
Master’s Thesis in Graduate School of
Library, Information and Media Studies

Position Based Snow Simulation with
Phase Change

March 2021
201921662
CHEN YI



Position Based Snow Simulation with Phase Change
位置ベース法に基づく相転移を伴う雪のシミュレーション

Student No.: 201921662
氏名：CHEN YI

Name: CHEN YI

Snow is the most common winter scene in animation. The simulation of snow is widely
used in various places. Most snow are naturally accompanying with abundant water resources.
When the environmental temperature is near to the melting point, the existence of water will
make the snow have drastic phase changes. This leads to different elastoplastic characteristics
of snow and will further affect the formulation of snow shape. Therefore, it is necessary to
simulate both solid and fluid water in order to increase the realism of snow simulation.

In our research, we introduce a method based on Position Based Dynamics by using two
different discretization methods, Discrete Element Method (DEM) and Smoothed Particle Hy-
drodynamics (SPH) to simulate the interaction of surrounding water and ice crystals in snow.
By introducing stretch constraints to DEM particles which performs as the interlinks of snow
particles, we successfully simulate the deformation effect. In addition, we address the problem
of over-connected interlinks by controlling the number of connections with considering the
homogeneous freezing effects of ice crystals in snow. Also, to simulate the interaction of snow
and its melts, our methods transfers the heat by using a conduction model for heterogeneous
materials and the phase of a particle will be determined based on its current temperature.
We blends the contribution of solid and fluid solver to imitate the latent heat effect and
successfully stabilize the simulation.

In addition, we develop a fully GPU-based algorithm which addresses the complex im-
plementation of phase-change problems. Since the transition of a particle from one phase to
another creates empty spaces in memory which yields low performance on GPU computation,
a parallelized exclusive scan is performed so that a compacted array can be obtained after the
phase change. Furthermore, to prevent the read/write contradiction caused by the out-of-order
execution on GPU, we utilize the atomic operations to comply the lock-free implementation
of recording the information of interlinks.

As a result, our method is able to perform various characteristics of snow including defor-
mation, phase change, and the rigid-fluid interactions. Despite of the limitations caused by
our choice of constraint and the uniform size of particles, our position-based solver is a stable
and controllable solution for simulating the complex behaviors of snow-water interactions.

In the future, we plan to simplify the need of parameter tuning by using XPBD to allow
user to reference to real-world measurements. Also, we expect to extend our simulator to make
it possible to interact with other objects so that it can be used to simulate various scenarios.

Principal Academic Advisor: Masahiko MIKAWA
Secondary Academic Advisor: Makoto FUJISAWA



Position Based Snow Simulation with
Phase Change

CHEN YI

Graduate School of Library,
Information and Media Studies

University of Tsukuba

March 2021



Contents

1 Introduction 1

2 Related Work 3
2.1 Snow Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Rigid Fluid Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Phase Change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Overview of Proposed Method 5
3.1 Method Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Flow of Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4 Modeling and Discretization Methods 7
4.1 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4.1.1 Water-Snow Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.1.2 Snow-to-Ice Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 8

4.2 Discretization Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.2.1 Discrete Element Method . . . . . . . . . . . . . . . . . . . . . . . . 8
4.2.2 Smoothed Particle Hydrodynamics . . . . . . . . . . . . . . . . . . . 9

5 Position Based Dynamics 11
5.1 Simulation Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.2 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.3 Position Based Fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.4 Position Based Friction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.5 Rigid-fluid Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5.5.1 Rigid to Fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.5.2 Fluid to Rigid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5.6 Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

6 Phase Change 18
6.1 Heat Conduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.2 Particle Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

6.2.1 Particle Blending . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.2.2 Two-way Blending Mechanism . . . . . . . . . . . . . . . . . . . . . . 19
6.2.3 Uneven Blending . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.2.4 Inter Connection Mechanism . . . . . . . . . . . . . . . . . . . . . . . 21

i



7 GPU Implementation 22
7.1 Programming Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7.2 GPU-based Phase Change . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

7.2.1 Predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
7.2.2 Scan and Compact . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7.2.3 Lock-free Connection Mechanism . . . . . . . . . . . . . . . . . . . . 25

8 Results & Conclusion 27
8.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

8.1.1 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
8.1.2 Snow drop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
8.1.3 Snow drop with melting . . . . . . . . . . . . . . . . . . . . . . . . . 32
8.1.4 Snow Drop Freezing . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
8.1.5 Water drop into snow . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

8.2 Conclusion & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

References 44

ii



List of Figures

3.1 Flow of computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4.1 Watery snow modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.2 Snow-to-Ice Formulation (Connected with stretch constraint) . . . . . . . . . 8
4.3 Discrete Element Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.4 Smoothed Particle Hydrodynamics . . . . . . . . . . . . . . . . . . . . . . . 10

5.1 Simulation loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.2 Density constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

6.1 Unstable transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.2 Rapid phase change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.3 Blending threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.4 Connection control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

7.1 CUDA Programming Model (referenced from [1]) . . . . . . . . . . . . . . . 22
7.2 CUDA Memory Hierarchy (referenced from [1]) . . . . . . . . . . . . . . . . 23
7.3 Memeory view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7.4 Particle transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7.5 Particle transition (compact process) . . . . . . . . . . . . . . . . . . . . . . 24
7.6 Scatter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

8.1 None interlink snow drop (200 frames per image) . . . . . . . . . . . . . . . 29
8.2 Full interlinked snow drop (200 frames per image) . . . . . . . . . . . . . . . 30
8.3 Dynamic interlinked snow drop (200 frames per image) . . . . . . . . . . . . 31
8.4 Performance of snow drop melting . . . . . . . . . . . . . . . . . . . . . . . . 32
8.5 Snow drop melting (200 frames per image) . . . . . . . . . . . . . . . . . . . 33
8.6 Snow drop melting (Thermograph) . . . . . . . . . . . . . . . . . . . . . . . 34
8.7 Number of particles of snow melting in water . . . . . . . . . . . . . . . . . . 34
8.8 Performance of snow drop freezing . . . . . . . . . . . . . . . . . . . . . . . . 35
8.9 Snow drop freezing (400 frames per image) . . . . . . . . . . . . . . . . . . . 36
8.10 Snow drop freezing (Thermograph) . . . . . . . . . . . . . . . . . . . . . . . 37
8.11 Number of particles of water frozen by snow . . . . . . . . . . . . . . . . . . 37
8.12 Performance of water drop . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
8.13 Water drop 1 (250 frames per image) . . . . . . . . . . . . . . . . . . . . . . 39
8.14 Water drop 2 (250 frames per image) . . . . . . . . . . . . . . . . . . . . . . 40
8.15 Water drop particle numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

iii



8.16 Water drop scene (Rendered with Houdini) . . . . . . . . . . . . . . . . . . . 41

iv



Chapter 1

Introduction

Snow scene is one of the most general public’s imagination for the frosty winter landscapes.
In high latitude sites, snow covers can overwhelm roads, vehicles and even trees when the
mighty blizzard arrives and leave tons of accumulated snow for weeks until the temperature
bouncing back to the melting point. However, the temperature difference between day
and night causes the snow constantly hovering in between solid and fluid phases. This
intense bilateral phase changing process gradually solidifies the originally loose snowflakes
and changing them into stiff ice fragments, making the behavior of snow closer to the muddy
ground instead of sandy desert. In this paper, we introduce an algorithm to simulate the
interaction of different phases of snow including ice, water, and snow by considering the
internal phase changes.

