007
- 51. Nam DH, Rodriguez C, Remacle AG, Strongin AY, Ge X. Active-site MMP-selective antibody inhibitors discovered from convex paratope synthetic libraries. Proc Natl Acad Sci U S A.

2016;113: 14970-14975. doi:10.1073/pnas.1609375114

- 52. Morrison JF. Kinetics of the reversible inhibition of enzyme-catalysed reactions by tight-binding inhibitors. Biochim Biophys Acta. 1969;185: 269–286. doi:10.1016/0005-2744(69)90420-3
- Johnson K, Goody R. The Original Michaelis Constant. Biochemistry. 2012;50: 8264–8269. doi:10.1021/bi201284u.The
- 54. Kridel SJ, Chen E, Kotra LP, Howard EW, Mobashery S, Smith JW. Substrate hydrolysis by matrix metalloproteinase-9. J Biol Chem. 2001;276: 20572–8. doi:10.1074/jbc.M100900200
- Appleby TC, Greenstein AE, Hung M, Liclican A, Velasquez M, Villasenor AG, et al. Biochemical characterization and structure determination of a potent, selective antibody inhibitor of human MMP9. J Biol Chem. 2017;292: 6810–6820. doi:10.1074/jbc.M116.760579
- 56. Marshall DC, Lyman SK, McCauley S, Kovalenko M, Spangler R, Liu C, et al. Selective allosteric inhibition of MMP9 is efficacious in preclinical models of ulcerative colitis and colorectal cancer. PLoS One. 2015;10. doi:10.1371/journal.pone.0127063
- 57. Goffin L, Fagagnini S, Vicari A, Mamie C, Melhem H, Weder B, et al. Anti-MMP-9 Antibody: A Promising Therapeutic Strategy for Treatment of Inflammatory Bowel Disease Complications with Fibrosis. Inflamm Bowel Dis. 2016;22: 2041–2057. doi:10.1097/MIB.00000000000863
- Roeb E, Behrmann I, Grötzinger J, Breuer B, Matern S. An MMP-9 mutant without gelatinolytic activity as a novel TIMP-1-antagonist. FASEB J. 2000;14: 1671–1673. doi:10.1096/fj.99-0947fje
- Roderfeld M, Weiskirchen R, Wagner S, Berres M-L, Henkel C, Grötzinger J, et al. Inhibition of hepatic fibrogenesis by matrix metalloproteinase-9 mutants in mice. FASEB J. 2006;20: 444–54. doi:10.1096/fj.05-4828com
- Rowsell S, Hawtin P, Minshull CA, Jepson H, Brockbank SM V, Barratt DG, et al. Crystal structure of human MMP9 in complex with a reverse hydroxamate inhibitor. J Mol Biol. 2002;319: 173–81. doi:10.1016/S0022-2836(02)00262-0
- Cheng M, De B, Pikul S, Almstead NG, Natchus MG, Anastasio M V, et al. Design and synthesis of piperazine-based matrix metalloproteinase inhibitors. J Med Chem. 2000;43: 369–80. doi:10.1021/jm990366q
- Higashi S, Miyazaki K. Identification of amino acid residues of the matrix metalloproteinase-2 essential for its selective inhibition by β-amyloid precursor protein-derived inhibitor. J Biol Chem. 2008;283: 10068–10078. doi:10.1074/jbc.M709509200
- Hashimoto H, Takeuchi T, Komatsu K, Miyazaki K, Sato M, Higashi S. Structural basis for matrix metalloproteinase-2 (MMP-2)-selective inhibitory action of β-amyloid precursor proteinderived inhibitor. J Biol Chem. 2011;286: 33236–33243. doi:10.1074/jbc.M111.264176
- Tranchant I, Vera L, Czarny B, Amoura M, Cassar E, Beau F, et al. Halogen bonding controls selectivity of FRET substrate probes for MMP-9. Chem Biol. 2014;21: 408–413. doi:10.1016/j.chembiol.2014.01.008

- Tallant C, Marrero A, Gomis-Rüth FX. Matrix metalloproteinases: Fold and function of their catalytic domains. Biochim Biophys Acta Mol Cell Res. 2010;1803: 20–28. doi:10.1016/j.bbamcr.2009.04.003
- Gomis-Rüth FX. Structural aspects of the metzincin clan of metalloendopeptidases. Mol Biotechnol. 2003;24: 157–202. doi:10.1385/MB:24:2:157
- Santamaria S, de Groot R. Monoclonal antibodies against metzincin targets. Br J Pharmacol. 2019;176: 52–66. doi:10.1111/bph.14186
- 68. Desmyter A, Transue TR, Ghahroudi MA, Dao Thi M-H, Poortmans F, Hamers R, et al. Crystal structure of a camel single-domain VH antibody fragment in complex with lysozyme. Nat Struct Mol Biol. 1996;3: 803–811. doi:10.1038/nsb0996-803
- De Genst E, Silence K, Decanniere K, Conrath K, Loris R, Kinne J, et al. Molecular basis for the preferential cleft recognition by dromedary heavy-chain antibodies. Proc Natl Acad Sci. 2006;103: 4586–4591. doi:10.1073/pnas.0505379103
- 70. Brams M, Govaerts C, Kambara K, Price KL, Spurny R, Gharpure A, et al. Modulation of the Erwinia ligand-gated ion channel (ELIC) and the 5-HT3 receptor via a common vestibule site. Elife. 2020;9. doi:10.7554/eLife.51511
- Razai AS, Eckelman BP, Salvesen GS. Selective inhibition of matrix metalloproteinase 10 (MMP10) with a single-domain antibody. J Biol Chem. 2020;295: 2464–2472. doi:10.1074/jbc.RA119.011712

謝辞

本論文の作成および発表にあたり、懇切丁寧な御指導を賜りました筑波大学大学 院生命環境科学研究科 深水昭吉教授に厚く御礼申し上げます。また、本論文の審査にあた り有益な御助言を賜りました筑波大学大学院生命環境科学研究科 木村圭志准教授、柏原 真一准教授ならびに大徳浩照講師に深く感謝申し上げます。

本論文作成の機会を与えて下さいました第一三共株式会社 髙橋亘博士に感謝申 し上げます。

本研究の遂行にあたり、貴重な御指導、御助言を頂き、さらに論文作成にも多大な るご協力を賜りました第一三共株式会社 橋本隆二博士、田村正和博士、西宮大祐博士、川 口喜郎博士をはじめ、MMP-9 阻害剤研究に携わってくださった全ての方々に厚く御礼申し 上げます。また、学位取得に関する多くの御助言を頂きました、山口孝弘博士、第一三共 RD ノバーレ株式会社 小石龍太博士に御礼申し上げます。

最後になりましたが、自身を支えてくれた家族に心より感謝致します。