In recent years, many snow simulation methods have been proven to be useful to reduce
complex modeling tasks in Computer Graphics (CG) production. Generally, snow in most of
researches, is approximated with large amount of particles where each particle carries various
physics quantities such as mass or density. These properties will then be used to simulate
the behavior of snow with a computational method specialized to solve specific effects in
limited conditions which constantly neglects the influence of internal water. Therefore,
these methods typically results in unrealistic artifacts such as sand-like snow. In recent
researches, Material Point Method (MPM) has been widely used to resolve these problems
via considering the constitutive material property of snow by treating it as a continuum
elastic-plastic body [2]. This approach, unfortunately, cannot demonstrate effects such as
reflections and refraction precisely due the the ignorance of the internal water. This causes
the artists still have to make further adjustments in order to achieve their expectations.
Moreover, these force-based methods are notorious for the dependence on small time steps
and the necessity of solving non-linear problems. This limits most of the applications unable
to interact with user in the manner of real-time or just-in-time during the designing process.

In our research, we use Position Based Dynamics (PBD) to acquire higher stability
and controllability via directly manipulating the position of objects [3]. This allows us to
handle the behavior of snow by solving multiple constraints applied on simulated particles.
In addition, referencing to Macklin’s work [4], our method divided snow material into two
different particle sets. While the fluid water is discretized by Smooth Particle Hydrodynam-
ics (SPH) (Chapter 4.2), we use Discrete Element Method (DEM) to perform rigid body
physics on the collisions of ice fragments. To simulate phase change effects, we developed
an algorithm to compute snow-to-ice, ice-to-water, and water-to-ice transitions (Chapter 6).

1



Furthermore, we implemented our algorithm on CUDA in a lock-free manner so that the
computation can grant more advantages of concurrent execution on modern GPUs, which
largely improves the performance of our simulator.

In summary, our approach starts from the micro aspect of snow simulation, which
focuses on the interaction of different phases of water. With our algorithm, we also give out
an alternative to the long-standing problem of multi-phase particle simulation on GPGPU.
More specifically, our main contributions are as follows:

• A stable and controllable position-based solver for snow simulation

• An innovative way to simulate snow by taking the interactions of snow-ice, ice-water
and water-ice into consideration

• A lock-free algorithm for bilateral particle transition on GPU

2



Chapter 2

Related Work

2.1 Snow Simulation

In real-time applications, the snow accumulation effects have caught the eye of researchers
for a long time. A very first research proposed by Nishita et al. [5] simulates the shape
of fallen snow by using the density distribution modeled from metaballs. Fearing’s method
[6] accumulates snow in an upward manner, shooting snowflakes upward into the air and
redistributes the configurations until the snowfall is stable. Both methods are capable of
reconstructing realistic snow accumulation effects, yet their simulation cannot capture the
transforming feature caused by phase changes. In Maréchal’s research [7], they presented
an environmental heat transfer model for simulating snow melting transitions at the ter-
rain in the winter scenes. While these researches are mostly used in static snow modeling,
Takahashi et al. simulated the sintering effect by considering snow as non-Newtonian fluid
[8]. Their method extended the original Navier-Stoke equation with additional sticky force
caused by sintering effect, and successfully made snow particles be able to attach with the
environmental objects. Until recently, snow simulation in computer graphics often assumed
that the phase of the snow did not change because of its complexity. Therefore, most of the
methods were unable to accurately simulate the shape and behaviors of high-temperature
moist snow (close to melting point). Stomackin et al.[2] overcame this bottleneck with
their MPM solver, which combines both Eulerian and Lagrangian methods . Similar to
PIC/FLIP solver used in computational solid dynamics [9], they provided a constitutive
model for simulating the elastoplastic properties generated by varying phase change inside
snow material. Following their footage, Gissler et al.[10] demonstrated an implicit com-
pressible SPH solver for snow simulation. Their method is capable of simulating various
effects of snow including snow fall accumulations, phase change, and the interaction with
environmental rigid bodies. In contrast to Stomackin and Gissler’s method, we did not only
use one way to discretize snow particles. We approximate snow material by two different
particle sets so that our method can perform the moist effects from fluid and rigid body
collision from solid respectively.

2.2 Rigid Fluid Coupling

The technique of rigid-fluid coupling is very important when simulating multi-phases fluid.
The interaction of rigid and fluid in early research are typically treated as one-way cou-

3



pling effects [11][12]. Movement of rigid bodies are seldom be affected by fluid because of
the difficulty and computation cost of Eulerian-based methods. Instead, Lagrangian-based
methods provide better alternatives on two-way coupling since the advection of fluid can
be derived from the movement of particle. In Carlson’s research [13], they introduced a
semi-Lagrangian solver with Lagrange multipliers to reconstruct realistic interaction for
most rigid fluid sceneries. Other Lagrangian-based method, for example, Rungjiratananon
et al. [14] takes wetness into consideration simulating the interaction of sand and water by
combining DEM and SPH. In our research, we referenced to their concept of wetness. We
assume that all snow particles have fixed water around them. This allows us to dynamically
connect solid particles in order to perform elastoplastic characteristics of snow.

While some focus on handling two-way interactions, other researches put their efforts
on the stability at the interfaces. In heterogeneous particle simulations, the density of a
particle can largely affected by the density of its neighbors. The sudden density changes
at the interface leads to overestimated pressure force and pushes fluid away from rigid.
Solenthaler et al. [15] resolved this problem by modifying the density computation of SPH
with adapted density for each particle. Similar to their result, Akinci et al. [16] extended
their method to rigid-fluid coupling by changing the density contribution with considering
the volume of boundary particles. In this paper, we use the same as Akinci’s method
to handle the instability caused by static boundary particles. In addition, since snow and
water is close in density, we simply adopt the original SPH density computation and directly
correct the positions with non-penetration constraint to ensure this two types of particles
not intersecting with each other.

2.3 Phase Change

The intense phase change of high temperature snow is crucial to our research. Most of
previous researchers only handled unilateral phase change such as melting or freezing. In
Fujisawa’s research [17], they used CIP method to advect the volume fraction at each
grid cell of the fluid to accomplish the ice melting animation. Nakasone [18] proposed
an approach for high performance melting process based on SPH and Shape Matching
method. However, in real world, the phenomena of bilateral phase change is intense when
the temperature is close to melting/freezing point. In Glisser’s research [10], their implicit
SPH solver is capable of dealing with the melting/freezing process of snow simultaneously.
However, since their solver was designed for "snow", the behavior of melted snow water
remains grainy like sand instead of real water. In our research, we resolve this problem
by using two different solvers for the corresponding phases of particles. By doing this, the
melted water in our simulation can be simulated as fluid and interact with surrounding
objects, and vice versa, new frozen fluid particles is also possible to interact with others as
rigid body as well.

4



Chapter 3

Overview of Proposed Method

3.1 Method Overview

As we mentioned in the introduction, the nature of snow is very complicated because it
contains water that cannot be ignored. In our research, we treat water and snow separately
and take the phase change into consideration aiming to simulate more realistic snow scenes
in natural environment. In the simulation part, we reference to Macklin’s research [4]
building the system totally based on Position Based Dynamics. With direct operations on
the position information, our approach is able to perform more stable multi-phase material
simulation that has not been achieve in the past. For the computation, we exploit the power
of GPGPU to speed up the process of constraint solving for PBD. And because the phase
change of multi-phase material requires transferring particles to the corresponding array, we
propose a lock-free solution to reduce the negative effect on performance. In Chapter 4, we
will firstly introduce our assumption on snow material and the modeling technique. Then
in Chapter 4.2, we will explain discretization methods for fluids and solids respectively in
our simulation. In Chapter 5, Position Based Dynamics will be formally introduced with
the explanation of how to solve constraints. And in Chapter 6, we will discuss the detailed
process related to phase change and how we handle the unstable results caused by sudden
state changing. Finally, in Chapter 7, we will describe the GPU implementation of our
algorithm.

3.2 Flow of Computation

As shown in Figure 3.1, the solver will perform an integration to predict the position of each
particle based on external forces such as gravity at the start of current time step. Then
it will use this predicted position to calculate the position correction on ∆x in order to
satisfy the constraints. Before the beginning of the iteration, a search will be conducted
to acquire the neighbor information of each particle. Based on this information, heat will
be transferred in between the nearby particles and determine the phase of a particle and
the inter-connection of DEM particles. For each iteration, the fluid solver will try to satisfy
the density constraint for fluid and the solid solver will solve the non-penetration constraint
and stretch constraint for solid. After complete the computation of solid-solid and fluid-
fluid corrections, the solver will process the rigid-fluid coupling calculation to get solid-fluid
correction ∆xi

solid−fluid and fluid-solid corrections ∆xi
fluid−solid. We add up the corrections

5



to get the final correction at ith iteration that

∆xi
solid = ∆xi

solid−solid + ∆xi
solid−fluid (3.1)

and
∆xi

fluid = ∆xi
fluid−fluid + ∆xi

fluid−fluid (3.2)

where ∆xfluid−fluid is the correction of a fluid particle affected by other fluid particles,
and ∆xsolid−solid is the correction of a solid particle affected by other solid particles. After
the iteration is completed, we can obtain the correction in normal direction. And then
our solver will perform the computation of tangential correction in order to simulate the
friction. Finally, the system will finalize the correction and additionally modify the velocity
to perform the viscosity of fluid.

Figure 3.1: Flow of computation

6



Chapter 4

Modeling and Discretization
Methods

4.1 Modeling

4.1.1 Water-Snow Modeling

Snow in natural environment are constantly surrounded with water. As the temperature is
near the melting point, the mixture of snow and water behaves totally different with typical
snow. This type of snow is typically called watery snow. The movement of the solid part of
watery snow can be easily affected by the water flow like the floating ices. In our research,
we modeled snow with considering this two different states. As shown in Figure 4.1, we
assume snow particles (gray) are always accompanied with pre-melted water (light blue)
and have environmental water (blue) nearby. The environmental water in our system is
approximated by the fluid particles. In the other side, the pre-melted water does not exist
in the simulation system. Instead, it is an abstract concept that allows us to connect snow
particles when the temperature is low enough to form ice blocks.

Figure 4.1: Watery snow modeling

When simulating phase changes, these particles are transported between two arrays,
solid and fluid, which allows the solver to use different constraints to handle the movement
of these particles. Unlike the environmental water, the pre-melted water in our simulation
is not treated as particles. Therefore, the pre-melted water will disappear when the solid
particle melted.

7



4.1.2 Snow-to-Ice Formulation

In reality, snow becomes ice blocks when it melts and is re-frozen by the low temperature
outside. Following this concept, we connect snow particles together in order to perform this
effect. As shown in Figure 4.2, our solver traverses the neighbors of each snow particle.
If the distance of the adjacent particles is within the efficient radius h and both of their
temperature is under Tlinking, these two particles will be marked as connected and assigned
with a stretch constraint. However, naively connecting all candidates makes the ice blocks
too hard sometimes. Alternatively, we propose a parameter nmax to control the maximum
number of connections for each particle. (Note that nmax in our simulation is not always a
constant, it varies as the temperature of particle changes.) Since the correction of stretch
constraint depends on the distance difference and is elastic, we break the connection when
the distance of two particle exceeds the initially recorded distance xrest to perform the
effect of breakable snow ice blocks. In Chapter 5 and Chapter 6, we will discuss more
details about how we compute the correction of the stretch constraint and the transferring
algorithm while the phase of a particle changes.

Figure 4.2: Snow-to-Ice Formulation (Connected with stretch constraint)

4.2 Discretization Methods

Since our method incorporates different phases of water, it is necessary to use different
discretization methods in order to distinguish the solid water and fluid water. In the fol-
lowing sections, we will explain the fundamentals of Discrete Element Method (DEM) and
Smoothed Particle Hydrodynamics (SPH).

4.2.1 Discrete Element Method

DEM is a simple but useful technique widely used to simulate granular material, that can
be assumed as a collection of solid particles. It simulates discrete particles which represent
standalone objects such as sand or snow in our case. Generally, DEM mainly computes
the normal and tangential forces on the collision of two particles as shown in Figure 4.3.
Where the normal forces mainly come from the rigid body collision, the tangential forces
are mostly caused by the frictional force at the surface contact of two objects as shown in
the below figure.

8



Figure 4.3: Discrete Element Method

The total forces works on a single particle can be calculated as:

Ftotal = Fnormal + Ftangential (4.1)

where Ftangential is computed based on Coulomb’s law of friction that

Ftangential = µFnormal (4.2)

and

µ =

µs, |vrelative| = 0
µd, else

(4.3)

where µs is the coefficient of static friction, µd is the coefficient of dynamic friction, and
vrelative is the relative velocity between two collision particles.

Since we use a position based solver in our simulation, we do not use the normal force
at the collision. Instead, we use normal position correction to determine the tangential
position correction. We will discuss this later in chapter 5.

4.2.2 Smoothed Particle Hydrodynamics

SPH is a well-known computational method for Lagrangian based fluid simulation. Although
SPH was firstly developed to simulate phenomenons in astrophysics, it was found to be useful
in simulating a wide range of fluid soon after its publication.

The core concept of SPH is to partition fluid into many particles where each particle
stores physical quantities such as velocity or pressure. Since values evaluated from particles
are typically not continuous, SPH makes the boundaries smoothed by symmetrical kernel
functions W in the range of a given effective radius h as shown in Figure 4.4. At an arbitrary
location r, the quantity A is interpolated by summing up contributions from nearby particles
with the following equation:

A(r) =
∑

j

mj
Aj

ρj
W (r − rj , h) (4.4)

where j is the index of nearby particles, m is the mass, and ρ is the density. One of the
advantage of using smooth kernel is its simplicity to calculate the derivatives of physical

9



Figure 4.4: Smoothed Particle Hydrodynamics

quantities. For example, the gradient ∇A of a quantity can be directly computed with the
gradient of kernel function ∇W as below:

∇A(r) =
∑

j

mj
Aj

ρj
∇W (r − rj , h) (4.5)

and for the laplacian ∇2A is

∇2A(r) =
∑

j

mj
Aj

ρj
∇2W (r − rj , h) (4.6)

In our research, we use the same kernel functions proposed by Müller et at. [19]. We
use the poly6 kernel function to calculate the density, and the spiky kernel for gradient
calculation. The equation of both kernel functions are listed below:

Wpoly6(r, h) = 315
64πh9

(h2 − r2)3, 0 ≤ r ≤ h

0, otherwise
(4.7)

∇Wspiky(r, h) = − 45
πh6


1
r (h − r)2 − (h − r), 0 ≤ r ≤ h

0, otherwise
(4.8)

The reason of separating into different kernels is because that the gradient of poly6 becomes
zero when r is close to zero. The lack of repulsion force makes the pressure computation
tends to generate particle clusters as reported in Müller’s early research [19]. Instead, the
spiky kernel gives positive numbers which consequently causes the repulsion force increased
when the distance r decreases.

Similar to the above problem, the laplacian of spiky and poly6 is negative numbers in
range −h ≤ r ≤ h which doesn’t fit our expectation in calculating the temperature of a
particle. we address this problem by using the viscosity kernel instead:

∇2Wviscosity(r, h) = 45
πh6

(h − r), 0 ≤ r ≤ h

0, otherwise
(4.9)

10



Chapter 5

Position Based Dynamics

Position based dynamics (PBD) is a numerical approach widely used in modern real-time
computer graphics simulation. Traditionally, the motion of dynamics objects is determined
by the accumulated forces and the equations derived from Newton’s law of motion. These
methods are typically called force based methods, which are notorious for their expensive
computational cost and the necessity in small time steps. In contrast, position based dy-
namics reduces the cost by directly manipulating the position of objects to satisfied given
constraints. In the following sections, we will introduce the basic of PBD and the con-
straints. Then we will explain how to use PBD to simulate fluid and do the rigid-fluid
coupling effects. Lastly, we will discuss different types of solvers with mentioning their
advantages and disadvantages.

5.1 Simulation Loop

(a) Force Based Simulation (b) Position Based Simulation

Figure 5.1: Simulation loops

In force-based simulation, solvers must firstly compute the acceleration of objects and
then integrates with the time step ∆t in order to have the velocities to update the positions.
A traditional force-based method has a simulation loop like Figure 5.1a. When ∆t is large,

11



the errors in explicit methods will be accumulated. A solution to address this problem is to
use implicit methods. However, some implicit methods are too complicated to implement
and require massive computational resources to increase the accuracy of simulation. Plus,
in computer graphics research, accuracy is not as important as the appearance problems
in most of the cases. For example, users will put their attention on the existence of the
deformation of a elastic ball when it collides with other balls instead of how accurate the
bouncing speed is. Therefore, PBD offers a solution based on constraint dynamics as il-
lustrated in Figure 5.1b. The biggest difference between these two methods is that PBD
initially predicts the positions of objects and then projects the positions until they match
the given constraints. By doing this, PBD has higher stability even when the penetration
depth is deep. In contrast, traditional force-based methods need the information of internal
structure of the objects which means it is necessary to solve the complex mass-spring sys-
tem with continuously changing the times steps until the system is stable. Consequently,
force-based simulation usually spends more time than position-based simulation because
of the non-negligible sub-step integration. In the next section, we will explain how PBD
resolves this problem by defining constraints to simulate different behaviors.

5.2 Constraints

The interaction of the objects in a system is the key factor to determine whether a simulation
is realistic or not. One classic example is the collision response when objects contact with
each other. In order to match user’s expectation such as an object sliding over the ground
keeps the same distance to the ground, constraints are introduced to restrict the motion of
objects in a simulation system. In PBD, the constraint is represented as a function C(x)
where x is the positions of target objects affected by this constraint. There are two types
of constraint function: equality and inequality constraint where the equality constraint is
represented as:

C(x) = 0 (5.1)

and inequality constraint is:
C(x) ≥ 0 or C(x) ≤ 0 (5.2)

Generally, positions of objects in equality constraints will always be corrected until the con-
straint function is satisfied during the simulation. In the other hand, inequality constraint
C(x) ≥ 0 will only be corrected when the constraint value violates given conditions. In the
following contents, we will introduce the basic concept of constraints and how PBD solves
them.

Assume a new position x′ is computed after the integration that x′ = x+∆x. In order
to behave correctly, this new position x′ must also satisfy the constraint function which
yields:

C(x′) = 0 (5.3)

In PBD, the position is projected in the gradient direction of the constraint function ∇C.
C(x′) can be approximated by Taylor expansion which yields

C(x′) = C(x + ∆x) ≈ C(x) + ∇xC(x) · ∆x = 0 (5.4)

12



And let the correction be
∆x = λ∇C(x) (5.5)

Substitute Equation 5.5 to Equation 5.4, we get

λ = − C(x)
|∇xC(x)|2

(5.6)

yielding the scaling factor s in case of a constraint composed of a number of positions to be

s = C(x1, ..., xn)∑
j |∇xC(x1, ..., xn)|2

(5.7)

where the position correction is

∆xi = −s∇xiC(x1, ..., xn) (5.8)

In PBD, the position correction is weighted with wi = 1/mi which makes Equation 5.7 be

s = C(x1, ..., xn)∑
j wj |∇xiC(x1, ..., xn)|2

(5.9)

Consequently, we can derive the final term of ∆x as the following

∆xi = −swi∇xiC(x1, ..., xn) (5.10)

In our research, we use the stretch constraint to simulate spring-like effects when con-
necting discrete snow particles into stretchable icy blocks. The function of stretch constraint
is defined as:

C(x) = ∥xi − xj∥ − d = 0 (5.11)

Following the inductions above, the correction of particle i is

∆xi = −kstretch
wi

wi + wj
(∥xi − xj∥ − d) xi − xj

∥xi − xj∥
(5.12)

where kstretch is added here to control the stiffness of the connection.
The non-penetration constraint we use to handle the collision response of particles

has similar constraint function as Equation 5.11. There is a slight difference that non-
penetration constraint is inequality constraint which may only be applied when particles
collided with each other. It is defined as the following

C(x) = ∥xi − xj∥ − (ri + rj) ≥ 0 (5.13)

that ri and rj are the radius of particle i and j. Consequently, the correction of non-
penetration constraint is given by

∆xi = −kbounce
wi

wi + wj
(∥xi − xj∥ − (ri + rj))

xi − xj

∥xi − xj∥
(5.14)

where kbounce is the bouncing stiffness. In our research, we typically set 0.5 ≤ kbounce ≤ 1
to perform snow-like particle collision which can also increase the stability when the phase
change is very intensive.

13



Figure 5.2: Density constraint

5.3 Position Based Fluid

Although SPH has various advantages, the nature of using particles makes it unstable when
clustering occurs. To address this problem, many previous researches use stiffness equations
to handle the incompressibility of fluid. However, such methods requires small time steps to
prevent overshooting problems. Position based fluid overcame this issue by applying density
constraints on fluid particles. In PBF, the density ρi is computed as using Equation 4.4

ρi =
∑

j

mjW (xij , h) (5.15)

where j is the neighbor of particle i, and xij is the distance between particle i and j.
Considering that incompressible fluid tends to relax its density when it is too dense (as
Figure 5.2), the density constraint of each particle is defined with the rest density ρ0 which
yields inequality function such that

Ci(x1, ..., xn) = ρi

ρ0
− 1 ≤ 0 (5.16)

To obtain the correction of position, the gradient of Ci(x) with respect to particle k is given
by

∇xk
Ci = 1

ρ0


∑

j ∇xk
W (xij , h), k = i

−∇xk
W (xij , h), k = j

(5.17)

Substituting 5.17 into Equation 5.7, we get the final term of position correction that

∆xi = 1
ρ0

∑
j

(λi + λj)∇W (xij , h) (5.18)

Since scaling factors λi, λj may be divided by zero, a relaxation parameter ϵ is added to
the denominator which makes it becomes

λi = − Ci(x1, ..., xn)∑
k∥∇xk

Ci∥2 + ϵ
(5.19)

One advantage of using inequality density constraint is the stability. It omits the negative
pressure when the constraint value is large (meaning particles are loose within the effective
radius). In addition, since our research requires particles being switched between different

14



phases, it can also ease the intense changes at the number of neighbors of SPH particles
when they are newly added in.

Finally, we apply the XSPH viscosity as the following to get coherent motion of SPH
particles [4].

v∗
i = vi − ϵvisc

k∑
j=1

[mi

ρi
(vi − vj)W (xij , h)] (5.20)

where the computation traverses all nearby k particles with ϵvisc being the viscosity param-
eter, and vi, vj being the velocities after the correction of position.

5.4 Position Based Friction

In order to simulate the friction in Position Based Dynamics, we incorporate the model
proposed by Macklin [20] which solves the interpenetration of DEM particles with Equation
5.13. After the non-penetration correction is completed, the relative correction of two
particles i and j in the perpendicular direction can be computed as the following that

∆x⊥ = [(x∗
i − xi) − (x∗

j − xj)] ⊥ n (5.21)

where x∗
i , x∗

j is the corrected position after all constraints being resolved, xi, xj is the
initial position in current time step, and n = x∗

ij/|x∗
ij |. As the definition in Coulomb’s law

of friction in Equation 4.2, the frictional correction can be divided into static and kinetic
friction which yields

∆x⊥ = −wi

wi + wj

∆x⊥, |∆x⊥| < µsd

∆x⊥ · min( µkd
∆x⊥

, 1), otherwise
(5.22)

where wi, wj is the inverse of mass, µk, µs is the coefficient of kinetic and static friction
respectively, and d is the penetration depth of particle i, j. Notice that we make a slight
change in the direction of friction with a negative sign at the Equation 5.22 which represents
the restriction on the tangential correction. With a couple of experiments, we believe the
friction here should be the correct one instead of the one used in Macklin’s paper [20].

5.5 Rigid-fluid Coupling

Coupling is the technique to handle the interaction between different objects. Since the
discretization methods varies by the material, the solver must take additional computations
in order to perform the influence from another material. In our research, we handle the
rigid-fluid coupling effect in a complete position-based manner. In the following subsections
we are going to discuss our method of two-way rigid-fluid coupling.

5.5.1 Rigid to Fluid

An intuitive way to handle the rigid to fluid correction is to take the density contribution
of rigid particles into consideration. Similar to Equation 5.15, the corrected fluid density ρ̂i

is computed as the following that

ρ̂i =
∑

j

mjW (xij , h) +
∑

k

mkW (xik, h) (5.23)

15



where j is the index of neighbor SPH particles, and k is the index of neighbor DEM particles.
As the density changes with surrounding materials, the density constraint will automatically
move the fluid particles inward or outward until it satisfies the given condition.

However, such correction sometimes results in clustering or interpenetration because
the density constraint (Equation 5.16) does not guarantee to keep particles to be separated.
Therefore, we address this problem with using non-penetration constraint as described in
Equation 5.13 which yields the position correction be

∆xsph = 1
ρ0

(
∑

j

(λi + λj)∇W (xij , h) +
∑

k

(λi + λk)∇W (xik, h)) + ∆xnon_penetration (5.24)

where λj and λk is the scaling factor of nearby fluid particle j and solid particle j respec-
tively derived from Equation 5.19, and ∆xnon_penetration is the non-penetration correction
computed by Equation 5.14.

5.5.2 Fluid to Rigid

Similar to rigid-to-fluid correction, our approach uses non-penetration constraint to handle
the interaction from fluid particles to rigid particles. A slight difference is that we do not
take the fluid density into consideration since it will make the solid particles behave like
fluid. Therefore, the correction of a solid particle i becomes

∆xdem = ∆xsph→dem + ∆xdem→dem (5.25)

where ∆xsph→dem is the correction SPH particles contribute and ∆xdem→dem is the contri-
bution of correction from nearby DEM particles.

5.6 Solver

Generally, there are two different solvers can be used to solve the constraint of PBD. One
iterates all positions sequentially and uses the updated estimates to converge the linear
system, is known as the Gauss-Seidel iteration. Another one is the Jacobian method which
simultaneously uses old estimates in every iteration. The advantage of Gauss-Seidel iteration
is that it can converge faster than Jacobian method. However, for every candidate xi at
nth iteration, it must wait until the computation of xi−1 is finished, which causes read-
write problem if it is implemented in parallel. In contrast, Jacobian method suits better to
parallel programming because there is no need to access the updated value.

In our research, we use Jacobian solver to compute the position correction for each
particles. Since a particle might be influenced by multiple constraints, a typical solution to
prevent over aggressive convergence is to average the sum of correction ∆xi =

∑ni
j=0 ∆xj

with the number of constraints ni applied on particle i that:

∆x̃i = 1
ni

∆xi (5.26)

Furthermore, in order to fasten the convergence of Jacobian solver, a global successive
over-relaxation parameter (SOR) ωSOR is multiplied to the correction such that:

∆x̃i = ω

ni
∆xi (5.27)

16



where the value of ω is typically set to 1 ≤ ω ≤ 2. In some cases, if the simulation becomes
too unstable, sacrificing the convergence speed by setting ω smaller than 1 can increase the
stability in some degrees.

17



Chapter 6

Phase Change

Matters can generally be classified as three basic phases such as solid, liquid, and gas, which
are influenced by the pressure and temperature, or more specifically the energy. The pro-
cess transits the phase of a matter from one to another is called phase change. In natural
environments, snow melts when it contacts with hotter objects or receiving high pressure
from the accumulations. The constantly varying phases create water, which serves as lubri-
cants, making the behavior of wet snow completely different with dry snow. Consequently,
simulating the phase change effect is necessary in our research. In this chapter, we will
introduce our method of heat conduction and the particle transition algorithm.

6.1 Heat Conduction

In order to perform the phase change effect, it is necessary to compute how heat transfer
between nearby particles. Typically, there are three mechanisms of heat transfer (advection,
conduction and the radiation). In our research, we only simulate the conduction effect since
the advection is automatically handled by SPH as particles move from one place to another.
Considering having multiple materials (ice and water) in our simulation, we reference to the
heat conduction model for heterogeneous material developed by Hochstetter et al. [21] that

dTi

dt
= 1

ρici

∑
j

mj

ρj

4kikj

ki + kj
(Tj − Ti)∇2Wviscosity(xij , h) (6.1)

where c is the heat capacity, ki, kj is the heat conductivity of particle i, j, T is the temper-
ature, and Wviscosity is the viscosity kernel same as the one used in XSPH viscosity.

6.2 Particle Transition

6.2.1 Particle Blending

In practice, a different solver will be applied to perform the new characteristics when a
particle is transferred from one phase to another. However, the sudden change on particle
phase typically makes the simulation result unstable due to the difference at the applied
constraints. As shown in Figure 6.1, when a fluid particle suddenly becomes a rigid particle,
the nearby particles must be pushed away in order to satisfies the non-penetration constraint
even though they might have fulfilled the density constraint in the previous time step. This

18



Figure 6.1: Unstable transition

phenomenon does not only occur in fluid-to-rigid transition, but also can be found in rigid-
to-fluid transition. Therefore, we adopt the solution proposed by Wolde Lübke et al.[22]
introducing a blending coefficient 0 ≤ α ≤ 1 and blending speed ω that

αt = αt−1 + ω (6.2)

to mix the contributions computed from previous and current phases. For example, after
taking the modification of the blending process, the correction of a newly transferred fluid
particle becomes

∆xi = α∆xsph + (1 − α)∆xdem (6.3)

where ∆xsph and ∆xdem is the correction computed by fluid solver and solid solver respec-
tively. By doing this, the particle will act similar to the old phase at first and gradually be
corrected until its position satisfying the constraint in the new phase.

6.2.2 Two-way Blending Mechanism

Figure 6.2: Rapid phase change

Since our target is to simulate the bilateral phase change effect, there is a special case
we must take into consideration. Suppose that there is a particle whose temperature is near

19



to the melting point Tmelt and locates just at the center between high and low temperature
particles. Following the previous simulation flow, which directly changes the phase without
considering the latent heat, can cause this particle hovering rapidly between two phases as
shown in Figure 6.2.

Figure 6.3: Blending threshold

Although we have additionally modified the correction with the blending parameter
α, the simulation could still remain extremely unstable due to the sudden changes on the
contribution. To address this problem, we use a threshold to mimic the latent heat effect
which blocks the phase change procedural when

α ≤ αthreshold (6.4)

This mechanism helps the transition process to be flatten as shown in Figure 6.3. The only
disadvantage is that it may not be as sensitive as using a true latent heat model. The phase
change process may last for a couple of frames until it is unlocked.

6.2.3 Uneven Blending

Although we have resolved the instability problem with previous mentioned methods, we still
noticed our bilateral phase change simulation was unstable when we were testing our pro-
gram. We found that the correction contributed by density constraint and non-penetration
constraint is unbalanced. This causes the revised corrections to be completely inclined
to one of the contribution, more specifically, the non-penetration correction. Unlike the
density constraint is sensitive to the number of nearby particles and their masses, the non-
penetration constraint is sensitive to the distance of two particles. When the particles are
very close and fulfill the density constraint, the influence constraint will be much stronger
than the density constraint which means the correction of density constraint may be ignored
due to the big difference on the value. Therefore, we adjust our blending process as the
following

∆xnew_sph = α∆xsph (6.5)

for newly melted particles. And

∆xnew_dem = α∆xdem + (1 − α)∆xsph (6.6)

20



for newly frozen particles. The reason why we only ignore the non-penetration correction in
Equation 6.5 is that fluid is typically softer than solid. After rendered as transparent ma-
terial,it is much more difficult to observe the existence of fluid particles near the boundary.
In addition, as mentioned in Section 5.5, ∆xsph has constantly taken the non-penetration
correction into consideration. Therefore, there is no need to emphasize the non-penetration
effect in Equation 6.5.

6.2.4 Inter Connection Mechanism

As we described in Chapter 4, our model links DEM particles with stretch constraints
in order to perform the elastoplastic property of snow. Nearby DEM particles j will be
connected to particle i when

Ti ≤ Tlinking ∩ Tj ≤ Tlinking ∩ distance(xi, xj) ≤ h (6.7)

where Tlinking is the temperature a particle starts to link its neighbor, and h is the effective
radius. Generally, Tlinking should locates in range Tlinking ≤ Tfreezing which means the links
only exist in between low temperature DEM particles.

Since the physical memory is limited, naively recording all particles within h could be a
very huge load for the system. Therefore, we use a maximum connection nmax to control the
number of connections as illustrated in Figure 6.4. The connection record will be marked
as occupied when the nearby particles access and fill in the empty spaces.

Figure 6.4: Connection control

However, restricting all particles with the same number of connection nmax results in
ice-like effects which does not fit with the fluffy image of snow. Therefore, we introduce an
dynamic connection number ndynamic that

ndynamic = Round( T − Tfreezing

Thomo − Tfreezing
)nmax (6.8)

where Thomo is the homogeneous freezing temperature that a whole material will freeze
uniformly when the temperature is below Thomo. By doing this, a DEM particle can control
the number of connection based on the current temperature T . In Chapter 7.2.3, we will
discuss our GPU implementation of how we fill in the record in parallel computation.

21



Chapter 7

GPU Implementation

Graphics Processing Unit (GPU) is a computer hardware which is firstly designed to con-
currently execute pipelined instructions in order to increase the performance of image gen-
eration. In recent years, many applications has utilized the nature of parallel execution to
accelerate their solutions such as video encoding, or machine learning. In this chapter, we
will introduce the programming model of GPU. After then, we will discuss our phase change
algorithm and the inter connection mechanism on GPU.

7.1 Programming Model

GPGPU is a technique that processes general-purpose computations on GPU. Various APIs
have been provided to support the use of GPGPU. CUDA is the application programming
interface developed by NVIDIA that supports developers to use c-style code to execute
concurrent programs on GPU. The programming model of CUDA is illustrated in Figure
7.1. In CUDA, a computational grid is composed of multiple thread blocks where each
block contains multiple threads and each thread launches a kernel function in parallel.

Figure 7.1: CUDA Programming Model (referenced from [1])

22



There are three types of memory in CUDA (Figure 7.2). Each thread has its own local
memory and registers for read/write purpose. Inside each blocks, there is a shared memory
for threads to exchange information cooperatively. Global memory is the only one can be
read/written by CPU and will be used when the parameters need to be visible across kernels
of multiple blocks.

Figure 7.2: CUDA Memory Hierarchy (referenced from [1])

Before launching a CUDA program on GPU, all essential data must be transferred from
host (CPU) to device (GPU). The data of host and device are stored independently until
the OS calls the driver to synchronize them. The I/O overhead is the biggest bottleneck
when there are too much of them. In our research, we provide an algorithm completely
designed for GPU computation. Except necessary I/Os for parameter settings, the whole
simulation is performed on the device.

7.2 GPU-based Phase Change

7.2.1 Predicates

To efficiently handle the phase change effect on GPU, we store the information of particles
into two different structure of arrays like the following:

1 struct ParticleDeviceData
2 {
3 float3 * m_d_positions ;
4 float3 * m_d_velocity ;
5 // ...
6 /* heat conduction parameters */
7 float * m_d_T ;
8 float * m_d_new_T ;
9 // ...

23



10 /* inter - connection parameters */
11 uint* m_d_connect_record ;
12 uint* m_d_iter_end ;
13 float * m_d_connect_length ;
14 // ...
15 /* scan and compact parameters */
16 uint* m_d_predicate ;
17 uint* m_d_scan_index ;
18 }

where each particle set represents a specific phase with predicate to determine whether
this particle is going to be used in this time step. Initially, we allocate two m + n arrays
which save m SPH particles and n DEM particles with reserved extra spaces for the particle
transitions as shown in Figure 7.3.

Figure 7.3: Memeory view

When the phase of a particle changes, the data will be copied to the tail of corresponding
array like Figure 7.4. Then, the old place will be marked as 0 (not using) and the new place
will be marked as 1 (using).

Figure 7.4: Particle transition

Figure 7.5: Particle transition (compact process)

Based on the mark, we move those 0s to the back and 1s to the front as shown in Figure
7.5. There are several advantages of having contiguous region of data. Firstly, it is much
easier to manage the data by iteratively traversing the array. Secondly, the computation is
much faster because coalesced memory access on GPU is far efficient than strided access.

7.2.2 Scan and Compact

In GPU computation, the compact process can be accomplished by using the exclusive scan
[23]. As illustrated in Table 7.1, each element i in the output array is the sum of all previous

24



elements in the input array. By extending this feature, we perform the exclusive scan to the

Input 3 1 4 1 5 9 2 6
Output 0 3 4 8 9 14 23 25

Table 7.1: Exclusive scan

predicate array mentioned in the previous subsection which generates outputs, for example,
as in Table 7.2. Using this output, we can obtain the index that scatters the original data

Input 1 1 0 1 1 0 1 1
Output 0 1 2 2 3 4 4 5

Table 7.2: Exclusive scan result of the predicate array

into the compacted data as Figure 7.6. We use this mechanism to implement our phase

Figure 7.6: Scatter

change algorithm by exchanging particles in between two particle sets. Once we have the
compacted particle data, we can reduce the computation cost by only traversing the useful
data.

7.2.3 Lock-free Connection Mechanism

To prevent the read/write issues on writing connection record, we use the atomicCAS (com-
pare and swap) operation to protect the corresponding data. Once a particle finds an empty
space (UINT_MAX), the atomicCAS operation will swap the value of the record with the
particle index1. After then, the current distance of two particles dist will be store in the
corresponding places and the iter_end, which serves as the current usage of connections,
will be incremented. If there is no space for index1 to fill in, then the record will be reset
to UINT_MAX (empty). The following code shows how to fill in the empty space:

1 // CUDA atomic operations returns old values
2 int atomicCAS (int* address , int compare , int val);
3 int atomicExch (int* address , int val);
4 int atomicAdd (int* address , int val);
5

6 ...
7

8 // traverse all record spaces to find empty to fill
9 for (uint i = n_max * index0 ; i < n_max * ( index0 + 1); ++i)

10 {
11 if ( atomicCAS (& connect_record [i], UINT_MAX , index1 ) == UINT_MAX )
12 {

25



13 bool valid = false ;
14

15 // search and fill in index1 ’s record to prevent one -way connection
16 if ( iter_end [ index1 ] < ( index1 + 1) * n_max )
17 {
18 // locate avaible space at index1 ’s record and fill
19 for (uint j = index1 * n_max ; j < ( index1 + 1) * n_max ; ++j)
20 {
21 if ( atomicCAS (& connect_record [j],
22 UINT_MAX ,
23 index0 ) == UINT_MAX )
24 {
25 connect_length [j] = dist;
26 atomicAdd (& iter_end [ index1 ], 1);
27 valid = true;
28 break ;
29 }
30 }
31 }
32 if ( valid )
33 {
34 connect_length [i] = dist;
35 atomicAdd (& iter_end [ index0 ], 1u);
36 } else
37 {
38 // reset record index if invalid
39 atomicExch (& connect_record [i], UINT_MAX );
40 }
41 }
42 }

When the other threads are trying to access the same record after the value has been changed
by the atomicCAS (line 11 and line 21), other accesses will be rejected because the space
there is no longer marked as available (UINT_MAX). Those threads will then iterate to
the next location to find whether there is an empty space or not until it reaches the end of
the record memory (determined by Equation 6.8). After all threads finish the connection
creation process, the connection count will be updated so that we can directly jump over all
excessive connection attempts in the next time step by referencing to the connection count.

26



Chapter 8

Results & Conclusion

This chapter shows our simulation results in Section 8.1 which covers experiments testing the
functions of our research. Then, we will make the conclusion, discussion of the limitations,
and the future work in Section 8.2.

8.1 Results

8.1.1 Environment

Our experiment environment is listed in Table 8.1. The snow particles is the rendered as
point sprites and the water is rendered using Screen Space Fluid Rendering [24].

CPU Intel® Core™ i7-8700
RAM 16 GB
GPU NVIDIA GeForce GTX 1080

VRAM 8 GB
Graphics API OpenGL 4.1
CUDA version 11.0

Table 8.1: Environment

Table 8.2 is the global parameters for SPH particles.

Parameter value
Particle mass 0.01 (kg)
Fluid density 1000 (kg/m3))
Effective radius 0.0362783(m)
Per kernel particles 20

Table 8.2: SPH parameters

Both Table 8.3 and Table 8.4 are unchanged parameter simulation while the former table is
the heat-relative parameters and the latter is the PBD parameters in all below simulations.
Notice that PBD parameters do not have units because there is no actual physics-based
material used in PBD.

27



Parameter Value
Time step 0.00125(sec)
Number of iterations 3
Snow heat capacity 2090 (J/kg C◦)
Water heat capacity 4182 (J/kg C◦)
Melting point 0 C◦

Homogeneous freezing temperature −30 C◦

Table 8.3: Unchanged heat parameters

Parameter Value
SPH viscosity 0.01
DEM viscosity 0.1
Blending speed 0.01
Static friction 0.5
Kinetic friction 0.35
Interlink stiffness 0.1
Non-penetration stiffness 0.25
SOR coefficient 0.25

Table 8.4: Unchanged PBD parameters

28



8.1.2 Snow drop

This subsection shows our result of interlink usage for snow simulation. The temperature of
snow in the following experiments is set to −10 C◦. Figure 8.1 demonstrates the simulation
without using interlinks. Figure 8.2 uses interlinks for DEM particles but the number of
connection is always a constant. Figure 8.3 changes the number of connection based on the
homogeneous freezing temperature Thomo and the temperature of particle.

Comparing with none interlinked snow drop, experiments using interlinks shows snow is
be able to keep its shape after dropping down to the ground which performs the elastoplastic
property. Also, in Figure 8.3, we can observe that snow can be fluffy but not lose the ability
to keep its shape by using the dynamic number of connection we proposed in Chapter 6.2.4.

Figure 8.1: None interlink snow drop (200 frames per image)

29



Figure 8.2: Full interlinked snow drop (200 frames per image)

30



Figure 8.3: Dynamic interlinked snow drop (200 frames per image)

31



8.1.3 Snow drop with melting

The scene shown in Figure 8.5 demonstrates the melting process of snow drop into hot
water. Figure 8.6 is the thermograph of the last frame in Figure 8.5. Figure 8.4 shows
the processing time from frame 0 to frame 5000. Table 8.5 lists our simulation parameters
of this experiment. And Figure 8.4 illustrates the transition of the number of particles.
In order to accelerate the simulation, we set the heat conductivity 100 times bigger than
regular settings.

From Figure 8.5, we can observe the size of snow shrinks over time. This shows our
melting process is successfully executed. In the performance graph (Figure 8.4), the compu-
tation time increases when the snow contacts with the hot water because the solver starts
to handle the phase change effect. In Figure 8.7, we can see that DEM particles gradually
becomes SPH particles as the heat transferred between particles as shown in Figure 8.6.
Notice that the jitters in Figure 8.4 are caused by the number of simulated interlinks and
the difference of execution time of each CUDA kernel.

Parameter Value
Snow temperature −10 (C◦)
Water temperature 50 (C◦)
Snow heat conductivity 2500 (W/mK)
Water heat conductivity 600 (W/mK)
Number of water particles 64000
Number of snow particles 10648

Table 8.5: Parameters of snow drop melting scene

Figure 8.4: Performance of snow drop melting

32



Figure 8.5: Snow drop melting (200 frames per image)

33



Figure 8.6: Snow drop melting (Thermograph)

Figure 8.7: Number of particles of snow melting in water

34



8.1.4 Snow Drop Freezing

This scene shows the freezing process of cold snow drop in low temperature water as il-
lustrated in Figure 8.9. Figure 8.10 is the thermograph of the frame 5000. Figure 8.8 is
the processing time per frame from frame 0 to frame 5000. And Figure 8.8 illustrates the
transition of the number of particles.

In contrast with Section 8.1.3, this experiment demonstrates our freezing process is also
successfully proceeded as well. Comparing with Figure 8.4, the processing time is more
stable in Figure 8.8. This is mainly because the snow temperature in this experiment is
under the homogeneous freezing temperature Thomo in Chapter 6.2.4 so that the processing
time for interlinks did not vary a lot even when the shape changed. Another thing to notice
is that the shape of snow is twisted from frame 400. It is simply because the connection of
a particle is less as it is near to the edge. Therefore, they are typically able to fall down
without the correction from other particles which results in the deformed shape as shown
in Figure 8.9. To prevent this artifact, we need to introduce another constraint such as
volume constraint to keep its shape.

Parameter Value
Snow temperature −100 (C◦)
Water temperature 1 (C◦)
Snow heat conductivity 2500 (W/mK)
Water heat conductivity 600 (W/mK)
Number of water particles 32400
Number of snow particles 10648

Table 8.6: Parameters of snow drop freezing scene

Figure 8.8: Performance of snow drop freezing

35



Figure 8.9: Snow drop freezing (400 frames per image)

36



Figure 8.10: Snow drop freezing (Thermograph)

Figure 8.11: Number of particles of water frozen by snow

37



8.1.5 Water drop into snow

This experiment shows the scene that water drops into the snow. The parameters we used
in this simulation are listed at below Table 8.7. Figure 8.13 and Figure 8.14 are the results
captured every 500 frames. Figure 8.12 shows the per frame processing time of water drop
scene. And Figure 8.15 illustrates the transitions of the number of particles. Notice that the
high temperature and conductivity are simply used to exaggerate the effect of snow being
melted by hot water drops.

In Figure 8.15, we can observe that the snow has drastic phase change effect starting
from about frame 400 to frame 1000. This increases the processing time a lot as shown
in Figure 8.12. Also, the computation cost increases as long as the SPH particles increase
because it typically takes more steps than DEM particles. From about frame 3700, the
freezing speed starts exceeding the melting speed. This tells us our phase change algorithm
is a bilateral process instead of a unilateral process.

Finally, we output our result into Houdini to generate the surfaces and rendered with
ray tracing as shown in Figure 8.16.

Parameter Value
Snow temperature −10 (C◦)
Water temperature 100 (C◦)
Snow heat conductivity 2500 (W/mK)
Water heat conductivity 600 (W/mK)
Number of water particles 5888
Number of snow particles 147928

Table 8.7: Parameters of water drop scene

Figure 8.12: Performance of water drop

38



Figure 8.13: Water drop 1 (250 frames per image)

39



Figure 8.14: Water drop 2 (250 frames per image)

Figure 8.15: Water drop particle numbers

40



Figure 8.16: Water drop scene (Rendered with Houdini)

41



8.2 Conclusion & Discussion

In conclusion, our research utilizes the Position Based Dynamics to simulate the behavior
of snow which performs the rigid body collision and the elastoplastic characteristic of snow
material. Our algorithm shows that the implementation of intense bilateral phase change
effect is applicable on GPU. By separating snow into two sets of particles, our solver is
able to handle the interaction of fluid and solid with the averaged correction of density
constraint, non-penetration constraint and the stretch constraint. Furthermore, we use the
blending parameters to smooth the sudden changes caused by varying phases. As a result,
our position-based solver provides a stable and controllable solution for snow simulation by
considering the phase change effects.

However, there are several limitations in our research. One of the problems is the usage
of the stretch constraint. As long as the distance of two particles remains the same, the
correction will not be applied because the stretch constraint does not take the topological
relationships into consideration. This should be fixed with using the shape matching algo-
rithms [25] or volume constraint. Another limitation is that our method does not perform
the infiltration effects well, such as water flow into snow particles, when the number of par-
ticles is not sufficient because of the uniform size of the DEM and SPH particles. We think
using adaptive size for SPH particles should be able to resolve this problem [26]. Other
limitations such as large scale rigid body collisions requires shock propagation in order to
converge faster as mentioned in Macklin’s paper [20]. We ignore this problem because of
the complexity of implementation. Since our simulation incorporates the interaction with
fluid, the direction of shock propagation would be hard to estimate. Therefore, we simply
change the stiffness of non-penetration constraint to achieve a closer visual effect of snow
simulation.

In the future, we would firstly put our effort on reducing the effort of parameter tuning.
By using XPBD [27], it should be able to allow users to use real-world parameters in the
simulation, especially for the stiffness. And since our simulator is totally designed for GPU
computation, the information of environmental objects on CPU should be synchronized to
GPU in order to make them be able to interact with the snow.

42



Acknowledgement

Foremost, I would like to express my sincere appreciation to my supervisor, Professor
Makoto FUJISAWA, who continuously shows me constructive hints, directions and ma-
terials that pushed me to finish this research in this year. Except those assists related to
my research, I would also like to thank him for trusting me be capable of finishing my
research. Also, I would like to thank Professor Masahiko MIKAWA, and all the members
in both PBCGLab and Social Robotics Laboratory. The discussions you gave me in the
seminar truly helped me noticing the details I should be aware of when I am constructing
my research.

Furthermore, I would like to thank my mentors in Taiwan National Cheng Kung Uni-
versity, Professor Min-Chun Hu, who had encouraged me to pursue my dream of doing
physics-based computer graphics research, and Jim Huang, who taught me those important
knowledge of computer science. Without your supports, it would be impossible for me to
have a chance to conduct my research in University of Tsukuba.

Lastly, I would like to thank my friends and family who have supported me all the way
to here. I sincerely appreciate for your physical and mental endorsement that helped me to
overcome my frustrations. It is my honor to have you standing by my side.

43



References

[1] Nvidia. Cuda c programming guide. https://docs.nvidia.com/cuda/cuda-c-
programming-guide/index.html. Accessed: 2020-12-25.

[2] Alexey Stomakhin, Craig Schroeder, Chenfanfu Jiang, Lawrence Chai, Joseph Teran,
and Andrew Selle. Augmented MPM for phase-change and varied materials. ACM
Transactions on Graphics, Vol. 33, No. 4, pp. 1–11, jul 2014.

[3] Matthias Müller, Bruno Heidelberger, Marcus Hennix, and John Ratcliff. Position
based dynamics. Journal of Visual Communication and Image Representation, Vol. 18,
No. 2, pp. 109–118, apr 2007.

[4] Miles Macklin and Matthias Müller. Position based fluids. ACM Transactions on
Graphics, Vol. 32, No. 4, pp. 104:1–104:12, jul 2013.

[5] Tomoyuki Nishita, Hiroshi Iwasaki, Yoshinori Dobashi, and Eihachiro Nakamae. A
modeling and rendering method for snow by using metaballs. Computer Graphics
Forum, Vol. 16, No. 3, pp. C357–C364, sep 1997.

[6] Paul Fearing. Computer modelling of fallen snow. In Proceedings of the 27th annual
conference on Computer graphics and interactive techniques - SIGGRAPH '00, pp.
37–46, jul 2000.

[7] N. Maréchal, E. Guérin, E. Galin, S. Mérillou, and N. Mérillou. Heat transfer simulation
for modeling realistic winter sceneries. Computer Graphics Forum, Vol. 29, No. 2, pp.
449–458, may 2010.

[8] 高橋哲也, 藤代一成. 焼結作用を考慮した雪の踏み散らしシミュレーション. 第 74回全
国大会講演論文集, 第 2012巻, pp. 143–144, mar 2012.

[9] Yongning Zhu and Robert Bridson. Animating sand as a fluid. ACM Transactions on
Graphics, Vol. 24, No. 3, pp. 965–972, jul 2005.

[10] Christoph Gissler, Andreas Henne, Stefan Band, Andreas Peer, and Matthhias
Teschner. An implicit compressible sph solver for snow simulation. ACM Transac-
tions on Graphics, Vol. 39, No. 4, pp. 1–16, aug 2020.

[11] N. Foster and D. Metaxas. Controlling fluid animation. In Proceedings of Computer
Graphics International, pp. 178–188, 1997.

[12] Nick Foster and Ronald Fedkiw. Practical animation of liquids. In Proceedings of the
28th annual conference on Computer graphics and interactive techniques - SIGGRAPH
'01, pp. 23–30, 2001.

44



[13] Mark Carlson, Peter J. Mucha, and Greg Turk. Rigid fluid. ACM Transactions on
Graphics, Vol. 23, No. 3, pp. 377–384, aug 2004.

[14] Witawat Rungjiratananon, Zoltan Szego, Yoshihiro Kanamori, and Tomoyuki Nishita.
Real-time animation of sand-water interaction. Computer Graphics Forum, Vol. 27,
No. 7, pp. 1887–1893, oct 2008.

[15] Christopher Jon Horvath and Barbara Solenthaler. Mass preserving multi-scale sph.
Pixar Technical Memo 13-04, Pixar Animation Studios, 2013.

[16] Nadir Akinci, Markus Ihmsen, Gizem Akinci, Barbara Solenthaler, and Matthias
Teschner. Versatile rigid-fluid coupling for incompressible SPH. ACM Transactions
on Graphics, Vol. 31, No. 4, pp. 1–8, aug 2012.

[17] Makoto Fujisawa and Kenjiro T. Miura. Animation of ice melting phenomenon based
on thermodynamics with thermal radiation. In Proceedings of the 5th international
conference on Computer graphics and interactive techniques in Australia and Southeast
Asia - GRAPHITE '07, pp. 249–256, 2007.

[18] 仲宗根良. 位置ベース粒子法を用いた高速な融解シミュレーション. Master’s thesis,
University of Tsukuba, March 2016.

[19] Matthias Müller, David Charypar, and Markus Gross. Particle-based fluid simulation
for interactive applications. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, SCA ’03, p. 154–159, 2003.

[20] Miles Macklin, Matthias Müller, Nuttapong Chentanez, and Tae-Yong Kim. Unified
particle physics for real-time applications. ACM Transactions on Graphics, Vol. 33,
No. 4, pp. 1–12, jul 2014.

[21] Hendrik Hochstetter and Andreas Kolb. Evaporation and condensation of SPH-based
fluids. In Proceedings of the ACM SIGGRAPH / Eurographics Symposium on Computer
Animation, pp. 1–9, jul 2017.

[22] Arno in Wolde Lübke. Adaptive particle splitting based on turbulence energy for fluid
simulations on gpus. Master’s thesis, Nara Institute of Science and Technology, 2013.

[23] Hubert Nguyen. GPU gems 3. Addison-Wesley, Upper Saddle River, NJ, 2008.

[24] Wladimir J. van der Laan, Simon Green, and Miguel Sainz. Screen space fluid rendering
with curvature flow. In Proceedings of the 2009 symposium on Interactive 3D graphics
and games - I3D '09, pp. 91–68, feb 2009.

[25] Matthias Müller and Nuttapong Chentanez. Solid simulation with oriented particles.
ACM Transactions on Graphics, Vol. 30, No. 4, pp. 1–10, jul 2011.

[26] Barbara Solenthaler and Markus Gross. Two-scale particle simulation. ACM Transac-
tions on Graphics, Vol. 30, No. 4, pp. 1–8, jul 2011.

[27] Miles Macklin, Matthias Müller, and Nuttapong Chentanez. XPBD: Position-Based
Simulation of Compliant Constrained Dynamics. In Proceedings of the 9th International
Conference on Motion in Games - MIG '16, pp. 49–54, 2016.

45


